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Abstract

In this paper, we present a family of domain decomposition based on an Aitken like acceleration of the

Schwarz method seen as an iterative procedure with linear rate of convergence. This paper is a gener:
alization of the method first introduced at th&’" International Conference on Domain Decomposition

that was restricted to regular Cartesian grids. The potential of this method to provide scalable parallel

computing on a geographically broad grid of parallel computers was demonstrated for some linear and
nonlinear elliptic problems discretized by finite differences on a Cartesian mesh. The main thrust of this

paper is to present a generalization of the method to non-uniform Cartesian meshes. The salient feature
of the method consists of accelerating the sequence of traces on the artificial interfaces generated by the
Schwarz procedure using a good approximation of the main eigenvectors of the trace transfer operator.
For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an
approximation of the eigenvectors of the Jacobian of the trace transfer operator. The acceleration is then
applied to the sequence generated by the Schwarz algorithm applied directly to the nonlinear operator.
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computers was demonstrated for some linear and nonlinear elliptic problems discretized by finite differences on a
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meshes. The salient feature of the method consists of accelerating the sequence of traces on the artificial interfaces
generated by the Schwarz procedure using a good approximation of the main eigenvectors of the trace transfer
operator. For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an
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the sequence generated by the Schwarz algorithm applied directly to the nonlinear operator.
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|. INTRODUCTION

The idea of using Aitken acceleration [14], [24], on the classical additive Schwarz Domain Decomposition (DD)
method [17], [18], [19], [22], [23] has been introduced in [10] . These authors have called the corresponding
method Aitken-Schwarz (AS) method. They have shown its very good numerical performances on linear and
nonlinear elliptic problems discretized by a five point scheme on a rectangular Cartesian grid [13]. More recently,
it was shown that this technique gives efficient meta-computing of the Poisson and Bratu problem in three space
dimensions with supercomputers abroad linked by a regular internet connection [4], [9]. For an elliptic separable
operator with constant coefficient, AS method is a direct solver. All these studies have been made on uniform
meshes. In this case the (discrete) Fourier transform plays a crucial role (although the name of Fourier does not
appear in the name of the method).

More recently a general framework of the AS method was introduced by one of the authors [8]. The technique
was applied to elliptic problems with the finite volume discretization of Faille on arbitrary quadrangle cells [5]. It
was shown that a compact representation of the trace of the solution generated by the Schwarz method could be
used to improve drastically the convergence rate of the method via Aitken acceleration.

In this paper we propose to extend the AS method to Cartesian grids that are not necessarily uniform. Because
the grid is a tensorial product of one dimensional grid with arbitrary space step, one can compute some numerical
approximation of the main eigenvectors of the trace transfer operator more easily than with unstructured grids. In
this paper we will present the method for finite differences as well as finite element approximations.

For linear separable elliptic operators, our solver is a direct solver. For nonlinear operators, we use an approx-
imation of the eigenvectors of the Jacobian of the trace transfer operator. The acceleration is then applied to the
sequence of traces generated by the Schwarz algorithm applied directly to the nonlinear problem. This acceleration
procedure is repeated iteratively until convergence, in a scheme analogous to the Steffensen algorithm. While our
method can be applied to an arbitrary number of space directions, the numerical efficiency of our method is justified
in this paper by computing various linear and nonlinear test cases in two space dimensions.
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It should be point out that our method requires only postprocessing of the traces generated by the Schwarz
method. Our algorithm is therefore easy to implement to accelerate the convergence of an existing parallel code,
and does not add a high overhead on communications. The plan of this paper will be as follows. In Sect. 2, we
introduce a formalism for the trace transfer operator that is appropriate to construct the Aitken like acceleration. In
Sect. 3, we compare our solver for the Helmholtz problem to other methods implemented in the general purpose
library PETSc. This result motivates the generalization presented in Sect. 4 with a generalized Fourier transform for
rectangular meshes with arbitrary space steps. Sect. 5 shows an application to finite element on tensorial produc
of one-dimensional grids. Sect. 6 gives a broader range of examples with some linear nonseparable operators an
nonlinear test cases. Sect. 7 is our conclusion.

Il. GENERAL FRAMEWORK OF THE METHOD

The AS method is built upon three ideas:

1) The Schwarz method is an iterative method applied to a trace transfer operator acting on functions defined
on the interfaces. Sparsity of the Jacobian of this operator is related to the domain decomposition (DD).

2) The discretization and choice of the interface representation may in some cases, if well chosen, increase this
sparsity.

3) For an operator with a sparse matrix, simple acceleration processes can be constructed using, for example
the so-called Aitken acceleration procedure.

We are going to present the formal construction of the trace transfer operator of the Schwarz method for a DD
where the connection between subdomains can be described by a one dimensional graph. We make no assumptio
on the PDE problem to be solved, except that all subdomain problems should be well posed.

We consider a bounded domaihin RY with a two neighbors overlapping DD in P domaifs, i.e €2, only
intersects(2,_; and (2,1, with obvious modifications for p=1 and P.

The non-oriented graph associated to this DD is a segment. Let us notice that the case of an annular domain
with €1 only intersect€2p and )y, andQp only intersects2p_; and €, is handled with minor modifications.

The boundaryl', of €, is decomposed into three parﬂ's‘,fD (respI'}) included in€2, 1 (respf2,;1) and the
remaining parf,.

Let (IT) be a boundary value problem well posed{n One step of the additive Schwartz DD method with
Dirichlet-Dirichlet boundary conditions is: for all p, given the Dirichlet boundary conditipngespr,) on Fi,

(respl';) solve the problentIl,) restriction of(II) to 2, with these boundary conditions and the one(ldf on
T, ; (II,) is assumed to be well posed.

