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Abstract

In this paper we generalize the Aitken-like acceleration method of the additive Schwarz algorithm
for elliptic problems to the additive Schwarz waveform relaxation for parabolic problems. The domain
decomposition is in space and time. The standard Schwarz waveform relaxation algorithm has a linear
rate of convergence and low numerical efficiency. This algorithm is, however, friendly to cache use and
scales with the memory in parallel environments. It also minimizes the number of messages sent in
a parallel implementation and is therefore very insensitive to delays due to a high latency network.
M. Gander and co-workers have shown that the convergence of this algorithm can be speed up by
optimizing the transmission conditions. Our Aitken-like acceleration is an alternative method that consists
of postprocessing the sequence of interfaces generated by the domain decomposition solver and might be
combined to the method of Gander et al. We show that our technique (1) is a direct solver that requires
at most four solves per sub-domain in the case of a one space dimension linear parabolic problem with
time independent coefficients, (2) can be applied easily to multi-dimensional problems, provided that the
operator is separable in space (3) is an efficient iterative procedure for parabolic problems that are weak
nonlinear perturbations of linear operators with time independent coefficients, (4) provides a rigorous
framework to optimize the parallel implementation on a slow network of computers.
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I. I NTRODUCTION

In this paper we generalize the Aitken-like acceleration method of the additive Schwarz algorithm for elliptic
problems to the additive Schwarz waveform relaxation for parabolic problems.

Currently, standard processors are becoming multi-cores and there is a strong incentive to make use of all these
parallel resources while avoiding conflict in memory access. We also have an overwhelming abundance of parallel
computers available when using grids. The Additive Schwarz (AS) method for elliptic problems or the Additive
Schwarz Waveform Relaxation (ASWR) method for parabolic problems can be implemented easily in distributed
computing environments and have very simple and systematic communication schemes. At the end of each sub-
domain solve, the processor units exchange their interfaces with the ones that process neighboring subdomains. The
sub-domain solver can be optimized independently of the overall implementation. These algorithms are friendly to
memory cache use and scale with the memory in parallel environments. ASWR in particular minimizes the number
of messages sent in a parallel implementation and is very insensitive to delays due to a high latency network. The
main drawback of these methods is that they are one or several orders of magnitude slower than modern solvers
such as multigrids. In the meantime, multigrids have poor parallel efficiency with high latency networks.

There have been two main classes of methods to speed up AS and ASWR. One is to introduce a coarse grid
preconditioner. But a coarse grid operator reduces drastically the parallel efficiency on a slow network. A second
option is to optimize the transmission conditions. This general avenue of work has been followed with success by
numerous workers - see for example [22], [23], [7], [8], [11], [20], [24], [25], [4] and their references. We have
introduced in [16] a different and somehow complementary approach that consists of accelerating the sequence
of trace on the interface generated by the AS method. The advantage of our postprocessing algorithm, besides its
simplicity, is that it has quasi-optimum arithmetic complexity for the Poisson equation discretized on Cartesian grid
while offering unique parallel efficiency on the grid. This is the only example, to our knowledge, of a numerically
efficient Poisson solver that performs well on a grid of computers [3].
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Our method offers also a general framework to speed up elliptic and non-linear elliptic solvers in a broad variety
of conditions [2], [3], [12], [13], [15], [16]. The salient feature of the method consists of approximating the main
eigenvectors of the trace transfer operator in the AS algorithm and applying a standard acceleration technique based
on the linear rate of convergence, component by component, of the trace generated by AS in the proper basis. This
idea might be applicable to any sub-domain-wise relaxation technique that has a linear rate of convergence.

