Department of Computer Science

Self-Stabilizing Real-Time OPSS Production
Systems'

Albert M. K. Cheng and Seiya Fujii

Computer Science Department
University of Houston
Houston, TX, 77204, USA
http://www.cs.uh.edu

UH-CS-04-07
November 15, 2004

Keywords: rule-based systems, real-time systems, self-stabilization, OPSS5, fault tolerance
Abstract

We examine the task of constructing bounded-time self-stabilizing rule-based systems that take their
input from an external environment. Bounded response-time and self-stabilization are essential for
rule-based programs that must be highly fault-tolerant and perform in a real-time environment. We
present an approach for solving this problem using the OPS5 programming language as it is one of
the most expressive and widely used rule-based programming languages. Bounded response-time of
the program is ensured by constructing the state space graph so that the programmer can visualize the
control flow of the program execution. Potential infinite firing sequences, if any, should be detected
and the involved rules should be revised to ensure bounded termination. Both the input variables and
internal variables are made fault tolerant from corruption caused by transient faults via the
introduction of new self-stabilizing rules in the program. Finally the timing analysis of the self-
stabilizing OPSS5 program is shown in terms of the number of rule firings and the comparisons

performed in the Rete network.

"This material is based upon work supported in part by the National Science Foundation under Award No. IRI-
9526004.

Self-Stabilizing Real-Time OPS5 Production
Systems *

Albert M. K. Cheng and Seiya Fujii
Real-Time Systems Laboratory
Department of Computer Science
University of Houston
Houston, Texas 77204-3010, USA

Abstract

We examine the task of constructing bounded-time self-stabilizing rule-based systems
that take their input from an external environment. Bounded response-time and self-
stabilization are essential for rule-based programs that must be highly fault-tolerant and
perform in a real-time environment. We present an approach for solving this problem us-
ing the OPS5 programming language as it is one of the most expressive and widely used
rule-based programming languages. Bounded response-time of the program is ensured by
constructing the state space graph so that the programmer can visualize the control flow of
the program execution. Potential infinite firing sequences, if any, should be detected and the
involved rules should be revised to ensure bounded termination. Both the input variables
and internal variables are made fault tolerant from corruption caused by transient faults via
the introduction of new self-stabilizing rules in the program. Finally the timing analysis of
the self-stabilizing OPS5 program is shown in terms of the number of rule firings and the

comparisons performed in the Rete network.

Index terms: rule-based systems, knowledge-based systems, expert systems, production

systems, real-time, OPSb5, self-stabilization, fault tolerance.

*This material is based upon work supported in part by the National Science Foundation under Award No.
IRI-9526004. This paper is an extended and revised version of a preliminary work presented at IEEE IPDPS
2000.

1 Introduction

Hard real-time systems are categorized as ones that guarantee the correct logical computation in
a specified amount of time. Examples are flight control systems, command and control systems,
process control systems, flexible manufacturing applications, the space shuttle avionics system,
the space station, and space-based defense systems, and usually missing a single deadline may
cause disastrous consequences. These kind of systems are very complex, and require a high
degree of fault tolerance. Hence, it is necessary for the embedded system to tolerate transient
faults and recover automatically. The notion of self-stabilization was introduced by Dijkstra [33,
34]. He defined a system as self-stabilizing when “regardless of its initial state, it is guaranteed

to arrive at a legitimate state in a finite number of steps.”

Self-stabilization has been studied extensively to make distributed systems [5, 6, 8, 40, 47, 48,
58, 63], special classes of graph algorithms such as spanning trees [2, 11, 47], load-balancing [43]
and connected components/matching [57, 56], and networks [1, 10, 14, 16, 39, 41, 42, 50] more
robust. A comprehensive bibliography on stabilization can be found in [53]. Although a number
of researchers address timing issues such as clock synchronization [4, 7, 18, 29, 30, 31, 37, 38, 39]
and time complexities of self-stabilization [2, 9, 36, 35], there is little work on predicting and
guaranteeing in absolute (standard or wall clock) time an upper bound on stabilization. The

area of bounded-execution-time rule-based systems is even less explored.

Many techniques have been developed for the verification of rule-based systems [64, 65],
but few consider timing correctness other than termination [12]. For instance, Rosenwald and
Liu [64] propose a method to validate a rule-based system by automatically identifying the
equivalence classes for fundamental tasks to help determine incorrect knowledge and rule in-
consistencies, but they do not consider the execution time of the expert system. Schmolze [65]
describes a decidable method for terminating rule sets to remove redundant rules without timing
considerations. This is performed at pre-runtime and is based on term rewrite semantics. Also
recently, Baralis, Ceri, and Paraboschi [13, 60] have developed a new approach, similar to our
earlier work [66] cited in their paper, to detect termination of rules in active database systems.
Their approach combines compile-time static termination analysis and runtime detection of
infinite rule executions caused by cyclic rule firings. However, their technique cannot determine

the execution time of rules and no optimization strategies are presented to meet timing con-

straints. Also, there is a difference between rulebases and databases in that a single invocation
(execution) of a rule-based program consists of many matching (querying) steps [59, 55|, so the
working memory changes more often than in a database system. Thus, advanced and complex

database query algorithms may not be directly applicable here.

In [22], we first introduced self-stabilizing real-time rule-based decision systems that react
to the periodic sensor readings from the environment. For this purpose, we used EQL [21, 26,
25, 69], a zero-order-logic nondeterministic rule-based programming language, and introduced
fast timing analysis algorithms. Our approach was applied to a NASA application: the Cryo-
genic Hydrogen Pressure Malfunction Procedure of the Space Shuttle Vehicle Pressure Control
System [52, 61]. While this work was a breakthrough in fault-tolerance for rule-based expert
systems, there were certain restrictions in the form of the programs that can be transformed
into the ones that self-stabilize. For instance, this method only applies to zero-order-logic EQL
programs that assign constants to variables. One approach to overcome or at least compensate

the limitations is to use a more expressive rule-based programming language.

In this paper, we show how to make a class of OPS5 [15, 32, 44] programs self-stabilize.
As stated in [15], OPS5 stands for Official Production System, Version 5, and it is the most
widely used language in the family of languages specifically designated to simplify rule-based
programming, namely production systems. OPS5 has been widely used both in the academia
and the industry. The obvious advantage of OPSbH over EQL is the difference in conflict reso-
lution strategies. While the control flow in EQL is completely non-deterministic, in an OPS5
program, preferences may be given to some instantiations in the conflict set by their recency
and specificity. This allows the program to have some control in rule firing sequences, and
hence, it is possible to obtain shorter response time. This bounded response time is crucial for
our real-time applications. Our goal is to ensure that the self-stabilizing versions of the OPS5
programs also terminate in bounded response time. OPS5 is an expert systems language, as

well as CLIPS [49].

Implicit in the design of any system is a labeling of its states as safe or unsafe. We identify
safe as those states that occur under the correct execution of a system. All other states are
considered unsafe. A system is said to be self-stabilizing when regardless of its initial state, it
is guaranteed to converge to a safe state in a finite number of steps. A system which is not

self-stabilizing may stay in an unsafe state forever.

