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Abstract

OpenMP has gained wide popularity as an API for parallel mogning on shared memory and
distributed shared memory platforms. Despite its broadlavisity, there remains a need for a portable,
robust, open source, optimizing OpenMP compiler for C/Gettfran 90, especially for teaching and
research, e.g. into its use on new target architectures, aISMPs with chip multithreading, as well as
learning how to translate for clusters of SMPs. In this pawerpresent our efforts to design and implement
such an OpenMP compiler on top of Open64, an open source rfraimework, by extending its existing
analysis and optimization and adopting a source-to-soueseslator approach where a native back end
is not available. The compilation strategy we have adoptedl the corresponding runtime support are
described. The OpenMP validation suite is used to deterrtlieecorrectness of the translation. The
compiler's behavior is evaluated using benchmark tests filse EPCC microbenchmarks and the NAS
parallel benchmark.
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. INTRODUCTION

OpenMP [1], a set of compiler directives and runtime libresytines, is the de-facto programming standard for
parallel programming in C/C++ and Fortran on shared memodydistributed shared memory systems. Its popularity
stems from its ease of use, incremental parallelism, padace portability and wide availability. Recent research
at language and compiler levels, including our own, has idensd how to expand the set of target architectures
to include recent system configurations, such as SMPs baséhip Multithreading processors [2], as well as
clusters of SMPs [3]. However, in order to carry out such warkuitable compiler infrastructure must be available.
In order for application developers to be able to explorer®fié¢ on the system of their choice, a freely available,
portable implementation would be desirable.

Many compilers support OpenMP today, including such pedpriy products as the Intel Linux compiler suite,
Sun One Studio, and SGI MIPSpro compilers. However, thairemcode is mostly inaccessible to researchers and
they cannot be used to gain an understanding of OpenMP cemedhnology or to explore possible improvements
to it. Several open source research compilers (Omni Opendipiter [4], OdinMP/CCp [5], and PCOMP [6])
are available. But none of them translate all of the sournguages that OpenMP supports, and one of them is
a partial implementation only. Therefore, there remaingeadnfor a portable, robust, open source and optimizing
OpenMP compiler for C/C++/Fortran 90, especially for taaghand research into the API.

In this paper, we describe the design, implementation aatliation of OpenUH, a portable OpenMP compiler
based on the Open64 compiler infrastructure with a uniqueitiylesign that combines a state-of-the-art optimizing
infrastructure with a source-to-source approach. Open$lldpen source, supports C/C++/Fortran 90, includes
numerous analysis and optimization components, and is pletenmplementation of OpenMP 2.5. We hope this
compiler (which is available at [7]) will complement the stihng OpenMP compilers and offer a further attractive
choice to OpenMP developers, researchers and users.

The reminder of this paper is organized as follows. Sectiaegcribes the design of our compiler. Section 3
presents details of the OpenMP implementation, the runSopgport as well as the IR-to-source translation. The
evaluation of the compiler is discussed in Section 4. Sechioeviews related work and the concluding remarks
are given in Section 6 along with future work.

*Wenguang Chen and Weiming Zheng are with Computer Scienparfeent, Tsinghua University, China.



II. THE DESIGN OFOPENUH

Building a basic compiler for OpenMP is not very difficult seathe fundamental transformation from OpenMP
to multithreaded code is straightforward and there areadiresome open source implementations that may serve
as references. However, it is quite a challenge to build aptet®, robust implementation which can handle real
applications. But such a compiler is indispensable for-vemld experiments with OpenMP, such as considering
how a new language feature or an alternative translationoagp will affect the execution behavior of a variety of
important codes. Given the exceptionally high cost of dasig this kind of compiler from scratch, we searched
for an existing open-source compiler framework that metreguirements.