We denote by, ; (respl,+1) the trace of the solution dfil,) on R (respl“]’DH). So one step of the Schwarz

method is described by one application of the trace transfer operator

(loy 71,y lpyTp—1) = T(l2, 71, -« -y lpy Tp—1, - - -, Lp, TP—1), (1)

acting on trace spaces of functions or distributions adapted to the boundary value problem. Noté¢Iihas i&
system, then for each, [, andr, are vectors.
T has the special structure:

T Tp—1 :T;g(lpvrp) _ o5 ... . - _ il
ZQ—Tl(Tl),”-7{ lp_t,_l:T;(lp,Tp) p_27 7P 17"‘7TP—1_TP(ZP)

Here (rp—1,p+1) = T»(lp, ) is composed of a local solver of the boundary value probl&iy) and the trace
operators o, _, and Fé +1- These operators can be exact or approximated.



Formally the2(P — 1) Jacobian matrix of T has the pentadiagonal structure:
0 6" 0 0

0 o0 o 0

b0 0 T 00

0 0 & o o & @)
0o ot 0 o0 &

0 0 & o0

/
with 6" = 9T /Or, (1, 7). The derivatives are assumed to exist in some sense in the traces functional spaces.

We have described the matrix of the trace transfer operator in an abstract form that is completely general. We
will now specify the discretization and therefore address the problem of the generalization of the method [13] for
Cartesian grids with arbitrary irregular space step in each space direction.

We introduce a discrete approximation of the traces. Each fyafresp.r,) is approximated by J numbets;
(resp.rp;), 7 =1 to J. These numbers may be point values, coefficients in a basis,...etc.

sl sl N _ _ o
l, andr, are now J-vectors andl, = 57{} 55; > is a 2J square matrix. T is an application fraa’("—1)
p p

into itself with a sparse Jacobian matrix.

For some patrticular problems, DD and meshes, a well chosen change of unlippwnégj may greatly increase
the sparsity of the Jacobian of the transformed trace transfer op&tafnis idea, which is the core of AS method,
has been introduced on a uniform mesh-using Fourier transform-in [10]. We are going to recall in the next section
this algorithm and compare its efficiency to some classical fast elliptic solvers.

[11. APPLICATION TO THE HELMHOLTZ PROBLEM ON A SQUARE CARTESIAN GRID

We consider the situation whe¥ = 2 and (2 is a rectangle with a strip DD into rectangles. The left (resp.
right) boundary of2,, is z = acé, (resp.zy). Interfaces of the DD are therefore parallel to theirection. We focus
our attention on the Helmholtz problefu] = wu,, + uy, — Au = f in the squareg(0, 7)? with homogeneous
Dirichlet boundary conditions and suppose that a positive constant. For simplicity, we present the method in
two space dimensions, however the three-dimensional case is a straightforward generalization [4]. We introduce
the regular discretization in the directiony; = (j — 1)h, h = %, and central second-order finite differences (FD)
of the u,, derivative. Let us denote by, (resp. f,) the coefficient of the sine expansion of(resp. f) and
uj = u(x, jh). The Helmholtz problem decomposes intondependent semi-discretized equations corresponding

to the sinus wavesin(ky), k = 1..J, K
am,:mc — fm Uy = fm (3)

With juy, = 4/h2 sin?(m%) + \.

The coefficientsé”,51%",5’"’,5”" in (2) can be computed analytically using the basis functions of the two-
dimensional vector space of the solutions of (3) for each wave component. We get a Ryatsimilar to (2) for
each wave componemt = 1..J

The DD algorithm writes then

» step 1: apply one additive Schwarz iterate to the PDE problem with a two-dimensional subdomain solver of

choice (i.e., multigrids, FFT etc...)

o Step 2:

- compute the sine expansicmgh, n = 0,1 of the traces on the artificial interfadg,, p = 1..P, for the
initial boundary conditiom“F and the solution given by one Schwarz iterate .
- apply generalized Aitken acceleration with= 0 separatelyto each wave coefficient:

a4 = (Id — Pp,) Y (! — Pup,)

H ~ 00
in order to geti;7. .



- recompose the tracqolfy in physical space.

« Step 3: compute in paraflel the solution in each subdorfiginwith new inner BCSurFop and subdomain solver

of choice.

We have compared the efficiency of our AS solver with a number of other elliptic solvers on a Beowulf cluster
of dual 32 bit AMD processors connected by a Gigabit ethernet switch. This switch exhibits high latency compared
to a Myrinet switch, for example, but is much cheaper. We have used for this comparison PETSc [2] that is an
excellent general purpose software for PDE problems. PETSc consists of a variety of libraries which include many
linear solvers such as Lapack, Krylov solver and algebraic multigrid solver.

In Figure 1 , we report the speedup performance of PETSc and AS on the same graphic, while on Figure 2,
we give the elpased time. We choose to run PETSc using V-cycle multigrid. The preconditioner is of Richardson
type to get traditional (non-Krylov accelerated) multigrid. One has two pre and two post smoothing steps of SSOR
(running independently on each process) and direct LU on the coarsest grid. To be accurate, the option in the
PETSc code is:

-dmmg_nlevels 3 mg_levels_ksp_type richardson -mg_levels_pc_type
sor -mg_levels_pc_sor_lits 2 -mg_levels_pc_sor_local_symmetric

This combination of options seems to give some of the best performances for PETSc.

We use the GMRES implementation of Sparskit [21] to solve the subdomain problem. This choice gives the best
elapse time in the framework of the software Sparskit.

Our implementation of AS does not neglect any wave components of the interface and uses blocking broadcast
and gathers for the acceleration process in Step 3 of the algorithm. This implementation is then far from optimum.
We refer to [9] for a detailed description of these comparisons.

PETSc, as expected, is faster than our implementation of AS with two processors and also for three processors.
However, as the number of processors increases, one can observe that the multigrid solver does not speed up wel
while AS performs better. Eventually, for more than three processors, AS gives a better elapsed time than the
multigrid solver. PETSc requires a better network than Gigabit ethernet to get better performances.

This is by no means a general conclusion because this test case is particularly simple. But it is rather a
demonstration than the AS algorithm is tolerant for high latency network, while traditional optimum solvers are
not.

We should have used PETSc as a subdomain solver, and AS for the DD method in this specific case. This is part
of our ongoing software development. This result however motivates further studies to generalize the AS algorithm
toward more complex situations as presented in the next section.