During the construction of the self-stabilizing version of a real-time OPS5 program, we first
guarantee the bounded response time of the program. In order to analyze the timing behavior
of an OPS) program, we formalize a graphical representation of rule-based programs. The state
space graph is defined to capture the control flow of the program. By using this graph, we can
identify the possible infinite cycles of the execution in the program. After the successful timing
analysis, the self-stabilization technique is applied to the program while ensuring its bounded
response time. There are still some restrictions (described later) on the form or style of the
program that might seem quite restrictive. However, we believe that they are necessary and

reasonable conditions for the programs that react to the external environment.

Our earlier work [27] introduces a framework for self-stabilization of OPS5 programs but
does not verify their logical, timing, and fault-tolerance properties. This paper provides formal
proofs for these properties and describes additional details on the timing analysis. Furthermore,
the paper puts this framework in perspective with related work. The remainder of this paper
is organized as follows. A brief review of OPS5 production systems and the Rete matching
algorithm is given in Section 2. Section 3 explains the class of OPS5H programs which can be
transformed into the one that self-stabilizes, and the use of state space graph to ensure the
bounded response time of the programs. Section 4 shows the techniques to convert an OPS5
program to the one that self-stabilizes. The timing analysis is given is Section 5 to determine
the upper bound of the response time of the self-stabilizing OPS5 program. Finally, Section 6

concludes this paper.

2 OPS5 Programming Language

This section briefly introduces OPS5, one of the most powerful production-system languages.
The production-system model has been used to solve applications in the areas of artificial

intelligence, expert systems, and cognitive psychology.

2.1 Overview

An OPS5 rule-based program consists of a finite set of rules (called productions) each of which

is of the form:

(p rule-name
(condition-element-1)
(condition-element-2)

(condition-element-m)
-->

(action-1)

(action-2)

(action-n))

and a database of assertions each of which is of the form

(class-name “attribute-1 value-1

~attribute-p value-p)

The symbol ‘"’ means there is an attribute name following it. The set of rules is called the
production memory (PM) and the database of assertions is called the working memory (W M).

Each assertion is called a working memory element (WME). A rule has three parts:

e The name of the rule, rule-name,

e The left-hand-side (LHS), i.e., a conjunction of the condition elements each of which can

be either a positive condition element or negative condition element; and

e The right-hand-side (RHS), i.e., the actions, each of which may make, modify, or delete
a WME, perform I/0, or halt.

All atoms are literals unless put in variable brackets ‘<>’. A variable in a LHS-value is recog-
nized as a symbol which begins with a character < and ends with a character >. The variable
<v> would match the value of variable v. If a variable appears more than once in the same
production, all of them must match the same value. The scope of variables is a single rule. A
WME is an instance of an element class. An element class defines a WME structure in the
same way a C data type defines the structure of entities in a C program. An element class is
the template from which instances are made. It is identified by class-name and by a collection
of attributes describing characteristics relevant to the entity. The following is an OPS5 rule for

processing sensor information from a radar system:

(p radar-scan ; an 0PS5 rule
(region-scanl “sensor object) ; positive condition element
(region-scan2 “sensor object) ; positive condition element
(status-check “status normal) ; positive condition element

- (interrupt “status on) ; negative condition element

{ <Uninitialized-configuration> ; positive condition element
(configuration “object-detected 0) }

-—=>
(modify <Uninitialized-configuration> ~object-detected 1)) ; action

If both radars (region-scanl) and (region-scan2) detect an object, the status of the radar
system is normal, there is no interrupt, and the attribute object-detected in the element class
configuration is 0, then assign 1 to object-detected. The notation ‘<name> WME’ is used to
name the matching WME for use in this action. Hence, ‘<Uninitialized-configuration>’ refers
to the “configuration” WME matched in the LHS. Otherwise, the number of the matching
conditions in the LHS may be used in modify and delete commands. Comments are given

following the semicolon ‘;’. When the working memory contains the WMEs

(region-scanl “sensor object)
(region-scan2 “sensor object)
(status-check ~“status normal)
(configuration “object-detected 0)

but does not contain the WME (interrupt “status on), then the above rule is said to have a
successful matching. More precisely, a rule is enabled if each of its positive condition element
is matched with a WME in the working memory and each of its negative condition element is
not matched by any WME in the working memory. A rule firing is the execution of the RHS
actions in the order they appear in the rule. The above rule fires by modifying the attribute
object-detected in the element class configuration to have the value 1. A condition element can

consist of value tests other than equality that a matching WME value must satisfy.

The execution of the production system is known as the recognize-act (or MRA) cycle. Tt

consists of the iterative sequential operations of the followings:

1. Match: evaluates the matching of the LHS of each production with WMEs. The produc-
tion with successful match is a candidate for the execution. The result of a successful
match is called an instantiation. The set of all satisfied production instantiations are

referred as the conflict set.

2. Conflict resolution: only one instantiation is chosen from the conflict set for the firing. If

there are no productions to choose from, the execution terminates.

3. Act: The RHS of the chosen production is performed. This usually results in changing

one or more WMEs.

The production system repeats the MRA cycle until the conflict set is empty or an explicit

halt command is executed.

We now briefly describe the two common conflict resolution (rule selection) strategies. LEX
is the simpler of the two. The first step is refraction, that is, all previously selected and fired
rule instantiations are deleted from the conflict set unless one of the WMEs of an instantiation
has been modified. The second step partially orders the remaining rule instantiations in the
conflict set based on the recency of the time tags corresponding to the WMEs matching the
condition elements. If no single rule instantiation dominates the conflict set following the
above two steps, then step three employs the principle of specificity to partially order the
rule instantiations based on the total number of tests in all conditions of a rule. If this step
fails to determine a single dominant instantiation, then the final step randomly selects a rule

instantiation from those remaining in the conflict set.

MEA differs from LEX in that it emphasizes the recency of a WME that matches the first
condition of the rule. Following the first step in LEX, MEA compares rule instantiations based
on the recency of the first condition element. If there is no dominant rule instantiation, the

remaining steps of LEX are performed.

The computing power of this model of OPS5 programs with the above inference engine is

Turing-complete because these programs can encode two-counter machines [21].

Every production has to be entered into the production memory. The RHS of each produc-
tion is composed of a sequence of actions. As stated earlier, there are three main actions to

alter the WMEs:

1. Make: used to create a new WME
2. Remove: used to delete an existing WME

3. Modify: used to update attribute-value elements

Moreover, we will use the action Build for creating new rules (Section 4.2).

2.2 The Rete Match Algorithm

Rete [44] is a widely used production match algorithm. The Rete algorithm was developed to
eliminate extra work that would be performed by an unoptimized pattern matcher. There are
two main optimizations in Rete: sharing and state-saving. Sharing common parts of condition
elements in a single production or across different productions reduces the number of tests
required to do match. State-saving accumulates partially completed matches from previous
recognize-act cycles for use in future cycles. Even if the working-memory elements or WMFEs
generated in a cycle fail to match a production, the partial match is saved. Thus, if a new
WME is added in a new cycle, only the new WME has to be matched; the partial match from

the previous cycles is not repeated.

