

SUPERVISED CLUSTERING: ALGORITHMS AND APPLICATIONS

Nidal Zeidat, Christoph F. Eick, and Zhenghong Zhao

Department of Computer Science

University of Houston
Houston, TX, 77204-3010, USA
http://www.cs.uh.edu

Technical Report UH-CS-06-10

June 28, 2006

Keywords: Supervised clustering, representative based clustering, data set editing.

Abstract

This work centers on a novel data mining technique we term supervised clustering. Unlike traditional
clustering, supervised clustering assumes that the examples are classified and has the goal of identifying
class-uniform clusters that have high probability densities. Three representative–based algorithms for
supervised clustering are introduced: two greedy algorithms SRIDHCR and SPAM, and an evolutionary
computing algorithm named SCEC. The three algorithms were evaluated using a benchmark consisting of
UCI machine learning datasets. Experimental results suggest that SCEC outperforms the other two
algorithms for almost all data sets in the benchmark. Moreover, a study of the fitness function used by
supervised clustering shows that the landscape seems to have a “Canyonland” shape with many hills and
plateaus, thereby, increasing the difficulty of the clustering task for the greedy algorithms. Potential
applications of supervised clustering are discussed as well. We discuss how supervised clustering can be
used for class decomposition and demonstrate with experimental results how it enhances the performance
of simple classifiers. We also present a dataset editing technique, we call supervised clustering editing
(SCE), which replaces examples of a learned cluster by the cluster representative. Our experimental
results demonstrate how dataset editing techniques in general, and SCE technique in particular, enhance
the performance of NN classifiers. We also discuss how supervised clustering could be used for regional
learning.

1

SUPERVISED CLUSTERING: ALGORITHMS

AND APPLICATIONS

Nidal Zeidat1, Christoph F. Eick1, and Zhenghong Zhao1

Abstract

This work centers on a novel data mining technique we term supervised clustering. Unlike traditional
clustering, supervised clustering assumes that the examples are classified and has the goal of identifying class-
uniform clusters that have high probability densities. Three representative–based algorithms for supervised
clustering are introduced: two greedy algorithms SRIDHCR and SPAM, and an evolutionary computing algorithm
named SCEC. The three algorithms were evaluated using a benchmark consisting of UCI machine learning datasets.
Experimental results suggest that SCEC outperforms the other two algorithms for almost all data sets in the
benchmark. Moreover, a study of the fitness function used by supervised clustering shows that the landscape seems
to have a “Canyonland” shape with many hills and plateaus, thereby, increasing the difficulty of the clustering task
for the greedy algorithms. Potential applications of supervised clustering are discussed as well. We discuss how
supervised clustering can be used for class decomposition and demonstrate with experimental results how it
enhances the performance of simple classifiers. We also present a dataset editing technique, we call supervised
clustering editing (SCE), which replaces examples of a learned cluster by the cluster representative. Our
experimental results demonstrate how dataset editing techniques in general, and SCE technique in particular,
enhance the performance of NN classifiers. We also discuss how supervised clustering could be used for regional
learning.

Index Terms

Supervised clustering, representative based clustering, data set editing.

I. INTRODUCTION
Clustering is a popular descriptive data mining task where one seeks to identify a finite set of groups (or clusters)

to describe the data. A group contains objects that are similar while objects belonging to different groups are
dissimilar to each other with respect to a particular similarity metric. Clustering techniques can be further
subdivided into three groups, see Fig. 1. Traditional clustering, Fig. 1.a, focuses on finding tight clusters and would
generally produce a clustering with four clusters A, B, C, and D. Semi-supervised clustering algorithms [3], Fig.
1.b, not only focus on obtaining tight clusters but also on satisfying constraints with respect to a small set of pre-
classified objects. Objects belonging to different classes should belong to different clusters while objects belonging
to the same class should belong to the same cluster. Consequently, a semi-supervised clustering algorithm would
generate clusters E, F, G, and H. Finally, a supervised clustering algorithm [12] that uses a fitness function which
maximizes the purity of the clusters while keeping the number of clusters low would produce clusters I, J, K, and L,
as depicted in Fig. 1.c.

1 N. Zeidat, C. F. Eick, and Z. Zhao are with the Computer Science Department, University of Houston

2

Fig. 1. Traditional, semi-supervised, and supervised clustering

In this paper, a novel framework for supervised clustering is introduced. Three supervised clustering algorithms

are introduced and analyzed with respect to their performance using a benchmark of UCI datasets as well as a set of
2-dimensional datasets. Furthermore, applications of supervised clustering are discussed as well.

This paper is organized as follows. Section II introduces supervised clustering. Section III of this paper presents

related work with respect to both supervised clustering as well as representative based clustering. Section IV
presents and discusses the supervised clustering algorithms developed and investigated during this work. Analysis
of the experimental results related to the performance of the developed algorithms is presented in Section V while
discussion about the application of supervised clustering in dataset editing is presented in Section VI. Section VII
discusses the use of supervised clustering for regional learning. Finally, Section VIII draws conclusions for this
research and presents potential future research directions.

II. SUPERVISED CLUSTERING

A summary of the notations used throughout this paper is given in Table 1.

TABLE 1
A SUMMARY OF THE NOTATIONS USED THROUGHOUT THE PAPER

Notation Description
O={o1,…, on} Objects in a dataset
n Number of objects in the dataset
CLi Class number i

CL={CL1,…,CLc} The set of classes in the dataset
d(oi,oj) Distance between objects oi & oj
c The number of classes in the dataset
Ci Cluster number i where i=1, …, k
X={C1,…, Ck} A clustering solution consisting of clusters C1 to Ck
k=|X| The number of clusters in a solution X
q(X) A fitness function that evaluates a clustering X
d The dimensionality of a dataset

As stated earlier, supervised clustering is applied on classified examples with the aim of producing clusters that

have high probability density with respect to individual classes. Consequently, the fitness functions suitable for
supervised clustering are significantly different from the fitness functions used by traditional clustering algorithms.
Supervised clustering evaluates a clustering based on the following two criteria:

• Class impurity, Impurity(X). This is measured by the percentage of minority examples in the different
clusters of a clustering X. A minority example is an example that belongs to a class different from the most
frequent class in its cluster.

class 1
class 2
unclassified object

H

F

E

L

J I

D

c. Supervised clustering b. Semi-supervised clustering a. Traditional clustering

C B

A

Attribute1 Attribute1 Attribute1

Attribute2 Attribute2 Attribute2

K

unclassified object
class 1
class 2

G

3

• Number of clusters, k. In general, we like to keep the number of clusters low.

In particular, we used the following fitness function in our experimental work (lower values for q(X) indicate a

‘better’ solution).

q(X) = Impurity(X) + β∗Penalty(k) (1)

�
�

�

�
�

�

�

<

≥−
==

ck0

ck
n

ck

 Penalty(k) and ,
n

Examples Minority of #)Impurity(X where

with n being the total number of examples and c being the number of classes in a dataset. The parameter � (0< � �
5.0) determines the penalty that is associated with the number of clusters, k, in a clustering: higher values for �
imply larger penalties for a higher number of clusters. The objective of Penalty(k) is to dampen the algorithm’s
natural tendency to increase the number of clusters. However, we believe this dampening ought not to be linear
because the effect of increasing the number of clusters from k to k+1 has much stronger effect on the clustering
outcome when k is small than when k is large.

As we will discuss later in Section V, finding the best, or even a good, clustering X with respect to the fitness
function q(X) is a challenging task for a supervised clustering algorithm due to the following reasons:

1. The search space is very large, even for small datasets.
2. The fitness landscape of q contains a large number of local minima.
3. There is a significant number of ties (i.e., clusterings X1 and X2 with q(X1)=q(X2)) in the fitness

landscape creating plateau-like structures that present a major challenge for most search algorithms,
especially hill climbing and greedy algorithms.

