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Abstract  
 

Analysis of brain responses on a single-trial basis allows the study of the dynamical characteristics of 
brain activation. However, single-trial responses are buried into the more prominent background activity, 
and thus advanced procedures are needed to obtain only the activity of the cortical generators that are 
activated by the experimental task under study. In this paper, we use simulated data and actual recordings 
from normal subjects to compare the effectiveness of two methods at removing extraneous activity from 
single-trial responses, namely, wavelet denoising and our recently proposed procedure, which is based on 
independent component analysis. Our results show that the new technique can separate individual 
components from the entire response waveform, and it can also uncover the dynamic evolution of brain 
responses that cannot be revealed by standard averaging techniques. 
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Analysis of brain responses on a single-trial basis allows the study of the dynamical characteristics of brain activation. 
However, single-trial responses are buried into the more prominent background activity, and thus advanced procedures are 
needed to obtain only the activity of the cortical generators that are activated by the experimental task under study. In this 
paper, we use simulated data and actual recordings from normal subjects to compare the effectiveness of two methods at 
removing extraneous activity from single-trial responses, namely, wavelet denoising and our recently proposed procedure, 
which is based on independent component analysis. Our results show that the new technique can separate individual 
components from the entire response waveform, and it can also uncover the dynamic evolution of brain responses that cannot 
be revealed by standard averaging techniques. 
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I. INTRODUCTION 
 

The spontaneous activity of the brain recorded at the scalp as the electroencephalogram (EEG) is of considerably 
higher amplitude than the activity resulting from external sensory stimulation. The latter, known as evoked 
potentials (EPs), is typically obtained by averaging a large number of single-trial responses since individual 
components are typically not visible in single trials. However, single-trial analysis would afford the study of 
changes in response amplitude, latency, and phase characteristics from trial to trial, and thus, would be better suited 
than ensemble averaging to study the dynamics of brain activation.  

In addition to neural activity, scalp recordings often contain activity from blinks, eye movements, muscle and 
cardiac activity, interference from power lines, as well as background activity unrelated to the experimental task 
under study. Ideally, one would like to remove all these “noise” processes and record only the activity of the 
cortical generators activated by the experimental task, which is the useful “signal”. 

Early attempts at estimating EPs used Fourier-based filtering techniques [1;2], which, however, were not well 
suited to the nonstationary nature of the signals.  Thus time-adaptive filters were introduced [3; 4] which allowed 
better adjustment to EP characteristics. Wavelets, which follow the same concept but, in addition, they employ 
signal-adapted basis functions, have been extensively used to analyze EEG, average EPs [5; 6; 7; 8; 9; 10; 11; 12; 
13] and, recently, single-trial EPs [14]. Another technique that was based on a combination of Woody filtering [15] 
for latency correction in the time domain and wavelet denoising has been proposed to enhance single-trial EPs [16].  
This method, however, was shown to work mostly with high-amplitude EPs, while its performance deteriorated for 
low signal-to-noise ratios (SNRs)  

Most of the aforementioned techniques attempt to improve the entire waveform of an average EP. We have 
recently proposed an alternative methodology [17] for single-trial EP analysis. The technique focuses only on a 
particular EP component at a time that is made visible on each single trial. Our method is based on independent 
component analysis (ICA) and the idea that activity resulting from an experimental stimulus is independent from 
neurophysiological artifacts and background brain activity [18; 19; 20]. The advantage of the method is twofold: it 
can extract individual components out of the entire average EP waveform, and it can also also provide clear 
estimates of these components in each single trial. Thus, the method allows studying the dynamic evolution of the 
underlying cortical generators that give rise to specific EP components. The method has recently been applied to 
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obtain EEG and MEG phase maps [21], to classify normal and schizophrenia subjects [22], and improve source 
localization [23]. 

In this paper, we compare our ICA-based method for estimating single trial EPs with other techniques, namely, 
wavelet denoising and plain averaging. For the comparison, we chose the auditory N100 component since, over the 
past several decades, a plethora of studies, including ours [20; 24; 25], have focused on this EP component recorded 
from normal subjects [25; 26] and clinical populations [27; 28; 29; 30; 31; 32; 33]. 
 

