
 1

SUPERVISED CLUSTERING – ALGORITHMS AND BENEFITS

Christoph F. Eick, Nidal Zeidat, and Zhenghong Zhao

Department of Computer Science

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

Technical Report Number UH-CS-05-10
April 25, 2005

Keywords: Supervised Clustering, Clustering Classified Examples.
Abstract

This paper centers on a novel data mining technique we term supervised clustering. Unlike traditional
clustering, supervised clustering assumes that the examples are classified. The goal of supervised
clustering is to identify class-uniform clusters that have high probability densities. Four representative–
based algorithms for supervised clustering are introduced: a greedy algorithm with random restart, named
SRIDHCR, that seeks for solutions by inserting and removing single objects from the current set of
cluster representatives, SPAM (a variation of the popular clustering algorithm PAM), an evolutionary
computing algorithm named SCEC, and a fast medoid-based top-down splitting algorithm, named TDS.
The four algorithms were evaluated using a benchmark consisting of four UCI machine learning data sets.
Surprisingly, SPAM performed quite poorly in the experiments. TDS, on the other hand, considering its
high speed, performed quite well on two datasets and quite poorly on the other two datasets. The
experimental results suggest that SRIDHCR is a good choice if resources are limited or data sets are very
large, whereas, SCEC, although runtime intensive, finds the best clusters in almost all experiments
conducted. In general, it seems that “greedy” algorithms, such as SPAM, SRIDHCR, and TDS, do not
perform particularly well for supervised clustering and seem to terminate prematurely too often. We also
present experimental results that illustrate the benefits of supervised clustering for creating summaries of
datasets and for enhancing existing classification algorithms.

 2

Supervised Clustering – Algorithms and Benefits*

Christoph F. Eick, Nidal Zeidat, and Zhenghong Zhao
Department of Computer Science, University of Houston

Houston, Texas 77204-3010
{ceick, nzeidat, zhenzhao}@cs.uh.edu

Abstract. This paper centers on a novel data mining technique we term supervised
clustering. Unlike traditional clustering, supervised clustering assumes that the examples
are classified. The goal of supervised clustering is to identify class-uniform clusters that
have high probability densities. Four representative–based algorithms for supervised
clustering are introduced: a greedy algorithm with random restart, named SRIDHCR, that
seeks for solutions by inserting and removing single objects from the current set of cluster
representatives, SPAM (a variation of the popular clustering algorithm PAM), an
evolutionary computing algorithm named SCEC, and a fast medoid-based top-down
splitting algorithm, named TDS. The four algorithms were evaluated using a benchmark
consisting of four UCI machine learning data sets. Surprisingly, SPAM performed quite
poorly in the experiments. TDS, on the other hand, considering its high speed, performed
quite well on two datasets and quite poorly on the other two datasets. The experimental
results suggest that SRIDHCR is a good choice if resources are limited or data sets are very
large, whereas, SCEC, although runtime intensive, finds the best clusters in almost all
experiments conducted. In general, it seems that “greedy” algorithms, such as SPAM,
SRIDHCR, and TDS, do not perform particularly well for supervised clustering and seem
to terminate prematurely too often. We also present experimental results that illustrate the
benefits of supervised clustering for creating summaries of datasets and for enhancing
existing classification algorithms.

Keywords: supervised clustering, clustering classified examples, clustering for
classification, representative-based clustering algorithms.

1. Introduction
This paper centers on a novel data mining technique we term supervised clustering. Clustering is typically
applied in an unsupervised learning framework using particular error functions, e.g. an error function that
minimizes the distances inside a cluster keeping clusters tight. Supervised clustering, on the other hand,
deviates from traditional clustering in that it is applied on classified examples with the objective of
identifying clusters that have high probability density with respect to a single class. Moreover, in
supervised clustering, we also like to keep the number of clusters small, and objects are assigned to
clusters using a notion of closeness with respect to a given distance function.

Fig. 1 illustrates the differences between traditional and supervised clustering. Let us assume that the
black examples and the white examples in the figure represent subspecies of Iris plants named Setosa and
Virginica, respectively. A traditional clustering algorithm would, very likely, identify the four clusters
depicted in Figure 1.a. The reason is that traditional clustering is ignorant with respect to class
membership of examples. A supervised clustering algorithm that maximizes class purity, on the other
hand, would split cluster A into two clusters E and F. Another characteristic of supervised clustering is
that it tries to keep the number of clusters low. Consequently, clusters B and C would be merged into one

* A short version of this report was published in the Proceedings of the 16th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI04) , Boca Raton, Florida, November 2004, pp. 774-776.

 3

cluster without compromising class purity while reducing the number of clusters. A supervised clustering
algorithm would identify cluster G as the union of clusters B and C as illustrated by Figure 1.b.

Figure 1: Differences between Traditional Clustering and Supervised Clustering.

The remainder of this paper will center on the discussion of algorithms for supervised clustering and on
the empirical evaluation of the performance of these algorithms as well as the benefits of supervised
clustering. Section 2 discusses related work. Section 3 characterizes the class of the algorithms
investigated and Section 4 presents the algorithms themselves. Section 5 provides an experimental
evaluation of the algorithms. Section 6 summarizes the results of experiments that evaluate the benefits of
supervised clustering. Section 7 summarizes the results of the paper.

2. Related Work
There has been some work that has some similarity with our research under the heading of semi-
supervised clustering. The idea of semi-supervised clustering is to enhance a clustering algorithm by
using side information in the clustering process that usually consists of a "small set" of classified
examples; the objective of the clustering process, then, is to optimize class purity (examples with different
class labels should belong to different clusters) in addition to the traditional objectives of a clustering
algorithm. The existing research on semi-supervised clustering can be subdivided into 2 major groups:
similarity-based methods and search-based methods (for more details see [BBM03]). Similarity-based
methods create a modified distance function that incorporates the knowledge with respect to the classified
examples and use a traditional clustering algorithm to cluster the data. Search-based methods, on the other
hand, modify the clustering algorithm itself but do not change the distance function.