Of these three phases, the match phase is by far the most expensive, accounting for more
than 90 percent of execution time in some experiments [45, 51, 54]. Therefore, to maximize
the efficiency of an OPS5 program, a fast match algorithm is necessary. The Rete match
algorithm has become the standard sequential match algorithm. A new version called Rete 11

was introduced in [46].

The Rete algorithm compiles the LHS patterns of the production rules into a discrimination
network in the form of an augmented dataflow network [62]. The state of all matches is stored
in the memory nodes of the Rete network. Since a limited number of changes are made to the
working memory after the firing of a rule instantiation, only a small part of the state of all
matches needs to be changed. Thus, rather than checking every rule to determine which rules
are matched by the WM in each recognize-act cycle, Rete maintains a list of matched rules and
determines how these matches change due to the modification of the WM by the firing of a rule
instantiation. The top portion of the Rete network contains chains of tests that perform the
select operations. Tokens passing through these chains partially match a particular condition
element and are stored in alpha-memory nodes. The alpha-memory nodes are connected to
the two input nodes that find the partial binding between condition elements. Tokens with
consistent variable bindings are stored in beta-memory nodes. At the end of two-input nodes
are the terminal nodes, which signify that a consistent binding for a particular rule is found.

The terminal nodes send the rule bindings to the conflict set. An example of a Rete network is

(p pl
(cl ~al <x> "a2 10)
(c2 Mal <x>)

-->
(renmove 2))

(p p2
(cl ~al <y> "a2 10)
(c3 ~al 2 "a2 <y>)
-(c4 nal <y>)

-->

(rmodify 1 Mattri 4))

r oot
Const ant - t est
class=c2 class=cl class=c3 ¢l ass=c4 nodes
a2 10 al 2
alpha alpha al pha
Menory menory rrem?ry(
I node node d

al pha node
menory
node

and- node

()terninal-node
pl

() and- node

beta nmenory
node

()not-node

()terninal-node
p2

Figure 1: An example of Rete Network

shown in Figure 1.

3 Bounded-Time Analysis

In order to formalize the response time of an OPS5 program, we represent it in terms of its
state space graph. By constructing the state space graph, a software analysis tool [22, 24] can
identify the possible infinite loop of the control flow of the program execution. This section
describes the general production model which shows the programming style for the purpose of
self-stabilizing OPS5 programs first. Then, the state space graph for bounded response-time is

explained next.

3.1 General Production Model

An OPS5 program implementing a real-time rule-based system has a set of productions of the
form: if the left-hand-side conditions are satisfied, then execute the right-hand-side actions,
where the internalVar and the val both in the (n+1)th condition element and in the action
are identical. More precisely, every production in this OPS5 program has the following form:
(p production_name

(condition_1)

(condition_n)

(class_name “internalVar <> val)

-—>
(modify n+1 “internalVar val)

We now consider the class of rule-based programs that satisfy the following conditions with

regard to the above general production form.

1. The internalVar and the val both in the (n+1)th condition element and in the action

are identical.

2. Every input variable is compared against a constant, and every internal variable is assigned

a constant.

10

3. The condition element 1 through n does not contain any internal variables. The system
is solely input dependent, and therefore, the internal variables may not affect the firings

of any rules.

4. The (n+1)th condition element is called the negation condition. This condition guarantees
that the firing of its rule will make actual changes in the WM. Refraction does not apply

here because the WMEs may have the new recency number with the modify action.

5. Each attribute in the OPS5 program is treated as either an input variable or an internal

variable. Hence, an attribute appears only once in the entire set of WMEs.

6. The input variables are not to be altered by the modify action. They represent the direct

input from the sensor readings.

Suppose there are three internal variables y1, y2 and y3 in the RHS of a production to
be modified when the rule is fired. Then, the negation condition of the rule must express the
condition y1Vy2Vy3. Since OPS5 does not have the capability to express disjunctions in either
of two or more situations, the technique of rule splitting must be employed by separating rules
for each disjunct. It is best described using an example. Consider the following possible rule

before splitting which cannot be defined in OPS5, where the parallel bars denote ‘or’.

(p p1_1
(cl "al 3 "a2 5)
(c2 "a8 2)
(3 y1 <>7 || "y2 <> 10 || "y3 <> 9)
-—>
(modify 3 "y1 7 "y2 10 "y3 9)
)
After rule splitting, we obtain three rules:
(p p121
(c1 "al 3 "a2 5)
(c2 ~a8 2)
(c3 "y1 <> 7)
-—>
(modify 3 ~y1 7 ~y2 10 “y3 9)
)
(p p1_2

(c1 "al 3 "a2 5)

11

(c2 ~a8 2)
(c3 "y2 <> 10)

(modify 3 "y1 7 “y2 10 “y3 9)

)
(p p1_3

(c1 a1l 3 "a2 b)

(c2 "a8 2)

(c3 "y3 <> 9)

-—>

(modify 3 "y1 7 "y2 10 "y3 9)
)

The three productions in the above example are identical except for the third condition
in each production, which was added by splitting each disjunct. This rule splitting technique
does not increase the number of rule firings during the program execution because firing any
one of the identical productions will falsify the remaining identical productions. Hence, there

is always only one of the productions in an identical set which gets fired.

3.2 Analysis of Control Flow

The definition of the state space graph is introduced in [24]. It is restated here as follows.

Definition 1 The state space graph of an OPS5 program is a labeled directed graph G=(V,E).
V is a distinct set of nodes each of which represents a distinct set of Working Memory Elements
(WMEs). We say that a rule is enabled at node i if and only if its enabling condition is satisfied
by the WMEs at node i. E is a set of edges each of which denotes the firing of a rule such that
an edge(i,j) connects node i to node j if and only if there is a rule R which is enabled at node

i, and firing R will modify the Working Memory (WM) to become the set of WMEs at node j.

A path in the state space graph is a sequence of distinct nodes vy, vo, ..., Vi, Vit1, ---,
such that an edge connects v; to v;41 for each ¢. Paths can be finite or infinite. The length of
a finite path vy, ..., vy is k — 1. A path corresponds to the sequence of states generated by a

sequence of rule firings of the corresponding program.

Definition 2 Rule a is said to potentially enable rule b if and only if there exists at least one

reachable state in the state space graph of the program where:

12

(p p3
(cl ~al 2 "a2 <x>)
(c2 ~bl 5)

-(cl Mal <x>)

—_—
(nmodify 1 "~al 4)
(modify 2 <x>))

(cl "al 4 ~a2 3)
(c2 ~bl 3)

(cl ~al 2 "a2 3)

(c2 "bl 5)/

(p pl (p pl
(cl ~al <x> "a2 3) (cl Mal <x> "a2 3)
(c2 "bl { <y> <> <x>}) (c2 "bl { <y> <> <x> })
- -->
(modify 1 2al <y>) (modify 1 "al <y>)
(remove 2)) (renove 2))

(cl ~al 5 "a2 3)
(p p2
(cl "al 5 "a2 <x>)
-

(modify 1 2al <x>))

Figure 2: State space graph of an OPS5 program

(1) the enabling condition of rule b is false, and

(2) firing rule a causes the enabling condition of rule b to become true.

