
Towards a More Efficient Implementation of OpenMP for Clusters via Translation to
Global Arrays∗

Lei Huang, Barbara Chapman, Zhenying Liu

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-04-05

December 13, 2004

Keywords: OpenMP translation, Global Arrays, parallel programming languages, Distributed Memory
System

Abstract

This paper discusses a novel approach to implementing OpenMP on clusters. Traditional approaches
to do so rely on Software Distributed Shared Memory systems to handle shared data. We discuss these
and then introduce an alternative approach that translates OpenMP to Global Arrays (GA), explaining
the basic strategy. GA requires a data distribution. We do not expect the user to supply this; rather, we
show how we perform data distribution and work distribution according to the user-supplied OpenMP
static loop schedules. An inspector-executor strategy is employed for irregular applications in order to
gather information on accesses to potentially non-local data, group non-local data transfers and overlap
communications with local computations. Furthermore, a new directive INVARIANT is proposed to
provide information about the dynamic scope of data access patterns. This directive can help us generate
efficient codes for irregular applications using the inspector-executor approach. We also illustrate how
to deal with some hard cases containing reshaping and strided accesses during the translation. Our
experiments show promising results for the corresponding regular and irregular GA codes.

∗This work was supported by the DOE under contract DE-FC03-01ER25502.

1

Towards a More Efficient Implementation of
OpenMP for Clusters via Translation to Global

Arrays∗

Lei Huang, Barbara Chapman, Zhenying Liu

Abstract

This paper discusses a novel approach to implementing OpenMP on clusters. Traditional approaches to do so
rely on Software Distributed Shared Memory systems to handle shared data. We discuss these and then introduce
an alternative approach that translates OpenMP to Global Arrays (GA), explaining the basic strategy. GA requires
a data distribution. We do not expect the user to supply this; rather, we show how we perform data distribution
and work distribution according to the user-supplied OpenMP static loop schedules. An inspector-executor strategy
is employed for irregular applications in order to gather information on accesses to potentially non-local data,
group non-local data transfers and overlap communications with local computations. Furthermore, a new directive
INVARIANT is proposed to provide information about the dynamic scope of data access patterns. This directive can
help us generate efficient codes for irregular applications using the inspector-executor approach. We also illustrate
how to deal with some hard cases containing reshaping and strided accesses during the translation. Our experiments
show promising results for the corresponding regular and irregular GA codes.

Index Terms

OpenMP translation, Global Arrays, parallel programming languages, Distributed Memory System

I. INTRODUCTION

OpenMP is the de facto parallel programming standard for shared memory systems; however, it is not available for
distributed memory systems including clusters, which are very widely deployed. But clusters already dominate the
Top500 list [1] and the trend toward use of clusters is expected to continue according to a recent survey of hardware
vendors [2]. The importance of a parallel programming API for clusters that facilitates programmer productivity
is increasingly recognized. Although MPI is a de facto standard for clusters, it is error-prone and too complex for
non-experts. OpenMP is a programming model designed for shared memory systems that does emphasize usability,
and we believe it can be extended to clusters as well.

The traditional approach to implementing OpenMP on clusters is based upon translating it to software Distributed
Shared Memory systems (DSMs), notably TreadMarks [3] and Omni/SCASH [4]. The strategy underlying such
systems is to manage shared memory by migrating pages of data, which unfortunately incurs high overheads.
Software DSMs perform expensive data transfers at explicit and implicit barriers of a program, and suffer from
false sharing of data at page granularity. They typically impose constraints on the amount of shared memory that
can be allocated. But this effectively prevents their applications to large problems. [5] translates OpenMP to a
hybrid MPI+software DSM in order to overcome some of the associated performance problems. This is a difficult
task, and the software DSM could still be a performance bottleneck.

In this paper, we discuss an alternative approach that translates OpenMP programs to Global Arrays (GA) [6].
GA is a library that provides an asynchronous one-sided, virtual shared memory programming environment for
clusters. A GA program consists of a collection of independently executing processes, each of which is able to
access data declared to be shared without interfering with other processes. GA enables us to retain the shared
memory abstraction, but at the same time makes all communications explicit, thus enabling the compiler to control
their location and content. Considerable effort has been put into the efficient implementation of GA’s one-sided
contiguous and strided communications. Therefore, we can potentially generate GA codes that will execute with high
efficiency using our translation strategy. On the other hand, our strategy shares some of the problems associated

∗This work was supported by the DOE under contract DE-FC03-01ER25502.

2

with the traditional SDSM approach to translating OpenMP for clusters: in particular, the high cost of global
synchronization, and the difficulty of translating sequential parts of a program.

The remainder of this paper is organized as follows. We first describe the traditional approach of implementing
OpenMP on clusters via SDSM. We then show an alternative approach that translates OpenMP to GA in Section
3. Case studies are discussed in Section 4. Section 5 describes language extensions and compiler strategies that are
needed to implement OpenMP on clusters. Related work and conclusions are described in the subsequent sections.

II. TRANSLATION TO SOFTWARE DSMS

The goal of a software distributed memory system (SDSM) is to transparently implement shared memory
paradigms in a distributed memory environment such as a cluster of PCs without any modifications to the source
program. Some SDSMs have their own APIs; in some instances, a translator has been provided to convert shared
memory paradigms such as OpenMP into appropriate calls to APIs of SDSMs. There are also a few SDSMs that
were designed to implement OpenMP. The shared memory abstraction is provided via either a relaxed consistency
model (e.g. TreadMarks [3] and SCASH [4]) to improve performance or a restricted sequential consistency model
(e.g. NanosDSM) to increase the portability of the implementation.

Enhancements to SDSMs and preparatory compiler optimizations are employed to improve the performance of
SDSM-based code. The dominant performance problems are the barriers that realize global synchronization and
the need to maintain coherence of the shared memory. Most SDSMs relax coherency semantics and impose a
size limitation on the shared area in order to decrease the cost of coherence maintenance. SDSMs use memory
management support to detect accesses to shared memory, mostly at the granularity of pages; however, such SDSMs
suffer from false sharing when one processor writes to a page and another processor reads or writes a different
area of the same page. In this case, the writing processor will invalidate all copies of the page other than the one
in its local cache, which results in a page fault when the latter processor attempts to use one. The multiple writer
protocol [3], [4], [7] allows different processors to write a page at the same time and merges their modifications at
the next synchronization point, thereby reducing the false sharing problem to some extent. False sharing can also be
alleviated by using a finer granularity, for instance, cache-line sized granularity [8] and single-byte granularity [9].
Since a naive translation of realistic shared memory parallel programs for clusters via SDSMs cannot provide
satisfactory performance [7], program optimizations prior to this translation have been proposed to obtain an
efficient generated code: in particular, these target barrier elimination, intensive data privatization (replacing shared
variables by threadprivate ones), page placement and data distribution.

A. TreadMarks

TreadMarks was the first system [3] that implemented OpenMP on a distributed memory system via this approach.
TreadMarks has its own API for emulating shared memory. Thus the SUIF toolkit was used to build a source-to-
source translator to process OpenMP directives. The OpenMP to TreadMarks translation process was relatively
straightforward: OpenMP synchronization directives were replaced by TreadMarks synchronization operations;
parallel regions in OpenMP were encapsulated into separate functions and translated into fork-join code. When
implementing OpenMP’s data environment, actual parameters passed to procedures were converted to shared data
if necessary, as the translator does not perform interprocedural analysis and cannot determine whether they will
be accessed from within a parallel region. Shared variables are allocated on the shared heap; private variables are
allocated on TreadMark’s stacks.

The TreadMarks system has emphasized work to improve memory coherence and synchronization. A lazy
invalidation version of release consistency (RC) and a multiple-writer protocol were employed to reduce the amount
of communication involved in implementing the shared memory abstraction. RC is a relaxed memory consistency
model that categorizes shared memory accesses into acquire and release accesses, which will be realized using lock
acquire and release operations.