[XNJ03] (and similarly [BHSW03]) take the classified training examples and transform those into
constraints (points that are known to belong to different classes need to have a distance larger than a given
bound) and derive a modified distance function that minimizes the distance between points in the data set
that are known to be similar with respect to these constraints using classical numerical methods. The K-
means clustering algorithm in conjunction with the modified distance function is then used to compute
clusters. Klein [KKM02] proposes a shortest path algorithm to modify a Euclidian distance function based
on prior knowledge.

A

C
B

D Attribute 2

Attribute 1

E

G

H

F

Attribute 1

Attribute 2

a. Traditional Clustering b. Supervised Clustering

 4

Demiriz [DBE99] proposes an evolutionary clustering algorithm in which solutions consist of k centroids
and the objective of the search process is to obtain clusters that minimize (the sum of) cluster dispersion
and cluster impurity. Cohn [CCM00] modifies the popular EM algorithm so that it is capable of
incorporating similarity and dissimilarity constraints. Finally, Basu et. al. [BBM02] centers on modifying
the k-means clustering algorithm to cope with prior knowledge.

However, there are two approaches that can be viewed as supervised clustering approaches. Sinkkonen et
al., [SKN02], propose a very general approach called discriminative clustering that minimizes distortion
within clusters. Distortion, in their context, represents the loss of mutual information between the
auxiliary data (e.g., classes) and the clusters caused by representing each cluster by a prototype. The
technique seeks to produce clusters that are internally as homogeneous as possible in conditional
distributions p(c|x) of the auxiliary variable, i.e., belong to a single class. Similarly, Tishby et. al.
introduced the information bottleneck method [TPB99]. Based on that method, they proposed an
agglomerative clustering algorithm, [ST99], that minimizes information loss with respect to P(C|A) with
C being a class and A being an attribute.

3. Representative-based Algorithms for Supervised Clustering
As mentioned earlier, the fitness functions used for supervised clustering are significantly different from
the fitness functions used by traditional clustering algorithms. Supervised clustering evaluates a
clustering based on the following two criteria:
• Class impurity, Impurity(X). Measured by the percentage of minority examples in the different

clusters of a clustering X. A minority example is an example that belongs to a class different from the
most frequent class in its cluster.

• Number of clusters, k. In general, we like to keep the number of clusters low.

A summary of the notations used throughout the paper is given in Table 1.

Notation Description
O={o1, …, on} Objects in a data set
N Number of objects in the data set
d(oi,oj) Distance between objects oi & oj
c The number of classes in the dataset
Ci Cluster associated with the i-th representative
X={C1, …, Ck} A clustering solution consisting of clusters C1 to Ck
k=|X| The number of clusters (or representatives) in a solution X
q(X) A fitness function that evaluates a clustering X, see formula (1)

Table 1: Notations Used in the Paper.

3.1 A Fitness Function for Supervised Clustering

In particular, we used the following fitness function in our experimental work (lower values for q(X)
indicate a ‘better’ solution).

q(X) = Impurity(X) + β∗Penalty(k) (1)










=

<

≥
−

=

ck0

ck
n

ck

 Penalty(k) and ,
n

ExamplesMinority of #)Impurity(X where

 5

with n being the total number of examples and c being the number of classes in a data set. The parameter
β (0< β ≤2.0) determines the penalty that is associated with the numbers of clusters, k, in a clustering:
higher values for β imply larger penalties for a higher number of clusters.
Two special cases of the above fitness function should be mentioned; the first case is a clustering X1 that
uses only c clusters; the second case is a clustering X2 uses n clusters and assigns a single object to each
cluster, therefore, each cluster is pure. We obtain: q(X1)=Impurity(X1) and q(X2)≈β.

3.2 Representative-Based Supervised Clustering Algorithms

As there are many possible algorithms for clustering, there are, also, a lot of algorithms for supervised
clustering. Our work centers on the development of representative-based clustering algorithms.
Representative-based clustering aims at finding a set of k representatives that best characterize a dataset.
Clusters are created by assigning each object to the closest representative. Representative-based
supervised clustering algorithms seek to accomplish the following goal: Find a subset OR of O such that
the clustering X obtained by using the objects in OR as representatives minimizes q(X).

One might ask why our work centers on developing representative-based supervised clustering
algorithms. The reason is that representatives (such as medoids) are quite useful for data summarization.
Moreover, clustering algorithms that restrict representatives to objects belonging to the dataset, such as
the k-medoid algorithm [KR90], explore a smaller solution space if compared with centroid–based
clustering algorithms, such as the k-means algorithm†. Furthermore, representative based algorithms are
also useful for dataset compression (more on this in section 6.2). Finally, when using representative-based
clustering algorithms, only an inter-object distance matrix is needed and no “new” distances have to be
computed, as it is the case with k-means.

4. Clustering Algorithms Investigated
As part of our research, we have designed and evaluated several representative-based supervised
clustering algorithms as well as the traditional clustering algorithm PAM. This section describes these
algorithms.

4.1 Partitioning Around Medoids (PAM)
This traditional clustering algorithm, sometimes also call k-medoid [KR90], seeks to find k representative
objects among the objects in the data set minimizing the fitness function given in formula (2):

Tightness(X)= ∑
objects

))object(medoid,object(distance
|objects|

1 (2)

where medoid(object) is the medoid (representative) of the cluster that object belongs to. The number of
clusters, k, is an input parameter for the algorithm.
PAM is subdivided into two algorithms. The first algorithm, called the BUILD algorithm, starts with a set
of representatives that initially contains the medoid of the complete data set, and greedily inserts new
representatives into this set while minimizing the above fitness function. The second algorithm of PAM,
called SWAP, tries to improve the clustering obtained by BUILD by exploring all possible replacements
of medoids by non-medoids picking the replacement that enhances the fitness function the most. If no
such fitness improving replacement can be found, the algorithm terminates.