IV. A GENERALIZED FOURIER TRANSFORM FOR RECTANGULAR MESHES WITH ARBITRARY SPACE
STEPS

We present here an extension to nonuniform rectangular meshes in a FD context with the one dimensional DD
of Sect. 3.
(IT) is a homogenous Dirichlet boundary value problem whose equdtior- f has a separable second order
operator:
L =11+ Lo

L1 =010 +010: + 1, Lo = agayy + b28y + co.

a1,b1,c1 are functions of x, andis, bo,co are functions of y. Our main objective now will be to rewrite the
discretized problem, in such a way that we get a set of one dimensional decoupled problems on the interface to
take advantage of the classical scalar acceleration technique on linear sequences of numbers [14], [24].

Since we are mainly interested in the trace of the solution on the artificial interfaces, we can first concentrate
on the semi-discretization of the operator ynvariable. We use an irregular mesh ingy;,j = 0,...,J + 1,
L% a discretization ofLy on the y-meshu;(x) (respectivelyf;(z)) is an approximation ofi(x,y;) (respectively
f(z,y;)). The semi-discrete approximaticéﬁ[’;) of problem(Il,) is solved on a rectangle denoted by [e,w]x[n,s]
in order to simplify the notations:

Lyuj(x) + Liu;(z) = fi(z), = €]e,w] (4)



uj(w) andwu;(e) given (5)

up(x) = uyta(z) = 0. (6)

We now show that a suitable change of unknown (the generalized Fourier transform) increases the sparsity of
the Jacobian of". We set :
Z ’LL mj7 17 Ty J

where the®,,; are to be chosen and satisfy aég,0 = ®,,741 =0, m =1,---,J. The same transformation is
applied tof;(x). Extending the relation betweenand« to j = 0 andj = J + 1 satisfies (6). Applying the hat
transform to (4-5) gives:

J
Z mj (L1l () = fn(2)) + T (2) L5 @3] = 0

m=1

Z B,y iy (e/w) given
m=1

If we introduce the eigenvalue problem:

L@y = A @, Prno = Prpys1 =0 (E)
we obtain formally:
J A
> Pul(L1 + At (@) = fn(2))] = 0 ()
m=1
J

D Bpjiim(e/w) given (8)
m=1

and we have the following result:
Theorem 4.1:Assume problem (E) has J linearly independent real eigenvectors associated to real eigenvalues.
Then each probler(ﬂ’;) is constituted of J uncoupled continuous one dimensional linear problemsl, - - - , J:

(L1 + Ao () = fn() (9)
Um(e/w) given (10)
The hat trace transfer operator is affine®t ("~ with a bIock-diagonalIl matsix of J blocks of the form (2) ; the
m-th diagonal block corresponds to the mablg and uses thé,,, = grl gﬁjﬂ associated td; + A\,
Proof: the eigenvectors of problem (E) being independent, the métyixi is invertible and the equations (7-8) give
the first part of the theorem.
We denote bye’ (resp.w’) the right bound of the left neighboring domain (resp. the left bound of the right

neighboring domain). The local part of the trace transfer operator is

(u(e), u(w)) — (u(e), u(w'))
and its hat transform is
(a(e), a(w)) — (a(e'), a(w')).

The second part of the theorem follows then from(9-1D)

We can now proceed with the full discretization of the problem. But the Aitken like acceleration will make use
only of the interface representation in the appropriate eigenvector fasighis allows the scalar Aitken formula
to be applied independently to each component to give the exact interface condition.



We introduce an irregular x-mesh, i = 0,--- , I+1, L? a discretization of; on the x-mesh. The unknowns;
are approximations af(x;, y;). We setf;; = f(z;,y;) andU; = (usj)i—o,.. .1+1. From (6), we havé/y = U1 = 0.
The full discrete approximatiofil*) of problem(II,,) is

LillUj—i_LIQin:Fj?j:la""J (11)
uo; anduryi; given j=1,---,J (12)

With the generalized Fourier transform:
J
uij = Zﬂilq)lj;j = 1,...,J
=1
we have the same theorem as in the case of the semi-discretization in y except that the J continuous hat problem:
(9-10) are replaced by the following discrete hat problem=1,...,J:

(LY + M) U = Py (13)
Uom, Ur41m given (14)

Remark 4.1:The case of cylindrical domaif =]e,w[xB, B c R¥~! with boundaryT is (in theory) similar.
We look foru;(x) an approximation of.(x,y;) where they; are the vertexes of a mesh B LetJ (resp.Jr) be
the index set of interior points i (resp.onl’). Ly is a multidimensional y-operator and its approximation on
the mesh inB. The semi-discrete probleid’ is for j € J

Liuj(x) + Liui(z) = fi(z), = €le,w] (15)
uj(e) andu;(w) given (16)
uj(z) =0,z €le,w[,j € Ir (17)

The generalized Fourier transform(z) = 3 -5, (x)®y,; introduces the eigenvalue problem with eigenvectors
Dy = (Prmj)je:
L5®m = M@, Prmo = Prog1 =0, (Ee)

We can then generalize in principle the DD method of [4] for the three dimensional case to tensorial product of
one dimensional grids with arbitrary space steps.

Remark 4.2:The case of a cylindrical domaidx]s, n[ is better described using the notations of section 2. The
semi-discrete problerﬁ[’; isforj=1,...,J:

Lﬂbj(l‘) + Lguj(i') = fj($)v

u;(z) given onI',, I, and boundary conditions df on T,

uo(x) = uyp1(z) = 0,2 €le, w|.

Theorem 4.1 may be adapted to this situation.
The cas€? = A x B may be handled by mixing the two previous techniques.

We will now use this discretization framework to present the generalized AS algorithm for nonuniform Cartesian
grids.

The Schwarz method can be considered as an iterative method for the hat transform of T which is vectorial of
size2J(P — 1); so in general a large system.