RC allows a thread to buffer multiple writes to shared data in its local memory until a synchronization point is
reached. The concepts of twin and diff were introduced in TreadMarks to reduce the cost of whole page movement.
For the first write to a shared page, a twin, a copy of that page, is created; at barriers, a diff stores the modifications
to the page, created by comparing the twin and the current page.

3

Synchronization is provided by barriers and locks. Barrier arrivals are modeled as lock releases, and barrier
departures are treated as lock acquires. A centralized manager is used to control barriers: it receives a release
message of a barrier arrival from each thread and broadcasts a departure message to all the threads about barrier
departure after all threads have arrived the same barrier. Per-page mutex was added to allow greater concurrency
in the page default handler.

A prototype compiler [5] was built to accept OpenMP and targeted TreadMarks as well as MPI library routines
to enhance performance. A commercial system based upon TreadMarks is under development by Intel.

B. Omni/SCASH

For execution on clusters, the Omni OpenMP compiler translates an OpenMP C/Fortran program to a C/Fortran
program with calls to a multi-threaded runtime system for SMPs or to a page-based SDSM called SCASH [4].
Omni is written in Java. When SCASH is targeted, shared data will be allocated in a shared memory area that is
managed by SCASH and accessible via its primitives, since only the memory allocated via SCASH at runtime is
shared among the processors. SCASH uses the concept of the home node of a page, which is responsible for storing
the current contents of the page and which can invalidate other copies of the page; for this, invalidate and update
consistency protocols are supported in SCASH. SCASH is also based on a release consistency memory model that
allows multiple writers. The memory consistency is maintained at each synchronization point and only the modified
parts of a page are communicated to update the home node’s copy of the page. Data mapping directives in the
manner of block and cyclic(n), borrowed from HPF, and affinity scheduling are extended to specify how arrays are
mapped to processors and how loop iterations are assigned to processors associated with the data mapping. Data
mapping and affinity scheduling may enhance data locality and remove some memory consistency costs. However,
the performance degrades if the data access pattern does not match the data mapping, and data remapping may be
required in this case.

C. ParADE

ParADE (Parallel Application Development Environment) [10] is an OpenMP programming environment for SMP
cluster systems on top of a multithreaded SDSM and message passing primitives. It provides a hybrid execution
model consisting of message passing and a shared address space, attempting to overcome the poor performance of
codes executed under other SDSMs by employing MPI. ParADE is based upon the Omni compiler and a Home-based
Lazy Release Consistency (HLRC) protocol that avoids creating a twin for the modified page as all diffs are merged
into the home page. The ParADE OpenMP translator transforms an OpenMP program into a C code with calls
to the ParADE API which in turn invokes POSIX threads and MPI routines to provide the required functionality.
Its developers note that an SDSM program moves much larger amounts of data between nodes than an equivalent
MPI program; they also point out that the synchronization operations of an SDSM have poor performance due
to the lock mechanism employed. In an attempt to provide better solutions for these two problems, the ParADE
runtime system uses the message-passing primitives to avoid the conventional lock-based synchronization processes
and barrier operations imposed implicitly by the OpenMP standard where possible. Message passing primitives
can replace the costly locks for implementing critical sections in OpenMP, for instance, since mutual exclusion
between processes is implicitly given. Collective MPI communications further contribute to reducing the number of
barriers imposed by the work-sharing directives since a global synchronization is included implicitly in the collective
communications. Acquiring and releasing of locks is also eliminated in the translation of SINGLE directives into
ParADE routines since a global MPI broadcast suffices.

D. NanosDSM

NanosDSM, an "everything-shared" SDSM [11], was directly implemented in NthLib, an OpenMP run-time library
designed to support a distributed memory environment. NthLib implements parallelism using a work descriptor that
consists of a pointer to the function to be executed in parallel and its arguments. A work descriptor is stored locally
and maintains consistency between threads via a message queue. A major goal of this work is to provide a portable
realization of SDSM, and thus sequential consistency is offered. Spin-locks are used for all the threads to join
in order to implement barriers. Several OpenMP programs, including Ocean, EP and CG (the last two are CFD

4

codes from the NASA Ames NAS OpenMP benchmarks), were translated by both NanosDSM and TreadMarks
and subsequently executed on a distributed memory system with up to eight processors. The results show that the
performance of NanosDSM programs is about the same as that achieved via TreadMarks.

E. FDSM

FDSM [9] is an OpenMP-ready SDSM system based on Omni/SCASH. FDSM analyzes the access patterns to
shared memory during the first iteration of a loop and obtains the communication set in order to reduce the memory
coherence overhead. A single-byte granularity is employed for write operations in order to decide which variables
were modified; however, page granularity is used to detect the read operations.

FDSM calculates the communication set for each OpenMP parallel loop and its parent loop. If a variable is written
in one block and another processor reads it in another block, communication is required to update the variable.
Function calls are inserted into the source code in order to start and complete acquiring the data associated with an
access pattern. After obtaining the communication set, at the memory barrier point, FDSM synchronizes to ensure
that no process accesses the shared memory, copies the data to remote memory, and synchronizes again to ensure
data updating. As with other SDSMs, the page granularity at which this is handled prevents precise analysis of the
data read, so that false sharing in particular leads to unnecessary communication. It is thus likely to communicate
larger amounts of data than a corresponding manually-developed MPI. Experiments reported using FDSM to execute
the CG code from the NAS OpenMP benchmarks on an Intel Pentium III cluster showed linear scalability on up
to 8 processors.

III. TRANSLATION TO GLOBAL ARRAYS

In this section, we introduce an alternative approach to implementing OpenMP on distributed memory systems,
that is, our translation from OpenMP to GA [6]. The main benefit of this approach, and the reason we explore
it, is that it makes all communications explicit in the code, thereby allowing us to explicitly control and optimize
data communications, but at the same time it provides a shared memory abstraction that makes most parts of the
translation straightforward. We first describe the basic translation, and then consider some advanced problems.

A. A Basic Translation to GA

GA [12] was designed to simplify the programming methodology on distributed memory systems by providing
a shared memory abstraction. It does so by providing routines that enable the user to specify and manage access to
shared data structures, called global arrays, in a FORTRAN, C, C++ or Python program. GA permits the user to
specify block-based data distributions for global arrays, corresponding to HPF BLOCK and GEN_BLOCK distri-
butions which map the identical length chunk and arbitrary length chunks of data to processes respectively. Global
arrays are accordingly mapped to the processors executing the code. Each GA process is able to independently
and asynchronously access these distributed data structures via get or put routines.

It is largely straightforward to translate OpenMP programs into GA programs because both have the concept
of shared data and the GA library features match most OpenMP constructs. Almost all OpenMP directives can
be translated into GA or MPI library calls at source level. (We may use these together if needed, since GA was
designed to work in concert with the message passing environment.) Most OpenMP library routines and environment
variables can be also be translated to GA routines. Exceptions are those that dynamically set/change the number
of threads, such as OMP_SET_DYNAMIC, OMP_SET_NUM_THREADS.

Our translation [6] strategy follows OpenMP semantics. OpenMP threads correspond to GA processes: a fixed
number of processes are generated and terminated at the beginning and end of the corresponding GA program.
OpenMP shared data are translated to global arrays that are distributed among the GA processes; all variables in
the GA code that are not global arrays are called private variables. OpenMP private variables will be translated
to GA private variables as will some OpenMP shared data. OpenMP scalars and private variables are replicated to
each GA process. Small or constant shared arrays in OpenMP will also be replicated; all other shared OpenMP
arrays must be given a data distribution and they will be translated to global arrays.