In Figure 2,
-(cl "al <x>)

of rule p3 means that the value of attribute al is not equal to the value of attribute a2 (which
is 3). The state space graph in this Figure shows that rule pl potentially enables rule p2, and
rule p3 potentially enables rule pl. The modify action is equivalent to a remove action followed

by a make action.

A node v in a state space graph is said to be a fixed point if it does not have any out-edges.
Hence, if the execution of a program has reached a fixed point, then the conflict set is empty,

and no rule will be fired. In Figure 2, the node labeled with
(c1 "al 3 "a2 3)

13

is a fixed point.

A computation of a rule-based program traces a path in the state space graph. A fixed point
is an endpoint of a state s if that fixed point is reachable from s. After a program reaches a fixed
point, it remains there until the sensor readings are updated, and then program gets invoked
again. The state space graph may not be connected. Moreover, the state space graph must
be an acyclic graph. If it is not an acyclic graph, then the execution of the program may not
always terminate. By detecting the possible infinite execution path, it is up to the programmer
how to modify the program so that the program is always guaranteed to terminate. Suppose
we have m different attributes in all classes, each attribute has n data items, and each WME
is unit in the WM, then we have n™ possible WMEs. In the state space graph, there would be

27" states.

Since the state space graph cannot be derived without running the program for all allowable
initial states, we use symbolic pattern matching to determine the potentially enabling relation
between rules. Rule a potentially enables rule b if and only if the symbolic form of a WME
modified by the actions in rule g matches one of the enabling condition elements of rule b. Here

the symbolic form represents a set of WMEs and is of the form:

(classname “attributel vl “attribute2 v2 ... “attributen vn)

where v1, v2 ..., and vn are either variables or constant values and each attribute can be

omitted. For example,

(class "al 3 "a2 <x>)

can be a symbolic form of the following WMEs.

(class ~“al 3 ~a2 4)
(class "al 3 "a2 8 ~a3 4)

(class "al 3 "a2 <y> "a3 <z>)

Note that in order to determine with certainty whether a rule enables, rather than potentially
enables, another rule, and thus determine whether the condition elements of a rule actually have

a matching, would require us to know the contents of the working memory at runtime. This a

14

priori knowledge of the WM cannot be obtained statically. Therefore, the above conservative,
approximation potentially enable relation is used instead. This approximation does not affect
the validity of any of the proposed analysis techniques because the approximately potentially

enable relation is a superset of the potentially enable relation [26].

Each rule’s action(s) must be checked to see if they may enable another rule. Suppose
there are k rules in a program. Each rule r; has p; WMEs and ¢; actions, ¢ = 1,...,k. Let
p = p1 + ... + pi be the total number of WMEs and ¢ = g1 + ... + ¢ be the total number of
actions in the program. All approximately potentially enable relations can be easily determined

in polynomial time O(pq).

Example 1 illustrates the potentially enable relation. Rule a potentially enables rule b
because the first action of rule a creates a WME (class_c “cl off “¢2 <x>) which symbolically
matches the enabling condition (class_c “c1 <y>) of rule b. Notice incidentally, that the second
action of rule a does not match the first enabling condition (class_a “al <x> "a2 off) of rule b
because variable <y> ranges in <<open close>>.

Example 1 An example of a potentially enables b.
(p a
(class_a ~al <x> ~"a2 3)
(class_b “bl <x> “b2 {<y> <<open close>>})
-->

(make class_c ~“cl off ~“c2 <x>)
(modify 1 ~a2 <y>))

(b
(class_a ~al <x> ~a2 off)
(class_c “cl <y>)

-->

(modify 1 ~a2 open))

The symbolic matching method actually detects the enabling relation by checking the at-
tribute ranges. This information can be found by analyzing the semantics of the rules, partially

represented by an enable-rule (ER) graph.

ER graphs were first introduced by the first author in [20, 28]. Shortly later, triggering
graphs (similar to ER graphs) in active databases were developed by Ceri and Widom in [17, 3].

15

Recently, Baralis, Ceri, and Paraboschi [13] have developed a new analysis approach, similar
to our earlier work [66] cited in their paper, to detect termination of rules in active database

systems.

Definition 3 The enable-rule (ER) graph of a set of rules is a labeled directed graph G =
(V,E). V is a set of vertices such that there is a vertex for each rule. E is a set of edges such

that an edge connects vertex a to verter b if and only if rule a potentially enables rule b.

Note that an edge from a to b in the E R graph does not mean that rule b will fire immediately
after rule a. The fact that rule b is potentially enabled only implies the instantiation of rule
b may be added to the conflict set to be fired. The space required to store the EFR graph is

polynomial, proportional to k£ (the number of rules in the program) with at most k% edges.

The previous analysis is useful since it does not require us to know the contents of working
memory which cannot be obtained statically. Further details on the algorithms for detecting

termination, finding enabling conditions of a cycle, and preventing cycles can be found in [24].

4 Self-Stabilization

In this section, we examine self-stabilizing OPS5 programs in the context of real-time decision
systems that take their input from an external environment. A self-stabilizing program guaran-
tees that an incorrect decision will be corrected and future decisions will be correct if no more
failures occur. Different self-stabilizing techniques are used for the input variables and for the

internal variables.

In general, it is not always possible to construct a self-stabilizing OPS5 program for an
application. However, with some restrictions in the form of the program, it is always possible
to transform a program into an equivalent one that is self-stabilizing. The bounded response-

time must be guaranteed before the self-stabilizing techniques are applied.

We approach the self-stabilization of the internal variables first. This technique was origi-
nally introduced by the first author in [22] using the EQL rule-based language. It is possible
to apply the same technique on OPS5 programs for the internal variables to make them self-

stabilize. This earlier approach also works for OPS5 programs because it basically adds new code

16

that would re-initialize the internal variables if they become corrupted, regardless of whether
these variables are simple (EQL) or structured (OPS5). The next subsection describes how this
approach can be adapted to suit the syntax and semantics of OPS5. Then, the self-stabilization
of the input variables is introduced next. It creates a new set of rules at run-time to make the

program self-stabilized.

4.1 Self-Stabilization of the Internal Variables

An initial state s of a program p is a state in which each internal variable z; is assigned its
initial value in s. A state s of p is called reachable if and only if s can be reached from some
initial state of p by executing a finite number of the rules of p. A program p is said to implement

program q if and only if the following conditions hold:
I1 Programs p and ¢g have the same input variables and the same internal variables.
12 Each internal variable of ¢ is an internal variable of p.
I3 Each fixed point of p is a reachable fixed point of ¢, and if ¢ has a reachable fixed point,

then p has a fixed point.