† There are 2n possible centroids for a dataset containing n objects.

 6

4.2 Supervised Partitioning Around Medoids (SPAM)
This algorithm is a variation of the algorithm PAM that uses the fitness function q(X) instead of
Tightness(X). The number of clusters k is an input parameter to the algorithm. It consists of two sub-
algorithms. Sub-algorithm SBUILD starts by selecting the medoid of the members of the most frequent
class in the data set as the first representative. After that, it repeatedly and greedily adds to the current set
of representatives a non-representative object that, if added to the set of representatives, would generate a
clustering that produces the minimum value for the fitness function q(X). The second sub-algorithm,
SSWAP, tries to improve the clustering produced by SBUILD by exploring all possible replacements of a
single representative by a single non-representative. SPAM terminates if no replacement can be found that
leads to a clustering with a better (lower) fitness value with respect to q(X).

4.3 Single Representative Insertion/Deletion Steepest Decent Hill Climbing with

Randomized Restart (SRIDHCR).
This greedy algorithm starts by randomly selecting a number of examples from the dataset as the initial
set of representatives. Clusters are then created by assigning examples to the cluster of their closest
representative. Starting from this randomly generated set of representatives, the algorithm tries to improve
the quality of the clustering by adding a single non-representative example to the set of representatives as
well as by removing a single representative from the set of representatives. The algorithm terminates if
the solution quality (measured by q(X)) does not show any improvement. Moreover, we assume that the
algorithm is run r (input parameter) times starting from a randomly generated initial set of representatives
each time, reporting the best of the r solutions as its final result. The pseudo-code of algorithm SRIDHCR
that was used for the evaluation of supervised clustering is given in Figure 2. It should be noted that the
number of clusters k is not fixed for SRIDHCR; the algorithm searches for “good” values of k.

Figure 2: Pseudo Code for Algorithm SRIDHCR.

To illustrate how the algorithm works let us have a closer look at a run of the algorithm for the Iris-Plant
data set that consists of 150 flowers, numbered 1 through 150. The algorithm starts with a randomly
generated set of representatives, e.g. {5, 30, 48, 72, 150}. Firstly, the algorithm creates clusterings
obtained by adding a single non-representative to the current set of representatives. Secondly, the
algorithm creates clusterings obtained by removing a single representative from the current set of
representatives. Table 2 depicts the solutions that are evaluated in the first iteration. The 150 (e.g., 145+5)
clusterings (that were generated from the solutions that are partially listed in Table 2) are then evaluated,
and the solution whose clustering has the lowest value with respect to q(X) is selected, highlighted in
italic bold font in Table 2. The search now continues using {5, 30, 48, 72, 150, 110} as the new set of
representatives. In the second iteration the solution {5, 30, 48, 72, 150, 110, 52} (flower 52 was added to

REPEAT r TIMES
curr := a randomly created set of representatives (with size between c+1 and 2c)
WHILE NOT DONE DO

1. Create new solutions S by adding a single non-representative to curr and by removing a single
representative from curr

2. Determine the element s in S for which q(s) is minimal (if there is more than one minimal
element, randomly pick one)

3. IF q(s)<q(curr) THEN curr:=s
ELSE IF q(s)=q(curr) AND |s|>|curr| THEN curr:=s
ELSE terminate and return curr as the solution for this run.

Report the best out of the r solutions found.

 7

the set of representatives) turned out to be the best solution, leading to an improvement in fitness from
0.054 to 0.043.

Set of medoids after

adding one non-
medoid

q(X) Set of medoids
after removing

a medoid

q(X)

5 30 48 72 150 0.098 30 48 72 150 0.095
5 30 48 72 150 1 0.101 5 48 72 150 0.095
5 30 48 72 150 2 0.101 5 30 72 150 0.095

…….... ……. 5 30 48 150 0.341
5 30 48 72 150
110

0.054 5 30 48 72 0.341

……… …….
5 30 48 72 150
148

0.114

5 30 48 72 150
149

0.100

Trials in first part (add a non-
medoid)

Trials in second part (drop a
medoid)

Table 2: Solutions Explored in the First
Iteration.

Ite
r.

Set of medoids producing
lowest q(X) in the run

q(X) Purity

0 5 30 48 72 150 (Initial
set)

0.098 0.913

1 5 30 48 72 150 110 0.054 0.960
2 5 30 48 72 150 110 52 0.043 0.973
3 5 30 48 72 150 110 52 86 0.038 0.980
4 5 30 48 72 150 110 52 86

73
0.033 0.987

5 30 48 72 150 110 52 86
73

0.031 0.987

6 48 72 150 110 52 86 73 0.030 0.987
7 48 150 110 52 86 73 0.027 0.987

Table 3: Set of Representatives Explored.

The algorithm continues iterating as long as there is an improvement in fitness function q(X). The
algorithm terminates after 7 iterations with the solution {48, 150, 110, 52, 86, 73,}. Table 3 illustrates
how the set of representatives changed during the iterations. It is worth mentioning that in iterations 5,
6, & 7, the class purity did not improve any further. Nevertheless, the algorithm did not stop. This is
because the fitness function q(X) does not only try to maximize the class purity, but also minimizes the
number of clusters; the algorithm, therefore, continued and found a clustering that uses a smaller number
of clusters but still achieved the same class purity of 0.987.