Any acceleration process can be used [14], [24]. The AS method uses Aitken acceleration, taking advantage of
the sparsity of the hat transform of T coming on one hand from the special DD, and on the other hand of the
generalized Fourier transform. In fact all the modes of the hat transform are uncoupled. This allows us to use the
special version of Aitken method introduced in [10] for each independent wave component problem

(LY + A\ ]Up = Fpp, € (e, w).



To be more specific the left (resp. right) boundaryresp.w) corresponds to the inde»’é (respiy); the right
boundary of(2,_; (resp. the left boundary d®,1) corresponds to the indeX_, (respz’éﬂ).
The trace transfer operator {n, is

(psrp) = (Fp—1, lpt1)
with lp = ﬁi;mv Tp = ﬁi;’mvfp—l = ﬁi;71m7 Zp+1 = Uiiﬂ_lm'
First we observe that we can use the superposition principle to construct the solution without any acceleration
process. We introduc#,,, solution of

V. solution of:
LY+ \ulVi =0

szg)m = 17%;m =0

and W,,, solution of:
(LY + A\ ] Wy = 0

Wit = 0, Wiz = 1

Then we havé’,, = U,, + 1,V;n + 7,W,s,, S0 the local trace transfer operator(¥) for the modem is:
Tpo1 = f]z';,lm +pVir m +1pWir m
Ipt1 = Ui;+lm T Vi m Wi e

Note that the matrix,,, in Theorem 3.1 is:

‘/irflm Wi’"flm
O =\ v W

il
p+1" Upt1 M

The following algorithm is then an exact solver

Algorithm 1
step 1: compute the eigenelements, ®,,, m = 1 to J solution of problem (E).
step 2: computé”.
step 3: in all subdomains and for all m solve the three one dimensional problems Giyirig,, Win. Vi, Wi,
give thed,,, of the matrix P, of the affine operatof},,, andU,, the constant part,, of this operator).
step 4: for all m solve I — P,,)b = ¢,,, whereb = (--- ,1,,7,_1,---) to obtain the hat transforms of the traces.
step 5: recompose the physical traces from the result of step 4.
step 6: from these traces, make one step of Schwarz method (i.e., solve the two-dimensional problems in each
subdomain).

This algorithm is very similar to the DD method of Averbuch et al [1], [15] and also [12]. As described in detail in
these references, this algorithm must be modified to reduce the overhead on communications between sub-domains
Further this algorithm is limited to linear operators and needs a careful and fairly technical implementation.

In the present work, we focus on a method that (i) can make use of an existing parallel implementation of the
basic Schwarz method that is very simple to code, (ii) is limited to the postprocessing of the interface sequences
in order to speed up the code, (iii) can be extended to several approximation theory frameworks including non
regular meshes or non matching grids, and (iv) might be applied directly on nonlinear operators. The practical
range of application of this method is therefore not limited to the uncoupled situation described above. However,
in the particular situation of a separable linear operator, the Aitken acceleration provides a direct solver with the
following algorithm:



Algorithm 2
step 1: compute the eigenelements, ®,,, m = 1 to J solution of problem (E).
step 2: given the traces on the interfaces, make three steps of Schwarz method.
step 3: take the generalized Fourier transform of the last four traces.
step 4: apply the one-dimension Aitken-Steffensen acceleration formula to each mode of these transformed traces
step 5: recompose the physical traces from the result of step 4.
step 6: from these traces, make one step of Schwarz method.

We notice that step 2 and step 6 are processed by a basic additive Schwarz implementation for the elliptic solver.
One can use any solver of choice for each sub-domain such as multigrids (or preconditioned Krylov) methods if a
good initial guess is available, or a fast direct solver as in [20].

The main cost of each acceleration corresponds to the computation of the eigenvectors in step 1. This problem
is of order equal to the sizé of the interface. The QR algorithm, for example, requi9gs flops. Step 1 is a
preprocessing step that can be done once and for all, if the elliptic problem should be solved many times. This
is the case for the pressure equation in unsteady Incompressible Navier-Stokes simulation that uses the projectior
method [9]. Further step 1 can be done in asynchronous mode with distributed computing because the J problems
(E) are totally independent. Step 3 to step 5 is the postprocessing procedure that is the kernel of our method. It
can be coded independently of the main code for additive Schwarz.

As shown in [4], [13] this acceleration procedure might be done adaptively as a function of the eigenyalue
in order to minimize the amount of global and local communications. To be more specific here, because of the
evaluation cost of the eigenelements of (E) and the fact that in many cases the high modes are damped very fas
by the Schwarz method itself, it is worthwhile to use only a limited number of modes. In that case steps 3 and 5
are modified and the direct and inverse hat transform uses only’theJ first modes.

For more general problems the AS method is fully iterative and uses a Steffensen iteration [14], [24] procedure
on each mode of the hat transform of the traces as follows:

Algorithm 3
step 1: compute once and for all the eigenelemenis®,,,m = 1 to J solution of problem (E).
step 2 to step 6 are identical to the corresponding stepdgarithm 2.
step7: check convergence. If necessary go to step2 for an additional cycle.

We observe that one needs to apply the one-dimensional Aitken-Steffensen acceleration of step 4 (algorithm 2
or 3) only on the generalized Fourier transform of the traces, that is to say, only on the different interfaces of the
sub-domains, which limits the costs of the computation of the eigen-elements.

One advantage of our method is that it can be applied to many different situations involving block-wise relaxation
method for the Schwarz iteration that may not require overlapping. It can be applied, for example, to the Dirichlet-
Neumann DD method. Let us choose for example for problHp) & Neumann condition off, and a Dirichlet
condition onI',_;. Denoting byd, andn, the Dirichlet and Neumann traces op the trace transfer operator is:

_ g ”p—lzTé(d/pv"p) _ _ _ il
dg—Tl(nl),...,{ dp+1:T;;(dp,’l’Lp) p=2toP 1,...,np_1—Tp(dp)

with a matrix that takes the form (2). For the full discretization we approximate the normal derivative by a linear
combination of some mesh values; then the trace transfer operator has an uncoupled structure. This is of course thq
key to get a direct solver. We refer to [10] for an application of this type with a transmission problem. It should
be noticed that our technique relies only on the construction of the main eigenvectors of this operator. Our method
can be extended easily to Robin boundary conditions or similar optimized interface conditions [7], and possibly
boundary conditions that include relaxation terms [6].