Our main objective in this paper is to present an extension of this technique to parabolic operators with domain
decomposition in spaceand time. We show how one can construct the trace transfer operator in ASWR or a fast and
accurate approximation of it, and eventually derive an efficient acceleration technique. Numerical experiments will
demonstrate the efficiency of our new algorithm for the standard heat equation with a box scheme on a Cartesian
grid. There are indeed dozens ofiterative methods to solve parabolic problems with domain decomposition. We
refer to the proceeding series listed in http://www.ddm.org to provide a representative set of methods. We will show
that our algorithm for the heat equation with a finite difference space stencil on a Cartesian grid is a paralleldirect
solver with a quasi-optimal arithmetic complexity with a very low requirement on the latency of the network. This
result does not hold in general for any parabolic operator. The separability of the operator in space is a critical
assumption to get optimum performance. Nevertheless, we will illustrate the potential and drawback of our method
with weakly nonlinear problems. Performance of our method on grid computing will be reported in a companion
paper.

The plan of this article is as follows. Section 2 presents the Aitken-Additive Schwarz-Waveform Relaxation
(AASWR) algorithm in the one space dimension case. We analyze also various numerical experiences with the
Steffensen variant of the method applied to linear and non-linear diffusion problems. Section 3 generalizes the
algorithm to multi-dimensional space problems. Section 4 is our conclusion.

II. A ITKEN-SCHWARZ METHOD FORL INEAR OPERATORS INONE SPACE DIMENSION

For completeness, we review the basic Aitken-Additive-Schwarz (AAS) method for linear elliptic problems in
one dimension. The details on the algorithm can be found for example in [16].

A. Aitken-Schwarz Algorithm

Let us consider a linear problem

L[u] = f in Ω = (0, 1), U|∂Ω = 0. (1)

Let Ωi = (yl
i, y

r
i ), i = 1..q be a partition ofΩ with yl

2 < yr
1 < yl

3 < yr
2, ..., y

l
q < yr

q−1. We consider the additive
Schwarz algorithm

Iterate on n until convergence

for i = 1..q, do
L[un+1

i ] = f in Ωi, un+1
i (yl

i) = un
i−1(y

l
i), un+1

i (yr
i ) = un

i+1(y
r
i ),

enddo

Let us denoteul,n+1
i = un

i (yl
i), ur,n+1

i = un
i (yr

i ) and ũn (respectivelyũ) be then iterated (respectively exact)
solution restricted at the interface, i.e

ũn = (ul,n
2 , ur,n

1 , ul,n
3 , ur,n

2 , ..., ul,n
q , ur,n

q−1)

The operator̃un → ũn+1 is linear. LetP be its matrix.P has the following pentadiagonal structure:

0 δr
1 0 0 ....

δl,l
2 0 0 δl,r

2 ...
δr,l
2 0 0 δr,r

2 ...

... δl,l
q−1 0 0 δl,r

q−1

... δr,l
q−1 0 0 δr,r

q−1

... 0 0 δl
q 0
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The sub-blocksPi =
δl,l
i δl,r

i

δr,l
i δr,r

i

i = 2..q − 1 can be computed as follows. Letv be the solution of

L[v] = 0 in Ωi, v(yl
i) = 1, v(yr

i ) = 0, (2)

andw be the solution of
L[w] = 0 in Ωi, w(yl

i) = 0, w(yr
i ) = 1. (3)

We have thenδl,l
i = v(yr

i−1), δl,r
i = v(yl

i+1) δr,l
i = w(yr

i−1) and δr,r
i = w(yl

i+1). δr
1 and δl

q can be computed in
a similar way. We observe that this computation of the sub-blocksPi can be done with embarrassing parallelism.

From the equality
ũn+1 − ũ = P (ũn − ũ),

one writes the generalized Aitken acceleration as follows:

ũ∞ = (Id− P )−1(ũn+1 − Pũn). (4)

If the additive Schwarz method converges, then||P || < 1 andId−P is non-singular. However regardless of the
convergence of the additive Schwarz algorithm, and provided thatId − P is non singular, the AS algorithm is a
direct solver.

The algorithm is then

• Step 1 : compute analytically or numerically in parallel each sub-blockPi from each sub-problems (2) and
(3).

• Step 2: apply one additive Schwarz iterate.
• Step 3: apply generalized Aitken acceleration on the interfaces based on (4) withn = 0.
• Step 4: compute in parallel the solution for each sub-domain.

From the point of view of parallelism step 1 and step 4 does not requires any communication. Step2 requires local
communication between sub-domains that overlap. Step 3 on the contrary requires global communication.