We chose to base our efforts on the Open64 [8] compiler switéch we judged to be more suitable than, in
particular, the GNU Compiler Collection [9]. Open64 was opmmurced by Silicon Graphics Inc. from its SGI
Pro64 compiler targeting MIPS and Itanium processors. fitoiw mostly maintained by Intel under the name Open
Research Compiler (ORC) [10], which targets Itanium plaife. Several other branches of Open64, including our
own, have been created to translate language extensioresform research into one or more compilation phases.
For instance, the Berkeley UPC compiler [11], extends Ogden@mplement UPC [12]. Open64 is a well-written,
modularized, robust, state-of-the-art compiler with sapgor C/C++ and Fortran 77/90. The major modules of
Open64 are the multiple language frontends, the interpioed analyzer (IPA) and the middle end/back end, which
is further subdivided into the loop nest optimizer (LNO)olgl optimizer (WOPT), and code generator (CG).

Five levels of a tree-based intermediate representatilitiscalled WHIRL exist in Open64 to facilitate the
implementation of different analysis and optimization gd& They are classified as being Very High, High, Mid,
Low, and Very Low levels, respectively. Most compiler optzations are implemented on a specific level of WHIRL.
For example, IPA and LNO are applied to High level WHIRL whiOPT operates on Mid level WHIRL. Two
internal WHIRL tools were embedded in Open64 to support imapiler developer; one washirlb2a, used to
convert whirl binary dump files into ASCII format, and the ethwaswhirl2c/whirl2f, to translate Very High and
High level WHIRL IR back to C or Fortran source code. Howevke resulting output code was not compilable.

The original Open64 included an incomplete implementatbthe OpenMP 1.0 specification, inherited from
SGlI's Pro64 compiler. Its legacy OpenMP code was able to leadrgktran 77/90 code with some OpenMP features
until the linking phase. The C/C++ frontend of Open64 wasetafrom GCC 2.96 and thus could not parse
OpenMP directives. Meanwhile, there was no correspondipgn®IP runtime library released with Open64. A
separate problem of Open64 was its lack of code generatoradohines other than Itaniums. One of the branches
of Open64, the ORC-OpenMP [13] compiler from Tsinghua Ursitg that was worked on by two of the authors of
this paper, tackled some of these problems by extending @& frontend to parse OpenMP constructs and by
providing a tentative runtime library. Another branch wiokon this problem was the Open64.UH compiler effort
at the University of Houston, worked on by the remainingsharg of this paper. It focused on the pre-translation
and OpenMP translation phases. A merge of these two effaggésulted in the OpenUH compiler and associated
Tsinghua runtime library. More recently, a commercial pretdbased on Open64 and targeting the AMD x8664,
the Pathscale EKO compiler suite [14], was released witlpargor OpenMP 2.0.

The Open64.UH compiler effort designed a hybrid compilghvebject code generation on Itaniums and source-
to-source OpenMP translation on other platforms. The Opecmpiler described in this paper uses this design,
exploits improvements to Open64 from several sources diebren an enhanced version of the Tsinghua runtime
library to support the translation process. It aims to presenost optimizations on all platforms by recreating
compilable source code right before the code generatiosgpha

Fig. 1 depicts an overview of the design of OpenUH. It cossiétthe frontends, optimization modules, OpenMP
transformation module, a portable OpenMP runtime librarycode generator and IR-to-source tools. Most of
these modules are derived from the corresponding origimen®4 module. It is a complete compiler for Itanium
platforms, for which object code is produced, and may be wsed source-to-source compiler for non-ltanium
machines using the IR-to-source tools. The translation &aflamitted OpenMP program works as follows: first, the
source code is parsed by the appropriate extended langu@gerfd and translated into WHIRL IR with OpenMP
pragmas. The next phase, the interprocedural analyzei),(iBAenabled if desired to carry out interprocedural
alias analysis, array section analysis, inlining, deadction and variable elimination, interprocedural constant
propagation and more. After that, the loop nest optimized@l) will perform many standard loop analyses and
optimizations, such as dependence analysis, registegchlocking (tiling), loop fission and fusion, unrolling,



automatic prefetching, and array padding. The transfaamaif OpenMP, which lowers WHIRL with OpenMP
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Fig. 1. OpenUH: an optimizing and portable OpenMP compilesdal on Open64

pragmas into WHIRL representing multithreaded code witlei@pP runtime library calls, is performed after LNO.
The global scalar optimizer (WOPT) is subsequently invokedransforms WHIRL into an SSA form for more
efficient analysis and optimizations and converts the SS#fback to WHIRL after the work has been done. A
lot of standard compiler passes are carried out in WOPTudieg control flow analysis (computing dominance,
detecting loops in the flowgraph), data flow analysis, allassification and pointer analysis, dead code elimination,
copy propagation, partial redundancy elimination andngfite reduction.