Finally let us emphasize that the extension of this method to multidimensional DD associated to a graph that
is a multidimensional grid can be done in a straightforward way with the multilevel DD of [11] that uses at each
level a strip DD algorithm.

Let us now consider our DD method in the framework of Finite Element (FE) approximations of elliptic problems.



V. APPLICATION TO FINITE ELEMENT ON TENSORIAL PRODUCT OF ONE-D GRIDS
We still restrict ourselves to a separable operator, but in a form that is better suited to FE approximation:

Ly = —0:(a10y) + 0105 + c1, Lo = —0y(a20y) + b20y + c2,
The problem to be solved on the rectangle= [e, w] x [n, 5] is:

L1i+ Lot = f, inR, t(z,s/n) =0, w(w/e,y) = U,y Ue,y,

The change of unknown = 4 — u,, & — u. 2= gives the homogenous Dirichlet problem:

Llu + LQU = fv U([E, S/TL) = 07 u(w/e,y) = O’

with variational form:u in H{, for all v in H}
/ (a1ugvy + brugv + c1uv + aguyvy + bauyv + couv — fv) = 0. (18)
R

We consider a semi discrete FE approximation of this variational problem. On a y-mesh we have a FE space
with basis functionp,,q = 1,---,J. The unknown function is*(z,y) = Z(}]:luq(l‘)goq(y) with ug(w/e) = 0.
Replacingu by u* andv by v(x)e;(y) in (18) we obtain the semi discrete variational problem:

Z/ [a10,ug0pv + - }dx/ ©qpidy...
q w S

c n (19)
+ Z/ uquaz/ [a20y @Oy + -+ ldy = fR fopjdxdy.
q w S

We introduce the following notations:

e
ol (u,v) = / (a1uzvy + biugv + cruv)de
w
n
o?(u,v) = / (a2uyvy + bauyv + couv)dy
S

fj(x):/ fcpjdy7ﬂl(u,v):/ UUdI,ﬂ2(U,U):/ uvdy

w
Biq = B°(5,9q), g = & (5, 9q)-

Then the semi discrete variational problem (19) is: forga# 1,--- , J find u, in H{(w,e) such that for alb in
Hi(w,e)andj=1,---,J
> 1Bjga’ (ug, v) + ajgB (ug, v)] = B (£}, ). (20)

q
We use the generalized Fourier transform:

J
ug(z) = Z
m=1

In order to obtain uncoupled problems we need a modified transform of the right hand side:

J J
fj = Z Zﬁjqq)mqu-

m=1qg=1

>

m(T)Prmg; q=1,---,J.

Substitution in equation (20) gives:

Z Z[ﬂjqal(ﬁmv v) + O‘J’qﬂl(ﬂma v) — ﬂjqﬂl(fma )| ®Pmq = 0. (21)
qg m
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Choosing thed’s as the eigenvectors of the spectral problem:

D jePmg =Am > Big®Pmgm=1,---,J, (E")
q q
gives to equation (21) the uncoupled form:
o (i, v) + A B (i, v) = B (Fins v). (22)
For the full FE approximation we introduce an x-mesh and a FE space with basis fufigtipn=1,--- ,1. We

replaceu, by >_, up0, andv by 6; in (20). The generalized Fourier transform, = >, 4pm®m, Using the
eigenvectors of the spectral probleif’) gives the uncoupled discrete hat problem:

Vm € (1,..,0), Vi € (1,.,1), Y [0 (0p, 0:) + A" (0p, 0:)]ipm = 5" (fm, 0:) (23)
p
We are then back to the situation where we can apply the algorithm of Sect. 4, as it was the case for FD.
To illustrate this result, we consider the following numerical experiment with the homogeneous Dirichlet Poisson
problem
_(uzx + uyy) = f7 (l’,y) € QS7 UpQ, = 0.

Q, is the square domai(0, 1)2.
The functionf is such that the exact solution is the polynomial

up(z,y) = 150z(z — 1)y(y — 1)(y — 1/2). (24)

We use a Cartesian grid 6f; with 73 x 73 elements that is uniform i, but randomin y.

In Figure 3, we monitor the error ik, norm according to the number of sub-domains, and the number of
modes that are accelerated. The space step iny ttieection parallel to the interface is given in Figure 4. The
ratio between the largest space step and smallest space stepyirditteetion is abou96. While the solver is in
principle a direct solver, we notice that the error obtained with AS is of ordef. A second iteration cycle of
AS is needed to obtain the discrete solution with machine accuracy. We attribute this imperfect resolution that is
not present with the original AS method on regular Cartesian mesh [11] to the inaccuracy of the computation of
the eigenvectors that have high frequency components. As a matter of fact, if we apply the AS algorithm with an
acceleration on the main half of the eigenvectors components only.fi.e-,Z) we obtain roughly the same level
of accuracy after one cycle. It is only for the second cycle of AS that the differences between an acceleration of
all components or half of them shows up.

Let us notice, however, that AS is fairly insensitive to the number of subdomains. This is one of the reasons
why AS appears to be a scalable parallel linear solver [4], [9].

So far we have restricted ourselves to separable linear operators. In the next section we will address some of the
difficulties in using AS to nonseparable and/or nonlinear elliptic operators.

VI. NONSEPARABLE AND NONLINEAR OPERATORS
We consider now an operatdr= L; + Lo that isnot separable. We will focus on the following example,
Ly = —0zzu + c1(x)u, Ly = —0yyu + ca(x, y)u.