 
II. METHODS 

 
A. Iterative ICA 
 

Independent component analysis [34] is a method for solving the blind source separation problem [35] which 
tries to recover N independent source signals, s = {s1,…,sN}, from N observations, x = {x1,…,xN}, that represent 
linear mixtures of the independent source signals. The key assumption used to separate sources from mixtures is 
that the sources are statistically independent, while the mixtures are not. Mathematically, the problem is described 
as x = As, where A is an unknown mixing matrix, and the task is to recover a version, u, of the original sources, 
similar to s, by estimating a matrix, W, which inverts the mixing process, i.e., u = Wx.  The estimates u are called 
independent components (ICs). The extended infomax algorithm is currently the most efficient technique to solve 
this problem and relies on a neural network approach and information theory [36; 37; 38; 39]. 

Our technique, termed iterative ICA (iICA), is an iterative implementation of this algorithm and is applied to a set 
of recordings consisting of L single trials obtained from N recording channels. Before processing, all single trials 
are bandpass filtered between 1 and 20 Hz. The procedure is separately applied to all single trials obtained from a 
particular channel in the following steps: 
 

1. Compute an average EP from all trials. 
2. ICA-transform all single trials, grouped in blocks of 10. 
3. Compute the absolute correlation values between the current average EP and ICs in all blocks, within a 

predefined window Wr. 
4. Zero those ICs with correlation less than a predefined threshold rth. 
5. Inverse-transform the updated ICs back to the time domain, separately in each block. 
6. Shuffle the updated single trials around the entire set. 
7. Repeat steps 1 to 6 until a convergence criterion is met (see Eq. (5)). 

 
The same procedure is applied to the rest of the channels until all of them have been processed. The parameter 
values used in the study were Wr = 50–250 ms poststimulus, which was consistent with occurrence of the N100-
P200 complex, and rth = 0.15.  

To quantify the improvement in the EP estimate after processing we used two measures, namely the noise 
reduction factor (NRF) and the mean cross-correlation coefficient (rmean) [16]. The NRF is defined as the ratio 
between the average RMSE across all trials before and after processing of the data, as shown in Eq. (1).  
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where i refers to time samples, j refers to trials, and EP refers to simulated EP for synthetic data and current 
template for actual data.   A value of NRF greater than one indicates improvement after processing; a value of one 
indicates no improvement; and a value less than one indicates deterioration.  

To obtain rmean, the normalized Pearson cross-correlation coefficient is computed between each single trial 
and the average EP and then the coefficient values are averaged across all single trials, as shown in Eq. (3). The 
NRF is based on estimating the root-mean-squared-error (RMSE) between a single trial and the average EP. 
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rmean : mean cross-correlation coefficient 
rXEP : normalized Pearson cross-correlation coefficient between X and EP 
σ: standard deviation 
 

The algorithm converged when the absolute difference between successive iterations resulted in NRF value 
changes of less than 10-3. 
 
 
B. Wavelet transform (WT) 

 
The WT gives a time-frequency representation of a signal and has an optimal resolution both in the time and the 

frequency domains. Moreover, WT does not require stationarity of the analyzed signals. The idea behind wavelet 
analysis is simple: contracted versions of the wavelet function match the high frequency components of the original 
signal, while dilated versions match low frequency components. Thus, by correlating the original signal with 
wavelets of different sizes we can obtain its details at different scales. These correlations with the different wavelet 
functions can be arranged in a hierarchical scheme, called multiresolution decomposition, which separates the 
signal into ‘details’ at different scales, while the remaining part is a coarser representation of the signal, called an 
‘approximation’.  

In this study, quadratic bi-orthogonal B-Splines [40] were chosen as the basic wavelet, due to their similarity with 
the component EP, which would give good localization in the wavelet domain [12; 14; 40; 41; 42]. Furthermore, we 
used a 7-level decomposition, thus having 7 scales of details (d1–d7) and a final approximation (a7). The lower 
levels give the details corresponding to high frequency components and the higher levels the ones corresponding to 
low frequencies.  
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For WT-based denoising, the basic assumption is that the WT separates the signal and the noise-related 

components into different scales. For each trial, a wavelet transform W is computed. Let denote the mean of the 
wavelet coefficients calculated over all L single trials, and σ

µ
2 the corresponding variance. Then, we can expect the 

ratio µ 2/  to be higher in signal than in noise related coefficients if EPs are similar across trials. The 
thresholding scheme used in this paper [16] is given as  
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Thus, the inverse WT of  would lead to denoised EPs in the time domain.  *

jw

=*
jw

⎪⎩

⎪⎧
⎨

 
C. Data 

 
In our analysis, we used both synthetic data and actual data obtained at two different labs. 