As there are many possible algorithms for supervised clustering, our work centers on the development of

representative-based supervised clustering algorithms. Representative-based clustering aims at finding a set of k
representative examples from the dataset that best characterize the whole dataset. Clusters are created by assigning
each example in the dataset to the closest representative using some distance metric. Following are the reasons that
motivated us to focus on representative based style clustering algorithms.

• Representatives are quite useful for applications such as data summarization, dataset editing to
improve classifiers, and class decomposition to improve simple classifiers.

• Clustering algorithms that restrict cluster representatives to objects belonging to the dataset explore
a smaller solution space if compared with centroid–based clustering algorithms, such as the k-Means
algorithm2.

• Representative-based clustering algorithms are more robust with respect to outliers.
• When using representative-based clustering algorithms, only an inter-example distance matrix is

needed and no “new” distances have to be computed, as it is the case with k-means.
• Furthermore, representative based algorithms that use actual dataset examples as cluster

representatives are more applicable when the data is represented by attributes that include ordinal and nominal
type data. For example, the k-Means clustering algorithm which uses centroids as representatives (points in the
input space), which might not be actual examples in the datasets, can only be applied when the mean of the
cluster is defined, which is not the case for ordinal and nominal attributes.

2 There are 2n possible centroids for a dataset containing n objects.

4

III. RELATED WORK

There are two approaches that can be viewed as supervised clustering approaches. Sinkkonen et al. [19] proposed
a probabilistic approach based on discriminative clustering that minimizes distortion within clusters. Distortion, in
their context, is represented (approximated) by the average Kullback-Leibler divergence of the conditional
probability of the auxiliary data and the distributional cluster representatives over the Voronoi regions that cover
the primary data. Similarly, Tishby et al. [22] introduced the information bottleneck method. Based on this method,
they proposed an agglomerative clustering algorithm [20] that minimizes mutual information loss with respect to
class information (auxiliary data). The work of Tishby et al. [22] and of Sinkkonen et al. [19] is geared towards
information retrieval type of applications. Our approach is partitioning-based and is heuristic in nature.

There has, also, been some work that has some similarity with our research under the heading of semi-supervised
clustering. The existing research on semi-supervised clustering can be subdivided into 2 major groups: similarity-
based methods and search-based methods (for more details see [1]). Similarity-based methods create a modified
distance function that incorporates the knowledge with respect to the classified examples and use a traditional
clustering algorithm to cluster the data. Search-based methods, on the other hand, modify the clustering algorithm
itself but do not change the distance function. Cohn et al. [3] use constraints, labeled data, to help the algorithm
learn a distance function. Furthermore, Basu et al. [4] investigate determining the most informative set of
constraints to get improved clustering performance. Bilenko et al. [5] present a new semi-supervised clustering
algorithm that integrates both the distance-function-learning based as well as the algorithm-modification based
techniques in a uniform principled framework. Although the work of Basu et al. ([3], [4], and [5]) aims at
producing clusterings with high probability density with respect to a single class, they use only few classified
examples while we assume that the whole dataset is classified. Another difference between our work and the work
of Basu et al. is the fitness function that we use to evaluate clusterings. Our fitness function evaluates a clustering
based on how pure clusters are as well as the number of clusters proposed (see Equation (1)) while Basu et al.
evaluate clusterings based on traditional clustering fitness functions, i.e., mean distance between examples and their
cluster representatives.

Xing et al. [27] (and similarly [2]) take the classified training examples and transform those into constraints
(points that are known to belong to different classes need to have a distance larger than a given bound) and derive a
modified distance function that minimizes the distance between points in the dataset that are known to be similar
with respect to these constraints using classical numerical methods. The K-means clustering algorithm in
conjunction with the modified distance function is then used to compute clusters. Klein et al. [17] propose a
shortest path algorithm to modify a Euclidian distance function based on prior knowledge.

Demiriz et al. [8] propose an evolutionary clustering algorithm in which solutions consist of k centroids and the
objective of the search process is to obtain clusters that minimize (the sum of) cluster dispersion and cluster
impurity. Cohn et al. [6] modify the popular EM algorithm so that it is capable of incorporating similarity and
dissimilarity constraints.

IV. REPRESENTATIVE-BASED SUPERVISED CLUSTERING ALGORITHMS

We have designed and evaluated three representative-based supervised clustering algorithms SCEC, SRIDHCR,
and SPAM. The performance of these algorithms was compared with that of the traditional clustering algorithm
PAM [16]. This Section describes these algorithms.

A. Supervised Partitioning Around Medoids (SPAM)
This algorithm is a variation of the popular unsupervised clustering algorithm Partitioning Around Medoids

(PAM) [16]. The objective in PAM is to find k representative examples in a data set that minimize the following
objective function

Tightness(X) = �
=

n

1i
))io(medoid,io(d

|O|
1 (2)

where X is a clustering solution (i.e., a set of cluster representatives or medoids) and d(oi, medoid(oi)) is the
distance between example oi and its medoid. Unlike PAM, SPAM opts to minimize the fitness function in Equation
(1). The number of clusters k is an input parameter to the algorithm. The algorithm consists of two sub-algorithms.

5

Sub-algorithm SBUILD intelligently selects the initial solution. The second sub-algorithm, SSWAP, tries to improve
the clustering produced by SBUILD by exploring all possible replacements of a single representative by a single
non-representative. Like PAM, SPAM terminates if no replacement can be found that leads to a clustering with a
better (lower) fitness value with respect to q(X).

As stated earlier, we also implemented the traditional clustering algorithm PAM as part of our research. We use
PAM as a representative of traditional representative-based clustering algorithms for comparison with supervised
clustering algorithms. PAM was implemented based on a FORTRAN version of the algorithm that we obtained
from the authors of [16].

B. Single Representative Insertion/Deletion Steepest Decent Hill Climbing with Randomized Restart (SRIDHCR)
This greedy algorithm starts by randomly selecting a number of examples from the dataset as the initial set of

representatives. Clusters are then created by assigning examples to the cluster of their closest representative.
Starting from this randomly generated set of representatives, the algorithm tries to improve the quality of the
clustering by adding a single non-representative example to the set of representatives as well as by removing a
single representative from the set of representatives. The algorithm terminates if the solution quality (measured by
q(X)) does not show any improvement. Moreover, we assume that the algorithm is run r (input parameter) times
starting from a randomly generated initial set of representatives each time, reporting the best of the r solutions as its
final result. The pseudo-code of algorithm SRIDHCR that was used for the evaluation of supervised clustering is
given in Fig. 2. It should be noted that the number of clusters k is not fixed for SRIDHCR; the algorithm searches
for “good” values of k.

Fig. 2. Pseudocode for algorithm SRIDHCR.

To illustrate how the algorithm works let us have a closer look at a run of the algorithm for the Iris-Plant data set
that consists of 150 flowers, numbered 1 through 150. The algorithm starts with a randomly generated set of
representatives, e.g. {5, 30, 48, 72, 150}. Firstly, the algorithm creates clusterings by adding a single non-
representative to the current set of representatives. Secondly, the algorithm creates clusterings obtained by
removing a single representative from the current set of representatives. The 150 (e.g., 145+5) clusterings are then
evaluated, and the solution whose clustering has the lowest value with respect to q(X) is selected, depicted as the
solution for iteration # 1. The search now continues using {5, 30, 48, 72, 150, 110} as the new set of
representatives. In the second iteration the solution {5, 30, 48, 72, 150, 110, 52} (flower 52 was added to the set of
representatives) turned out to be the best solution, leading to an improvement in fitness from 0.054 to 0.043.