Our basic translation strategy assigns iterations of OpenMP parallel loops (OMP DO) to each process according
to OpenMP static loop schedules. For this, we must calculate the iteration sets of the original OpenMP parallel

5

loops for each thread. Furthermore, we compute the regions of shared arrays accessed by each OpenMP thread
when performing its assigned iterations. After this analysis, we determine a block-based data distribution and insert
the corresponding declarations of global arrays. The loop bounds of each parallel loop are modified so that each
process will work on its local iterations. Elements of global arrays may only be accessed via get and put routines.
Prior to computation, the required global array elements are gathered into local copies. If the local copies of
global arrays are modified during the subsequent computation, they must be written back to their unique "global"
location after the loop has completed. GA synchronization routines replace OpenMP synchronization to ensure that
all computation as well as the communication to update global data have completed before work proceeds.

1 !$OMP PARALLEL SHARED (a)
2 do k =1 , MAX
3 !$OMP DO
4 do j = 1 , SIZE_Y
5 do i = 2 , SIZE_X−1
6 a (i , j) = a (i +1 , j) + . . .
7 enddo
8 enddo
9 !$OMP END DO

10 enddo
11 !$OMP END PARALLEL

(a) Original OpenMP program

1 c a l l MPI_INIT ()
2 c a l l g a _ i n i t i a l i z e ()
3 s t a t u s = g a _ c r e a t e (MT_DBL, SIZE_X , SIZE_Y , ’A’ ,
4 SIZE_X , SIZE_Y / nproc , g_a)
5 Do k = 1 , MAX
6 ! compute new low bound and upper bound f o r each p r o c e s s s
7 (new_low , new_upper) = . . .
8 ! compute t h e a r r a y read r e g i o n f o r each t h r e a d
9 (i low , i h i , j low , j h i)= (1 , SIZE_X , . . .)

10 c a l l g a _ g e t (g_a , i low , i h i , j l ow , j h i , a , l d)
11 c a l l ga_sync ()
12 num_th read = compute_ th read_number_needed ()
13 do j = new_low , new_upper
14 do i = 2 , SIZE_X − 1
15 a (i , j) = a (i +1 , j) + . . .
16 enddo
17 enddo
18 ! compute a r r a y wri te r e g i o n and p u t t h e m o d i f i e d data back to GA
19 (i low , i h i , j low , j h i) = (2 , SIZE_X−1, . . .)
20 c a l l ga_pu t (g_a , i l ow , i h i , j l ow , j h i , a (2 , new_low) , l d)
21 c a l l ga_sync ()
22 enddo

(b) GA program

Fig. 1. An OpenMP program and corresponding GA+OpenMP program

We show an example of an OpenMP program in Fig. 1(a) and the corresponding GA program, obtained by
applying the basic translation strategy, in Fig. 1(b). The resulting code computes iteration sets based on the process
ID. Here, array A has been given a block distribution in the second dimension, so that each processor is assigned
a contiguous set of columns. Non-local elements of global array A in Fig. 1(b) are fetched using a get operation
followed by synchronization. The loop bounds are replaced with local ones. Afterwards, the non-local array elements
of A are put back via a put operation with synchronization.

OpenMP’s FIRSTPRIVATE and COPYIN clauses are implemented via the GA broadcast routine GA_BRDCST.
The reduction clause is translated by calling GA’s reduction routine GA_DGOP. GA library calls GA_NODEID
and GA_NNODES are used to get process ID and number of processes, respectively. OpenMP provides routines
to dynamically change the number of executing threads at run-time. We do not attempt to translate these since this
would amount to redistributing data and GA is based upon the premise that this is not necessary.

For DYNAMIC and GUIDED schedules, the iteration set and therefore also the shared data, must be computed
dynamically. In order to do so, we must use GA locking routines to ensure exclusive access to code assigning a piece
of work and updating the lower bound of the remaining iteration set; the latter must be shared and visible to every
process. However, due to the expense of data transfer in distributed memory systems, DYNAMIC and GUIDED
schedules may not be as efficient as static schedules, and may not provide the intended benefits. Unfortunately, the
translation of synchronization constructs (CRITICAL, ATOMIC, and ORDERED) and sequential program sections
(serial regions outside parallel regions, OpenMP SINGLE and MASTER) may become nontrivial. The OpenMP
SECTION, SINGLE and MASTER directives can be translated into GA using different strategies and we will
explain them in the next section. GA locks and Mutex library calls are used to translate the OpenMP CRITICAL and
ATOMIC directives. OpenMP FLUSH is implemented by using GA put and get routines to update shared variables.
This could be implemented with the GA_FENCE operations if more explicit control is necessary. The GA_SYNC
library call is used to replace OpenMP BARRIER as well as implicit barriers at the end of OpenMP constructs.
The only directive that cannot be efficiently translated into equivalent GA routines is OpenMP’s ORDERED. We
use MPI library calls, MPI_Send and MPI_Recv, to guarantee the execution order of processes if necessary.

We may perform global privatization and transform OpenMP into the so-called SPMD style [13] before the
translation occurs in order to improve data locality. If each OpenMP thread consistently accesses a region of a

6

shared array, the array may be privatized by creating a private data structure per thread, corresponding to the region
it accesses. New shared data structures may need to be inserted to act as buffers, so that elements of the original
shared array may be exchanged between threads as necessary.

B. Implementing Sequential Regions

All strategies for implementing OpenMP on clusters have a problem with sequential regions, since they may
require access to shared data and their results may be used in all threads. In our approach, we use several different
strategies to translate the statements enclosed within a sequential region of OpenMP code including I/O operations,
control flow constructs (IF, GOTO, and DO loops), procedure calls, and assignment statements. A straightforward
translation of sequential sections would be to use exclusive master process execution, which is suitable for some
constructs including I/O operations. Although parallel I/O is permitted in GA, it is a challenge to transform OpenMP
sequential I/O into GA parallel I/O. The control flow in a sequential region must be executed by all the processes
if the control flow constructs enclose or are enclosed by any parallel regions. Similarly, all the processes must
execute a procedure call if the procedure contains parallel regions, either directly or indirectly. We categorize the
different GA execution strategies for an assignment statement in sequential parts of an OpenMP program based on
the properties of data involved:

1) If a statement writes to a variable that will be translated to a GA private variable, this statement is executed
redundantly by each process in a GA program; each process may fetch the remote data that it will read before
executing the statement. A redundant computation can remove the requirement of broadcasting results after
updating a GA private variable.

2) If a statement writes to an element of an array that will be translated to a global array in GA (e.g. S[i]=...),
this statement is executed by a single process. If possible, the process that owns the shared data performs the
computation. The result needs to be written back to the "global" memory location.

Data dependences need to be maintained when a global array is read and written by different processes. Our
strategy is to insert synchronization after each write operation to global arrays during the translation stage; at the
code optimization stage, we may remove redundant get or put operations, and aggregate the communications for
neighboring data if possible.

C. Data and Work Distribution in GA

GA only provides simple block-based data distributions and supplies features to make them as efficient as possible.
There are no means for explicit data redistribution. GA’s asynchronous one-sided communication paradigm transfers
the required array elements, rather than pages of data, and it is optimized to support the transfer of sets of contiguous
or strided data, which are typical for HPC applications. These provide performance benefits over software DSMs.
With block distributions, it is easy to determine the location of an arbitrary array element. However, since these
distributions may not provide maximum data locality, they may increase the amount of data that needs to be gathered
and scattered before and after execution of a code region respectively. In practice, this tends to work well if there
is sufficient computation in such code regions. In our translation, GA only requires us to calculate the regions of
global arrays that are read or written by a process to complete the communication; GA handles the other details.
It is fast and easy for GA to compute the location of any global data element. We may optimize communication
by minimizing the number of get/put operations and by grouping small messages into bigger ones.

A user has to determine and specify the distribution of global data in a GA program; thus our translation
process must decide on the appropriate block-based data distributions when converting OpenMP programs to the
corresponding GA ones. We determine data distributions for a GA program based upon the following simple rules:

1) If most loop index variables in those loop levels immediately enclosed by PARALLEL DO directives sweep
over the same dimension of a shared array in an OpenMP program, we perform a one-dimensional distribution
for the corresponding array in this dimension;

2) If different dimensions of a shared array are swept over almost evenly by parallel loops, we may implement
multi-dimensional distribution for this array.