This algorithm might be applied to solve each step of the time integration of the following Initial Boundary
Value Problem (IBVP):

∂u

∂t
= L[u] + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ), (5)

u(x, 0) = uo(x), x ∈ (0, 1), (6)

u(0, t) = a(t), u(1, t) = b(t), t ∈ (0, T ). (7)

To illustrate the idea, let us consider the following semi-discretized problem with a first order Euler implicit
scheme in time:

Uk+1 − Uk

dt
= L[Uk+1] + f(., tk+1), k = 0, .., M − 1, (8)

U0 = uo, (9)

Uk+1
0 = a(tk+1), Uk+1

N = b(tk+1), k = 0, ..,M − 1, (10)

At each time stepk we have to solve the following BVP problem:

−dt L[Uk+1] + Uk+1 = Uk + dt f(., tk+1), (11)

Uk+1
0 = a(tk+1), Uk+1

N = b(tk+1), k = 0, ..,M − 1, (12)

This problem can be solved with the AAS algorithm. While the AAS algorithm applied to this problem is parallel,
it requires message passing every time step for Step 2 and 3. Let us denote byτ the overhead due to the latency
time of the network for message passing at each time step. The total overhead due to latency is of orderM τ
whereM is the number of time steps. This overhead is very significant for high latency networks and moderate
size problems. The ASWR gives flexibility to decide how often in time one exchanges the interfaces between
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subdomains. Let us denote bỹM the number of time steps computed at each ASWR iterate. The ASWR algorithm
writes:

Iterate onn until convergence with the set of̃M time steps

for i = 1..q, do

Uk+1,n+1−Uk,n+1

dt = L[Uk+1,n+1] + f(., tk+1), k = 0, .., M̃ − 1,

Uk+1,n+1
i (yl

i) = Uk+1,n
i−1 (yl

i), Uk+1,n+1
i (yr

i ) = Uk+1,n
i+1 (yr

i ), k = 0, .., M̃ − 1,

enddo

M̃ can be chosen in the range1 ≤ M̃ ≤ M. This choice is balanced by two conflicting factors.M̃ should be
small if the time step must be updated for accuracy purposes.M̃ is also limited by the number of time steps that
can be efficiently accessed and stored in memory. On the other hand, the largerM̃ the less latency overhead one
has. This key observation gives the main motivation to generalize the Aitken like acceleration method to ASWR.

Remark: it is well known for the Helmholtz problem (11, 12), that the smaller the time step the faster might
be the decay of the error in space introduced by artificial boundary conditions. In other words the cross terms
δl,r, δr,l in P might be asymptotically negligible. Message passing in the acceleration procedure might be then
limited to processors linked by overlapped sub-domains. While this improves dramatically the performance of a
parallel scheme, at the expense of some inaccuracy in the direct solver, one may still have a large overhead at
each time step due to the high latency of the network combined with the fact that the computation time per time
step is very small.

We will now describe our AASWR algorithm for a domain decomposition in spaceand time, in the one
dimensional space case for a linear parabolic problem.

B. Space-Time Aitken-Schwarz Algorithm

Let us consider the Initial Boundary Value Problem (IBVP):

∂u

∂t
= L[u] + f(x, t), (x, t) ∈ Ω = (0, 1)× (0, T ), (13)

u(x, 0) = uo(x), x ∈ (0, 1), (14)

u(0, t) = a(t), u(1, t) = b(t), t ∈ (0, T ), (15)

whereL is a second order linear elliptic operator. We assume that the problem is well posed and has a unique
solution.

We introduce the following discretization in space

0 = x0 < x1 < ... < xN−1 < xN = 1, hj = xj − xj−1,

and time
tk = k dt, k = 0 . . . M, dt =

T

M
.