The remainder of the process depends on the target macbmariium platforms, the code generator in Open64
can be directly used to generate object files. For a nontitarplatform, thewhirl2c or whirl2f translator will be
invoked instead; in this case, code represented by Mid WH#Rtanslated back to compilable, multithreaded C or
Fortran code with OpenMP runtime calls. A native C or Fortcampiler must be invoked on the target platform
to complete the translation by compiling the output from @E into object files. The last step is the linking of
object files with the portable OpenMP runtime library and lfiganeration of executables for the target machine.

[1l. THE IMPLEMENTATION OF OPENMP

Based on our design and the initial status of Open64, we ngledecus our attention on developing or enhancing
four major components in order to implement OpenMP: frodtextensions to parse OpenMP constructs and convert
them into WHIRL IR with OpenMP pragmas, the internal tratista of WHIRL IR with OpenMP directives into
multithreaded code, a portable OpenMP runtime library sujppg the execution of multithreaded code, and the
IR-to-source translators, which needed work to enable tteegenerate compilable and portable source code.

To improve the stability of our frontends and to complemexisting functionality, we integrated features from
the Pathscale EKO 2.1 compiler. Its Fortran frontend costaaany enhancements and the C/C++ frontend extends
the more recent GCC 3.3 frontend with OpenMP parsing capabilhe GCC parse tree is extended to represent
OpenMP pragmas and is translated to WHIRL IR to enable latas@s to handle it. The following subsections
describe our OpenMP translation, runtime library and IRdarce translators.

A. OpenMP Tranglation

An OpenMP implementation transforms code with OpenMP dires into corresponding multithreaded code
with runtime library calls. A key component is the strategy franslating parallel regions. One popular method
for doing so is outlining, which is used in most open sourceagiters, including Omni [4] and OdinMP/CCp [5].
Outlining denotes a strategy whereby an independent, aepfamnction is generated by the compiler to encapsulate



the work contained in a parallel region. In other words, acpdure is created that contains the code that will be
executed by each participating thread at run time. This m#tkeasy to pass the appropriate work to the individual
threads. In order to accomplish this, variables that aredoslared among worker threads have to be passed
as arguments to the outlined function. Unfortunately, thisoduces some overheads. Moreover, some compiler
analyses and optimizations may be no longer applicable @ootlilined function, either as a direct result of the
separation into parent and outlined function or becauséréimslation may introduce pointer references in place of
direct references to shared variables.

The translation used in OpenUH is different from the staddautlining approach. In it, the compiler generates a
microtask to encapsulate the code lexically containediwighparallel region, and the microtask is nested (we also
refer to it as inlined, although this is not the standard nreaof the term) into the original function containing
that parallel region. The advantage of this approach is alidbcal variables in the original function are visible
to the threads executing the nested microtask and thus tieeshared by default. Also, optimizing compilers can
analyze and optimize both the original function and the otask, thus providing a larger scope for intraprocedural
optimizations than the outlining method. A similar appioaamed the Multi-Entry Threading (MET) technique [15]
is used in Intel's OpenMP compiler.

Original OpenM P Code Outlined Trandation
int main(void) /*Outlined function with an extra argument
for passing addresses*/
int a,b,c; static void __ompc_func_0(void
** __ompc_args)y
#pragma omp parallel private(c) int* pp_b,* pp_a,_p_c;

do_sth(a,b,c);
/*dereference addresses to get shared

return O; variables */
} _pp_b=(int *)(*__ompc_args);
Inlined (Nested) Tranglation —Pp_a=(int*)(*(__ompc_args+1));
_INT32 main()

[*substitute accesses for all variables*/
intab,c: }fio_sth(*_pp_a,*_pp_b _p_c);

[*inlined (nested) microtask */

void __ompregion_maini() int_ompe_main(void){

int a,b,c;