3) If parallel loops always work on a subset of a shared array, we may distribute this shared array using a
GEN_BLOCK distribution(as specified in HPF [14], this generalized block distribution permits the assignment

7

of contiguous segments of uneven length to processors); otherwise, a BLOCK distribution is employed. In
the former case, the working subset of the shared array is distributed evenly to each thread; the first and last
thread will be assigned any remaining elements of arrays at the start and end, respectively.

We believe that suitable programming tools could collaborate with the user to improve this translation in many
cases. One way to enhance this approach is to perform data distribution based on the most time-consuming parallel
loops. For example, if an application contains many parallel loops, user information about which ones are the
most time-consuming can help us determine the data distribution based upon these specified parallel loops only.
Alternatively, a static estimation or profile results, even if based on a partial execution, may be exploited. We
are exploring ways to automate the instrumentation and partial execution of a code with feedback directly to the
compiler: such support might eliminate the need for additional sources of information.

Note that although it is possible to implement all forms of OpenMP loop schedule including OpenMP static,
dynamic and guided loop scheduling, our current approach does not handle all of these well. OpenMP static loop
scheduling distributes iterations evenly. When the iterations of a parallel loop have different amount of work,
dynamic and guided loop scheduling may be used to balance the work-load. We can realize the work assignment
in GA that corresponds to a dynamic or guided loop schedule; however, the equivalent GA program may have
unacceptable overheads, as it may contain many get and put operations transferring small amounts of data. Other
work distribution strategies need to be explored that take data locality and load balancing into account.

In the case of irregular applications, it may be necessary to gather information on the global array elements needed
by a process; whenever indirect accesses are made to a global array, the elements required in order to perform
its set of loop iterations cannot be computed. Rather, a so-called inspector-executor strategy is needed to analyze
the indirect references at run time and then fetch the data required. The resulting data sets need to be merged to
minimize the number of required get operations. We enforce static scheduling and override the user-given scheduling
for OpenMP parallel loops that include indirect accesses. The efficiency of the inspector-executor implementation is
critical. In a GA program, each process can determine the location of data read/written independently and can fetch
it asynchronously. This feature may substantially reduce the inspector overhead compared with a message passing
program or with a paradigm that provides a broader set of data distributions. Our inspector-executor implementation
distributes the loop iterations evenly to processes, assigning each process a contiguous chunk of loop iterations.
Then each process independently executes an inspector loop to determine the global array elements (including
local and remote data) needed for its iteration set. The asynchronous communication can be overlapped with local
computations, if any.

IV. CASE STUDIES

Our initial experiments involved translating regular, small OpenMP codes to the corresponding GA ones. They
achieved encouraging results on a UH Itanium2 cluster and a NERSC IBM SP RS/6000 cluster and were reported in
[6]. The UH Itanium2 cluster has twenty-four 2-way SMP nodes and a single 4-way SMP node at the University of
Houston: each of the 24 nodes has two 900MHz CPUs and 4 GB memory. The Scali interconnect has a system bus
bandwidth of 6.4GB/s and a memory bandwidth of 12.8GB/s. The NERSC IBM SP RS/6000 cluster is composed
of 380 nodes, each of which consists of sixteen 375 MHz POWER 3+ CPUs and 16GB to 64 GB memory. These
nodes are connected to an IBM "Colony" high-speed switch via two "GX Bus Colony" network adapters. OpenMP
programs can be run on a maximum of 4 processors of UH clusters and 16 processors of NERSC IBM clusters
due to their SMP configuration.

Our first experiments translated two relatively simple regular OpenMP codes (Jacobi and LBE [15]) according
to the strategy described above. The loop schedules consistently corresponded to block data distributions for these
codes. Fig. 2 displays the performance of the well known Jacobi code with a 1152 by 1152 matrix on these two
clusters. Both the OpenMP Jaocbi program and the corresponding GA program achieved a linear speedup because
of the data locality inherent in the Jacobi solver. Fig. 3 displays the performance of the LBE OpenMP program and
its corresponding GA program with a 1024 by 1024 matrix on the NERSC IBM cluster. LBE is a computational
fluid dynamics code that solves the Lattice Boltzmann equation. The numerical solver employed by this code uses
a 9-point stencil. Unlike the Jacobi solver, the neighboring elements are updated at each iteration. Therefore, the
performance of LBE programs is lower than that of Jacobi programs due to the more extensive writing to non-local
elements of global arrays. Note that our LBE program in GA was manually optimized to remove a large amount of

8

(a) (b)

Fig. 2. The performance of a Jacobi OpenMP program and its corresponding GA program

(a) (b)

Fig. 3. The performance of a LBE OpenMP program and its corresponding GA program

synchronization; otherwise, the performance does not scale. The most important optimization we have implemented
in LBE GA program was the communication aggregation, which combines small messages into a big message and
reduces the communication overheads. We also used the non-block get/put operations to replace the block get/put
operations and moves these operations as early/late as possible in order to overlap some of the communication and
computation. We also removed some redundant communication operations.

A. FIRE Benchmarks

We studied one of the programs, gccg, in the FIRE Benchmarks [16] in order to understand how to translate
codes containing irregular data accesses to GA. FIRE is a fully interactive fluid dynamics package for computing
compressible and incompressible turbulent flow, and its major data structures and access patterns are captured in
the benchmark suite. Gccg is a parallelizable solver in the FIRE package that uses orthomin and diagonal scaling.

We show the process of translating the OpenMP gccg program into the corresponding GA program. Fig. 4
displays the most time-consuming part of the gccg program. In our approach, we perform array region analysis to
determine how to handle the shared arrays in OpenMP. Shared arrays BP, BS, BW, BL, BN, BE, BH, DIREC2 and
LCC are privatized to improve locality of OpenMP codes, since each thread performs work only on an individual
region of these shared arrays. In the subsequent translation, they will be replaced by GA private variables. In order
to reduce the overhead of the conversion between global and local indices, we may preserve the global indices for
the list of arrays above when declaring them and allocate the memory for array regions per process dynamically if
the number of processes is not a constant. Shared array DIREC1 is distributed via global arrays according to the
work distribution in the two parallel loops in Fig. 4. A subset of array DIREC1 is swept by all the threads in the
first parallel loop; the second parallel loop accesses DIREC1 indirectly via LCC. We distribute DIREC1 using a

9

1 !$OMP PARALLEL
2 DO I = 1 , i t e r
3 !$OMP DO
4 DO 10 NC=NINTCI , NINTCF
5 DIREC1 (NC)=DIREC1 (NC)+RESVEC(NC)∗CGUP(NC)
6 10 CONTINUE
7 !$OMP END DO
8 !$OMP DO
9 DO 4 NC=NINTCI , NINTCF

10 DIREC2 (NC)=BP (NC)∗DIREC1 (NC)
11 X − BS (NC) ∗ DIREC1 (LCC(1 ,NC))
12 X − BW(NC) ∗ DIREC1 (LCC(4 ,NC))
13 X − BL(NC) ∗ DIREC1 (LCC(5 ,NC))
14 X − BN(NC) ∗ DIREC1 (LCC(3 ,NC))
15 X − BE(NC) ∗ DIREC1 (LCC(2 ,NC))
16 X − BH(NC) ∗ DIREC1 (LCC(6 ,NC))
17 4 CONTINUE
18 !$OMP END DO
19 END DO
20 !$OMP END PARALLEL

Fig. 4. An OpenMP code segment in gccg with irregular data accesses

GEN_BLOCK distribution according to the static loop schedule in the first parallel loop in order to maximize data
locality, as there is no optimal statically determinable block-based data distribution strategy DIREC1 in the second
loop. The array region DIREC1[NINTC1:NINTCF] is mapped to each process evenly in order to balance the work.
Since DIREC1 is declared as [1:N], the array regions [1:NINTC1] and [NINTCF:N] must be distributed as well.
We distribute these two regions to the first process and the last process respectively for contiguity. Therefore, it is
not an even distribution and a GEN_BLOCK distribution is employed as shown in Fig. 5, assuming four processors
are targeted.