Let us denote byX the column vectorX = (x1, . . . , xN−1)t.
We introduce an approximation of the parabolic problem (13) with a first order Euler implicit scheme in time

Uk+1 − Uk

dt
= D Uk+1 + f(X, tk+1), k = 0, ..,M − 1, (16)

U0 = uo(X), (17)

Uk+1
0 = a(tk+1), Uk+1

N = b(tk+1), k = 0, .., M − 1, (18)
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where Uk is the column vectorUk = (Uk
1 , . . . , Uk

N−1)
t. We also introduce the notationUj for the row vector

Uj = (U1
j , . . . , UM

j ). Matrix D might be time dependent, but we will not specify this dependence in our notation.
D is a square matrix that comes from a finite difference or a finite element approximation for example. We do

not need to specify this approximation. We have chosen for simplicity a first order scheme for the time stepping,
but we may use anyone step time integrationscheme, such as a Crank-Nicholson scheme for example.

If the scheme (16-18) converges to the exact continuous solution of the parabolic problem in some appropriate
space,Uk is an approximation in space ofu at time tk, andUj is an approximation in time ofu at grid pointxj .

Our purpose is to compute efficiently the numerical solution of the discrete problem (16-18).
At each time step one solves the linear system

(Id − dt D)Uk+1 = F (Uk), (19)

whereId is the matrix of the identity operator.
We assume that the matrixA = Id − dt D of the linear system (19) is regular.

Introducing the matricesU = (U1, ..., UM ) andF = (F (U1), ..., F (UM )), we have

A U = F, U0 = (a(t1), . . . , a(tM )), UN = (b(t1), ..., b(tM )). (20)

Let Ωi = (yl
i, y

r
i ), i = 1..q, be a partition ofΩ with

x0 = yl
1 < yl

2 < yr
1 < yl

3 < yr
2, . . . , y

l
q < yr

q−1 < yr
q = xN ,

and
{yl

2, y
r
1, . . . , y

l
q, y

r
q−1} ⊂ {x1, . . . , xN−1}.

One iteration of the ASWR algorithm writes

for i = 1..q, do
Ai V n+1

i = Fi, in Ωi × (0, T ),
V n+1

i (yl
i) = V n

i−1(y
l
i), V n+1

i (yr
i ) = V n

i+1(y
r
i ),

enddo

whereAi is the appropriate sub-block ofA corresponding to the discretization of the IBVP problem inΩi×(0, T ).
This algorithm generates a sequence of vectorsW ks = (V l,ks

2 , V r,ks

1 , V l,ks

3 , V r,ks

2 , . . . , V l,ks
q ) corresponding to the

boundary values on the set
S = (yl

2, y
r
1, y

l
3, y

r
2, . . . , y

l
q, y

r
q−1)× (t1, ..., tM )

of the Vi for each iteratek.
The proof of convergence of the additive Schwarz waveform relaxation on the continuous problem (13) with the

heat equation given in [10] is based on the maximum principle.
The convergence of the ASWR algorithm at the discrete level follows from a discrete maximum principle as

well: let us suppose that all discrete subproblems

Ai V = 0, V0 = (a(t1), . . . , a(tM )), VN = (0, ..., 0), (21)

satisfy the following condition:
||VN−1||∞ < ||a||∞, (22)

and similarly for
Ai V = 0, V0 = (0, . . . , 0), VN = (b(t1), ..., b(tM )), (23)

||V1||∞ < ||b||∞. (24)

Then it is straightforward to show that the sequenceW ks converges to the trace of the exact solution of the discrete
problem (16-18) on the interfaceS.
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Remark:properties (22) and (24) hold for the classical finite difference scheme with the heat equation problem
[26]:

Uk+1
j − Uk

j

dt
=

1
h̄j
{Uk+1

j+1 − Uk+1
j

hj+1
− Uk+1

j − Uk+1
j−1

hj
} + f(xj , t

k+1), (25)

with h̄j =
1
2
(hj+1 + hj). (26)

ASWR converges then for that scheme. We will see later on that the convergence of the ASWR scheme is not a
necessary condition to construct the acceleration procedure AASWR

Because the parabolic problem (13) is linear, the trace transfer operator

W ks+1 −W∞ → W ks −W∞

is linear. LetP denote its matrix.P has the following pentadiagonal structure:

0 P r
1 0 0 ....

P l,l
2 0 0 P l,r

2 ...
P r,l

2 0 0 P r,r
2 ...