4.4 Top Down Splitting Algorithm (TDS)
This is a very simple algorithm that aims at creating clusters quickly. It starts by assigning all data
objects to a root cluster. After that the algorithm recursively splits clusters by replacing the medoid of
the cluster with two medoids: the medoid of the most frequent class in the cluster and the medoid of the
second most frequent class in the cluster. Clusters are only split if q(X) does not increase as a result of
the split. This splitting procedure is recursively applied to newly generated clusters.

4.5 Supervised Clustering using Evolutionary Computing (SCEC).
This algorithm uses evolutionary computing techniques to seek for the “optimal” set of representatives
by evolving population of solutions over a fixed number N of generations. The size of the population is
fixed to a predetermined number PS when running SCEC. The initial generation is created randomly.
The subsequent generations are generated by applying three different genetic operators to members of
the current generation that are selected based on the principles of survival of the fittest. The key features
of this approach include:

1) Chromosomal Representation: A solution consists of a set of representatives that are a subset of
the objects to be clustered.

2) Genetic Operators:
Mutation: replace a representative by a non-representative
Crossover: take 2 “parent” solutions and create an offspring solution as follows:
1. Include all representatives that occur in both parent in the offspring

 2

2. Include representatives that occur in a single parent with probability 50% in the offspring
Copy: Copy a member of the current generation into the next generation.

3) Selection: K-tournament selection is used to select solutions for generating the next generation
through mutation, crossover, and copying. K-tournament randomly selects K solutions from the
current population, and uses the solution with the lowest q-value to be added to the mating pool
for the breeding of the next generation.

4) Transformation of the Chromosomal Representation into Clusters and Evaluation:
1. Create clusters by assigning the remaining objects to the closest representative in the

solution to be evaluated.
2. Evaluate the so obtained clustering X using q.

5. Experimental Comparison
In order to study the performance of the clustering algorithms presented in section 4, we applied those
algorithms to a benchmark consisting of 4 data sets that were obtained from UCI Machine Learning
Repository [UCIMLR]. Table 4 gives a summary for the four data sets we used. All data sets were
normalized using a linear interpolation function that assigns 1 to the maximum value and 0 to the
minimum value. Manhattan distance was used to compute the distance between two objects.

Data set name # of objects # of attributes # of classes
Iris Plants 150 4 3
Image Segmentation 2100 19 7
Vehicle silhouettes 846 18 4
Pima-Indians Diabetes 768 8 2

Table 4: Additional Data Sets Used in the Experimental Evaluation.

In the experiments, SRIDHCR was run 50 times, each time with a different set of initial representatives
and the quality of the best solution found was reported. Moreover, the results of running SRIDHCR for a
fixed value of β were used to determine the k-value with which PAM and SPAM were run. In particular,
PAM and SPAM were run for the same value of β. The number of clusters k was set to the number of
representatives of the best solution that was found by SRIDHCR.

SCEC creates the initial population randomly which is decomposed of solutions having between c+1 and
2c representatives. The algorithm SCEC has several other input parameters. Table 5 shows the
parameters and their corresponding values used in our experiments.

Parameter Value
Population size (PS) 400
Tournament selection (K) 2
Crossover rate (CRR) 0 0.95
Mutation rate (MR) 0.95 0
Copy rate (CR) 0.05
Number of generations (N) 1500

Table 5: Input Parameters for the Algorithm SCEC.

In summary, SCEC was run for 1500 generations using a population size of 400. The mutation
probability is initially set to 0.95 when creating generation 1 and is linearly decreased to 0 at generation
1500, whereas the initial crossover probability is 0 at the beginning of the run and is linearly increased

 3

to 0.95 at the end of the run. The remaining 5% of a new generation are created by copying solutions
from the previous generation. The values of those and other parameters were determined experimentally.
During this parameter selection process we observed (for more details see [Z04]):
• Using large population sizes lead to finding better solutions; e.g. using PS=400, N=1500 performed

better than PS=200, N=3000.
• Using higher mutation rates and lower crossover rates lead to better solution quality.
• Using lower selective pressure lead to better solution quality.

In summary, our results suggest that parameter settings that allow for a more randomized exploration of
the search space seem to be more suitable for supervised clustering.

The investigated algorithms were evaluated based on the following performance measures:

• Cluster Purity.
• Value of the fitness function q(X) --- see formula (1).
• Average dissimilarity between all objects and their representatives. (abbreviated as Avg. Diss.) ---

see formula (2).
• Wall-Clock Time (WCT). Actual time, in seconds, that the algorithm took to finish the clustering

task. The algorithms were run on a computer that has a Pentium 4 processor and 512 MB of main
memory.

5.1 Traditional Versus Supervised Clustering

Table 6 and Table 7 display the different performance measures for the five algorithms when applied on
the four data sets for β=0.1 and β=0.4, respectively. As expected, looking at Table 6 we observe that
traditional clustering algorithm PAM produces tighter clusters, characterized by smaller intra-cluster
distances (Avg. Diss in Table 6 & 7). On the other hand, the supervised clustering algorithms SCEC and
SRIDHCR, produce better cluster purity. The improvement in cluster purity ranges from 8% to 25% for
the four datasets. Algorithm SCEC produces class purity that is 10% to 25% better than class purity
produced by the traditional clustering algorithm PAM, obtained when clustering data sets Iris-Plants and
Vehicle, respectively. Algorithm SRIDHCR produces class purity that is 8% to 19% better than that
produced by PAM, obtained by clustering Iris-Plants and Vehicle data sets, respectively.