 
Synthetic data 

 
A simulated EP (true signal) of length 700 ms was generated by adding two half-wave sinusoids with frequency 

8.25 Hz and 6.25 Hz, respectively, and peak-to-peak amplitude of 12 µV, simulating a biphasic N100-P200 
complex. To obtain synthetic single trial responses, the simulated EP was added to actual background EEG 
segments, each of length 700 ms, in the time range consistent with the occurrence of N100-P200 complex at 
different delays (d) which could vary between 0 and 25 ms. Several synthetic sets were generated by changing the 
signal-to-noise ratio (SNR) which was allowed to vary between 0.2 and 1, and was defined as [25], 
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Fig. 1.  True EP. Artificial signal simulating the N100-P200 complex of an evoked response. 
 



Real Data 
 
To test the generality of the methods, the data analyzed in this study were produced at two different labs, namely 

the Biomedical Imaging Lab at the University of Houston (UH) and the Department of Psychiatry at Yale 
University School of Medicine (Yale). All subjects were volunteers and gave written informed consent to the 
studies.  
 
Dataset 1 

Recordings were made at UH in a quiet but not electrically shielded room, using a 256-channel, active electrode, 
dense-array EEG recording system (model ActiveTwo, BioSemi Biomedical Instrumentation, The Netherlands). 
Stimuli consisted of tones of 1 kHz delivered binaurally at a rate of 1.1 stimuli per second. A total of 200 trials 
were collected in each recording session, but subsequent removal of artifacts, e.g., eye blinks, eye movement, 
muscle activity, with absolute amplitude greater than 75 µV, resulted in each set having between 150 and 200 trials.  

 
Dataset 2 

Recordings were made at Yale in a quiet but not electrically shielded room, using nine channels of a Neuroscan 
EEG recording system. Stimuli consisted tones of 1 kHz tones delivered binaurally at the rate of one stimulus every 
8 s.  Initially, a total of 100 trials were collected in each recording session but subsequent removal of artifacts, e.g., 
eye blinks, eye movement, muscle activity, with absolute amplitude greater than 75 µV, resulted in each set having 
between 45 and 100 trials.  

Data from both sets were digitized at sampling rate of 1 kHz per channel and stored on the hard disk for off-line 
analysis. Data were segmented into 700 ms epochs, each containing 200 ms prestimulus and 500 ms poststimulus 
activity before further processing.  Data from only the Cz channel were used for the analysis.  

The performance of WT denoising and iICA procedures was tested with synthetic data under different d and SNR 
conditions. Statistical analysis was done using t tests for the sample mean. 

 
 

III. RESULTS 
 
A. Synthetic data 
 

We generated 200 synthetic single trials using SNR = 0.2 and d = 0-25 as explained earlier and the WT-based and 
ICA-based methods were applied to the data. Figure 2 depicts the results of denoising action on single trials 
(Synthetic: left, wavelet: middle and iterative ICA: right.). Figure 3 shows the true EP signal and the estimates 
obtained after plain averaging (EPave), WT-based denoising (EPwave), and ICA-based denoising (EPICA). It took 
around thirty-five iterations for the iICA algorithm to converge. Both procedures were fast. 

    
Fig. 2.  Denoising on single trials. Original single-trial responses (left) and the resulting denoised ones after WT (middle) and 
iICA processing. 
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Fig. 3.  Denoising on ensemble average responses. True EP signal (solid) and estimates obtained using plain averaging EPave 
(dashed), WT-based denoising EPWT (dotted), and ICA-based denoising EPICA (dot-dashed). SNR = 0.2 and d = 0-25 ms. 
 
 
Effect of SNR at different delays  
 

The ability of the methods to estimate an EP was studied using different delays, which varied from 5 to 25 ms in 
increments of 5 ms, and SNR, which varied between 1.0 and 0.2 in decrements of 0.2.  For each combination, the 
algorithm was executed twenty times and at the end of each run the NRF and rmean was computed. 