... P l,l
q−1 0 0 P l,r

q−1

... P r,l
q−1 0 0 P r,r

q−1

... 0 0 P l
q 0

P is a matrix of size(2(q − 1)(M − 1))2 with the block P l,l
i , P l,r

i , P r,l
i , P r,r

i that are square matrices of size
(M − 1)2. Let us use the same generic notationId for the matrix of the identity operator no matter the dimension
of the matrix. If the matrixP is known and the matrixId− P is regular, one step of the ASWR provides enough
information to reconstruct the exact interface values by solving the linear system

(Id− P )W∞ = W 1 − P W 0. (27)

We can then define the algorithm

Algorithm (I)

• Step 1 compute the first iterate of ASWR.
• Step 2 solve the linear problem (27).
• Step 3 compute the second iterate using the exact boundary valueW∞.

We show in Section 2.2 that under some circumstances one can easily construct the matrixP or an approximation
P̃ of P.

We observe that this algorithm is a direct solver provided thatId−P is regular, no matter the overlap, or the fact
that ASWR converges or not. This method is a generalization of the Aitken-Schwarz algorithm described in [16]
for the case of linear elliptic operators. We callalgorithm (I) the Aitken-Additive Schwarz waveform relaxation
algorithm. We have the following result

Theorem 2.1:If the ASWR algorithm converges, then AASWR is a direct solver.
Proof: If ASWR converges the sequenceW ks converges. From

W ks+1 −W∞ = P (W ks −W∞),

we have||P || < 1. ConsequentlyId − P is a regular matrix. (27) has then a unique solution and AASWR is a
direct solver¤

We have then the following corollary of Theorem 2.1,

Corollary 1 If each IBVP associated to matrixAi in (21,23) satisfies the properties (22) and (24) then AASWR is
a direct solver.
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This lemma can be used to show that AASWR is a direct solver for the standard three point scheme with the
heat equation problem given in (25).

If one knows only an approximatioñP of P , one may apply the following acceleration scheme

Algorithm (II)
Iterates on the following three step scheme

• Step 1 compute one iterate of ASWR.
• Step 2 solve the linear problem(Id− P̃ )W̃ = W 1 − P̃ W 0.
• Step 3 update the boundary values of each sub-problem inΩi × (0, T ) with W̃ , i.e. W 1 := W̃ .

We call this algorithm the Steffensen-Additive Schwarz Waveform Relaxation (SASWR) algorithm because we
iterate on the Aitken acceleration that is inexact here [19], [29]. We have the following result

Theorem 2.2:SASWR algorithm converges if

α = ||(Id− P̃ )−1 (P − P̃ )|| < 1.

The algorithm has then a linear rate of convergence with speedα.
Proof: from

W 1 −W∞ = P (W 0 −W∞) and W 1 − W̃ = P̃ (W 0 − W̃ ),

we have

W̃ −W∞ = P (W 0 −W∞)− P̃ (W 0 − W̃ ),

W̃ −W∞ = (P − P̃ ) (W 0 −W∞) + P̃ (W̃ −W∞),

and finally
W̃ −W∞ = (Id− P̃ )−1 (P − P̃ ) (W 0 −W∞).

From W 1 := W̃ , we have
||W 1 −W∞|| < α ||W 0 −W∞||.

¤

We will see in Section 2.5 how one can increase the sparsity ofP̃ while keeping some fast convergence properties
of the algorithm. But let us first present how one compute the coefficients ofP.

C. Construction of MatrixP

Let us assume that the discretization of the temporal domain has only two time steps, i.e.,(t0, t1) = (0, T ). The
blocksP .,.

i are then scalars.
Let v be the solution of

Aiv = 0 in Ωi, v(yl
i) = 1, v(yr

i ) = 0, (28)

andw be the solution of
Aiw = 0 in Ωi, w(yl

i) = 0, w(yr
i ) = 1. (29)

AASWR then reduces to the exact same Aitken-Additive Schwarz algorithm for the Helmholtz operator−dt D+
Id described in Section 2.1 [16].