5.2 Performance of the Supervised Clustering Algorithms

The results is Tables 6 & 7 clearly show that all supervised clustering algorithms produce better cluster
purity than PAM. Among the four supervised clustering algorithms, SCEC consistently finds the best
solutions for all four data sets, whereas SRIDHCR finds “good” solutions, and somewhat surprisingly
SPAM performs quite poorly in the experiments. However, the wall-clock time for the algorithm SCEC
is the highest among all four supervised clustering algorithms, followed by algorithm SRIDHCR.
Bearing in mind that the wall-clock time reported for SRIDHCR is the time needed to execute 50 runs,
makes a single run of SRIDHCR be 1.4 to 25 times faster than a single run of algorithm SCEC.

 4

Algorithm k Cluster Purity q(X) Avg. Diss. WCT (Sec.)

Iris-Plants Dataset
PAM 3 0.907 0.093 0.081 0.06

TDS 3 0.927 0.073 0.082 0.002

SCEC 5 0.993 0.018 0.107 1019

SRIDHCR 3 0.980 0.020 0.113 13

SPAM 3 0.973 0.027 0.133 0.32

Vehicle Dataset
PAM 65 0.701 0.326 0.044 372.00

TDS 126 0.852 0.186 0.081 0.03

SCEC 132 0.923 0.116 0.049 31989

SRIDHCR 65 0.835 0.192 0.062 1666

SPAM 65 0.764 0.263 0.097 1090

Segmentation Dataset
PAM 53 0.880 0.135 0.027 4073

TDS 55 0.952 0.062 0.043 0.02

SCEC 60 0.989 0.026 0.046 22598

SRIDHCR 53 0.980 0.035 0.050 9868

SPAM 53 0.944 0.071 0.061 1422

Pima-Indian Diabetes Dataset
PAM 45 0.763 0.237 0.056 186.00

TDS 3 0.732 0.272 0.103 0.003

SCEC 64 0.893 0.135 0.074 12943

SRIDHCR 45 0.859 0.164 0.076 660

SPAM 45 0.822 0.202 0.086 58

Table 6: Comparative Performance of the Different Algorithms (β=0.1)

This makes SRIDHCR a good choice if resources are somewhat limited. Finally, algorithm TDS,
considering its high speed, performed quite well for two datasets but quite poorly for the other two
datasets.

Algorithm k Cluster

Purity
q(X) Avg.

Diss.
WCT
(Sec.)

IRIS-Plants Dataset
PAM 3 0.907 0.093 0.081 0.06

TDS 3 0.927 0.073 0.082 0.002

SCEC 3 0.987 0.013 0.125 618

SRIDHCR 3 0.987 0.013 0.125 9

SPAM 3 0.973 0.027 0.133 0.3

Vehicle Dataset
PAM 56 0.681 0.418 0.046 505

TDS 111 0.831 0.311 0.071 0.02

SCEC 61 0.857 0.247 0.059 10947

SRIDHCR 56 0.835 0.265 0.067 1130

SPAM 56 0.754 0.345 0.100 681

Segmentation Dataset

PAM 32 0.875 0.169 0.032 1529

TDS 38 0.950 0.096 0.045 0.01

SCEC 28 0.969 0.069 0.050 11533

SRIDHCR 32 0.970 0.074 0.051 8450

SPAM 32 0.940 0.103 0.065 1053

Pima-Indians-Diabetes Dataset
PAM 2 0.656 0.344 0.101 1.0

TDS 3 0.732 0.283 0.103 0.003

SCEC 9 0.819 0.219 0.103 1700

SRIDHCR 2 0.776 0.224 0.139 228

SPAM 2 0.772 0.227 0.125 2.7

Table 7: Comparative Performance of the Different
Algorithms (β=0.4)

As β increases from 0.1 to 0.4 (see Table 7), the penalty for increasing the number of clusters increases
as well, see formula (1). Consequently, the algorithm will produce solutions with a smaller number of

 13

clusters. Due to the fact that more smaller-sized solutions (solutions with less number of clusters) will be
searched when β increases, the algorithms take less time for β=0.4. It should be noted that the purity
values in Table 7 are slightly lower than the corresponding numbers in Table 6 which is not surprising
because using a larger number of clusters is punished more severely by the fitness function with β being
set to 0.4.
Table 8 displays the different performance measures of the five algorithms when applied on all data sets
for β=0.1 except that measures reported for algorithm SRIDHCR include mean, minimum, maximum,
and standard deviation for the 50 (re-)runs of the algorithm. Comparing the results of the algorithm
SPAM with those for algorithm SRIDHCR in Table 8, we can clearly see that SRIDHCR not only
outperforms SPAM in its “best out of 50 runs” but in its average performance as well (with the
exception of the Iris Plant data set).

Algorithm q(X) WCT (sec.)
Iris-Plants
PAM 0.0933 0.06

TDS 0.0733 0.02

SCEC 0.0182 93.42

Min 0.018 0.11

Max 0.045 0.38

Mean 0.029 0.24

SRIDHCR

STDV 0.005 0.064

SPAM 0.0267 0.321

Vehicle
PAM 0.3260 372.00

TDS 0.3950 0.16

SCEC 0.1570 7368.70

Min 0.181 17.00

Max 0.291 56.00

Mean 0.228 33.00

SRIDHCR

STDV 0.027 9.28

SPAM 0.263 1090.00

Algorithm q(X) WCT (sec.)
Segmentation

PAM 0.0350 4073.00

TDS 0.0780 1.30

SCEC 0.0300 11087.20

Min 0.032 122.00

Max 0.084 264.00

Mean 0.050 197.34

SRIDHCR

STDV 0.012 33.91

SPAM 0.0710 1422.00

Pima-Indian Diabetes
PAM 0.2370 186.00

TDS 0.2710 0.19

SCEC 0.1660 2015.20

Min 0.164 3.00

Max 0.223 24.00

Mean 0.191 12.12

SRIDHCR

STDV 0.013 4.64

SPAM 0.2020 58.00

Table 8: Average Performance of SRIDHCR
Compared to other Algorithms (β=0.1).