Fig. 5. GEN_BLOCK distribution for array DIREC1

As before, we perform work distribution according to the OpenMP loop scheduling in Fig. 4. Fortunately, we
do not need to insert any communications for the first loop in Fig. 4 since all accesses to shared data are statically
known to be local. But in the second loop of Fig. 4, some data accesses are based upon subscript expressions
containing array references (i.e. are indirect) and thus cannot be further analyzed at compile time. Therefore
we cannot determine the required communications and generate efficient communication calls based upon static
compiler analysis. A suitably adapted inspector-executor strategy [17] is employed to handle such situations.

The inspector-executor approach [18] generates an extra inspector loop preceding the actual computational loop.
Our inspector is a parallel loop as shown in Fig. 6. We detect the values for each indirection array in the allocated
iterations of each GA process. We use a hash table to save the indices of non-local accesses, and generate a list
of communications for remote array regions. Each element in the hash table represents a region of a global array,
which is the minimum unit of communication. Using a hash table can remove duplicated data communications that
will otherwise arise if the indirect array accesses from different iterations refer to the same array element or nearby
elements. We need to choose the optimal size of a global array region to be represented by a hash table element.
This will depend on the size of the global array, the data access patterns and the number of processes and needs
to be further explored. The smaller the array regions, the more small communications are generated. But if we
choose a large array region, the generated communication may include more unnecessary non-local data. Another
task of the inspector is to determine which iterations access only local data, so that we may overlap non-local data
communication with local data computation.

One important optimization of our inspector approach is to merge neighboring regions into one larger region in

10

DO iteration=local_low, local_high
If (this iteration contains non-local data) then

Store the indices of non-local array elements into a hash table
Save current iteration number in a nonlocal list

Else
Save current iteration number in a local list

Endif
Enddo
Merge contiguous communications based on hash table entries

Fig. 6. Inspector pseudo-code

order to reduce the number of communications. We must also attempt to statically determine whether the subscript
expressions in the indirect references are modified at run time (we return to this further below). The inspector loop
only needs to be performed once during execution of the gccg program, since here the indirection array remains
unmodified throughout the program. Our inspector is lightweight because: 1) the location of individual elements of
global arrays is easy to compute in GA due to the simplicity of GA’s data distributions; 2) the hash table approach
enables us to identify and eliminate redundant communications; 3) all the computations of the inspector are carried
out independently by each process. These factors imply that the overheads of this approach are much lower than is
the case in other contexts and that it may be viable even when data access patterns change over time, as occurs in
adaptive applications. For example, an inspector implemented using MPI is less efficient than our approach as each
process has to generate communications for both sending and receiving, which rely on other processes’ intervention.

The executor shown in Fig. 7 performs the computation in a parallel loop following the iteration order generated
by the inspector. It prefetches non-local data via non-blocking communication, here using the non-blocking get
operation ga_nbget() in GA. Simultaneously, the iterations that do not need any non-local data are executed so that
they are performed concurrently with the communication. ga_nbwait() is used to ensure that the non-local data is
available before we perform the corresponding computation.

! gather non-local data
Call ga_nbget(...)
DO iteration1=1, number_of_local_data

Obtain the iteration number from the local list
Perform the local computation

Enddo
! wait until the non-local data is gathered
Call ga_nbwait()
Do iteration2=1, number_of_nonlocal_data

Obtain the iteration number from the non-local list
Perform computation using non-local data

enddo

Fig. 7. Executor pseudo-code

There is further potential for optimizing the GA codes translated under this strategy. In particular, GA get and
put operations created before and after each parallel construct may be redundant. For example, If a previous put
includes the data of a subsequent get operation, we may remove this get operation; Two adjacent put operations may
be merged into one operation if the data in the first operation are not accessed by other processes. It is advantageous
to move get operations as early as possible in order to enable prefetching of data and move put operations as late
as possible in order to merge these operations and reduce the communication overhead. In order to automatically
apply these optimizations, we are working on improvements to our array region analysis and parallel control flow
analysis [19] in order to provide the context-sensitive array region communication information required.

Fig. 8 depicts the performance of the OpenMP and corresponding GA programs for gccg on the NERSC IBM
SP cluster. The performance of the OpenMP version is slightly better than the GA code within one node, but

11

with a large input data set the GA program achieves a speedup of 26 with 64 processors in 4 nodes, which is
quite reasonable. One reason for this performance gain is that the inspector is only calculated once and is then
reused throughout the program’s execution. We also manually implemented the aforementioned optimizations for
the communications and overlap the communication and computation as much as possible.

(a) (b)

Fig. 8. The performance of OpenMP gccg code and corresponding GA program

B. UMT98

UMT98 [20] is a 3D neutral particle transport code for unstructured meshes, which solves the first-order form
of the steady-state neutral-particle Boltzmann transport equation. UMT98 is parallelized for SMP systems using
OpenMP. It contains 44 functions and 1 parallel loop. The parallel loop sweeps over each discrete ordinate.
Computations in each of the three dimensions are independent for a large class of problems. Therefore good
scalability of this parallel loop is achieved. The parallel loop as shown in Fig. 9 contains 6 procedure calls that
contribute the vast majority of the computational work. There are 64 shared variables inside the parallel region and
most of them are arrays. Fig. 10 shows a code fragment from the routine snxyzref, which is one of the 6 subroutines
inside the main parallel loop. The remaining subroutines called outside the parallel loop mainly initialize data.

1 r e a l ∗8 . . . , QC(n p a r t , nco rn r , n_cpu) , . . .
2 . . .
3 !$OMP PARALLEL DO PRIVATE(m, i t e t , i ,mm, mpsi , m s t r i d e , thnum , s e t b c) . . .
4 do 100 mm=1 , n d i r
5 m = morder (mm)
6 thnum = mthread (mm)
7 c a l l snqq (. . . , QC(1 , 1 , thnum) , . . .)
8 c a l l s n x y z r e f (. . . , m, mtmp(1 , thnum) , . . . , tmp (1 , thnum) , PSIB , ABDYM(1 , thnum) , A_bdy)
9 c a l l snxyzbc (. . . , abdym (1 , thnum) , ps ib , PSIFEP (1 , 1 , thnum))

10 c a l l snswp3d (. . . , TPSIC (1 , 1 , thnum) , PSIC (1 , mpsi) , . . .)
11 c a l l snxyzbc (. . . , abdym (1 , thnum) , PSIB , p s i f e p (1 , 1 , thnum))
12 c a l l snmmnt (. . . , quadwt (m) , ynm , p s i c (1 , mpsi) , TPHIC (1 , 1 , thnum))
13 . . .
14 enddo

Fig. 9. Computation in main parallel loop in UMT98

As before, we perform the work distribution for UMT98 according to the OpenMP static loop schedule. We
modify the loop bounds and distribute the loop iteration evenly into each participating process. Since UMT98 is an
irregular data access application: the data access is not directly dependent on a loop index, it is very complicated
or even impossible to figure out the best data distribution at the compile time. We choose the simple block data
distribution for most of arrays in UMT98.