The construction ofP with a temporal discretization of(0, T ) with an arbitrary number of time stepM > 1 is
done as follows.

We choose the following basis of functions

δk
j = 1, if j = k, 0 otherwise, j, k ∈ {1, ..,M}

to represent the trace of the solution on the interfaces

y
l/r
i × {t1, ..., tM}, i = 1..q.
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Let us consider the family of subproblems inΩi × (0, T ),

V k+1
i,j − V k

i,j

dt
= Di[V k+1

i,j ], k = 0, . . . , M − 1, (30)

V 0
i,j = 0, (31)

V k+1
i,j (yl

i) = 0, V k+1
i,j (yr

i ) = δk+1
j , k = 0, . . . , M − 1. (32)

Let Vi,j denote the matrix that is the solution of the discrete problem (30-32). Thej column vector ofP r,r,
respectivelyP r,l, is the trace ofVi,j on yl

i+1, respectivelyyr
i−1. P r,r

i and P r,l
i are consequently lower triangular

matrices. A similar construction can be done to compute the sub-blockP l,l
i andP l,r

i .
Let us assume now that all coefficients of the elliptic operatorL in the IBVP (13) are time independent.
We notice that allVi,j are obtained fromVi,1 by a translation in time, i.e.,

Vi,j(Xi, t) = Vi,1(Xi, t− tj−1), t ∈ {tj , . . . , tM}, (33)

and
Vi,j(Xi, t) = 0, t ∈ {t0, tj−1}. (34)

The first column vector ofP r,r, respectivelyP r,l, is the trace ofVi,1 on yl
i+1, respectivelyyr

i−1. From (33) we
see that all columns ofP r,r

i , respectivelyP r,l
i , are obtained from the first column of matrixP r,r

i , respectivelyP r,l
i ,

with no additional computation.
To conclude, the construction of the matrixP of the trace transfer operator is achieved if one computes once

and for all the solution of the two following sub-problems inΩi × (0, T ),

V k+1
i,j − V k

i,j

dt
= Di[V k+1

i,j ], k = 0, . . . , M − 1, (35)

V 0
i,j = 0, (36)

V k+1
i,j (yl

i) = δk+1
1 , V k+1

i,j (yr
i ) = 0, k = 0, . . . , M − 1, (37)

and

V k+1
i,j − V k

i,j

dt
= Di[V k+1

i,j ], k = 0, . . . , M − 1, (38)

V 0
i,j = 0, (39)

V k+1
i,j (yl

i) = 0, V k+1
i,j (yr

i ) = δk+1
1 , k = 0, . . . , M − 1. (40)

Sub-problems (35-37) and (38-40) are the analogue of (28) and (29) in the Aitken-Schwarz algorithm for the
AASWR algorithm.

Remark:All sub-problems listed above needed for the construction of the trace transfer operator matrix can be
solved with embarrassing parallelism.

We are going now to illustrate the method with the classical finite difference approximation (25) for the one
dimensional heat equation.

D. Application to the One Dimensional Heat Equation

Our linear test case is the heat equation problem in the domain(0, 1)× (0, T ). The grid in space is regular with
constant space steph. We keep the number of grid points per sub-domain to beNb = 20, and the time step is
dt = h. Further the overlap is kept minimum, that is a one mesh interval.

The total number of grid points isN = Nb + (q − 1) (Nb − 1), whereq is the number of sub-domains.
The Standard Method (SM) to integrate (25) is to solve each time step with a direct tridiagonal solver. The LU

decomposition of the tridiagonal system can be computed once, since the same linear system is solved at every time
step. The arithmetic complexity of the SM is thenn1 = C1 N M , whereC1 is an integer.C1 = 5 for Gaussian
elimination. Let us compare the arithmetic complexity of the AASWR algorithm with that of SM. The arithmetic
complexity of one iterate of the ASWR algorithm isnq = C1 M (N + q− 1) which is asymptotically equivalent
to n1.
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Fig. 1. Convergence of ASWR and AASWR for the heat equation.