The algorithm continues iterating as long as there is an improvement in fitness function q(X). The algorithm

terminates after 7 iterations with the solution {48, 150, 110, 52, 86, 73,}. Table 2 illustrates how the set of
representatives changed during the iterations.�It is worth mentioning that in iterations 5, 6, & 7, the class purity did
not improve any further. Nevertheless, the algorithm did not stop. This is because the fitness function q(X) does not

REPEAT r TIMES
curr := a randomly created set of representatives (with size between
c+1 and 2c)
WHILE NOT DONE DO

1. Create new solutions S by adding a single non-representative
to curr and by removing a single representative from curr

2. Determine the element s in S for which q(s) is minimal (if
there is more than one minimal element, randomly pick one)

3. IF q(s)<q(curr) THEN curr:=s
ELSE IF q(s)=q(curr) AND |s|>|curr| THEN curr:=s
ELSE terminate and return curr as the solution for this run.

Report the best out of the r solutions found.

6

only try to maximize the class purity, but also minimizes the number of clusters; the algorithm, therefore, continued
and found a clustering that uses a smaller number of clusters but still achieved the same class purity of 0.987.

TABLE 2

SET OF REPRESENTATIVES EXPLORE
Iter.

Set of medoids producing
lowest q(X) in the run

q(X) Purity

0 5 30 48 72 150 (Initial set) 0.098 0.913
1 5 30 48 72 150 110 0.054 0.960
2 5 30 48 72 150 110 52 0.043 0.973
3 5 30 48 72 150 110 52 86 0.038 0.980
4 5 30 48 72 150 110 52 86 73 0.033 0.987
5 30 48 72 150 110 52 86 73 0.031 0.987
6 48 72 150 110 52 86 73 0.030 0.987
7 48 150 110 52 86 73 0.027 0.987

C. 4.3 Supervised Clustering using Evolutionary Computing (SCEC)
This algorithm uses evolutionary computing techniques to seek for the “optimal” set of representatives by

evolving a population of solutions over a fixed number of generations N. The size of the population (PS) is fixed to
a predetermined number when running SCEC. The initial generation is created randomly. The subsequent
generations are generated by applying three different genetic operators to members of the current generation that
are selected based on the principles of survival of the fittest. Fig. 3 presents a flowchart of the SCEC algorithm,
(more details about SCEC are discussed in Section V.B.) whose key features include:
1. Chromosomal Representation: A solution consists of a set of representatives that are a subset of the examples to

be clustered.
2. Genetic Operators:

Mutation: replace a representative by a non-representative
Crossover: take 2 “parent” solutions and create an offspring solution as follows:

A. Include all representatives that occur in both parents in the offspring
B. Include representatives that occur in a single parent with a probability of 50%.

Copy: Copy a member of the current generation into the next generation.
3. Selection: K-tournament selection is used to select solutions for generating the next generation through

mutation, crossover, and copying. K-tournament randomly selects K solutions from the current population, and
uses the solution with the lowest q(X) value to be added to the mating pool for the breeding of the next
generation.

4. Transformation of the Chromosomal Representation into Clusters and Evaluation:
A. Create clusters by assigning the remaining examples to the closest representative in the solution to be

evaluated.
B. Evaluate the so obtained clustering X using q.

Fig. 3. Key features of the SCEC algorithm

Initial generation Next generation

Copy

Crossover

Mutation

Supervised Clustering using Evolutionary Computing (SCEC)

Final generation

7

V. EXPERIMENTAL EVALUATION OF SUPERVISED CLUSTERING ALGORITHMS

This Section describes the experiments conducted to evaluate and analyze the clustering algorithms developed in
this research.

A. Datasets Used in the Experiments
In order to study the performance of the clustering algorithms presented in the previous Section, we applied those

algorithms to a benchmark consisting of the datasets listed in Table 3.

TABLE 3
DATASETS USED IN THE BENCHMARK

Dataset Name No. of
Examples

No. of
Attributes

No. of
Classes

IRIS plants 150 4 3
Glass 214 9 6
Diabetes 768 8 2
Waveform 5000 21 3
Ionosphere 351 34 2
Heart-H 294 13 2
Image Segmentation 2100 19 7
Vehicle Silhouettes 846 18 4
Vote 435 16 2
Vowel 990 13 11
Heart-StatLog 270 13 2
Complex9 3031 2 9
Oval10 3359 2 10

The first 11 datasets were obtained from University of California at Irving Machine Learning Repository [23].

The last 2 datasets, we named Complex9 and Oval10, are two dimensional spatial datasets whose examples
distribute in different shapes. These two 2D datasets were obtained from the authors of [18] and some of them seem
to be similar to proprietary datasets used in [15]. These datasets are used mainly for visualization purposes
presented later in this Section.

B. How the Experiments were Conducted: Parameters, and Preprocessing
In the experiments, algorithm SRIDHCR was run 50 times, each time with a different set of initial representatives

and the quality of the best solution found was reported. Moreover, the results of running SRIDHCR for a fixed
value of � were used to determine the k-value with wh [ich PAM and SPAM were run. Algorithm SCEC creates the
initial population randomly which is composed of solutions having between c+1 and 2c representatives. SCEC was
run for 1500 generations using a population size of 400. The mutation probability is initially set to 0.95 when
creating generation 1 and is linearly decreased to 0 at generation 1500, whereas the initial crossover probability is
initially 0 and is linearly increased to 0.95 at the end of the run. The remaining 5% of a new generation are created
by copying solutions from the previous generation. The algorithm uses tournament selection with a tournament size
of K=2. When it is time to apply one of the genetic operators on members of the current generation, 2 members
(i.e., solutions) are randomly picked from the pool and the solution that produces the smaller q(X) is selected to
participate in the breeding of the next generation. Values of parameters used were determined experimentally.
During this parameter selection process we observed that [29]:

• Using large population sizes lead to finding better solutions; e.g. using PS=400, N=1500 performed better than
PS=200, N=3000.

• Using higher mutation rates and lower crossover rates leads to better solution quality.
• Using lower selective pressure (smaller values for k) leads to better solution quality.

8

The investigated clustering algorithms were evaluated based on the following measures:

1. Cluster purity, defined as the ratio of the number of examples inside a cluster that belong to the
majority class to the total number of examples in that cluster.

2. Value of the fitness function q(X), see Equation (1).
3. Tightness (X), see Equation (2).
4. Wall-Clock Time (WCT). This is the actual time, in seconds, that the algorithm took to finish the

clustering task. The algorithms were run on a computer that has a Pentium 4 processor and 512 MB of main
memory.

During preprocessing, a dissimilarity matrix is created using the Manhattan distance function. Prior to that, all

attribute values are normalized using a normalizing function that gives a value of 1.0 to the largest attribute value
and 0.0 to lowest attribute value

C. Experimental Results

This section presents and analyzes the experimental results we obtained. It is important to note that each set of
results presented in a table was obtained independently through a separate set of

TABLE 4
COMPARATIVE PERFORMANCE OF THE DIFFERENT ALGORITHMS

(β=0.1)
Algorithm k Purity q(X) Tightn

ess(X)
Wall Clock

Time
Iris-Plants Dataset

PAM 3 0.907 0.09
3

0.08
1

0.060

SCEC 5 0.993 0.01
8

0.10
7

1019.0
00 SRIDHCR 3 0.980 0.02

0
0.11

3
13.000

SPAM 3 0.973 0.02
7

0.13
3

0.320

Vehicle Dataset
PAM 65 0.701 0.32

6
0.04

4
372.00

0 SCEC 13
2

0.923 0.11
6

0.04
9

31989.
000 SRIDHCR 65 0.835 0.19

2
0.06

2
1666.0

00 SPAM 65 0.764 0.26
3

0.09
7

1090.0
00 Segmentation Dataset

PAM 53 0.880 0.13
5

0.02
7

4073.0
00 SCEC 60 0.989 0.02

6
0.04

6
22598.