In this code, the developers have passed arrays to subroutines in such a way that the formal argument has a
different number of dimensions than the original array has. For example, the 3-dimensional shared array QC in
UMT98 that occurs in the code fragment in Fig. 9 is subsequently referenced via a 2-dimensional formal argument.
This array reshaping is typical of many Fortran applications, and when shared data is referenced in this way the task
of distributing data becomes difficult. In this case, QC(1,1,thnum) is passed to subroutine snqq as a formal parameter,

12

where thnum represents the thread ID. In the subroutine snqq, QC is declared as a 2-dimensional QC(npart, ncornr).
Since each process accesses a different region of array QC, given the distinct values in the third dimension, we may
distribute this array in the third dimension so that each process accesses its local part of the array only. Hence, we
are able to replace the declaration of the distributed array QC by a private array QC(npart, ncornr) for each thread.
Several other arrays, such as mtmp, tmp, DOT in subroutine snxyzref (see Fig. 10), can be dealt with in the same
manner. However, this is a significant modification that impacts all references to the original array in the source
code. It goes beyond the techniques currently available to us and may best be addressed via some combination of
user input, compiler feedback and manual modification, possibly within the framework of a tool.

1 Subrout ine s n x y z r e f (. . . , m, mtmp , . . . , tmp , psib , dot , a_bdy)
2 i n t e g e r . . . , m, mtmp(n d i r) , . . .
3 r e a l ∗8 . . . , tmp (n d i r) , ps ib (nbelem , n d i r ∗ n p a r t) , d o t (nbelem) , a_bdy (ndim , nbelem)
4 i n t e g e r mref , . . . ! l o c a l v a r i a b l e s
5
6 c a l l snmre f (nout , ndim , n d i r ,m, mref , c o s r a t , d e l t a x , quadwt , omega , tmp , mtmp)
7 do i p =1 , n p a r t
8 moff = (ip −1)∗ n d i r
9 do i x = i x 1 (i b s) , i x 2 (i b s)

10 i b = l c x (i x)
11 ps ib (ib , moff+m)= c o s r a t ∗ ps ib (ib , moff+mref) ! t h i s i s ps ib (l c x (i x) , (ip −1)∗ n d i r +mref)
12 enddo
13 enddo
14 . . .
15 re turn
16 end

(a) Subroutine snxyzref

1 Subrout ine s n x y z r e f (. . . , m, mtmp , . . . , tmp , psib , dot , a_bdy)
2 i n t e g e r . . . , m, mtmp(n d i r) , . . .
3 r e a l ∗8 . . . , tmp (n d i r) , ps ib (nbelem , n p a r t , n d i r) , d o t (nbelem) , a_bdy (ndim , nbelem)
4 i n t e g e r mref , . . . ! l o c a l v a r i a b l e s
5
6 c a l l snmre f (nout , ndim , n d i r ,m, mref , c o s r a t , d e l t a x , quadwt , omega , tmp , mtmp)
7 c a l l g a _ g e t (g_ps ib , (1 , 1 , mref) , (nbelem , n p a r t , mref) , psib , l d)
8 do i p =1 , n p a r t
9 do i x = i x 1 (i b s) , i x 2 (i b s)

10 i b = l c x (i x)
11 ps ib (ib , ip , m) = c o s r a t ∗ ps ib (ib , ip , mref)
12 !m i s c a l c u l a t e d from loop index mm and has d i s t i n c t v a l u e s f o r each p r o c e s s
13 enddo
14 enddo
15 c a l l ga_pu t (g_ps ib , (1 , 1 , m) , (nbelem , n p a r t ,m) , psib , l d)
16 . . .
17 re turn
18 end

(b) The corresponding GA program

Fig. 10. Subroutine snxyzref called inside the only parallel loop in UMT98 and the corresponding GA program

Another hard case in practice is finding efficient ways to deal with strided accesses to an array. Although the
GA implementation works to reduce the cost of strided accesses, these may nevertheless incur high communication
costs. It may sometimes be possible to change the layout of the array before its distribution in order to enable
contiguous accesses. To see the problems involved in practice, we consider references to the shared array psib in
UMT98. This is declared as psib(nbelem,ndir*npart) in subroutine snxyzref (in Fig. 10(a)). The write access to this
array on line 11 of the code is both indirect and strided. Since GA requires us to choose a block distribution, we
will have many non-local indirect or strided accesses no matter which dimension we distribute psib in. In order to
enable local accesses and contiguous non-local data communication, we may take the following two actions. First,
we split the second dimension of psib and thereby obtain a 3-dimensional array psib(nbelem,ndir,npart) as shown
in the revised snxyzref (Fig. 10(b)). Fig. 11 illustrates how accesses will be made to the array psib before and after
this array reshaping. Second, we distribute array psib in the third dimension by block. To understand the impact,
we must note that subroutine snxyzref is invoked only from within the parallel region. Within it, each thread has
a distinct value for the dummy variable m which is the index variable of the third dimension of the array; hence,
each updates a different set of elements of psib. It is therefore appropriate to follow the original OpenMP work
assignment when distributing the reshaped array. Distributing psib in the newly added third dimension allows us
to write to local elements and group the communications needed for obtaining non-local elements. Fig. 11 shows
the different access pattern that results for an individual thread. After reshaping and data distribution in the third
dimension, these data accesses are all local to a process.

We replicate the scalar variables and perform any work needed to ensure that they keep the same values in

13

(a) (b)

Fig. 11. Strided accesses to array psib before (a) and after (b) data reshaping and distribution

each process. We also replicate the small read-only arrays inside the parallel loop to reduce the communication
overheads.

The examples above illustrate some of the challenges involved in trying to deal with real-world code. Unfor-
tunately, they are too complex to be automatically dealt with at present and in some cases, good compile-time
translations are prevented by a lack of information. For example, the aforementioned three-dimensional array QC
is distributed in the third dimension in the original subroutine for the best data locality. However, the value of the
index variable thnum that is used to access the third dimension of QC is obtained from another array, mthread.
This complicates the compiler analysis needed to determine the data distribution of array QC. We believe that
appropriate extensions to an interactive tool compiler-based tool, such as Dragon [21], is the most useful way to
help determine and realize a translation to GA in practice when such programming practices are encountered. A
compiler may help to identify some difficult cases. Informal language extensions or user input in an interactive
system might provide the information needed to restructure and possibly even privatize arrays.

We also experimented with the OpenMP and GA versions of UMT98 on a SUN cluster at UH and a NERSC IBM
cluster. The SUN cluster has four 4-way SUN Enterprise 420 connected by Ethernet. OpenMP is only available
within an SMP node of each platform: one node of the Sun cluster contains 4 processors and one node of IBM
NERSC cluster has 16 processors. Fig. 12 shows the speedup of OpenMP UMP98 and the corresponding GA code,
which is based upon a manual implementation of the transformations described above. The speedup of the UMT98
GA program is linear and scales on both clusters due to the independence of computations once these extensive
modifications and more suitable data distribution have been exploited.

(a) (b)

Fig. 12. Speedup of UMT98 OpenMP and corresponding GA program in a SUN cluster of UH (a) and NERSC IBM Cluster (b)

14

V. OPENMP EXTENSIONS FOR DATA AND WORK DISTRIBUTIONS

We do not attempt to introduce data distribution extensions to OpenMP as part of the language proper. Data
distribution extensions contradict the OpenMP philosophy in two ways: first, in OpenMP the work assignment or
loop schedule decides which portion of data is needed per thread and second, the most useful data distributions
are those that assign data to processes element-wise, and these require rules for argument passing at procedure
boundaries and more. This would create an added burden for the user, who would have to determine data distributions
in procedures that may sometimes be executed in parallel and sometimes sequentially, along with a variety of other
problems. In contrast to the intended simplicity of OpenMP, existing data distribution ideas for OpenMP are
borrowed from HPF and are quite complicated. For example, TEMPLATE and ALIGN are intricate concepts for
non-experts. Providing equivalent C/C++ and Fortran OpenMP syntax is a goal of OpenMP; it is hard to make data
distributions work for C pointers although distributing Fortran or C arrays is achievable. Finally, data distribution
does not make sense for SMP systems, which are currently the main target of this API, and adding them to the
language would require their availability in all compilers.