We introduce a full FD discretization and denote A (respA%) the approximation of,., (respd,,). Then an
approximation of the equatiohu = f is:

—Abui; + er(zi)uig — Asuij + co(wi, yj)uig = fij (25)

The generalized Fourier transform; = 5, aﬂ@;‘j with a family of eigenvector@} indexed by: applied to this
equation gives:

Y (=A% @a®]y) + (ea(wi)ia — fu) P + Y [=A5 + ea(wi, y)| ;a5 = 0 (26)
l l
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To handle the second sum we introduce thedexed family of spectral problems:

m ¥ mjo

and choose thé@! ’s as the eigenvectors df£?). In the first sum we have (assuming for simplicity the h-mesh
uniform): ' ‘ ‘ '
— AL (03 ®];) = —1/h* (G ®) " + i@ — 20,P]).

We multiply equation (26) bybinj for a fixedm and sum overj. Using the orthogonality of th@f for a fixedi
and the notations;,, = 3=, ;- '®} - anddj,, = 3=, &' @i, ., we obtain the coupled problem:
—1/R*(Clylti—tm + Ao Wit 1m — 20im)
(e (@) + Ay )lim + Z —1/B2 (¢l oty + i i) = fim (27)
l#m

This shows that the hat unknowns, = (tim); are coupled by tridiagonal matric€s,,, with a sub-diagonal of
i, anull diagonal, and an upper-diagonaldf .

This coupling depends on how different are thés. For example if there are only two different families of
eigenvectors ®! for i < i and®? for i > i+ 1 then the matrixCy,,, has only two nonzero element§! andd;,,.
Moreover the diagonal m-block hak,,, in position (i,i + 1) and !l in position (i + 1,17).

To illustrate this situation, let us consider a problem with non separable operator, on the same Cartesian grid

—AU(.CU,y) + C(ﬁ,y)U(l‘,y) = f(xvy)> (a:,y) € Qsa UpQ, = 0.

The rhsf is such that the exact solution ig from (24).

We use two sub-domains, with an overlap from one to five meshes ; the fungtiopn depends only on thg-
variable on each mid-part of the domain (hete:, y) = 10y on the first mid-part of the domain, anrgr,y) = 1
on the second).

We use algorithnB to accelerate the Schwarz method, this time with the resolution of probigmin each
sub-domain. We have then to solve one probldiy) per interface of the overlap (in our case: two problgiy)).

We observe that the error after only one acceleration is almost of afdét in comparison of the error of the
Schwarz method, which is of ordé®—2. Note that the error after each acceleration decreases according to the size
of the overlap (see Figure 5).

Further the same argument may be applied to more general second order operator

L1 = —a1(2)0zpu + b1(2)0zu + ¢1(x)u, Ly = —ag(x,y)0rpu + bo(x,y)0zu + co(x, y)u,

if the approximationZ? has coefficients depending anbut not ony.

We would like further to show numerically, that the nature of the coupling in (27) is fundamental. For flow in
porous media, it is necessary to use fast solver for the operataor(a(z,y)Vu(x,y)), with disparate scales for
the size ofa between geologic layers.

The simplest case corresponds to parallel geologic layer that can be aligned to the grid of discretization. To
illustrate this situation we define the problem :

—div (a(:c,y)Vu(w,y)) = f(xvy)7 (Qf,y) € QS: UpQ, = 07

with a(.,.) as follows
1
a(z,y) = ap+ (1 — ap)(1 + tanh((x — 5)/6))/2, ap = 10!, e=1072.

The functiona(x, y) exhibits a jump of ordeil0, across an interface aligned with thedirection in the middle
of the domain. As shown in Figure 6, the AS method exhibits fast convergence with a minimum overlap.

In contrast, the convergence of AS becomes very poor if the funetign) is chosen with a jump not parallel
to the interface. Figure 7 gives such evidence with

a(x,y) =ap + (1 —ap)(1 + tanh((x — (Bh*xy + 1/2 — h))/€))/2.
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Because of the construction of the functiaq.,.), the problem becomes ”"strongly” nonseparable, i.e., the
tridiagonal matrice<”;,,, cannot be neglected any longer.

The method described in this section is not cost effective in the general case. As a matter of fact the number
of eigenvector problems to be solved is prohibitively large. We conclude this section with an illustration of the
performance of the AS method when we use a priori an analytical approximation of the eigenvectors of the trace
transfer operator.

The first example is a Poisson problem solved on an overset mesh (see Figure 8). The domain of computation
is 2, \ D, where(), is the rectangl€0, 27) x (0,7) and D is the disc of centefr, 7) and radiusr/12. We use a
multiplicative Schwarz algorithm between two overlapping subdomains whose boundary fits respéflivelpd
0D. The mesh of the subdomain with the boundafy, is a subset of a regular Cartesian mesh dentedThe
mesh of the second subdomain denaf&dis a regular mesh in polar coordinatgs #). The overlap between both
subdomains in radial directiop is bounded by2 h. The transmission conditions of Dirichlet type between the
two subdomains are obtained by using the standard second order bilinear interpolation. Because the interpolation
satisfies a maximum principle, we have a linear convergence of the multiplicative Schwarz algorithm. We accelerate
the trace of the solution on the artificial interfa@€” by usingexp(k2mif), k € Z as an approximation of the
eigenvectors of the trace transfer operator. Figure 9 shows the decay of the error in maximum norm when one
iterates on the cycle of AS accelerations. In this example the exact solutigx,ig) = sin(2z) + cos(2y). The
Cartesian mesh is a subset of the regular @oigt 54. The annular subdomain has a regular mesh in polar coordinate
(p,0) with 20 x 48 grid points. This algorithm reaches the level of accuracy of the discrete overset solution after
5 iterations of the AS method. We have checked that the convergence speed is similar for larger overlaps. Let us
notice, however, that the convergence rate may deteriorate when the disc boahtdapproaches the boundary
of the rectangle&)f.

Our second and last example is for the weakly non linear problem

Au+ Aexp(u) = f, (z,y) € Qs,upn, = 0. (28)

This Bratu problem [25] is solved on a Cartesian grid using the approximation of the eigenvectors of the trace
transfer operator corresponding 19", that issinkry, k € Z. We use a strip DD as in Section 3, and apply

a Newton algorithm to solve each subdomain. The AS algorithm is therefore applied to the nonlinear problem
directly. The AS cycle is repeated until convergence to the discrete solution. An alternative solution would be to
use AS on the linearized operator itself, inside a global Newton loop [4].