Two enabling conditions of rules ¢ and b are mutually exclusive if and only if they cannot be

true at the same time. Let A, denote the set of attributes appearing in RHS of rule z.
Two rules a and b are said to be compatible if and only if at least one of the following

conditions holds:

S1 Enabling conditions of the rules a and b are mutually exclusive.
S3 A, N Ay =0.

S3 Suppose A, N Ay # (. Then, for every attribute v in A, N A, the same expression must

be assigned to v in both rule ¢ and b.

If a set of productions in a program p is compatible, it can be transformed into a self-
stabilizing program ¢ that implements p as follows. For every set of m productions in program

p with the same attribute z in the RHS:

17

(p rule-i
(condition-element-1)

(condition-element-n)
(input-var-class "x <> val-i)
-=>

(modify n+1 "x val-i)

where rule-1,...,rule-m are productions, we add a set of all the possible distinct productions that
satisfies the following condition:

ruler A ... ANruleny

In the RHS of these rules, the initial value of = is assigned to the attribute z. It is easy to
show that the resulting program implements p since conditions I1, I2 and I3 are satisfied. The
number of self-stabilizing rules for the internal variable z can be as many as the multiplication
of the number of all the input variables in each rule which has the same internal variable on
RHS. This is again because of the lack of the way to express disjunction relationship in OPS5.
However, if one of them gets fired, the attribute z will have the initial value of it, and that will

remove all other productions in the same self-stabilizing rule set from the conflict set.

Theorem 1 Every production in the self-stabilizing program obtained by the above method is

also compatible.

Proof:

Each enabling conditions of the self-stabilizing production and enabling conditions of the pro-
ductions i, ¢ = 1, . . . , m, are mutually exclusive (condition S1 is satisfied) because conjunction
and negation cannot be true at the same time and thus the new production is compatible with
every production in the corresponding non-self-stabilizing production set. This new production
is compatible with every other new rule not in this non-self-stabilizing production set since the
attributes on the RHS are also different and thus condition S2 is also satisfied. The above
reasoning applies to every new production added to p. Hence, we can conclude that all rules in

q are compatible pairwise.

18

Now we show that the program ¢ is self-stabilizing.

Theorem 2 Given an OPS5 program p whose productions are compatible pairwise, the trans-

formed program q obtained by the above method is self-stabilizing.

Proof:
Suppose q is a self-stabilizing program that implements p. We show that for each pair of distinct
fixed points s; and ss of ¢, there is at least one input variable whose value in s; is different from

its value in so. Recall that each state in the state space graph is labeled by a set of Working
Memory Elements (WMEs).

Suppose s1 and s3 contain the set of input variables whose values are identical, while one or
more of the internal variable contains different value. Then, there must be at least one internal
variable y; whose value in y,, is different from its value in y,,. Since each production fires at
most once by refraction, there must be two productions p; and py that assign different values
to y;, resulting in two distinct fixed points s; and sy. However, p; and p, must be mutually
exclusive (condition S1 must hold) since p; and ps in g satisfy neither condition S2 nor condition
S3. If p; and po are mutually exclusive, then there must be at least one attribute v in the LHS of
two productions whose value determines which of these two productions is enabled. Therefore,
v must have different values in s; and s9. Since all the attributes in the LHS are the input
variables, v cannot be an internal variable; otherwise, v must be a constant. Thus, there is at

least one input variable whose value in s; is different from its value in so.

Suppose that s; and sy contain the set of internal variables whose values are identical, while
one or more of the input variable contains different value. This is possible since two distinct
initial states whose input variables are different may lead to the same fixed point. Obviously

there is at least one input variable whose value in s is different from its value in so.

4.2 Self-Stabilization of the Input Variables

A different self-stabilization technique is used for the input variables. Suppose there are n input

variables. Then, n rules are fired first during the execution of the program to construct the

19

self-stabilizing productions. Hence, the only requirement for this technique is that the input
variables do not corrupt during this initialization phase. All the input variables are treated as
boolean (0 or 1) in this paper, but it can be extended easily to allow more than only 0 or 1

using the approach proposed in [69].

For each input variable z, create a pair of productions like these

(p init_x_a
(control “rule init "i_x 1) ; initially "i_x is 1
(class "x 1)
-—>
(build init_x_b
(class "x <> 1)
-=>
(modify 1 “x 1)

)
(modify 1 “i_x 0)
)
(p init_x_b
(control “rule init “i_x 1) ; initially "i_x is 1
(class "x 0)
-—>
(build init_x_a
(class "x <> 0)
-—>
(modify 1 “x 0)
)
(modify 1 "i_x 0)
)

The MEA strategy is enforced so that the productions that contain (control “rule init) have
the priority over all the rest of the productions. Hence, at the initialization phase, one of the
above two productions is fired for each input variable. Another control variable “i_x is to ensure

that the rule is fired only once.

The build action adds a new rule to an executing program. When either of the rule is fired,
the build action will create a new rule using the name of the other production of the same

pair. This will disable the original rule and the new one is built.

When the faults occur in the input variables during the execution, it is not likely that the
self-stabilization takes place first, because there is only one condition element in each newly

created self-stabilizing production. If other regular productions have higher specificity, they will

20

be fired before the self-stabilizing rules. In the worst case, all the rules that are instantiated
by the wrong input values are fired before the self-stabilizing rules can be fired. However, we
know that this occurs in bounded time because the firing of any rules will not instantiate any
other rules (LHS N RHS = (). When finally the self-stabilizing rules are fired and the input
variables are corrected, the new correct instantiations will be found. And, we know that with
certain combination of the input variables, the program will always reach the same fixed point

in bounded time. Example 2 illustrates this technique.
Example 2

; non-self-stabilizing rules

(literalize classl b c) ; input variables
(literalize class2 x1 x2) ; internal variables

(p pt (p p2

(class1 b 1 “c 1)
(class2 "x1 <> 1)
-—>

(modify 2 ~“x1 1)

))
(p p3

(classl “c 1)

(class2 ~“x2 <> 0)

-

(modify 2 ~“x2 0)
)

(classl "b 1 “c 0)
(class2 "x1 <> 1)
-—>

(modify 2 "x1 1)

; add the following rules to make the above program self-stabilize
; Self-stabilizing rules for the input variables

(p init_b_A (p init_b_B
(control “rule init “i_b 1) (control “rule init "i_b 1)
(class "b 1) (class b 0)
- -

(build init_b_B
(class "b <> 1)
-—>
(modify 1 "b 1)

(build init_c_B
(class “c <> 1)

(build init_b_A
(class b <> 0)
-—>
(modify 1 "b 0)

))
(modify 1 ~i_b 0) (modify 1 ~i_b 0)
))
(p init_c_A (p init_c_B
(control “rule init “i_c 1) (control “rule init ~i_c 1)
(class “c 1) (class ~“c 0)
-—> -—>

(build init_c_A
(class ~“c <> 0)

21

—-—> -—=>
(modify 1 ~c 1) (modify 1 “c 0)
))
(modify 1 “i_c 0) (modify 1 “i_c 0)
))

; Self-stabilizing rule for the internal variables

(p self-stable-1 (p self-stable-2
(classl “b <> 1) (classl “b <> 1 “c <> 0)
(class2 “x1 <> 0) (class2 “x1 <> 0)
-—> -—>
(modify 2 ~x1 0) (modify 2 “x1 0)

))

(p self-stable-3 (p self-stable-4
(classl "b <> 1 “c <> 1) (classl “c <> 1)
(class2 "x1 <> 0) (class2 "x2 <> 1)
-—> -—>
(modify 2 ~“x1 0) (modify 2 "x2 1)

))

Due to space limitations, this small example is shown. This technique can be applied to

large systems as well.