However, informal user information could be employed to help select the data distribution, especially in difficult
cases such as the last example discussed above or where different program regions imply different distributions. Our
basic strategy is to rely on OpenMP static loop scheduling to decide data and work distribution for a given program.
We determine a data distribution for those shared objects that will be defined as global arrays by examining the
array regions that will be accessed by the executing threads. Data locality and load balancing are two major concerns
for work distribution. Ensuring data locality may increase load imbalance, and vice versa. Our optimization strategy
gives data locality higher priority than load balancing.

We may need additional user information to minimize the number of times the inspector loop is executed.
If a data access pattern in a certain code region has not changed, it is not necessary to perform the expensive
inspector calculations. Both runtime and language approaches have been proposed to optimize the inspector-executor
paradigm in a given context. One of the approaches that we are experimenting with is the use of INVARIANT and
END INVARIANT directives to inform compilers of the dynamic scope of an invariant data access pattern. It is
noncompliant to branch into or out of the code region enclosed by INVARIANT directives. The loop bounds of
parallel loops and the indirection arrays are candidate variables to be declared in INVARIANT directives, if they
indeed do not change. For example, the loop bounds NINTCI and NINTCF and indirection array LCC are declared
as INVARIANT in Fig. 13. Therefore, the communications generated by an inspector loop can be reused.

1 !$OMP INVARIANT (NINTCI : NINTCF , LCC)
2 !$OMP PARALLEL
3 DO I = 1 , i t e r
4 . . .
5 !$OMP DO
6 DO 4 NC=NINTCI , NINTCF
7 DIREC2 (NC)=BP (NC)∗DIREC1 (NC)
8 X − BS (NC) ∗ DIREC1 (LCC(1 ,NC))
9 X − BW(NC) ∗ DIREC1 (LCC(4 ,NC))

10 X − BL(NC) ∗ DIREC1 (LCC(5 ,NC))
11 X − BN(NC) ∗ DIREC1 (LCC(3 ,NC))
12 X − BE(NC) ∗ DIREC1 (LCC(2 ,NC))
13 X − BH(NC) ∗ DIREC1 (LCC(6 ,NC))
14 4 CONTINUE
15 !$OMP END DO
16 END DO
17 !$OMP END PARALLEL
18 !$OMP END INVARIANT

Fig. 13. A code segment of gccg with INVARIANT directives

In a more complex case, an application may have several data access patterns and use each of them periodically.
We are exploring language extensions proposed for HPF to give each pattern a name so that the access patterns
can be identified and reused, including using them to determine the required communication for different loops if
these loops have the same data access pattern.

15

VI. RELATED WORK

Given the importance of clusters, and the lack of a portable high-level programming model for them, it is not
surprising that a number of vendors as well as researchers have considered the relevance of OpenMP to them,
and a variety of data and work distribution extensions have been proposed for OpenMP in the literature to help
it target such platforms as well as large-scale shared memory machines. Unfortunately, the syntax and semantics
of these differ. Both SGI [22] and Compaq [23] introduced DISTRIBUTE and REDISTRIBUTE directives with
BLOCK, CYCLIC and * (no distribution) options for each dimension of an array, in page or element granularity.
However, their syntax varies. In the Compaq extensions, ALIGN, MEMORIES and TEMPLATE directives are
borrowed from HPF and further complicate OpenMP. Both SGI and Compaq also supply directives to associate
computations with the location of data. Compaq’s ON HOME directives and SGI’s DATA AFFINITY directives
indicate that the iterations of a parallel loop are to be assigned to threads according to the distribution of the specified
data. SGI also provides for a direct THREAD affinity. The Portland Group Inc. has proposed data distribution
extensions for OpenMP including the above and GEN_BLOCK, along with ON HOME directives for clusters of
SMP systems [24]. INDIRECT directives were proposed in [25] for irregular applications. The idea is to create
inspector code to detect data dependences at runtime and to generate executor code to remove the unnecessary
synchronization; the overhead of the inspector can be amortized if a SCHEDULE reuse directive [25] is present. In
the HPF/JA language specification [26], an INDEX_REUSE directive is proposed to instruct the compiler to reuse
the communication schedule for an array irregularly accessed in a loop.

We transparently determine a data distribution, which fits into the OpenMP philosophy, and search for ways to
enable good performance even if this distribution is suboptimal. GA helps in this respect by providing efficient
asynchronous communication. The simplicity of the data distributions provided by GA implies that the calculation
of the location of shared data is easy. In particular, we do not need to maintain a replicated or distributed translation
table consisting of the home processors and local index of each array element, as was needed in the complex parallel
partitioner approach taken, for example, in the CHAOS runtime library for distributed memory systems [27]. Our
strategy for exploiting the inspector-executor paradigm also differs from other previous work, since we are able
to fully parallelize the inspector loops and can frequently overlap the resulting communication with computation.
Also, the proposed INVARIANT extension for irregular codes is intuitive for users and informative for the compiler
implementation.

Our approach to implementing OpenMP for distributed memory systems has a number of features in common
with approaches that translate OpenMP to Software DSMs [3], [4] or Software DSM plus MPI [5] for cluster
execution. All of these methods need to determine the data that has to be distributed across the system, and must
adopt a strategy for doing so. Also, the work distribution for parallel and sequential regions has to be implemented,
whereby it is typically the latter that leads to problems. Note that it is particularly helpful to perform an SPMD-
style, global privatization of OpenMP shared arrays before translating codes via any strategy for cluster execution,
due to the inherent benefits of reducing the size and number of shared data structures and of obtaining a large
fraction of references to (local) private variables.

On the other hand, our translation to GA is distinct from other approaches in that ours promises higher levels of
efficiency via the construction of precise communication sets. The difficulty of the translation itself lies somewhere
between the translation to MPI and the translation to Software DSMs. First, the shared memory abstraction is
supported by GA and Software DSMs, but is not present in MPI. It enables a consistent view of variables and a
non-local datum is accessible if given a global index. In contrast, only the local portion of the original data can
be seen by each process in MPI. Therefore manipulating non-local variables in MPI is inefficient since the owner
process and the local indices of arrays have to be calculated. Furthermore, our GA approach is portable, scalable
and does not impose limitations on the shared memory space. The everything-shared SDSM as presented in [11]
attempts to overcome the relaxation of the coherence semantics and the limitation of the shared areas in other
SDSMs. It does solve commonly existing portability problems in SDSMs by using an OpenMP run-time approach,
but it is hard for such a SDSM to scale with sequential consistency. Second, the non-blocking and blocking one-
sided communication mechanisms offered in GA allow for flexible and efficient programming. In MPI-1, both
sender process and receiver process must be involved in the communication. Care must be taken with the ordering
of communications in order to avoid deadlocks. Instead, get and/or put operations can be handled within a single
process in GA. A remote datum can be fetched without interfering with the process that owns the datum. Third, extra

16

messages may be incurred when using SDSMs due to the fact that data is fetched at a page granularity. Besides, the
different processes have to synchronize when merging their modifications to the same page, even if those processes
write to distinct locations of that page. GA is able to efficiently transfer sets of contiguous or strided data, which
avoids the overheads of page-sized transfers. Since page sizes are growing on recent architectures, the difference
may be substantial. Moreover, extra messages and synchronization are not necessary in our GA translation scheme.
Our GA approach relies on compiler analyses to obtain precise information on the array regions accessed and this
is a major focus of our on-going compiler implementation; otherwise, conservative synchronization is inserted to
protect the accesses to global arrays.

VII. CONCLUSIONS AND FUTURE WORK

Clusters are increasingly used as compute platforms for a growing variety of applications. It is important to
extend OpenMP to clusters, since for many users a relatively simple programming paradigm is essential. However,
it is still an open issue whether language features need to be added to OpenMP for cluster execution, and if so,
which features are most useful. Any such decision must consider programming practice, the need to retain relative
simplicity in the OpenMP API, and must take C pointers into consideration.