We analyze the numerical efficiency of our iterative solver by counting the number of linear solves in each
subdomain to reach convergence with an error in maximum norm that is less than a tolerance #fadnies
interesting result is that the number of subdomain solves is fairly insensitive to the space gtdjpeiction. The
sensitivity of the number of iterations to reach convergence to the number of subdomains decays as the overlap ge
larger. Overall we have a very moderate growth of the number of iterations as the number of subdomains grows.
This important property makes the AS method numerically relevant to achieve scalable performance on a parallel
system. Figure 10 reports on the number of subdomain solves with respectively&) and81 x 80 discretization
grids, A = 6 andtol = 10~°. The stop criterium for the Newton algorithm is one order of magnitude smaller than
tol. The overlap can be one or three mesh points in:tldérection. This result is an average of twenty runs starting
with a random positive initial condition of maximum norbd@~!. The standard deviation is of order one to two
iterations. We may have larger deviationtdf is close to the level of accuracy obtained after a given AS cycle. We
have an average of 11 AS cycle to reachoa® discrete error in maximum norm. The more cost effective solution
corresponds to the larger number of subdomains that is used in parallel computation. Let us how summarize the
conclusions of this paper.

VIlI. CONCLUSION

We have shown in this paper how to extend to general Cartesian mesh with arbitrary space steps in each direction,
the so-called AS method first presented in [10] for FD discretization of elliptic operataegyatar Cartesian grids.
Results were presented for FD as well as FE approximations. This paper demonstrates that the AS method is not
inherently dependent on the Fourier method, but rather on the possibilities to split the elliptic operator using a
family of dominant eigenvectors. The trace-transfer operator can then be well approximated by a set of uncoupled
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one dimensional operators. Therefore, the Aitken acceleration applied to the coefficient of the traces generated by
the Schwarz method in this decomposition has high numerical efficiency.

This acceleration technique is not a linear technique by nature, and can be applied to nonlinear elliptic problems
as well [13]. One may consider using this technique to build preconditioner to Krylov methods [16]. We preferably
pursue the development of this method with an objective that to speed up existing CFD code with minimum changes
in the code and allow efficient distributed computing with slow networks [4], [9] that are characteristic of affordable
Beowulf clusters.

Acknowledgement: This work was supported in part by the NSF Grant ACI-0305405. We would like to thanks
B.Smith and the PETSc team of Argonne Nat. Lab for their assistance in using the PETSc library.
REFERENCES

[1] A.Averbuch, M. Israeli and L.MozovoiOn Fast Direct Elliptic Solver by Modified Fourier Methoblumer. Algorithms, Vol 15, pp
287-313, 1997.

[2] S.Balay, W.D.Gropp, L.C.Mclnnes, and B.F.SmitPETSc Users Manuallech Rep. ANL-95/11, Revision 2.1.5, Argonne Nat. Lab.
2003.

[3] J. Baranger, M. Garbey and F.Oudin-DardRecent Development on Aitken-Schwarz Metfi8th Int. Conf. on Domain Decomposition
Methods DD13, Domain Decomposition Methods in Science and Engineering, CIMNE, Barcelona, N.Debit et Al edt, pp289-296, 2002.

[4] N. Barberou, M.Garbey, M.Hess, M. Resch, T. Rossi, J.Toivanen and D.Tromeur DeBrotite Efficient Meta-computing of linear
and nonlinear elliptic problems]ournal of Parallel and Distributed Computing- special issue on grid computing, Vol63, Issue 5, pp
564-577, 2003.

[5] I.Faille, A Control Volume Method to Solve an Elliptic Equation on Two-dimensional Irregular Meshing,
Comp.Meth.Appl.Mech.Engrg.,100, pp.275-290, 1992.

[6] D. Funaro, A. Quarteroni, P. ZanollAn Iterative Procedure with Interface Relaxation for Domain Decomposition Mett&idév J.
Numer. Anal. 25, no. 6, pp 1213-1236, 1988.

[7] M. Gander, L. Halpern, F. NatafDptimized Schwarz MethodBomain decomposition methods in sciences and engineering (Chiba,
1999), DDM.org, Augsburg, 1527 (electronic), 2001.

[8] M.Garbey,Acceleration of the Schwarz method for elliptic problémappear in SIAM J. of Scientific Computing.

[9] M.Garbey, B.Hadri and W.Shyyast Elliptic Solver for Incompressible Navier Stokes Flow and Heat Transfer Problems on the Grid,
, 43rd Aerospace Sciences Meeting and Exhibit Conference, Reno January 2005, AIAA-2005-1386, 2005.

[10] M. Garbey and D. Tromeur-DervouTwo level Domain Decomposition for Multicluster®omain Decomposition in Sciences and
Engineering, T. Chan & Al editors, published by DDM.org, pp325-339, 2001.

[11] M. Garbey and D. Tromeur-Dervouditken-Schwarz Algorithm on Cartesian Gyiti3th Int. Conf. on Domain Decomposition Methods
DD13, Domain Decomposition Methods in Science and Engineering, CIMNE, Barcelona, N.Debit et Al edt, pp53-66, 2002.

[12] M.Garbey and D.Tromeur DervouRarallel Algorithms with Local Fourier Basjsl. Comput. Phys., Vol 137, No 2, pp 575-599, 2001.

[13] M.Garbey and D. Tromeur Dervoudn some Aitken like acceleration of the Schwarz Methodl, J. for Numerical Methods in Fluids.

40 (12), pp 1493-1513, 2002.

[14] P. Henrici,Elements of Numerical Analysidohn Wiley & Sons Inc, New York-London-Sydney, 1964.

[15] M.lsraeli, E.Braverman and A.Averbuch, Hierarchical Domain Decomposition Method with Low Communication Overh&3ith Int.

Conf. on Domain Decomposition Methods DD13, Domain Decomposition Methods in Science and Engineering, CIMNE, Barcelona,
N.Debit et Al edt, pp395-404, 2002.