5 Timing Analysis

In this section, the maximum response time of the self-stabilizing OPS5 programs is analyzed.
The response time of the program is investigated in two respects: the maximal number of
rule firings and the maximal number of basic comparisons made by the Rete network during
the program execution. The original analysis technique of the response time of a general OPS5
program is found in [19]. Because of the more restricted form of a self-stabilizing OPS5 program,

it is simpler to determine the upper bound on its execution time.

5.1 The Number of Rule Firings

As discussed earlier, a self-stabilizing OPS5 program is guaranteed to terminate in a bounded
number of recognize-act cycles. Hence, we are able to find its finite response time.
In general OPS5 programs, the number and WMESs can increase or decrease which can only

be known at run time. However, in a self-stabilizing OPS5 program, only the modify actions

22

appear on RHS. The modify action does not change the number of WMESs but it only changes

the attribute values.

Theorem 3 During the execution of self-stabilizing OPS5 program, each production or rule
can fire at most once. Hence, the upper bound of the number of rule firings is the number of

productions in the program.

Proof:

Since the internal variables appear only on the RHS and the input variables appear only on
the LHS, any rule firings will not cause any rules to be instantiated. Only modify actions
can appear on the RHS of any productions, and thus, they will not increase the number of
matching WMEs. In fact, the self-stabilizing OPS5 program has only one WME for each class

throughout its execution.

After the self-stabilizing technique is applied to the OPS5 program, the number of produc-
tions will increase. Suppose there are k regular rules in the program. For n internal variables,
there will be at most n* new self-stabilizing rules, and for m input variables, there will be 2m
new self-stabilizing rules. If no transient faults occur during the execution, the upper bound
of rule firings is the number of the regular rules plus m self-stabilizing rules of input variables
that will be fired during the initialization phase. When there is a transient fault in the internal
variables, it takes only one firing to correct one variable. For each transient-fault of input vari-
ables, the upper bound can be the additional number of all the regular rules plus the number

of faults which causes the self-stabilizing rules to fire.

5.2 The Match Time

Now we compute an upper bound on the time required during the match phase in terms of the
number of comparisons made by the Rete algorithm. The Rete match algorithm is explained
in Section 2.2. The comparisons are made for each attribute in the LHS of the productions.
One comparison is conducted by each constant test node when a token is passed to it. On the

other hand, And-node may conduct many comparisons, since many pairs of tokens may have

23

to be checked whenever a token is passed to it. However, in self-stabilizing OPS5 program, at
most one token is passed to each constant test node, and all the comparisons are made with
constant value. Hence, the And-node does not need to check for any cross-reference caused by

the variables (those enclosed in <>).

Based on the discussion above, we compute an upper bound on the number of comparisons
made in the match phase as follows. Assume p is an n-rule self-stabilizing OPS5 program. For
each rule r, let R, represent the Rete sub-network which corresponds to the r. Let T® denote
the maximal number of comparisons made when a token of the class « is passed to R,. To
compute the value of T'%*, we need to add up the number of comparisons respectively performed
by individual nodes when a token of « is passed to R,.. For each node v, if v is one of the
constant test nodes, the value of T'* is increased by 1. If v is a class-checking node and the
received token is not of the class required, then the token is discarded by v; otherwise, a copy

of this token is passed to each of v’s successor(s). If v is an and-node, no comparison is made.

None of the productions in the self-stabilizing OPS5 program produces the tokens. In other
words, there is no make or remove action on the RHS. Having obtained all the T%s, we can
compute, for each rule r € p, an upper bound on the number of comparisons made by the

network as a result of one firing of r. Let T} denote this upper bound,
T, =) T°
o

For the non-self-stabilizing program p with k rules, [classes, n internal variables and m
input variables, T, = 3(m + 1) because, in the rule r there can be as many as m input variables
in its LHS to be compared against constants. Each input variable on LHS can each belong to
its own class. It takes one constant test node to check the class and two constant test nodes
to check the input variable with a constant. Then, there is a negation condition as the last

condition element in each production.

In the self-stabilizing version ¢ of the program p, it takes exactly eight comparisons for each
self-stabilizing rule of the input variables at the initialization phase. Each self-stabilizing rule
of the internal variables contains input variables on LHS as many as the number of all the
regular rules. In the worst case, each of these input variables could be in its own distinct class.
Hence, for a set of k non-self-stabilizing rules that have the same input variable on their RHS,

its each self-stabilizing rule will make as many as 3(k + 1) comparisons. In the program ¢, each

24

regular rule may have the control variable as the first condition element. This will add 3 more

comparisons to make.

Let T}, denote an upper bound on the number of comparisons made by the Rete network
during the execution. Since the maximal number of firings by each rule is known to be 1, the

T, is equal to

T,=>Y T

rep

For the self-stabilizing program ¢ of the non-self-stabilizing program p described above,
there will be 3(m + 2) comparisons for k regular rules where m is the number of the input
variables, eight comparisons in each of 2m self-stabilizing rules of the input variables, and
3(k+ 1) comparisons for each self-stabilizing rule of the internal variable. And, it is shown that
the number of this type of rules can be as many as n¥, while the number of the comparisons
in the non-self-stabilizing program p is at most 3k(m + 1). Hence, the maximal comparisons

made in the self-stabilizing rule ¢ is

T, = 3k(m +2) + 16m + 3(k + 1)n*

In the worst case, the maximal number of comparisons made in a self-stabilizing program

is exponential.

6 Conclusion

We have focused on two systems concepts: bounded response-time and self-stabilization in the
context of rule-based programs. The state space graph is used to ensure the bounded response-
time. Previous work on self-stabilizing rule-based systems focused only on the transient faults
in the internal variables, and it was assumed that the transient faults do not occur in the
input variables. In reality, however, we cannot make such an assumption. In this paper,
self-stabilization of the input variables are also considered, and with this new technique, the

rule-based system can be more stable and reliable.

We have shown that in order for a terminating program to be self-stabilizing, the relation
it implements must be verifiable in one step of the program. In the face of transient failures,

no assumptions about the history of the program execution can be made. In real-time decision

25

systems, the ability to terminate in a self-stabilizing manner may be viewed as the ability to

make an informed correct decision in the face of transient failures.