_INT32 __mplocal_c; void *__ompc_argv[2];

y/*Wrap addresses of shared variables*/
*(_ompc_argv)=(void *)(&b);

*(__ompc_argv+1)=(void *)(&a);

[*shared variables are keep intact, onl
substitute the access to private
variable*/

do_sth(a, b, __mplocal_c); .
} _sth( —mp -©) /*OpenMP runtime call has to pass the

addresses of shared variables*/
_ompc_do_parallel(__ompc_func_0,

/*OpenMP runtime call */
__ompc_argv);

__ompc_fork(& _ompregion_mainl);

= }

Fig. 2. OpenMP translation: outlined vs. inlined

Fig. 2 illustrates each of these strategies for a fragme@t@dde with a single parallel region, and shows in detail
how the outlining method used in Omni differs from the intigitranslation in OpenUH. In both cases, the compiler
generates an extra function (the microtasimpregion_mainl() or the outlined function_ompc_func_0()) as
part of the work of translating the parallel region enclgsifo_sth(a, b, c). In each case, this function represents
the work to be carried out by multiple threads. Each traisiaalso adds a runtime library call_¢mpc_fork()
or _ompc_do_parallel(), respectively) into the main function, which takes the addrof the compiler-generated
function as an argument and executes it on several threddsoily extra work needed in the translation to the
nested microtask is to create a thread-local variable tlizeethe private variable and to substitute this fof in
the call to the enclosed procedure, which now becodeesih(a, b, _mylocal_c). The translation that outlines the
parallel region has more to take care of, since it must wrapatidresses of shared variableandb in the main
function and pass them to the runtime library call. Withie thutlined procedure, they are referenced via pointers.



This is visible in the call to the enclosed procedure, whictthis version becomego_sth(x_pp-a, *_pp-b, _p_c).
The nested translation leads to shorter code and is moreaiecto subsequent compiler optimizations.

Both the original Open64 and OpenUH precede the actual Opemndhslation with a preprocessing phase named
OpenMP Prelowering, which facilitates later work by redgcthe number of distinct OpenMP constructs that occur
in the IR. It does so by translating some of them into othérkig smaller set of features is named MP in Open64
and they can also be generated by the Auto Parallelizatiodufecin LNO, enabling Open64 to support both
automatic and manual parallelization in a common framewdtlkalso performs semantic checks. For example, a
barri er is not allowed within acri ti cal orsi ngl e region. Some of the tasks performed are:

1) Convertingsecti on into onp do.

2) Converting unsupportefletch_And_Op intrinsics such ag’etch_And_Add into at om c.

3) Inserting memory barriers around each parallel regioprévent impermissible code motion.

4) Loweringat omi ¢ using one of three possible ways: replacement loy at i cal , a Compare_and_Swap
or Fetch_And_Op.

After prelowering, the remaining constructs are loweredew OpenMP directives can be handled by a one-to-one
translation; they includéarri er, at om ¢ andf | ush. For example, we can replad@r ri er by a runtime
library call named_ompc_barrier(). Most other OpenMP directives demand significant changebg¢dWHIRL
tree, including rewriting the code segment and generatimgwa code segment to implement the multithreaded
model.

The OpenMP standard makes the implementation of nestedlghara optional. The original Open64 chose to
implement just one level of parallelism, which permits aigihtforward multithreaded model. The implementation
of nested parallelism in OpenUH is work in progress. When rttaster thread encounters a parallel region, it
will check the current environment to find out whether it isspible to fork new threads. If so, the master thread
will then fork the required number of worker threads to exedhe compiler-generated microtask; if not, a serial
version of the original parallel region will be executed hg imaster thread. Since only one level of parallelism is
implemented, a parallel region within another paralleliwags serialized in this manner.

Fig. 3 shows how a parallel region is translated. The compimerated nested microtask containing its work is
named._ompregion_mainl(), based on the code segment within the scope optireal | el directive inmain/().

It also rewrites the original code segment to implement itdtithreaded model: this requires it to test via the
corresponding OpenMP runtime routine whether it is alreadthin a parallel region, in which case the code is

executed sequentially. If not, and if threads are availghke parallel code version will be used. The parallel varsio

contains a runtime library call nametmpc_fork() which takes the microtask as an argumenimpc_fork() is

the main routine from the OpenMP runtime library. It is resgible for manipulating worker threads and it assigns
microtasks to them.