000 SRIDHCR 53 0.980 0.03
5

0.05
0

9868.0
00 SPAM 53 0.944 0.07

1
0.06

1
1422.0

00 Pima-Indian Diabetes Dataset
PAM 45 0.763 0.23

7
0.05

6
186.00

0 SCEC 64 0.893 0.13
5

0.07
4

12943.
000 SRIDHCR 45 0.859 0.16

4
0.07

6
660.00

0 SPAM 45 0.822 0.20
2

0.08
6

58.000

experiments. The results in Tables 4 & 5 show that among the three supervised clustering algorithms, SCEC
consistently finds the best solutions for all four datasets, whereas SRIDHCR finds “good” solutions, and, somewhat
surprisingly, SPAM performs quite poorly in the experiments.

As � increases from 0.1 (in Table 4) to 0.4 (in Table 5), the penalty for increasing the number of clusters
increases as well, see Equation (1). Consequently, the algorithms produce solutions with smaller number of
clusters. Due to the fact that more smaller-sized solutions (solutions with a smaller number of clusters) will be

9

searched when β increases, the algorithms take less time for β=0.4. It should be noted that the purity values in
Table 5 are slightly lower than the corresponding numbers in Table 4 because using a larger number of clusters
(larger value for k in Equation 1) is penalized more severely by the fitness function q(X) when β is set to 0.4.

TABLE 5

COMPARATIVE PERFORMANCE OF THE DIFFERENT ALGORITHMS
(β=0.4)

Algorithm k Cluster
Purity

q(X) Tightness(X) WCT (Sec.)

IRIS-Plants Dataset����
PAM 3 0.907 0.09

3
0.081 0.06

SCEC 3 0.987 0.01
3

0.125 618.00

SRIDH
CR

3 0.987 0.01
3

0.125 9.00

SPAM 3 0.973 0.02
7

0.133 0.30

Vehicle Dataset����
PAM 5

6
0.681 0.41

8
0.046 505.00

SCEC 6
1

0.857 0.24
7

0.059 10947.00

SRIDH
CR

5
6

0.835 0.26
5

0.067 1130.00

SPAM 5
6

0.754 0.34
5

0.100 681.00

Segmentation Dataset����
PAM 3

2
0.875 0.16

9
0.032 1529.00

SCEC 2
8

0.969 0.06
9

0.050 11533.00

SRIDH
CR

3
2

0.970 0.07
4

0.051 8450.00

SPAM 3
2

0.940 0.10
3

0.065 1053.00

Pima-Indians-Diabetes Dataset����
PAM 2 0.656 0.34

4
0.101 1.00

SCEC 9 0.819 0.21
9

0.103 1700.00

SRIDH
CR

2 0.776 0.22
4

0.139 228.00

SPAM 2 0.772 0.22
7

0.125 2.70

Comparing the results of the algorithm SPAM with those for algorithm SRIDHCR, we can clearly see that

SRIDHCR outperforms SPAM. A factor that we believe contributes to this observation is that the fitness landscape
induced by q(X) contains many local minima (i.e., local hills). SPAM is not particularly good in coping with those
“canyon like” structures in the fitness landscape. Another contributing factor, we believe, is that SRIDHCR has the
interesting characteristic that when attempting to enhance a solution with k representatives, it looks for better
solutions with k−1 as well as k+1 representatives, whereas SPAM looks for better solutions with exactly k
representatives. We believe that the capability of algorithm SRIDHCR to add new elements to the solution set,
some of which are removed again at a later stage of the search contributes to its better performance. Furthermore,
encouraged by its smaller average runtime, SRIDHCR can be restarted up to 33 times in the same time that SPAM
needs to complete a single run. These re-runs with different initial sets of representatives allows SRIDHCR to
explore different regions of the solution space, which we believe is a third contributing factor to the significantly
better performance of algorithm SRIDHCR compared to SPAM.

On the other hand, SCEC found much better solutions than the other 2 algorithms followed by algorithm
SRIDHCR. We attribute this observation to the fact that the fitness landscape induced by q(X) for a particular
dataset contains a large number of local minima. It seems that greedy algorithms, such as SPAM and SRIDHCR, do
not perform particularly well in this fitness landscape terminating prematurely too often.

10

SRIDHCR with Different # of Reruns

0.23
0.235
0.24

0.245
0.25

0.255
0.26

0.265
0.27

0.275

0 2000 4000 6000 8000 10000 12000 14000
Seconds

q(
X

)

SCEC ran for 10947 seconds and produced q(X)=0.247.

SCEC

Fig. 4. Performance of SRIDHCR for different number of reruns

Finally, we wanted to compare the performance of SRIDHCR and algorithm SCEC when both algorithms are

given the same time to perform a clustering task. From Table 5, we can see that algorithm SCEC took 10947
seconds to finish its clustering of the Vehicle dataset and produced a clustering with q(X)=0.247. We ran an
experiment on the Vehicle dataset with �=0.4 in which we changed the number of reruns (r) from 25 up to 675
times to make the time used by SRIDHCR comparable to that used by algorithm SCEC. SRIDHCR reported the
best results out of these r reruns. Each experiment was repeated 3 times each time reshuffling the dataset examples.
Fig. 4 shows a plotting of the values of the fitness function q(X) produced by SRIDHCR versus the time the
algorithm used to produce that value. Notice from Fig. 4 that algorithm SRIDHCR was unable to produce a value of
q(X) as low as the value produced by algorithm SCEC even when it ran for as long as SCEC did. Actually, it failed
to do so even when it ran for a longer time.

D. A Visualization of Characteristics of Representative Based Supervised Clustering
This section uses visualization in an attempt to shed light on the way supervised clustering algorithms work.

Multiple factors play a role in selecting good representatives. Among these factors are the density of the

examples in the clusters, the location of the cluster with respect to other adjacent clusters that belong to the same or
different class, and cluster shape. Fig. 5 gives examples of three cases. Fig. 5.a shows two clusters that belong to
two different classes, depicted as black and white. Notice that choosing any representative in either cluster does not
affect cluster purities (i.e., does not attract objects from the other cluster) because there is enough space between the
two clusters. Two suggested cluster representatives for Fig. 5.a are encloses in rectangles. On the other hand, Fig.
5.b shows three clusters that have the same convex shape, same size and density, and are close to each others. In
this case a SC algorithm would choose a representative that is in the middle of the cluster, such as the examples that
have circles around them, in order not to attract examples of neighboring clusters that belong to a different class.
Choosing the examples with rectangles around them as cluster representatives, for example, will attract two of the
white examples from cluster C to cluster D. This will degrade the overall average cluster purity and, consequently,
the quality of the clustering. Finally, for more complex cluster shapes and sizes, as illustrated in Fig. 5.c, the
clustering algorithm will choose the representatives lined up against each others and properly spaced to create the
best possible decision boundaries that produce good cluster purities. Referring to Fig. 5.c, cluster representatives
are enclosed in dotted rectangles. Improving the quality of a clustering in a situation similar to the examples in
Figures 5.b and 5.c is challenging because replacing any of the cluster representatives with another example
necessitates that other representatives be modified as well to keep the lining up and spacing proper to minimize
misclassification.