This kind of program is most suitable for real-time monitoring and control decision systems
such as the NASA Space Shuttle application, the Cryogenic Hydrogen Pressure Malfunction
Procedure of the Space Shuttle Vehicle Pressure Control System shown in [22], and the NASA
Mars Rover executive [67, 68]. The Space Shuttle application is invoked periodically to monitor
and diagnose the condition of the Cryogenic Hydrogen Pressure System, and to make the
decision for correcting the diagnosed malfunctions. The Mars Rover executive is an embedded
autonomy software that interacts with the external environment by taking sensor readings and
computing control decisions based on sensor readings and stored state information to ensure

the safety and progress of the robotic rover.

The timing analysis gives upper bounds of the program execution in terms of the number of
the rule firings and the comparisons made by the Rete network. Because of the lack of capability
of representing the disjunction relations of the conditions in OPS5 program, the self-stabilizing
program may contain many more rules than the original non-self-stabilizing program. This will

increase the number of both the rule firings and the comparisons in the Rete network.

The conditions set for the form/style of the non-self-stabilizing rules remain restrictive,
and with the expressive rule-based language like OPS5, it is almost discouraging to have such
restrictions. For future work, we shall investigate the restricted use of other action commands

such as make or remove.

Furthermore, we think that a software tool which automatically converts the non-self-
stabilizing program to the equivalent self-stabilizing version should be investigated and im-
plemented. At this moment, the self-stabilizing rules need to be created by the programmer,
and it may be time-consuming task as the number of self-stabilizing rules could be very large.
With this tool, we will test our approach on a large number of OPS5 programs and report the

experimental performance results.

References

[1] Y. Afek and G. M. Brown, “Self-Stabilization of the Alternating-Bit Protocol,” Proc. of 8th Symp.
on Reliable Distributed Systems, Seattle, Washington, Oct. 1989.

26

[2]

[10]

S. Aggarwal and S. Kutten, “Time optimal self-stabilizing spanning tree algorithm,” FSTTCS93
Proceedings of the 13th Conference on Foundations of Software Technology and Theoretical Com-
puter Science, Springer LNCS:761, pages 400-410, 1993.

A. Aiken, J. Widom, and J. M. Hellerstein, “Behavior of Database Production Rules: Termination,
Confluence and Observable Determinism,” Proc. Intl. Conf. on Management of Data (SIGMOD),
San Diego, California, 1992.

A. Arora, S. Dolev, and M. G. Gouda, “Maintaining digital clocks in step,” Parallel Processing
Letters, 1:11-18, 1991.

A. Arora and M. G. Gouda, “Closure and convergence: a foundation of fault-tolerant computing,”
IEEE Transactions on Software Engineering, 19:1015-1027, 1993.

A. Arora and M. G. Gouda, “Distributed reset,” IEEE Transactions on Computers, 43:1026-1038,
1994.

A. Arora, S. Kulkarni, and M. Demirbas, “Resettable vector clocks,” Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 269-278, 2000.

A. Arora and M. Nesterenko, “Unifying stabilization and termination in message-passing systems,”
ICDCS01 The 21st IEEFE Intl. Conf. on Distributed Computing Systems, pages 99-106, 2001.

B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, “Time optimal self-
stabilizing synchronization,” STOC93 Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, pages 652-661, 1993.

B. Awerbuch and R. Ostrovsky, “Memory-efficient and self-stabilizing network reset,” PODC9/
Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing,
pages 254-263, 1994.

B. Awerbuch, B. Patt-Shamir, and G. Varghese, “Bounding the unbounded (distributed computing
protocols),” Proceedings IEEE INFOCOM 9/ The Conference on Computer Communications, pages
776-783, 1994.

F. Barachini, “Frontiers in Run-Time Prediction for the Production-System Paradigm,” AI Maga-
zine, Vol. 15, No. 3, pp. 47-61, Fall 1994.

E. Baralis, S. Ceri, and S. Paraboschi, “Compile-Time and Runtime Analysis of Active Behaviors,”
IEEE Trans. on Software Eng., Vol. 10, No. 3, pp. 353-370, May/June 1998.

G. M. Brown, M. G. Gouda, and C.-L. Wu, “Token Systems that Self-Stabilize,” IFEFE Trans. on
Computers, Vol. 38, No. 6, June 1989, pp. 845-852.

27

[15]

[21]

[22]

[23]

L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Systems in OPS5. Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1986.

J. E. Burns and J. Pachl, “Uniform Self-Stabilizing Rings,” ACM Trans. on Programming Languages
and Systems, Vol. 11, No. 2, April 1989, pp. 330-344.

S. Ceri and J. Widom, “Deriving Production Rules for Constraint Maintenance,” Proc. Intl. Conf.

on Very Large Data Bases (VLDB), Brisbane, Queensland, Australia, August 1990.

S. Chandrasekar and P. K. Srimani, “A self-stabilizing algorithm to synchronize digital clocks in a

distributed system,” Computers and FElectrical Engineering, 20(6):439-444, 1994.

J. Chen and A. M. K. Cheng, Predicting the Response Time of OPS5-style Production Systems.
Eleventh IEEE Conference on AT Applications, February 1995.

A. M. K. Cheng, “ Timing Analysis of Self-Stabilizing Programs,” Technical Report, Department

of Computer Sciences, University of Texas at Austin, 1988.

A. M. K. Cheng, Analysis and Synthesis of Real-Time Rule-Based Decision Systems. Ph.D. Disser-

tation, Department of Computer Sciences, University of Texas at Austin, 1990.

A. M. K. Cheng, Self-Stabilizing Real-Time Rule-Based Systems. Proceedings of 11th Symposium
on Reliable Distributed Systems, 1992, pp. 172-179.

A. M. K. Cheng and J.-R. Chen, “Response Time Analysis of OPS5 Production Systems,” IFEFE
Transactions on Knowledge and Data Engineering, Vol. 12, No. 3, pp. 391-409, May/June 2000.

A. M. K. Cheng and H. Tsai, A Graph-Based Approach for Timing Analysis and Refinement of
OPS5 Knowledge-Based Systems, IEEE Transactions on Knowledge and Data Engineering, Vol.
16, No. 2, pages 271-288, February 2004.

J.-R. Chen and A. M. K. Cheng, “Response Time Analysis of EQL Real-Time Rule-Based Systems,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 1, pp. 26-43, Feb. 1995.

A. M. K. Cheng, J. C. Browne, A. K. Mok, and R.-H. Wang, “Analysis of Real-Time Rule-Based
Systems With Behavioral Constraint Assertions Specified in Estella,” IEEE Transactions on Soft-
ware Engineering, Vol 19, No. 9, pp. 863-885, Sept. 1993.

A. M. K. Cheng, and S. Fujii, “Bounded-response-time self-stabilizing OPS5 production systems,”
Proceedings. 14th International, Proc. Parallel and Distributed Processing Symposium, (IPDPS
2000), pages 399-404, 1-5 May 2000.

28

[28]

[32]

[33]

[34]

A. M. K. Cheng and C.-K. Wang, “Fast Static Analysis of Real-Time Rule-Based Systems to Verify
Their Fixed Point Convergence,” Proc. 5th IEEE Conf. on Computer Assurance, U.S. National
Institute of Standards and Technology, Gaithersburg, Maryland, pp. 46-56, June 1990.