[16] D. E. Keyes,How Scalable is Domain Decomposition in Practic€?pceedings of the 11th Intl. Conf. on Domain Decomposition
Methods (C.-H. Lai, et al, eds.), pp. 286-297, 1998.

[17] Yu.A.Kuznetsov,Overlapping Domain Decomposition Method for FE-problems with elliptic singular perturbed operdotsth
International Symposium on Domain ecomposition Method for PDEs (Moscow, 1990) SIAM Phladelphia, PA, pp223-241, 1991.

[18] P.L.Lions, On the Schwarz Alternating Method First International Symposium on Domain Decomposition Methods for Partial
Differential Equations, Roland Glowinski and Gene H. Golub areda&d A. Meurant and Jacquegriaux edt. SIAM, Philadelphia,

PA, pp 1-42, 1988.

[19] P.L.Lions,On the Schwarz Alternating Method, IBecond International Symposium on Domain Decomposition Methods for Partial
Differential Equations, Tony Chan and Roland Glowinski and Jacq@emux and Olof Widlund edt. SIAM, Philadelphia, PA, pp
47-70, 1989.

[20] T.Rossi and J.Toivanem Parallel Fast Direct Solver for the Discrete Solver for Block Tridiagonal Systems with Separable Matrices
of Arbitrary Dimension SIAM J.Sci.Comp., 20, 1778-1793, 1999.

[21] Y.Saad,lterative Methods for Sparse Linear Systei®@5\M, 2nd ed., 2003.

[22] H.A.Schwarz, Gesammelte Mathematische Abhandlungergnd ed.,, Springer Berlin, pp.133-143, 198derteljahrsschrift der
Naturforschenden Gesellsch&@yrich, Vol15, 1st ed. pp.272-286, 1870.

[23] B. Smith, P. Bjorstad and W.Gropf@omain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press, 1996.

[24] J. Stoer and R. Burlishintroduction to Numerical AnalysisTAM 12 Springer, 1980.

[25] C.WienersA Parallel Newton Multigrid for High Order Finite Elements and its Application to Numerical Existence Proofs for Elliptic
Boundary Value ProblenCZombustion Theory Modelling, Vol 76(3), pp 175-180, 1996.



14

181 35
Il Aikten - gmres : 198*198
[ PETSC Multigrid : 198*198
16| [ Aikten - gmres : 398198
3t — M PETSc Multigrid : 398*198 ||
141
25 1
121
o 10F g 2r ]
3 <
2 ]
” gL -~ Aikten - gmres : 198*198 =3
-o- Aikten - gmres : 398*198 B 1
—A- PETSc Muligrid : 198*198
6 —7- PETSc Multigrid : 398*198
ideal Speedup
1k ]
4
/ 05} g
2‘ I
0 . . . . ) 0 . . .
2 3 5 8 10 16 2 3 5
number of processors number of processors
Fig. 1. Speedup between Aikten solved with GMRES and Fig. 2. Elapsed time for Aikten solved with GMRES in each
PETSc multigrid. subdomain and PETSc multigrid.
error with 3 subdomains error with 4 subdomains error with 5 subdomains
T T 2 rsgaaT T 2% v T
or 4 of 4 or 4
—*— SCHWARZ —*— SCHWARZ —* SCHWARZ
—©- AS (all modes) —©- AS (all modes) -5~ AS (all modes)
—+— AS (half modes) —— AS (half modes) —— AS (half modes)
-2t 4 -2+ 4 -2+ 4
o -4r 1o -4r 1o —4r E
5 S S
g g g
s s s
5 gl 15 L 15 L ]
-8t 4 -8t 4 -8t 4
-10F 4 -10f 4 -10f 4
_12 . . 12 . . 12 . .
o 5 10 15 0 5 10 15 0 5 10 15
Fig. 3. Error in Lz norm with, from left to right 3, 4 and 5 subdomains
mesh step in y direction
0.025 T T T
0.02 - R
0.015
0.01 H
0.005 - B
o | I I I I I I I I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Non uniform Cartesian mesh for the Poisson problem



15

-1.5F
:
2l
—o5|
3
S -351
g x x x
2 x
5 @ o}
5 -4t + o ©
+
+
-4.5F-
5l
—<— SCHWARZ with overlap=1
—&— SCHWARZ with overlap=3
—t— SCHWARZ with overlap=5 x
5517 x. AS with overlap=1
O - AS with overlap=3
+ - AS with overlap=5
6 T T . . . . . &
1 2 3 4 5 6 7 8 9
Iterations
Fig. 5. Nonseparable operator : error wittsize of overlap
[ S r
W
oF 2
W
1
W
-2r I
I
0"
I
-4t 1
W
) N ]
) A o
L2 6t VW - _ o
5 \i} Hm— e Ly 5
0 oo N i
ST ool N
-8 LTl e
oo \ \
AN %
\
-10( 3\
- overlap=1 A [ overlap=1 AN
-6~ Schwarz with overlap=3 \\ -6~ Schwarz with overlap=3 ‘No
121 —+ overlap=5 \ —+ overlap=5 \
= overlap=1 & = overlap=1 \\
-O- Aitken-Schwarz with overlap=3 -O- Aitken-Schwarz with overlap=3 \
—+= overlap=5 —+= overlap=5
“14 T T T . . . . ) ~05 T T T . . . . i)
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Iterations Iterations
Fig. 6. a(.,.) has a steep gradient parallel to the interface Fig. 7. a(.,.) has a steep gradient that crosses the interface

inner solution

outer solution

Fig. 8. Solution components on the overset mesh



1
* AS convergence
O error in rectangular domain
0 + _error in annular domain
=1
wys
3
s
5
6
7 I I I I I I
0 2 4 6 8 10 12 14

Fig. 9. Convergence

history with the overset mesh.

16

36 O 8081 overlap 1 q
* 80*81 overlap 3
v 80*11overlap 1
34k O 80*11 overlap 3 q
32r T
20 . . . . . . . . .
35 4 45 5 55 6 65 7 75 8
Fig. 10. Number of block solves for the Bratu problem.