Figure 4 shows the NRF values obtained for the WT and iICA methods. The values plotted are the means and the 
standard errors across twenty runs. Both methods gave NRF values significantly greater than one (p < 0.01) 
indicating that the RMSE decreased after processing and that the resulting EP improved. Although the WT and 
iICA procedure had similar performance, the ICA procedure gave significantly greater NRF values (p < 0.01) for 
each combination of SNR and d as revealed by separate t-tests.   
 

 
Fig. 4. Effect of SNR at different delays in terms of NRF. NRF at different d and SNR for WT (left) and iICA (right) 
denoising. 
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Figure 5 depicts the performance of WT and iICA in terms of rmean defined earlier. The left panel shows the rmean 
values for the synthetic trials before the processing. Each trial contains the true EP but due to noise contamination, 



the correlation between the true EP and the trials is low (0.35 to 0.65). However, after processing, the rmean 
increases as shown in the middle (Wavelet: 0.5 to 0.8) and the right panels (Iterative ICA: 0.73 to 0.98). Although 
the WT denoising follows a similar performance trend as the iICA procedure, the later gave significantly greater 
rmean values (p < 0.01) for all SNR and d conditions.  

 

 
 

 
Fig. 5. Effect of SNR at different delays in terms of rmean. rmean  at different d and SNR for WT (left) and iICA (right) denoising. 
 
B. Results with actual data 

Figures 6 shows example of the performance of the WT and iICA procedures on actual data (two subjects from 
dataset 2). The top panels show the single trials and the corresponding averages are shown in the bottom panels. 
Figure 6a shows a typical subject whereas Figure 6b shows a noisy subject.                          
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(a) 



 
 

 

(b) 

 
 
Fig. 6.  Denoising on dataset 2. Original single-trial responses (left) and the resulting denoised ones after WT and iICA (right) 
processing. The corresponding averages are shown in the bottom panels. 
 
Figures 7 shows example of the performance of the WT and iICA procedures on actual data (two subjects from 

dataset 1). The top panels show the single trials and the corresponding averages are shown in the bottom panels. 
Figure 7a shows a typical subject whereas Figure 7b shows a noisy subject. 
 
 

 

(a) 
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(b) 

 
 
 
Fig. 7.  Denoising on dataset 1. Original single-trial responses (left) and the resulting denoised ones after WT and iICA (right) 
processing. The corresponding averages are shown in the bottom panels. 
 
 

IV. DISCUSSION 
 
The usual way to visualize the EPs is by means of ensemble averaging due to SNR issues. However, when 

averaging, information about the single trial variability is lost.  
In this paper, iICA method was compared to WT-based denoising and classical averaging using simulated and 

actual auditory EPs. The focus was to study the applicability of the methods to extract single trial N100-P200 
responses.  

With simulated data, the iICA approach provided significantly better estimates of the true EP compared to plain 
averaging (p < 0.01) and WT-based denoising (p < 0.01). Even in the worst experimental conditions (SNR = 0.2 
and d = 0-25 ms), the latency of the N100 peak estimated using iICA was closer to that of the true EP. From a 
single trial perspective, the iICA gave statistically greater NRF and rmean values under all experimental conditions (p 
< 0.01). In general, differences between the plain averaged EPs and iICA EPs became smaller as the SNR was 
increasing. This suggests that iICA does not introduce any major artifact in the reconstruction of the EPs. The 
technique performs well even at very low SNRs (=0.2).  

When actual data were used, the iICA procedure showed responses in single trials, which typically are difficult to 
see due to low SNR. In the corresponding average EPs, the N100-P200 peaks become sharper and the data outside 
the region of interest become flatter giving an enhanced view of the N100 components. Though we see similar 
patterns in WT denoised single trials, the peaks are scattered and widely distributed resulting in less clear N100 
component in the average EP.  

The above results suggest that the iICA technique gives access to dynamic evolution of N100-P200 complex that 
cannot be revealed by standard averaging techniques. Since the method analyzes one channel at a time, it can be 
applied to large multi-channel datasets.  

We found that the WT denoising gave an apparently smoother overall EP, while iICA could separate individual 
components from the entire EP waveform, and also provide clear estimates of these components in each single trial.  
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