OMP PARALLEL Code segment rewriting & microtask creation

#include <omp.h> int main(void)
{

int main(void) /* inlined microtask generated from parallel regidn
{ void __ompregion_maini( ...)
#pragma omp parallel {
printf("Hello,world.\n"); printf(“Hello,world.\n");
} return;

} /¥ __ompregion_mainl */
I* I.rﬁ.;.J.Iement multithreaded model */
__ompv_in_parallel = __ompc_in_parallel();
__ompv_ok_to_fork =__ompc_can_fork();
if((__ompv_in_parallel== 0) && (__ompv_ok_to_for= 1)))

/* Parallel version: a runtime library call foreating
multiple threads and executing the microtask irafbel */
__ompc_fork(& _ompregion_maini,...);
} else
{ /* Sequential version */
printf(“Hello,world.\n");
return;

}

}

Fig. 3. Code reconstruction to translate a parallel region



Fig. 4 shows how a code segment containing the worksharimgtaet onp f or, which in this case is
“orphaned” (i.e. is not within the lexical scope of the ersitg parallel construct), is rewritten. There is no need to
create a new microtask for this orphareup f or because it will be invoked from within the microtask created
realize its caller’s parallel region. OpenMP parcels ous &£ loop iterations to threads according to the schedule
specified; in the static case reproduced here, a threaddsbetdrmine its own execution set at run time. It does so
by using its unique thread ID and the current schedule paticgompute its lower and upper loop bounds, along
with the stride. A library call to retrieve the thread ID pegles this. The loop variablds private by default and so
it has been replaced by the thread’s private variableplocal_i. The implicit barrier at the end of the worksharing
construct is also made explicit at the end of the microtagieqsired by the OpenMP specifications. Chen et al. [13]
describe in more detail the classification of OpenMP divestiand their corresponding transformation methods in
the Open64 compiler.

Orphaned OMP Rewriting the code segment
FOR
void init()
/* get current thread id */
static void init(void) __ompv_gtid_s =__ompc_get_thread_num();
L
inti; /* invoke static scheduler */
#pragma omp for __ompc_static_init(__ompv_gtid_s, STATIC_EVEN,
for & ompv_do_lower,& ompv_do_upper, & ompv _dadsir...);

(i=0;i<1000;i++)
[* execute loop body using assigned iteration spce

afil=i*2; for(_mplocal_i = __ompv _do_lower; (__mplocal_i= <__ompv
} _do_upper); __mplocal_i = (__mplocal_i + 1))
} { a[__mplocal_i] = __mplocal_i*2;

/* Implicit BARRIER after work sharing construct$ *
__ompc_barrier();
return;

}

Fig. 4. Code reconstruction to translate an OMP FOR

Data environment handling is simplified by the adoption ofted microtasking instead of outlined functions to
represent parallel regions. All global and local variakifeshe original function are visible to a nested microtask;
theshar ed data attribute in OpenMP is thus available for free. Quiy vat e variables need to be translated. We
have seen in the examples that this is achieved by creatingaeary variables that are local to the thread and will
be stored on the thread stacks at runtime. Variablés inst pri vat e,| ast pri vat e andr educti on lists are
treated in a similar way, but require some additional woikstfa private variable is created. Foirr st pri vat e,
the compiler adds a statement to initialize the local copgpgithe value of its global counterpart at the beginning
of the code segment. Forast pri vat e, some code is added at the end to determine if the curreatidaris
the last one that would occur in the sequential code. If straitsfers the value of the local copy to its global
counterpartr educt i on variables are translated in two steps. In the first step, #aelad performs its own local
reduction operation. In the second step, the reductionabiperis applied to combine the local reductions and the
result is stored back in the global variable. To prevent & r@andition, the compiler encloses the final reduction
operation within a critical section. The handlingtdfir eadpri vat e, copyi n andcopypri vat e variables is
discussed below.