This paper describes a novel approach to implementing OpenMP on clusters by translating OpenMP codes
to equivalent GA ones. This approach has the benefit of being relatively straightforward. We follow OpenMP
loop schedule semantics to distribute the data. This strategy has the advantage of relative simplicity together
with reasonable performance, without adding complexity to OpenMP for both SMP and non-SMP systems. We
show the feasibility and efficiency of our translation via experiments on regular and irregular codes. For regular
applications, automatic translation of OpenMP into GA is attainable. However, codes employing techniques such
as array reshaping across procedure boundaries will remain problematic. Extra effort is required for irregular codes
since it is not easy for the compiler to figure out the data access patterns at compile time. The inspector-executor
approach enables us to handle indirect accesses to shared data. Furthermore, we propose a new directive called
INVARIANT to specify the dynamic scope of a program region in which a data access pattern remains invariant,
so as to take advantage of the accesses calculated by an inspector loop.

We are working on providing a solid implementation of our translation from OpenMP to GA in the Open64
compiler [28], an open source compiler that supports OpenMP and which we have enhanced in a number of ways
already. The rich set of analyses and optimizations in Open64 may help us create efficient GA codes. We have also
built Dragon, a graphical interactive program analysis tool that extracts information from Open64 and also is able to
gather additional information. We may be able to use Dragon features to further explore combinations of user input,
compiler feedback and manual modification that might make it easier to deal with some of the hard problems that
are encountered in real-world application codes. Further, we will continue to compare the benefits and drawbacks
of the different approaches to implementing OpenMP on clusters, and will consider whether our strategy might
be fruitfully combined with other emerging techniques in order to maximize the benefits, for example exploiting
existing support for shared pointers in SDSMs.

VIII. ACKNOWLEDGMENTS

We are grateful to our colleagues in the DOE Programming Models project, especially Ricky Kendall who helped
us understand GA and discussed the translation from OpenMP to GA with us.

REFERENCES

[1] “Top 500 supercomputers sites.” [Online]. Available: {http://www.top500.org}
[2] J. Fagerstróm, A. Faxen, Múnger P.and Ynnerman, and J.-C. e. a. Desplat, “High Performance Computing Development

for the Next Decade, and its Implications for Molecular Modeling Applications,” October 28, 2002. [Online]. Available:
http://www.enacts.org/hpcroadmap.pdf

[3] Y. C. Hu, H. Lu, A. L. Cox, and W. Zwaenepoel, “OpenMP for Networks of SMPs,” Journal of Parallel Distributed Computing, vol. 60,
pp. 1512–1530, 2000.

[4] M. Sato, H. Harada, A. Hasegawa, and Y. Ishikawa, “Cluster-enabled OpenMP: An OpenMP compiler for the SCASH software
distributed shared memory system,” Scientific Programming, Special Issue: OpenMP, vol. 9, no. 2–3, pp. 123–130, Spring–Summer
2001.

[5] R. Eigenmann, J. Hoeflinger, R. H. Kuhn, D. Padua, A. Basumallik, S.-J. Min, and J. Zhu, “Is OpenMP for Grids?” in Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS ’02), Fort Lauderdale, 2002.

17

[6] L. Huang, B. Chapman, and R. Kendall, “OpenMP for Clusters,” in the Fifth European Workshop on OpenMP, EWOMP’03, Aachen,
Germany, 2003.

[7] A. Basumallik, S.-J. Min, and R. Eigenmann, “Towards openmp execution on software distributed shared memory systems,” in
Proceedings of the 4th International Symposium on High Performance Computing. Springer-Verlag, 2002, pp. 457–468.

[8] Z. Radović and E. Hagersten, “Removing the Overhead from Software-Based Shared Memory,” in Proceedings of the ACM/IEEE
Supercomputing 2001(SC2001) Conference, Denver, Colorado, 2001.

[9] H. Matsuba and Y. Ishikawa, “OpenMP on the FDSM Software Distributed Shared Memory,” in the Fifth European Workshop on
OpenMP, EWOMP’03, Aachen, Germany, September, 2003.

[10] Y.-S. Kee, J.-S. Kim, and S. Ha, “ParADE: An OpenMP Programming Environment for SMP Cluster Systems,” in Proceedings of the
ACM/IEEE Supercomputing 2003(SC2003) Conference, Phoenix, Arizona, November 15 - 21, 2003.

[11] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and J. Labarta, “Running OpenMP Applications Efficiently on an Everything-Shared
SDSM,” in Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS ’04). IEEE, 2004.

[12] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Arrays: A Nonuniform Memory Access Programming Model for High-
Performance Computers,” Journal of Supercomputing, vol. 10, pp. 169–189, 1996.

[13] Z. Liu, B. Chapman, T.-H. Weng, and O. Hernandez, “Improving the Performance of OpenMP by Array Privatization,” in Workshop
on OpenMP Applications and Tools (WOMPAT 2002), Fairbanks, Alaska, 2002.

[14] “High performance fortran language specification. version 2.0.” Rice University, Houston, TX, Tech. Rep., January 1997. [Online].
Available: http://dacnet.rice.edu/Depts/CRPC/HPFF/versions/hpf2/hpf-v20/index.html

[15] X. He and L.-S. Luo, “Theory of the lattice boltzmann method: From the boltzmann equation to the lat-tice boltzmann equation,” Phys.
Rev. Lett. E, vol. 6, no. 56, p. 6811, 1997.

[16] G. Bachler and R. Greimel, “Parallel CFD in the Industrial Environment,” in Unicom Seminars, London, 1994.
[17] Y.-S. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das, and J. H. Saltz, “Run-time and language support for compiling adaptive

irregular problems on distributed memory machines,” Software Practice and Experience, vol. 25, no. 6, pp. 597–621, June 1995.
[18] J. Saltz, H. Berryman, and J. Wu, “Multiprocessors and Run-Time Compilation,” Concurrency: Practice and Experience, vol. 3, no. 6,

pp. 573–592, December 1991.
[19] S. Chakrabarti, M. Gupta, and J.-D. Choi, “Global communication analysis and optimization,” in Proceedings of the ACM SIGPLAN

1996 conference on Programming language design and implementation. ACM Press, 1996, pp. 68–78.
[20] “Umt98 unstructured mesh transport.” [Online]. Available: {http://www.llnl.gov/asci/applications/UMT98README.html}
[21] O. Hernandez, C. Liao, and B. Chapman, “Dragon: A Static and Dynamic Tool for OpenMP,” in Proceedings of Workshop on OpenMP

Applications and Tools (WOMPAT 2004), Houston, TX, 2004.
[22] MIPSpro 7 FORTRAN 90 Commands and Directives Reference Manual, Silicon Graphics Inc., accessed 2002. [Online]. Available:

http://techpubs.sgi.com
[23] J. Bircsak, P. Craig, R. Crowell, et al., “Extending OpenMP for NUMA Machines,” Scientific Programming, vol. 8, no. 3, pp. 163–181,

2000.
[24] J. Merlin, “Distributed OpenMP: Extensions to OpenMP for SMP Clusters,” in 2nd European Workshop on OpenMP (EWOMP’00),

Edinburgh (UK), September, 2000.
[25] J. Labarta, E. Ayguadé, J. Oliver, and D. Henty, “New OpenMP Directives for Irregular Data Access Loops,” in the Second European

Workshop on OpenMP, Edinburgh, Scotland, 2000.
[26] J. A. for High Performance Fortran), “HPF/JA Language Specification, English Version 1.0.” Nov. 11, 1999. [Online]. Available:

http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
[27] R. Das, M. Uysal, J. Saltz, and Y.-S. S. Hwang, “Communication optimizations for irregular scientific computations on distributed

memory architectures,” Journal of Parallel and Distributed Computing, vol. 22, no. 3, pp. 462–478, 1994.
[28] “The Open64 Compiler.” [Online]. Available: {http://open64.sourceforge.net/}