SRIDHCR, if compared with SPAM, has the interesting characteristic that when attempting to enhance a
solution with k representatives, it looks for better solutions with k−1 and k+1 representatives, whereas
SPAM looks for better solutions with exactly k representatives. We believe that the capability of
algorithm SRIDHCR to add new elements to the solution set, some of which are removed again at a later
stage of the search, contributes to its better performance; for example, SRIDHCR might add v1 and v2
to {u1,u2,u3,u4} obtaining {u1,u2,u3,u4,v1,v2} and would next remove u1, and u2, obtaining a better
solution {u3,u4,v1,v2} whereas SPAM might terminate with the suboptimal solution {u1,u2,u3,u4}, if
neither the replacement of u1 by v1 nor the replacement of u2 by v2 enhances q(X). Furthermore,
encouraged by its smaller average runtime, SRIDHCR can be restarted up to 33 times (as it is the case
for the Vehicle data set for example in Table 8) in the same time that SPAM needs to complete a single
run. These re-runs with different initial sets of representatives allows SRIDHCR to explore different
regions of the search space, which we believe is a second contributing factor for the significantly better
performance of algorithm SRIDHCR.

 14

In summary, SCEC found much better solutions than the other 3 algorithms. We attribute this
observation to the fact that the fitness landscape induced by q(X) for a particular dataset contains a large
number of local minima and plateau-like structures (clusterings X1 and X2 with q(X1)=q(X2)). It seems
that greedy algorithms, such as PAM, SPAM, TDS do not perform particularly well in this fitness
landscape terminating prematurely too often. We conducted a small experiment in which we estimated
the probability that two solutions with 10/50 representatives have the same fitness value with respect to
q(X) and Tightness(X), respectively. The results of this experiment, summarized in Table 9, show that
ties are much more likely when q(X) is used.

Dataset k β Ties % using q(X) Ties % using Tightness(X)
Iris-Plants 10 0.00001 5.8 0.0004
Iris-Plants 10 0.4 5.7 0.0004
Iris-Plants 50 0.00001 20.5 0.0019
Iris-Plants 50 0.4 20.9 0.0018

Vehicle 10 0.00001 1.04 0.000001
Vehicle 10 0.4 1.06 0.000001
Vehicle 50 0.00001 1.78 0.000001
Vehicle 50 0.4 1.84 0.000001

Segmentation 10 0.00001 0.220 0.000000
Segmentation 10 0.4 0.225 0.000001
Segmentation 50 0.00001 0.626 0.000001
Segmentation 50 0.4 0.638 0.000000

Diabetes 10 0.00001 2.06 0.0
Diabetes 10 0.4 2.05 0.0
Diabetes 50 0.00001 3.43 0.0002
Diabetes 50 0.4 3.45 0.0002

Table 9: Tie Distribution for the Four Datasets.

6. Benefits of Supervised Clustering
This section briefly discusses the benefits of supervised clustering. In general, supervised clustering can
be used for many different tasks that include:

1. Create background knowledge for a dataset
2. Dataset compression and editing
3. To learn subclasses and to use these subclasses to enhance classification algorithms [VAE04]
4. To evaluate distance functions in distance function learning [ERCBV04]

Due to space limitations we center on discussing the first two applications in this section.

6.1 Using Supervised Clustering to Create Background Knowledge

Figure 3 shows how cluster purity and the number of clusters for the best solution found, k, change as
the value of parameter β increases for the Vehicle and the Diabetes data sets (the results were obtained
by running algorithm SRIDHCR). As can be seen in Figure 3, as β increases, more penalty is associated
with using the same number of clusters and the algorithm tries to use a lower number of clusters
resulting in decreasing cluster purity. It is interesting to note that the Vehicle data set seems to contain

 15

smaller regions with above average purities. Consequently, even if β increases beyond 0.5 the value of k
remains quite high for that data set. The Diabetes data set, on the other hand, does not seem to contain
such localized patterns; as soon as β increases beyond 0.5, k immediately reaches its minimum value of
2 (there are only two classes in the Diabetes data set).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1E
-05 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 β

P
ur

ity

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

N
um

be
r o

f c
lu

st
er

s
(k

)

Purity (Vehicle, 4 classes) Purity (Diabetes, 2 classes)
k (Vehicle) k (Diabetes)

Figure 3. How Purity and k Change as the Value of β Increases.

In general, we claim, supervised clustering is useful for enhancing our understanding of datasets.
Examples include:
• It shows how instances of a particular class distribute in the attribute space; this information is of

value for “discovering” subclasses of particular classes.
• Maps for domain experts can be created that depict class densities in clusters and that identify which

clusters share decision boundaries with which other clusters.
• Statistical summaries can be created for each cluster.
• Meta attributes, such as various radiuses, distances between representatives, etc. can be generated,

and their usefulness for enhancing classifiers can be explored.

6.2. Using Cluster Prototypes for Dataset Editing

The objective of dataset editing [W72] is to remove examples from a training set in order to enhance the
accuracy of a classifier. In this paper, we propose using supervised clustering as a tool for editing a
dataset O to produce a reduced subset Or. The reduced subset Or consists of cluster representatives that
have been selected by a supervised clustering algorithm. A 1-NN classifier, that we call nearest-
representative (NR) classifier, is then used for classifying new examples using subset Or instead of the
original dataset O. We call this approach supervised clustering editing (SCE for short). Figure 4 presents
the classification algorithm of the NR classifier. A NR classifier can be viewed as a compressed 1-
Nearest-Neighbor classifier because it uses only k (k << n) examples out of the n examples in the dataset
O.

 16

Figure 4: Nearest Representative (NR) Classifier.