B. A Portable OpenMP Runtime Library

The role of the OpenMP runtime library is at least twofoldsEiit must implement standard user level OpenMP
runtime library routines such asnp_set_lock(), omp_set_num _threads() andomp_get_wtime(). Second, it should
provide a layer of abstraction for the underlying thread ipalation (to perform tasks such as thread creation,
suspension and wakeup) and deal with repetitive tasks @siahternal variable bookkeeping, calculation of chunks
for each thread used in different scheduling options). Tingime library can free compiler writers from many
tedious chores that arise in OpenMP translation and libwaiters can often conduct performance tuning without
needing to delve into details of the compiler. All OpenMPtmne libraries are fairly similar in term of functionality,



but the division of work between the compiler and runtimedily is highly implementation-dependent. In other
words, an OpenMP runtime library is tightly coupled with atfgalar OpenMP translation in a given compiler.

Our runtime library is based on the one shipped with the OR@rMP compiler, which in turn borrowed some
ideas from the Omni compiler’s runtime library. Like moshet open source ones, it relies on the Pthread API
to manipulate underlying threads as well as to achieve bpititta A major task of the runtime library is to create
and manage threads in a team. When an OpenMP program stakedate, the runtime library initialization is
performed by the master thread when the first parallel reggoencountered (this is indicated by the API call
__ompc_fork()). If N is the number of desired threads in the team, it willateeN-1 worker threads and initialize
internal variables (to record such things as the number @fatts and the default scheduling method) related to
the thread team. The worker threads will sleep until the erabtread notifies them that a microtask is ready to be
executed. The master then joins them to carry out the work@iticrotask. The worker threads go back to sleep
after finishing their microtask and will wait until they aretified of the next microtask. In this way, the worker
threads are reused throughout the execution of the entirgrgmm and the overhead of thread creation is reduced
to a minimum. This strategy is widely used in OpenMP impletatons.

We enhanced the original ORC-OpenMP runtime library to supfine compiler’s implementation of the
t hreadpri vat e, copyi n andcopypri vat e clauses. Fot hr eadpri vat e variables, the runtime library
will dynamically allocate private copies on the heap sterégy each thread and store their start addresses in an
array indexed by thread IDs. Thus each thread can easilysadte own copy of the data and the values may
persistent across different parallel regiongpyi n is implemented via binary copy from the global value of a
t hr eadpri vat e variable to the current thread’s private copy in the heamg®. To implementopypri vat e,

a new internal variable is introduced to store the addresheofopypri vat e variable from thesi ngl e thread

and all other threads will copy the value by dereferencingdme extra attention is needed to ensure the correct
semantics: a barrier is used to ensure all other threads tdoopy the value before thei ngl e thread has set
the address. Another barrier is used to ensuresthegl e thread will not proceed until all other threads finish the
copying.

Other enhancements to the runtime library include changorge interfaces to accommodate new translations,
optimizing the division of the work between the compiler aadtime library, modification to improve its portability,
and performance tuning. The resulting OpenMP runtime fijbia now one of the most complete open source
implementations.

C. The IR-to-Source Trandlators

We considered it essential that the compiler be able to gémerode for a variety of platforms. We initially
attempted to translate Mid WHIRL to the GNU RTL, but abandbiigis approach after it appeared to be too
complex. Instead, we adopted a source-to-source appraattershanced the IR-to-source translators that came
with the original Open64whirl2c and whirl2f) to output compilable, portable C and Fortran source coter af
translating OpenMP. As previously described, a native Castr&n compiler can then generate the object files and
link them with the portable OpenMP runtime library on noarium platforms.