All subdomains correspond to the same finite difference operator and this operator has no time dependent coefficient.
Consequently, the construction of the matrixP requires to solve one sub-domain problem (35-37) or (38-40). The
arithmetic complexity of the construction ofP is thenC1 M N+q−1

q and can be neglected againstnq.
The acceleration step requires to solve the sparse linear system (27). Each block is a triangular matrix of

dimensionM the number of time steps. The solution can be computed forward in time by solving at each time
step a penta-diagonal system analogous toP in Section 2.1, with a linear combination of the trace of the solution
on the interfaceS at all previous time steps on the right hand side .

The arithmetic complexity of this blockwise backward elimination procedure is then asymptoticallyninterface =
C2M [(q − 1)2 + O(q)] floating point operations [1].ninterface is small compare tonq as long as

q <<
√

N. (41)

Overall and assuming (41), the number of floating point operations (flops) for the AASWR procedure is about
twice the number of flops for the standard SM with no domain decomposition. However modern computer archi-
tecture do not perform linearly with the number of flops. The domain decomposition algorithm might still have
a better elapse time performance than the SM thanks to memory access limitations and cache memory effect. To
illustrate this concept we have performed the computation with both algorithm SM and AASWR on a PC running
matlab with a Pentium 4 2.66GHz. This PC has one GB of main memory. With moderate number of time steps
and large problem size, the advantage of the AASWR algorithms over the SM becomes clear. Figure 1 provides
some comparison between both algorithm with ten time steps, i.eM = 10, Nb = 20 and a number of subdomains
that varies from2 to 20. The elapsed time is given in seconds and averages the measurement provided by one
hundred runs. We remind here that the size of the problems grows linearly with the number of domains according
to N = Nb + (q−1) (Nb−1). Overall the construction ofP and the acceleration step has negligible elapse time.
In AASWR the elapse time grows linearly with the number of subdomains. AASWR performs better than SM for
q > 6. We believe that the cache size is responsible for the two peaks in the curve giving the performance of the
SM. On the contrary the AASWR seems to be insensitive to the cache size for the dimension of the sub-domain
that has been chosen here.

To verify if the Aitken-like acceleration impacts the stability of the AASWR or not, we have checked the accuracy
of our solution with larger problem size than in the previous test case, that isM = 20 and Nd = 40. The RHS
and boundary conditions in the heat equation are such that the exact solution is the traveling wave:

u(x, t) = exp (−20 z2), where z = x− 1/3− 1/5 t. (42)

Figure 2 gives the condition number of the matrix(Id− P ) used in the acceleration step. This condition number
grows linearly with the number of subdomains, which is proportional to the problem size in spaceN . Figure 3
provides some indication of the accuracy of the solver. We choose to measure the error in the discreteL∞ norm
for all the domain of computationΩ× (0,M dt). The numerical accuracy of AASWR is overall compatible with
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the condition number of the linear discrete problem (25), and the acceleration procedure does not seems to impact
significantly the accuracy of our exact solver.
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Fig. 2. Conditionning number of the linear system (27).
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Fig. 3. Difference in maximum norm between the solution of
SM and AASWR solvers

We discuss in the next section the application of the method to more general one D heat equation problems such
as weakly nonlinear equation.

E. Generalization and Construction of Approximations ofP

In the most general situation where the elliptic operatorL has coefficients that are time dependent, the construction
of the operatorP becomes numerically intense. In principle, for each element of the vector basis that one uses to
represent the trace of the solution on the interfaceS, one has to compute a solution of a sub-problem similar to
(35-37). ASWR will not be cost effective (on a sequential computer) unless one uses a domain decomposition with
very few time stepsq, or a good low cost approximation ofP.

Remark: because all subproblems (35-37) can be computed prior to the time stepping with embarrassing
parallelism, the general situation might be still manageable on a grid of computers.

To apply our technique to more general heat equation problems, we can try to construct cost effective approxi-
mations of the trace transfer operator.