11

Fig. 5. How cluster shape and relative location affects the choice of its representative

Fig. 6 shows a clustering of the dataset Complex9. Examples of the same shape were initially labeled with the

same class. The dataset was then clustered by the representative-based SC algorithm SRIDHCR. Representatives
selected are characterized by (red) solid squares. To minimize class impurity, the clustering algorithm sometimes
selects representatives located in the middle of the cluster (lower left rectangle clusters in Fig. 6) and other times
located on the edge of their clusters (the clusters that make the oval shaped class). Notice how the (red) solid square
symbols in the two rectangle clusters in the lower left part of Fig. 6 are lined up with proper spacing. If either
representative is moved further up or down, it will cause some of the examples of one of the clusters to be attracted
to the other cluster and, consequently, be misclassified. This explains the bad performance of PAM-style algorithms
that do not follow this behavior and move representatives of adjacent clusters independently with no regard to the
relative location of the representatives of the neighboring clusters.

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700

SC Representatives

Missclassifications by SC

Fig. 6. Complex9 dataset clustered using SC algorithm SRIDHCR

A challenge that a representative-based clustering algorithm (i.e., an algorithm that selects one representative for

a cluster) faces is that it can not discover clusters of non-convex shapes. However, clusters having non-convex
shapes can be approximated by a union of several neighboring clusters that are dominated by the same class. An
example of such case is the large circular cluster in Fig. 6, which was approximated using 5 neighboring clusters
without any loss in purity; cluster representatives are represented in solid (red) squares.

b. Choice of cluster representative
affects cluster purity

a. Choice of cluster
representative does not affect
cluster purity

A B C D E

c. Clusters of different shape, belong to different classes, and
close to each others

X

X

Y

Y
Y

Y

12

Although we claim that the representative-based supervised clustering algorithm shows a good performance3, the
obtained purity in the experiment depicted in Fig. 6 was 99.4% and not 100% due to minor errors (highlighted in
the figure) in the right-most cluster and in the two interleaved U-shaped clusters near the bottom center.

Another characteristic of the fitness function q(X) is its penalizing for the number of clusters k. This penalty

makes the clustering algorithm reluctant to increase the number of clusters unless it is justified by a balancing
decrease in the “Impurity(X)” part of q(X). To verify if supervised clustering algorithms take advantage of this
property, we ran the following experiment. We ran SC algorithm SRIDHCR on the Oval10 dataset. Before
clustering, the examples were assigned to 4 classes as shown in Fig. 7. The result of the clustering is shown in Fig.
8. Expectedly so, the algorithm chose to separate the right most two clusters into two separate clusters to avoid
attracting examples from Class2. On the other hand, it combined the top left 2 clusters into one bigger cluster with
1 representative because it did not affect purity, but at the same time decreased the number of clusters k (see
Equation (1)). Cluster representatives are denoted by solid black rectangles.

Class 1

Class 2

Class 3

Class 4

Fig. 7. The 10-Ovals dataset with 4 classes

Cluster 1

Cluster 2

Cluster 3

Cluster 4Cluster 5

Fig. 8. The 10-Ovals dataset with 4 classes clustered using SRIDHCR, �=0.25

E. Characteristics of the Fitness Function and Fitness Landscape
As part of the supervised clustering research, we wanted to study the landscape of the solution space

characterized by the fitness function q(X). The objective was to study how a supervised clustering algorithm
behaves during its search for the best clustering when it uses q(X) to evaluate a candidate clustering X. We expect
the study to help us explain some of the observations gathered from the experimental results as well as to help us in
changing the navigation part of a SC algorithm to make it more effective in covering larger area of the solution
landscape which might increase the chances of finding better solutions.

3 The Nearest Representative classifier only uses 22 of the 3031 examples in the Complex9 dataset

13

Experiments were conducted using SC algorithm SRIDHCR on the Vehicle dataset with � set to a value of 0.4.
Three initial solution sizes were used for the Vehicle dataset, namely 5, 75, and 300 representatives. Clustering
process was repeated 1000 times, each time starting with a randomly selected initial solution of the same size (i.e.,
5, 75, or 300). The 1000 solutions were grouped according to the number of clusters in the solution. Fig. 9 shows
the number of solutions produced for the different solution sizes. Graphs A, B, and C represent results for the initial
solutions sizes of 5, 75, and 300 representatives, respectively. Notice how in Graphs A and B, the best solution has
a size that is not among the most frequent solution sizes, but higher. Results in Graphs A and B indicate that the
optimal solution lies somewhere to the right of both graphs. On the other hand, the best solution for Graph C lies in
the lower range of the graph. What we learn from these experiments is that although the best solution the SC

0

10

20

30

40

50

60

70

80

90

15 65 115 165 215

N
u
m

bn
er

 o
f S

ol
u
tio

ns

Solution Size

Vehicle Dataset

A
B

Best Solutions

C

Initial solution size=300Initial solution size=75

Initial solution size=5

q(X)=0.260,
k=64

q(X)=0.232,
k=117

q(X)=0.241,
k=203

Fig. 9. Number of solutions versus solution size for the Vehicle dataset

algorithm produces seems to be in the direction of the optimal solution, the algorithm seems to always get stuck
within a certain k-range that is determined by the number of representatives in the initial solution. For example, in
Graph A, algorithm SRIDHCR produced a best solution of q(X)=0.26 and k=64. It could not reach the area of the
solution space that produced a better q(X)=0.232 for k=117 in Graph B which started with an initial solution of 75
representatives. The same could be said about the case when the initial solution was set to 300 in Graph C. The best
solution was of size k=203 and q(X)=0.241. The algorithm could not extend its set of explored solutions to include
the solution size of 117 that produced the best q(X) among all three graphs. The results in this experiment might
explain the observations presented earlier in Fig. 4 Section V.C where algorithm SRIDHCR was incapable of
reaching the quality of solution that algorithm SCEC produced even when it was given amble resources.

We also wanted to find how difficult the job of a supervised clustering algorithm is by counting the number of

different solutions the algorithm produces as it is run r number of times. To do that we ran algorithm SRIDHCR
1000 times for the Vehicle dataset for different initial solution sizes. We assumed that two different clusterings X1
and X2 are different (i.e., X1 � X2) if the following is true:

)|1X||1X|(or))2X(q)1X(q(2X1X ≠≠⇔≠
where |X1| and |X2| are the number of clusters for solutions X1 and X2, respectively. The number of different

solutions as defined above is a lower bound because even if q(X1)=q(X2) and |X1|=|X2| the clusters might still
contain different examples as long as the number of minority examples in both clusterings (i.e., solutions) are the
same.

The number of different solutions gives an idea about the number of local minima the solution space contains
within the solution space area visited by the supervised clustering algorithm during the r reruns. The higher the
number of different solutions, the more difficult it is to reach the area of the solution space where the optimal
solution lies.

14
TABLE 6

PERCENTAGE OF DIFFERENT SOLUTIONS FOR 1000 RERUNS
Dataset, �, Size of
initial solution

Lower bound on % of different
solutions produced

Vehicle, 0.00001, 5 74.5
Vehicle, 0.00001, 75 52.8
Vehicle, 0.4, 5 61.8
Vehicle, 0.4, 75 51.7
Vehicle, 0.4, 300 49.6
Heart-H, 0.4, 4 7.7 %
Heart-H, 0.4, 25 21.2 %
Heart-H, 0.4, 150 19.9 %

As can be seen from Table 6, a difficult clustering task such as the Vehicle dataset, for example, generated 50%

to 75% different solutions from the 1000 solutions produced. Another way to interpret results in Table 6 is to notice
that more than 50% of the time, the hill climber ends up on a different hill and that the same hill is reached at an
average less than 2 times. This also explains quite well why SRIDHCR performs quite poorly for the Vehicle
dataset: it gets stuck on the “wrong” hill too quickly. Table 6 shows better performance for the algorithm
SRIDHCR on the Heart-H as the chance of producing a different solution is much less than that that for the Vehicle
dataset. This further emphasizes what we mentioned before that greedy algorithms, such as SRIDHCR, have
difficulties producing good solutions in such “Canyonland” like fitness landscape compared to non-greedy
algorithms such as SCEC.