To achieve this, the originathirl2c andwhirl2f had to be extended to translate Mid level WHIRL to compilable
code after the WOPT phase. This approach preserves valaablgsis and optimizations as far as possible. This
created many challenges, as tlbirl2c/whirl2f tools were only designed to help compiler developers loothat
High level WHIRL corresponding to a submitted program in anlan-readable way. We required them to emit
compilable and portable source code. For example, the dergenerated nested function to realize an OpenMP
parallel region was output bwhirl2c/whirl2f as a top-level function, since the compiler works on prograrits
one at a time and does not treat these in a special way; tHigeticompile correctly, since in particular, the shared
variables will be undefined. To handle this particular peol) a new phase was addedvtbirl2c/whirl2f to restore
the nested semantics for microtasks using the nested &umstipported by GCC an@ONTAI NS from Fortran 90.
Another problem is that though most compiler transformratibefore the CG (code generation) phase are machine-
independent, some of them still take platform-specific pet@rs or make hardware assumptions, such as expecting
dedicated registers to pass function parameters, thefdramestion for 64-bit ISA, and register variable identifiicat
in WOPT. To deal with this, a new compiler optiopor t abl e has been introduced to let the compiler perform
only portable phases or to apply translations in a portalalg (fior instance, the OpenMét oni ¢ construct will be



160

1000 T

Static

FOR e : Static,n ~-—+--

PARALLEL FOR ---%--- o Dynamic,n ------

140 BARRIER -8 - 4 xo Guided,n %
SINGLE —-m-- o .

REDUCTION ---6--- g

T T
PARALLEL —+—
NV

120

100
100

(microsecond)
©

80

60 [

<}
Overhead (microsecond)

Overhead

40 | o o

20 b o _ /;,:,:83:‘:':;:/ T o
. e

. . . . . . . . . . . .
1 2 3 4 5 6 7 8 1 2 4 8 16 32 64 128 256
Number of Threads Chunksize

Fig. 5. Parallel overheads of OpenUH on COBALT Fig. 6. Scheduling overheads of OpenUH on COBALT

transformed using theri ti cal construct rather than using machine-specific instrucjicBeme other problems
we faced included missing headers, an incorrect transl&iomultidimensional arrays, pointers and structures, an
incompatible data type sizes for 32-bit and 64-bit platferm/e used the enhancedhirl2c tool from the Berkeley
UPC compiler to help resolve some of these problems.

IV. EVALUATION OF THE COMPILER

We have chosen a set of benchmarks and platforms to help usev#he compiler for correctness, performance
and portability. The major platform used for testing is CQBAan SGI Altix system at NCSA. Cobalt is a
ccNUMA platform with a total of 1024 1.6GHz Itanium 2 processwith 1024 or 2048 GB memory. Two other
platforms were also used: an IA32 system running Redhat @x.wth dual Xeon-HT 2.4 GHZ CPUs and 1.0GB
memory, and a SunFire 880 node from the University of HoustBan Galaxy Cluster, running Solaris 9 with four
750MHz UltraSPARC-III processors and 8 GB memory. The sedoesource translation method is used when the
platform is not Itanium-based.

The correctness of the OpenMP implementation in the Openbidpder was our foremost consideration. To
determine this, we used the public OpenMP validation sui§ fo test the compiler’s support for OpenMP. All
OpenMP 1.0 and 2.0 directives and most of their legal contioing are included in the tests. Results on the three
systems showed our compiler passed almost all tests and drfibd results. But we did notice some unstable
results from the test fosi ngl e_copypri vat e and this is under investigation.

The next concern is to measure the overheads of the OpenUHileortranslation of OpenMP constructs. The
EPCC microbenchmark [17] has been used for this purpose.5Fand Fig. 6 show the parallel overheads and
scheduling overheads, respectively, of our compiler on & tbreads on COBALT. All constructs have acceptable
overheads except fareduct i on, which uses ariti cal section to protect the reduction operation on local
values for each thread to obtain portability.

We used the popular NAS parallel benchmark (NPB) [18] to camaghe performance of OpenUH with two
other OpenMP compilers: the commercial Intel 8.0 compiledt the open source Omni 1.6 compiler. A subset of
the latest NPB 3.2 was compiled using the Class A data set &ty @fathe three compilers. The compiler option -
2 was used and the executables were run on 4 threads on COBAJLT/ Bhows the normalized Mop/s ratio for
seven benchmarks. The results of LU and LU-HP from Omni wetererified but we include the performance data
for a more complete comparison. OpenUH outperformed Omoepixfor the EP benchmark. Despite its reliance
on a runtime system designed for portability rather tharnédg performance on a given platform, OpenUH even
achieved better performance than the Intel compiler in re¢vestances, as demonstrated by the FT and LU-HP
benchmarks. The result of this test confirms that the Openttdpier can be used as a serious research OpenMP
compiler on Itanium platforms.