Figure 5 gives an example that illustrates how supervised clustering is used for dataset editing. Figure
5.a shows a dataset that has not been clustered yet. Figure 5.b shows a dataset that was partitioned into 6
clusters using a supervised clustering algorithm. Cluster representatives are marked with circles around
them. Figure 5.c shows the result of supervised clustering editing.

Figure 5: Editing a Dataset Using Supervised Clustering.

To evaluate the benefits of supervised clustering editing, we applied our editing technique to a
benchmark involving 8 datasets; the properties of the four additional datasets used are summarized in
Table 10.

Dataset name # of objects # of attributes # of classes
Glass 214 9 6
Heart-Statlog 270 13 2
Heart-Disease-Hungarian (Heart-H) 294 13 2
Waveform 5000 21 3

Table 10: Additional Datasets Used in the Dataset Editing Experiment.

The parameter β has a strong influence on the number k of representatives chosen by the supervised
clustering algorithm; i.e., the size of the edited subset Or. If high β values are used, clusterings with a
small number of representatives are likely to be chosen. On the other hand, low values for β are likely to
produce clusterings with a large number of representatives. In general, an editing technique reduces the

PREPROCESSING
A. Apply a representative-based supervised clustering algorithm (e.g. SRIDHCR) on dataset

O to produce a set of k prototypical examples.
B. Edit dataset O by deleting all non-representative examples to produce subset Or.

CLASSIFICATION RULE
Classify a new example q by using a 1-NN classifier with the edited subset Or.

A

E

C

B

Attribute 2

D

GF

Attribute2

b. Dataset clustered using
supervised clustering.

c. Dataset edited using
supervised clustering

A

C
D

E

a. Dataset given

Attribute 2

Attribute1 Attribute1 Attribute1

 17

size of a dataset, n, to a smaller size k. We define the dataset compression rate of an editing technique
as:

Compression Rate
n
k

−= 1 (3)

In order to explore different compression rates for supervised clustering editing, three different values
for parameter β were used in the experiments: 1.0, 0.4, and 0.1. Prediction accuracies were measured
using 10-fold cross-validation throughout the experiments for the eight datasets tested. Representatives
for the nearest representative (NR) classifier were computed using a version of the SRIDHCR
supervised clustering algorithm that was introduced in Section 4.3. In our experiments, SRIDHCR was
restarted 50 times (r = 50), and the best solution (i.e., set of representatives) found in the 50 runs was
used as the edited subset for the NR classifier. We also computed prediction accuracy for a traditional 1-
NN classifier that uses all training examples when classifying a new example. Table 11 reports the
accuracies obtained using the edited subset and the original dataset as well as the average dataset
compression rates for supervised clustering editing. Due to the fact that the supervised clustering
algorithm has to be run 10 times, once for each fold, different numbers of representatives are usually
obtained for each fold.

β Avg. k

[Min-
Max]

for
SCE

SCE
Compression

Rate (%)

NR
Prediction
Accuracy

1-NN
Prediction
Accuracy

Glass (214)
0.1 34 [28-

39]
84.3 0.636 0.692

0.4 25 [19-
29]

88.4 0.589 0.692

1.0 6 [6 –
6]

97.2 0.575 0.692

Heart-Stat Log (270)

0.1
15 [12-

18]
94.4 0.796 0.767

0.4 2 [2 –
2]

99.3 0.833 0.767

1.0 2 [2 –
2]

99.3 0.838 0.767

Diabetes (768)

0.1
27 [22-

33]
96.5 0.736 0.690

0.4 9 [2-
18]

98.8 0.736 0.690

1.0 2 [2 –
2]

99.7 0.745 0.690

Vehicle (846)

0.1
57 [51-

65]
97.3 0.667 0.700

0.4 38 [26-
61]

95.5 0.667 0.700

1.0 14 [9- 98.3 0.665 0.700

22]
Heart-H (294)
0.1 14 [11-

18]
95.2 0.755 0.783

0.4 2 99.3 0.793 0.783
1.0 2 99.3 0.809 0.783
Waveform (5000)
0.1 104 [79-

117]
97.9 0.834 0.768

0.4 28 [20-
39]

99.4 0.841 0.768

1.0 4 [3-
6]

99.9 0.837 0.768

Iris-Plants (150)
0.1 4 [3-8] 97.3 0.947 0.947
0.4 3 [3 –

3]
98.0 0.973 0.947

1.0 3 [3 –
3]

98.0 0.953 0.947

Segmentation (2100)
0.1 57 [48-

65]
97.3 0.938 0.956

0.4 30 [24-
37]

98.6 0.919 0.956

1.0 14 99.3 0.889 0.956
Table 11: Dataset Compression Rates for SCE
and Prediction Accuracy for the NR and 1-NN
Classifiers.

 18

Consequently, Table 11 also reports the average, minimum, and maximum number of representatives
found on the 10 runs. For example, when running the NR classifier for the Diabetes dataset with β set to
0.1 the (rounded) average number of representatives was 27, the maximum number of representatives
during the 10 runs was 33 and the minimum number of representatives was 22; supervised clustering
editing reduced the size of the original dataset O by an average of 96.5%, as displayed in Table 11. The
NR classifier classified 73.6% of the testing examples correctly, as indicated in Table 11.

If we inspect the results displayed in Table 11, we can see that the SCE approach accomplished
significant improvement in accuracy for the Heart-Stat Log, Diabetes, Waveform, and Iris-Plants
datasets, outperforming the traditional 1-NN-classifier. Further inspecting the second and third columns
of Table 11, we notice that with the exception of the Glass and the Segmentation datasets, SCE
accomplishes compression rates of more than 94% without a significant loss in prediction accuracy for
the other 6 datasets. For example, for the Waveform dataset, a 1-NN classifier that uses only 28
representatives outperforms the traditional 1-NN classifier that uses all 4500 training examples3 by
7.3% in accuracy, increasing the accuracy from 76.8% to 84.1%. Similarly, for the Heart-StatLog
dataset, a 1-NN classifier that uses just one representative for each class outperforms traditional 1-NN
classifier by more than 6%.