VI. SUPERVISED CLUSTERING FOR DATASET EDITING

A. Background
Since its introduction by Fix and Hodges in 1951 [14], the Nearest Neighbor (NN) rule and its generalizations

have received considerable attention from the research community. Most research aimed at producing time-efficient
versions of the NN rule (for a detailed survey see Toussaint [21]). Although the NN rule continues to be one of the
most popular non-parametric classification techniques, it has some drawbacks. First, if the number of objects in the
dataset is very large and with high dimensionality, computing the nearest neighbors becomes quite time consuming.
Second, if the original training dataset contains erroneously labeled instances, the prediction accuracy will be
greatly decreased.

Condensing and Editing are two techniques that have been proposed to address these problems. Condensing aims
at selecting the minimal subset of examples that lead to the same behavior of the NN-rule as using the original
dataset. Editing, on the other hand, seeks to remove noise (i.e., miss-labeled) examples from the original training set
with the goal of producing smooth decision boundaries and, consequently, improve prediction accuracy.

In this Section, we study a set of dataset editing techniques and compare their performance using a benchmark
consisting of a set of UCI datasets as well as a set of two dimensional spatial datasets. Furthermore, we also
propose a new dataset editing technique based on supervised clustering. Moreover, the benefits of editing
techniques have not been systematically analyzed in the literature which is the second motivation of this work4.

B. Editing Algorithms Investigated
1) Wilson Editing

Wilson editing [26] removes all instances that have been misclassified by the NN-rule applied on a training
dataset. Wilson editing cleans interclass overlap regions, thereby leading to smoother boundaries between classes.
Fig. 10.a shows a hypothetical dataset where examples that are misclassified using the 1-NN-rule are marked with
circles around them. Fig. 10.b shows the edited dataset after applying Wilson editing. The pseudocode for Wilson
editing technique is presented in Fig. 11.

4 Preliminary results from research we conducted on using supervised clustering for dataset editing were published in [13]

15

Fig. 10. Wilson editing for 1-NN classifier

Fig. 11. Pseudocode for Wilson editing algorithm

2) Supervised Clustering Editing (SCE)

In supervised clustering (SC) editing, a SC algorithm is used to cluster a training dataset O. Then O is replaced
by subset Or, which consists of cluster representatives that have been discovered by the SC algorithm. We call a 1-
NN based classifier that uses the set of cluster representatives as training set the Nearest Representative (NR)
classifier. Fig. 12 gives an example that illustrates how SC editing works. Fig. 12.a shows a dataset that has not
been clustered yet. Fig. 12.b shows a dataset that was clustered into 6 clusters using a SC algorithm.

PREPROCESSING
A: For each example oi in the dataset O,
1: Find the K-Nearest Neighbors of oi in

O(excluding oi)
2: Label oi with the class associated with the

largest number of examples among the K nearest
neighbors (breaking ties randomly)

B: Edit Dataset O by deleting all examples that
were misclassified in step A.2 resulting in
subset Or

CLASSIFICATION RULE:
Classify new example q using K-NN rule applied on
the edited subset Or

Attribute2

a. Hypothetical dataset

Attribute1 Attribute1

b. Dataset edited using
Wilson’s technique

Attribute2

16

Fig. 12. Illustration of supervised clustering editing (SCE)

Cluster representatives are marked with (blue) circles around them. Fig. 12.c shows the edited subset Or resulting
from removing all examples except for the cluster representatives. To classify a new unseen example the NR
classifier finds the nearest representative for the new example. The new example is, then, given the class of that
representative.

The reader might ask whether the same objective of SCE could be accomplished by clustering examples of each
class separately using a traditional clustering algorithm, such as PAM? Fig. 13 illustrates why this is not a good
idea. Examples in the Fig. belong to one of two classes ‘X’ and ‘O’. If this dataset is edited using SCE, the (red)
underlined O example and the (purple) underlined X example would be picked as representatives. On the other
hand, if examples of each class are clustered separately, the (blue) italic O example and the (purple) underlined X
example would be picked as the representatives. Note that the (blue) italic O representative is not a good choice for
dataset editing, because it “attracts” examples belonging to the class ‘X’ which leads to misclassifications.

Fig. 13. Supervised clustering editing versus clustering each class separately

C. Experimental Results
In this section, the performance of the two editing techniques are analyzed for a benchmark consisting of 11 UCI

datasets [23] using the performance measures of compression rate and class prediction accuracy. Furthermore, we
analyze how differently the editing techniques cope with artificial noise of different forms and degrees using the 2D
spatial datasets.

We used 5-fold cross validation to determine the accuracies of the editing techniques. Furthermore, we repeated
each experiment three times every time reshuffling the examples in the dataset. In the experiments, Wilson editing
was run with K (neighborhood size) equal to 1. As for supervised cluster editing, we used the algorithm SRIDHCR
for clustering with r=10 and �=0.4.

1) Class Prediction Accuracy for the Investigated Editing Techniques
To comparatively study Wilson and SC editing techniques with respect to improvement in classification accuracy

we applied both editing techniques on 11 datasets. We also computed the prediction accuracy of traditional 1-NN
classifier to compare its performance to the performance of the techniques under study. Experimental results are
shown in Table 7. Next to each accuracy value, Table 7 also gives the standard deviation calculated based on the

�������������������

����������������������

�������������������

A

E

C

B

Attribute 2

D

G F

Attribute 2

(b) Dataset clustered using
supervised clustering

(c) Dataset edited using
supervised clustering
editing

A

C
D

E

(a) Dataset given

Attribute 2

Attribute 1 Attribute 1 Attribute 1

17

three reruns of each experiment. We also calculated statistical significance using paired T-test for a significance
level of 90% comparing the two editing techniques against the traditional 1-NN technique. Calculation of the
statistical significance was based on the 15 different accuracy values reported in each experiment (i.e., 3 reruns
each with 5 cross-validation folds). Prediction accuracy values that show statistically significant improvement over
the corresponding 1-NN values are marked with a plus (+) next to them while values that show statistically
significant degradation compared to 1-NN are marked with a minus (-) next to them.

Looking at the performance of the editing techniques in Table 7 we see that in 6 out of 11 datasets (Iris,
Waveform, Diabetes, Heart-H, Vote, and Heart-StatLog) 1-NN classifier was outperformed by both editing
techniques. Improvement was also found to be statistically significant for 5 of these 6 cases for both Wilson and
SCE/NR (Supervised Clustering Editing/Nearest Representative) classifiers. These results clearly show that dataset
editing does have the potential of improving classification accuracy.