The evaluation of portability and effectiveness of preedroptimizations using the source-to-source approach
has been conducted on all three test machines. The native @®@@iler on each machine is used as a backend
compiler to compile the multithreaded code and link the obfifes with the portable OpenMP runtime library. We
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compiled NPB 2.3 OpenMP/C in three ways: using no optimizain both OpenUH compiler and the backend GCC
compiler, usingd3 for GCC only, and using3 for both OpenUH and GCC compilers. All versions were exetute

with dataset A on four threads. Fig. 8 shows the speedup oE@Gdenchmark using different optimization levels

on the three platforms. Other benchmarks have similar sgeédt are not shown here due to space limits. The
version with optimizations from both OpenUH and GCC achsathérty (Itanium and UltraSparc) to seventy percent
(Xeon) extra speedup over the version with only GCC optititzs, which means the optimizations from OpenUH

are well preserved under the source-to-source approactharala significant effect on the final performance on
multiple platforms.

V. RELATED WORK

Almost all major commercial compilers support OpenMP toddgst target specific platforms for competitive
performance. They include Sun Studio, Intel compiler, Bedle EKO compiler suite and Microsoft Visual Studio
2005 beta. Most are of limited usage for public researchhdeale’s EKO compiler suite is open source because
it is derived from the GPL'ed SGI Pro64. It is a good refere@mpenMP implementation. However, its OpenMP
runtime library is proprietary and targets the AMD X8664tfdam.

Omni [4] is a popular source-to-source translator from TdskUniversity supporting C/Fortran 77 with a portable
OpenMP runtime library based on POSIX and Solaris threads.tBhas little program analysis and optimization
ability and does not yet support OpenMP 2.0. OdinMP/CCp $54niother source-to-source translator with only C
language support. NanosCompiler [19] tries to combineraat@ parallelization with manual parallelism annota-
tions using OpenMP. It also implements a variety of extemsitn OpenMP. However, it is not a fully functional
OpenMP compiler and the source is not released. The ORCHIPaompiler [13] can be viewed as a sibling of
the OpenUH compiler in view of the common source base. BuCitG++ frontend, based on GCC 2.96, is not
yet stable and some important OpenMP constructs (ehgeadpri vat e) are not implemented. It targets the
Itanium. PCOMP [6] contains an OpenMP parallelizer and adlator to generate portable multithreaded code to
be linked with a runtime library. Unfortunately, only Fair 77 is supported. GOMP [20] is an ongoing project
to provide OpenMP support in the GCC compiler. The Berkel®&Cltompiler effort [11] uses a similar idea to
ours. Our compiler has integrated and enhanced many desiedtures from Pathscale, ORC-OpenMP and the
Berkeley UPC compiler.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our effort to create an itigy portable OpenMP compiler based on the
Open64 compiler infrastructure and its branches. Thetrésalcomplete implementation of OpenMP 2.5 on Itanium
platforms. It also targets other platforms by providing arse-to-source translation path with a portable OpenMP
runtime library. Extensive tests have been applied to etalour compiler, including the OpenMP validation suite,
the EPCC microbenchmarks and the NAS parallel benchmaskiedtures offer numerous opportunities to explore
further enhancements to OpenMP and to study its performanasxisting and new architectures. Our experience
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also demonstrates that the open source Open64 compilasinfcture is a very good choice for compiler research,
given the modularized infrastructure and code contrilmgitvom different organizations.

In the future, we will focus on performance tuning both thee®P translation and the runtime library. We
intend to support nested parallelism. We are using OpenUEXxfdore language features that permit subsets of
a team of threads to execute code within a parallel regiorictwivould enable several subteams to execute
concurrently [21]. Enhancing existing compiler optimipas to improve OpenMP performance on new chip
multithreading architectures is also a focus of our ingggion [2]. We are exploring the creation of cost models
within the compiler to help detect resource conflicts amdmgads and obtain better thread scheduling. Meanwhile,
we are considering an adaptive scheduler to improve thalsitial of OpenMP on large scale NUMA systems.
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