7. Summary and Conclusion
In the paper a novel data mining technique we named supervised clustering was introduced. Supervised
clustering algorithms aim at producing class-uniform density clusters. We claim that, to the best of our
knowledge, only the work of Sinkkonen et al. [SKN02]. and Tishby et al. [TPB99] has some
resemblance with our work. However, these approaches are targeted towards information retrieval
applications, whereas our work centers on mining data that are commonly found in relational databases.
Furthermore, our approach relies on distance metrics and representative-based clustering, whereas their
approach is probabilistic and based on mutual information maximization.

Four representative-based supervised clustering algorithms were presented in the paper: TDS, SCEC,
SRIDHCR and SPAM. Experiments were conducted that compare the performance of these four
algorithms with a popular traditional clustering algorithm named PAM. Our experimental results show
that supervised clustering enhances class purity by 9% to 25% over the traditional clustering algorithm
PAM. Surprisingly, SPAM, a variation of PAM, performed quite poorly in the experiments, raising
doubts with respect to PAM being a “good” algorithm for traditional clustering. TDS, on the other hand,
considering its high speed, performed quite well on two datasets and quite poorly on the other two
datasets. SRIDHCR is a good choice if resources are limited or data sets are very large, whereas, SCEC,
although runtime intensive, finds the best clusters in almost all experiments conducted. In general, it
seems that “greedy” algorithms, such as SPAM, SRIDHCR, and TDS, do not perform particularly well
for supervised clustering and seem to terminate prematurely. Our experimental results suggest that
algorithms that center on a more randomized exploration of the search space, such as SCEC, seem to
find significantly better solutions at an average.

3 Due to the fact that we use 10-fold cross-validation, training sets contain 0.9*5000=4500 examples.

 19

We argued that supervised clustering is useful for enhancing our understanding of datasets (e.g.,
summaries could generated for each cluster). We also presented empirical results that show how
supervised clustering could be used for editing a dataset for the purpose of improving classification
accuracy. For example, a 1-NN classifier that uses just one representative for each class of the Heart-
StatLog dataset outperforms traditional 1-NN classifier that uses all 768 examples of the dataset, by
more than 6% in accuracy.

References
[BBM02] Basu, S., Banerjee, A., Mooney, R. J. “Semi-supervised Clustering by Seeding”, in

Proceedings of the Nineteenth International Conference on Machine Learning (ICML-
2002), pp. 19-26, Sydney, Australia, July 2002.

[BBM03] Basu, S., Bilenko,M., Mooney, R. “Comparing and Unifying Search-based and
Similarity-Based Approaches to Semi-Supervised Clustering”, in Proc. ICML03
Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and
Data Mining, pp. 42-29, Washington DC, August 2003.

[BHSW03] Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D. “Learning Distance Functions Using
Equivalence Relations”, in Proc. ICML03, Washington DC, August 2003.

[CCM00] Cohn, D., Caruana, R., McCallum, A. “Semi-supervised Clustering with User Feedback”,
unpublished manuscript, available at www-2.cs.smu.edu/~mccallum/, 2000.

[DBE99] Demiriz, A., Benett, K.-P., Embrechts, M.J. “Semi-supervised Clustering using Genetic
Algorithms”, in Proc. ANNIE’99.

[ERCBV04] Eick, C., Rouhana, A., Chen, C., Bagheriran, A., Vilalta, R. “Using Clustering to Learn
Distance Functions for Supervised Similarity Assessment”, submitted for publication.

[KKM02] Klein,D., Kamvar,S.-D., Manning, C. “From instance-level Constraints to Space-level
Constraints: Making the Most of Prior Knowledge in Data Clustering”, in Proc.
ICML’02, Sydney, Australia.

[KR90] Kaufman L. and Rousseeuw P. J. “Finding Groups in Data: an Introduction to Cluster
Analysis”, John Wiley & Sons, 1990.

[UCIMLR] University of California at Irving, Machine Learning Repository,
http://www.ics.uci.edu/~mlearn/MLRepository.html

[SKN02] Sinkkonen, J., Kaski, S., and Nikkila, J., “Discriminative Clustering: Optimal
Contingency Tables by Learning Metrics”, ECML’02.

[ST99] Slonim, N. and Tishby, N., “Agglomerative Information Bottleneck”, Neural Information
Processing Systems (NIPS-1999).

[TPB99] Tishby, N., Periera, F.C., and Bialek, W., “The Information Bottleneck Method”, In
proceedings of the 37th Allerton Conference on Communication and Computation, 1999.

[TS00] Tishby, N. and Slonim, N., “Document Clustering using Word Clusters via the
Information Bottleneck Method”, In the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), 2000.

[VAE04] Vilalta, R., Achari, M., Eick C. “Piece-Wise Model Fitting Using Local Data Patterns”,
to appear in Proceedings European Conference on Artificial Intelligence (ECAI),
Valencia, Spain, August 2004.

[W72] Wilson, D.L., “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data”,
IEEE Transactions on Systems, Man, and Cybernetics, 2:408-420, 1972.

 20

[XNJ03] Xing, E.P., Ng A., Jordan, M., Russell, S. “Distance Metric Learning with Applications
to Clustering with Side Information”, Advances in Neural Information Processing 15,
MIT Press, 2003.

[Z04] Zhao, Z., “Evolutionary Computing and Splitting Algorithms for Supervised Clustering”,
Master’s Thesis, University of Houston, Department of Computer Science, May 2004,
http://www.cs.uh.edu/~zhenzhao/ZhenghongThesis.zip.