TABLE 7

CLASS PREDICTION ACCURACIES OF UCI DATASETS.
Dataset Name 1-NN Wilson Editing SCE/NR Classifier
Iris 93.8±0.40 95.3±0.65 + 94.9±0.75
Glass 71.2±0.29 67.4±0.71 - 71.5±1.70
Diabetes 70.0±0.35 74.0±1.05 + 75.1±0.78 +
Waveform 76.9±0.74 79.1±0.38 + 83.3±0.23 + (�)
Heart-H 0.77±0.04 0.82±0.03 + 0.82±0.05 +
IonoSphere 90.9±0.30 88.6±0.98 - 89.4±1.70
Segmentation 97.5±0.21 96.9±0.26 - 93.3±0.10 - (�)
Vehicle 71.1±0.40 70.6±0.31 67.2±0.98 -
Vote 92.6±0.76 93.0±0.80 93.5±1.29 + (�)
Vowel 98.1±1.0 96.8±0.67 - 78.1±2.31 - (�)
Heart StatLog 77.9±3.14 81.0±1.40 + 81.7±2.26 +
Statistically significant improvement (+) or degradation (-) compared to 1-NN

Comparing the performance of the editing techniques among themselves, Table 7 shows that the NR classifier

(based on SCE) outperformed Wilson editing in 6 of the 11 datasets. In 2 out of these 6 datasets, the better
performance of the NR classifier was statistically significant (marked with (�) next to them). Nevertheless, the
Wilson editing based classifier showed a strong performance as well. Out of the 5 datasets for which WE classifier
outperformed SCE classifier, 2 of these cases were statistically significant (marked with (�) next to them)

2) Training Set Compression Rate (TSCR)

A second factor that we compared the performance of the different editing techniques according to is the
“training set compression rate (TSCR). TSCR measures the percentage of reduction in the training set size achieved
by the editing technique. In general, if an editing technique reduces the size of a training set from n examples down
to r examples, we calculate the TSCR as:

Training Set Compression Rate =
n
r

-1 (3)

18
TABLE 8

TSCR FOR THE UCI DATASETS

Dataset Name Wilson SC
IRIS 6.0 96.7
Glass 27.1 85.6
Diabetes 30.2 84.5
Waveform 23.4 92.6
Heart_H 41.8 77.2
Ionosphere 9.1 99.7
Vote 8.3 97.2
Vehicle 30.5 80.3
Segmentation 2.3 98.2
Vowel 0.7 85.5
Heart StatLog 22.6 87.2

Table 8 reports the training set compression rates for the UCI datasets. We clearly notice from the table that the

highest training set compression rates are reported by supervised clustering editing for all datasets. Coupling this
fact with the good relative performance of supervised clustering editing with respect to classification accuracy
reported in the previous subsection, the overall performance of SCE moves up the ladder. For example, supervised
clustering editing reduced the Vote training set from 348 examples to only 10 representative examples, at the
average. On the other hand, Wilson editing reduced the Vote dataset to 319 examples. When applying traditional 1-
NN classification on a training set containing only the 10 cluster representatives selected by SCE, we achieved
better classification accuracy than the classification accuracies obtained when applying traditional 1-NN classifier
on the edited training set Wilson editing produced.

As mentioned earlier, Wilson editing reduces the size of a dataset by removing examples that have been

misclassified by a k-NN classifier. Consequently, the training set compression rates are quite low for Wilson editing
on “easy” classification tasks for which high prediction accuracies are normally achieved. For example, Wilson
editing produces dataset reduction rates of only 0.7%, 2.3%, and 6.0% for the Vowel, Segmentation, and Iris
datasets, respectively.

VII. SUPERVISED CLUSTERING FOR REGIONAL LEARNING

A. Background
In the previous section, we discussed the use of supervised clustering for enhancing local learning tools such as

NN classifiers. This Section discusses the usage of supervised clustering for regional learning. The parameter � in
Equation (1), see Section II, plays key role in determining whether the patterns identified by supervised clustering
are local (i.e., low value for �) or more regional (i.e., higher values for �). Fig. 14 shows how cluster purity and the
number of clusters for the best solution found, k, changes as the value of parameter � increases for the Vehicle and
the Diabetes datasets (the results were obtained by running algorithm SRIDHCR). As can be seen in Fig. 14, as �
increases, the fitness function q(X) imposes more penalty for using the same number of clusters and the clustering
algorithm tries to use a lower number of clusters, resulting in reduced cluster purity.

19

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1E
-05 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 �

P
ur

ity
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

N
um

be
r

of
 c

lu
st

er
s

(k
)

Purity (Vehicle, 4 classes) Purity (Diabetes, 2 classes)
k (Vehicle) k (Diabetes)

Fig. 14. How Purity(k) and k change as the value of � increases.

It is interesting to note that the Vehicle dataset seems to contain smaller regions with above average purities.

Consequently, even if � increases beyond 0.5 the value of k remains quite high for that dataset. The Diabetes
dataset, on the other hand, does not seem to contain such localized patterns; as soon as � increases beyond 0.5, k
immediately reaches its minimum value of 2 (there are only two classes in the Diabetes dataset).

In general, we claim that supervised clustering is useful for enhancing our understanding of datasets [28].

Examples include:
1. It shows how instances of a particular class distribute in the attribute space; this information is of

value for “discovering” subclasses of particular classes.
2. Maps for domain experts can be created that depict class densities in clusters and that identify which

clusters share decision boundaries with which other clusters.5
3. Statistical summaries can be created for each cluster.
4. Meta attributes, such as various radiuses, distances between representatives, etc. can be generated, and

their usefulness for enhancing classifiers can be explored.

B. Using Supervised Clustering to Enhance Simple Classifiers via Class Decomposition
Simple classifiers, such as linear classifiers, are known to exhibit low variance and high bias [9]. Since these

models start off with simple representations, increasing their complexity is expected to improve their generalization
performance while still retaining their ability to output models amenable to interpretation.

Fig. 15.a shows two examples of classifiers. The simple linear classifier clearly produces high error rate while the
high polynomial classifier improves classification accuracy on the expense of variance. Fig. 15.b shows the result
of applying supervised clustering to the dataset. Referring to Fig. 15.b, we could transform the problem of
classifying examples belonging to the two classes, black examples and white examples, into the “simpler” problem
of classifying the examples that belong to clusters A, B, C, and D. The reduced complexity can be attributed to the
fact that those 4 “clusters” are linearly separable (note the dotted lines in Fig. 15.b) whereas the original 2 classes
are not.

Vilalta et al. [25] proposed a scheme where the examples of each class are clustered separately using a traditional

clustering algorithm. After clustering, a tuning step of cluster merging is executed to discover the combination of
clusters that produces the least classification error. This “cluster merging” step is quite expensive.

5 Triangulation techniques, such as Delaunay and Gabriel graphs, can be used for this purpose; a research subject that is

currently being investigated by the UH-DMML group.

20

Fig. 15. Class decomposition to enhance simple classifiers

We propose to use supervised clustering for class decomposition applied on the whole dataset. Supervised

clustering has the tendency to merge clusters with the same majority class if found close to each others (see C in
Fig. 15.b) and, consequently, achieve good clusterings while possibly eliminating the need for the expensive
“merging” step used by Vilalta et al. [25]. To test this idea, we ran an experiment where we compared the average
prediction accuracy of a traditional Naïve Bayes (NB) classifier with a NB classifier that treats each cluster as a
separate class. We used SRIDHCR supervised clustering algorithm (with � set to 0.25) to obtain the clusters. We
used 4 UCI datasets as a benchmark. The results of the experiment are reported in Table 9. These results indicate
that using class decomposition improved the average prediction accuracy for 3 of the 4 datasets.

TABLE 9

AVERAGE PREDICTION ACCURACY OF NAIVE BAYES (NB) WITH
AND WITHOUT USING CLASS DECOMPOSITION

Dataset NB without
Class

Decomposition

NB with Class
Decomposition

Improvement

Diabetes 76.56 77.08 0.52%
Heart-H 79.73 70.27 −9.46%
Segment 68.00 75.045 7.05%
Vehicle 45.02 68.25 23.23%

Analyzing the results further, we see that the accuracy improvement for the Vehicle dataset (23.23%) is far

higher than that for the Diabetes dataset (0.52%). This result is consistent with the analysis presented at the
beginning of Section VII; namely that the Vehicle dataset contains groups of small size of examples that belong to
the same class while the Diabetes dataset does not. Consequently, the Vehicle dataset benefits more from class
decomposition than the Diabetes dataset.