G. Ciardo and C. Lindemann, “Comments on ‘Analysis of self-stabilizing clock synchronization by

means of stochastic Petri nets’,” 1995.

A. Ciuffoletti, “Using simple diffusion to synchronize clocks in a distributed system,” Proceedings

of IEEFE 14th International Conference on Distributed Computing Systems, pages 484-491, 1994.

A. Ciuffoletti, “Self-stabilizing clock synchronization in a hierarchical network,” Proceedings of the
Fourth Workshop on Self-Stabilizing Systems (published in association with ICDCS99 The 19th
IEEEFE International Conference on Distributed Computing Systems), pages 86-93, 1999.

T. Cooper and N. Wogrin, Rule-based Programming with OPS5. Morgan Kaufmann Publishers,
Inc., San Mateo, California, 1988.

E. W. Dijkstra, EWD391 Self-stabilization in spite of distributed control. Reprinted in Selected
Writings on Computing: A personal Perspective, Springer-Verlag, Berlin, 1982, pp. 41-46.

E. W. Dijkstra, Self stabilizing systems in spite of distributed control. Communications of the ACM,
17:643-644, 1974.

S. Dolev, “Optimal time self-stabilization in uniform dynamic systems,” 6th IASTED International

Conference on Parallel and Distributed Computing and Systems, pages 25-28, 1994.

S. Dolev, A. Israeli, and S. Moran, “Self-stabilization of dynamic systems assuming only read/write

atomicity,” Distributed Computing, 7:3-16, 1993.

S. Dolev and J. L. Welch, “Wait-free clock synchronization,” Proceedings of the Twelfth Annual
ACM Symposium on Principles of Distributed Computing, pages 97-107, 1993.

S. Dolev and J. L. Welch, “Self-stabilizing clock synchronization in the presence of byzantine faults,”

Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 9.1-9.12, 1995.

S. Dolev, “Possible and impossible self-stabilizing digital clock synchronization in general graphs,”
Journal of Real-Time Systems, 12(1):95-107, 1997.

S. Dolev and T. Herman, “Superstabilizing protocols for dynamic distributed systems,” Chicago

Journal of Theoretical Computer Science, 3(4), 1997.

M. Flatebo and A. K. Datta, “Two-state self-stabilizing algorithms for token rings,” IEEE Trans-
actions on Software Engineering, 20:500-504, 1994.

29

[42]

[43]

[44]

[45]

M. Flatebo, A. K. Datta, and A. A. Schoone, “Self-stabilizing multi-token rings,” Distributed
Computing, 8:133-142, 1994.

M. Flatebo, A. K. Datta, and B. Bourgon, “Self-stabilizing load balancing algorithms,” IEEE 13th

Annual International Pheoniz Conference on Computers and Communications, 1994.

C. L. Forgy, OPS5 Users Manual. Technical Report CMU-CS-81-135, Department of Computer

Science, Carnegie-Mellon University, 1981.

C. L. Forgy, “Rete: A fast algorithm for many pattern/many object pattern match problem,”
Artif. Intell., 19, 1982.

C L. Forgy, “The OPS Languages: An Historical Overview,” PC AI, Sep. 1995.

S. Ghosh, “Binary Self-Stabilization in Distributed Systems,” Information Processing Letters, Vol.
40, Nov. 1991, pp. 153-159.

S. Ghosh, “Agents, distributed algorithms, and stabilization,” Computing and Combinatorics (CO-
COON’2000), Springer LNCS:1858, pages 242-251, 2000.

J. Giarratano and G. Riley, Expert systems: Principles and Programming. PWS Pub, 1994.

M. G. Gouda and N Multari, “Stabilizing communication protocols,” IEEE Transactions on Com-

puters, 40:448-458, 1991.
A. Gupta, “Parallelism in Production Systems,” PhD thesis, Carnegie-Mellon University, 1985.

J. J. Helly, Distributed Expert System for Space Shuttle Flight Control. Ph.D. Dissertation, Depart-
ment of Computer Science, UCLA, 1984.

T. Herman, “A Comprehensive Bibliography on Self-Stabilization,” Working Paper in the Chicago

Journal of Theoretical Computer Science, 2002.

T. Ishida, “Parallel rule firing in production systems,” IEEE Transactions on Knowledge and Data
Engineering, 3(1), March 1991.

J. A. Kang and A. M. K. Cheng, “Reducing Matching Time for OPS5 Production Systems,”
COMPSAC, Chicago, IL, pp. 429-434, 2001.

M. H. Karaata and K. A. Saleh, “A distributed self-stabilizing algorithm for finding maximum
matching,” Computer Systems Science and Eng. 15(3):175-180, 2000.

M. H. Karaata and F. Al-Anzi, “A dynamic self-stabilizing algorithm for finding strongly connected
components,” PODCY9 Proceedings of the Eighteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 276, 1999.

30

[58]

[64]

S. Katz and K. Perry, “Self-Stabilizing Extensions for Message-Passing Systems,” Proc. 9th Annual
Symp. on Principles of Distributed Computing, 1990, pp. 91-101.

P.-Y. Lee and A. M. K. Cheng, “HAL: A Faster Match Algorithm,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 14, No. 5, Sept./Oct. 2002.

M. Lin, “Timing Analysis of PL Programs,” Proc. 24th IFAC/IFIP Workshop on Real-Time Prog.
& 3rd Intl. Workshop on Active & Real-Time Database Systems, Saarland, Germany, May-June
1999.

C. A. Marsh, The ISA Expert System: A Prototype System for Failure Diagnosis on the Space
Station. MITRE Report, The MITRE Corporation, Houston, Texas, 1988.

D. P. Miranker, TREAT: A new and efficient algorithm for AI production systems. PhD thesis,
Columbia University, 1987.

F. Petit and V. Villain, “A space-efficient and self-stabilizing depth-first token circulation pro-
tocol for asynchronous message-passing systems,” Furo-Par’97 Parallel Processing, Proceedings,
LNCS:1300, pages 476-479, 1997.

G. W. Rosenwald and C.-C. Liu, “Rule-Based System Validation through Automatic Identification
of Equivalence Classes,” IEEE Trans. on Knowledge & Data Eng., vol. 9, No. 1, pp. 24-31, Jan./Feb.
1997.

J. G. Schmolze, “Detecting Redundant Production Rules,” Proc. 14th AAAI Conf. 1997.

H.-Y. Tsai and A. M. K. Cheng, “Termination Analysis of OPS5 Expert Systems,” Proc. 12th
National Conf. on Artificial Intelligence (AAAI), Seattle, WA, pp. 193-198, Aug. 1994.

R. Washington, “Autonomous Rovers for Mars Exploration,” Proc. IEEE Aerospace Conf., Aspen,
CO, 1999.

R. Washington, “On-Board Real-Time State and Fault Identification for Rovers,” Proc. IEEE Intl.
Conf. on Robotics and Automation, 2000.

B. Zupan and A. M. K. Cheng, “Optimization of Rule-Based Systems Using State Space Graphs,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 2, pp. 238-254, March/April
1998.

31