VIII. CONCLUSIONS AND FUTURE RESEARCH

Unlike traditional clustering, supervised clustering (SC) is applied on classified data and seeks to find clusters
with high probability density with respect to a single class while keeping the number of clusters low. We have
implemented and investigated three representative-based supervised clustering algorithms SPAM, SRIDHCR, and
SCEC. Experimental results showed that the evolutionary computing algorithm SCEC produced the best results
followed by SRIDHCR. Experimental results also showed that the fitness landscape has high number of local
minima, thereby increasing the chance that greedy algorithms, such as SRIDHCR and SPAM, get stuck on the
“wrong” hill too quickly and, consequently, produce poorer results compared to a non-greedy clustering algorithm,
such as SCEC.

 Our experimental results also demonstrated how supervised clustering is able to enhance NN classifiers
through dataset editing. For example, for the Waveform dataset, a 1-NN classifier that uses just 296 representatives

Attribute 1

Attribute 2

A

C

D

B

Attribute 1

Attribute 2

b. Increasing complexity
using class decomposition

a. Linear versus high
polynomial classifiers

21

leads to an accuracy of 83.3%, whereas a 1-NN classifier that uses all 4000 examples in the training set achieves a
lower accuracy of 76.9%.

The UH Data Mining and Knowledge Discovery Group [24] is currently investigating using supervised clustering
for learning distance functions for classification tasks, see Eick et al. [10], and for discovering interesting regions in
spatial data sets, see [11]. Other research efforts focus on devising SC algorithms that are capable of discovering
clusters of arbitrary shapes and not only convex shapes [7]. Furthermore, we are currently exploring the use of grid-
based supervised clustering algorithms that can cope with large datasets, ranging from 10000 to millions of
examples [11].

Finally, this research shed some light on the challenges of designing efficient representative-based clustering
algorithms. We believe that this knowledge will be beneficiary to designers of representative-based clustering
algorithms. Furthermore, our study suggests that using evolutionary computing techniques for traditional
representative-based clustering deserves more attention by future research.

REFERENCES

[1] Basu, S., Bilenko,M., Mooney, R., “Comparing and Unifying Search-based and Similarity-Based Approaches to Semi-
Supervised Clustering”, in Proc. of ICML03 Workshop on The Continuum from Labeled to Unlabeled Data in Machine
Learning & Data Mining, Washington, DC. August 21, 2003

[2] Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D., “Learning Distance Functions Using Equivalence Relations”, in
Proc. ICML03, Washington DC, August 2003.

[3] Basu, S., Bilenko,M., Mooney, R., “A Probabilistic Framework for Semi-Supervised Clustering”, in Proc. 10th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD-2004), Seattle, WA, August 2004.

[4] Basu, S., Bilenko,M., Mooney, R. “Active Semi-Supervision for Pairwise Constrained Clustering”, in Proc. 4th SIAM
Intl. Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004.

[5] Bilenko, M., Basu, S., and Mooney, R., J., “Integrating Constraints and Metric Learning in Semi-Supervised Clustering”,
in Proc. ICML’04, Banff, Alberta, Canada, July 4-8, 2004.

[6] Cohn, D., Caruana, R., McCallum, A. “Semi-supervised Clustering with User Feedback”, unpublished manuscript,
available at www-2.cs.smu.edu/~mccallum/, 2000.

[7] Choo, Ji Yeon, “Using Proximity Graphs to enhance representative-based clustering algorithms”, Master's thesis,
University of Houston, to appear Summer 2006.

[8] Demiriz, A., Benett, K.-P., and Embrechts, M.J., “Semi-supervised Clustering using Genetic Algorithms”, in Proc.
ANNIE’99, November 7 - 10, 1999, St. Louis, Missouri.

[9] Duda, R., Hart, P., and Stork, D. G., “Pattern Classification”, 2001, John Wiley & Sons, New York, NY, pp. 465-470
[10] Eick, C., Rouhana, A., Bagherjeiran, A., and Vilalta, R., “Using Clustering to Learn Distance Functions for Supervised

Similarity Assessment”, in Proc. Int. Conf. on Machine Learning and Data Mining (MLDM), Leipzig, Germany, July
2005.

[11] Eick, C., Vaezian B., Jiang, D., and Wang, J., “Discovery of Interesting Regions in Spatial Data Sets Using Supervised
Clustering”, submitted for publication to PKDD, Berlin, Germany, September 2006.

[12] Eick, C.F., Zeidat, N., and Zhenghong, Z., “Supervised Clustering – Algorithms and Benefits”, In proceedings of the 16th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI04) , Boca Raton, Florida, November 2004,
pp. 774-776

[13] Eick, C.F., Zeidat, N., and Vilalta, R.: “Using Representative-Based Clustering for Nearest Neighbor Dataset Editing”.
ICDM 2004: 375-378

[14] Fix, E. and Hodges, J., “Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties”, Technical
Report 4, USAF School of Aviation Medicine, Randolph Field, Texas, 1951.

[15] Karypis, G., Han, E.H., and Kumar, V.: “Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling”,
IEEE Computer, Vol 32, No 8, pp 68-75, August 1999

[16] Kaufman, L. and Rousseeuw, P. J., “Finding Groups in Data: an Introduction to Cluster Analysis”, 1990, John Wiley &
Sons, New York, NY

[17] Klein, D., Kamvar, S.-D., Manning, C. “From instance-level Constraints to Space-level Constraints: Making the Most of
Prior Knowledge in Data Clustering”, in Proc. ICML’02, Sydney, Australia.

[18] Salvador, S., and Chan, P., “Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation
Algorithms”, in Proc. ICTAI, Boca Raton, FL, November 2004

[19] Sinkkonen, J., Kaski, S., and Nikkila, J., “Discriminative Clustering: Optimal Contingency Tables by Learning Metrics”,
in Proc. ECML’02.

[20] Slonim, N. and Tishby, N., “Agglomerative Information Bottleneck”, Neural Information Processing Systems (NIPS-
1999).

22
[21] Toussaint, G., “Proximity Graphs for Nearest Neighbor Decision Rules: Recent Progress”, in Proc. 34th Symposium on

the INTERFACE, Montreal, Canada, April 17-20, 2002.
[22] Tishby, N., Periera, F.C., and Bialek, W., “The Information Bottleneck Method”, In proceedings of the 37th Allerton

Conference on Communication and Computation, 1999.
[23] University of California at Irving, Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html
[24] University of Houston, Machine Learning and Data Mining Group, http://www. cs.uh.edu/~sujingwa/PKDD05/
[25] Vilalta, R., Achari, M., and Eick, C., “Class Decomposition Via Clustering: A New Framework For Low-Variance

Classifiers”, in Proc. Third IEEE International Conference on Data Mining (ICDM03), Melbourne, Florida.
[26] Wilson, D.L., “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data”, IEEE Transactions on Systems,

Man, and Cybernetics, 2:408-420, 1972.
[27] Xing, E.P., Ng A., Jordan, M., Russell, S. “Distance Metric Learning with Applications to Clustering with Side

Information”, Advances in Neural Information Processing 15, MIT Press, 2003.
[28] Zeidat, N., “Supervised Clustering: Algorithms and Applications”, PhD dissertation, Dept. of Computer Science,

University of Houston, August 2005, www.cs.uh.edu/~nzeidat/publications/phd_dissert.html
[29] Zhao, Z., “Evolutionary Computing and Splitting Algorithms for Supervised Clustering”, Master’s Thesis, Department of

Computer Science, University of Houston, May 2004, http://www.cs.uh.edu/~zhenzhao/ZhenghongThesis.zip.