We discuss four complementary ways of approximating the trace transfer operatorP. The impact on the efficiency
of the scheme can bea posterioriassessed by the estimate in Theorem 2.
• (i) First, one can neglect a set ofp < M first rows of the sub-blockP .,.

i in matrix P. This minimizes the
number of sub-problems to be solved when the elliptic operatorL has time dependent coefficients. This is equivalent
to neglecting the time dependency of the solutionu(x, t) in Ωi on artificial boundary conditionsu(yl/r

i , t) for
t ∈ (0, p dt). For the heat equation the error can be analyzed analytically as in [10] using theerfc function. This
approximation ofP might be effective if and only if one is interested in the accuracy of the final solution at the
end timet = T, rather than on the whole time interval(0, T ). As a matter of fact we still have||P − P̃ || of order
one in this situation.
• (ii) Second, one can neglect the cross termsP r,l and P l,r in P. The quality of this approximation depends

on the fast decay of the error in space. For the heat equation, for example, we have seen that each time step
corresponds to the solution of a Helmholtz problem,

− dt u′′ + u = rhs.

The influence of the error at an artificial boundaryy decays as the function

exp(−|x− y|√
dt

)
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Fig. 4. Neglecting the cross terms in matrixP with the heat equation∂tu = ∂xxu + f.

at every time step. The smaller the time step, the better the approximation. The main advantage of this approximation
relies on the fact that the algorithm does not require any global communication to solve the acceleration step as
in AASWR. This is, however, not lowering the complexity of the construction of the approximationP̃ when the
elliptic operator has time dependent coefficients.
• (iii) Third, one can use a coarse global representation of the trace on the artificial interfaceS following the

same approach as in [12]. This method will not be developed here.
• (iv) Fourth, one can use a constant coefficient approximation ofL in the linear case or an average in time

approximation of the Jacobian of the operator in the nonlinear case. Thus the construction ofP̃ requires the parallel
computation of two local problems analogous to (35-38).

Let us illustrate the performance of the Steffensen variation of the algorithm, i.e.,algorithm (II), when one uses
an approximation of the trace transfer operator.

In all numerical experiments below we force the solution of the IBVP to be the traveling wave (42).
In our experiments we evaluate the impact of neglecting the non-local domain dependencies as described in (ii).

We take the block diagonal approximation ofP and neglect the cross termsP l,r, P r,l. Figure 2 reports on the
performance of SAWR with the heat equation problem, while Figure 3 applies to the reaction-diffusion problem

∂tu = ∂xxu− µ u + f, with µ = N. (43)

The convergence speed deteriorates dramatically when the number of subdomains grows for the heat equation
test case. The situation improves for the Helmholtz problem (43) with largeµ. This observation will be used for
multi-dimensional problems in see Section 3.2.

Finally, let us consider a nonlinear problem as follows

∂u

∂t
=

∂2u

∂x2
+ f(u). (44)

Following argument (iv) above, we use as an approximation ofP the trace transfer operator that corresponds to
the heat equation operator∂t − ∂xx that has time independent coefficients.

In our experiment we choose
f(u) = µ tanh(u).

If Lh
t denotes the Jacobian of the discrete non-linear operator corresponding to the time integration of (44),f(u)

is a second order perturbation of this operator, i.e||f(u)|| = µ << ||Lh
t || ∼ h−2. In Figures 4 and 5, we takeµ = 1

andµ = 5, respectively. We observe a linear rate of convergence of SASWR. The speed of convergence deteriorates
rapidly asµ grows. We speculate that the speed of convergence of the SAWR algorithms will be quadratic if one
usesLh

t instead of the heat operator. It is, however, impractical to compute the matrix of the corresponding trace
transfer operator because of the time dependency of the coefficient of the Jacobian.

We are going to show that most of the results obtained in this section can be extended to multi-dimensional
parabolic problems providedL is separable or a weak perturbation of a separable operator.
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Fig. 5. Neglecting the cross terms in matrixP with the reaction-diffusion equation∂tu = ∂xxu−N u + f.
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III. A ITKEN-SCHWARZ METHOD FORL INEAR OPERATORS IN THEMULTIDIMENSIONAL CASE

To simplify the notations we will restrict ourselves to two space dimensions. We further assume that the domain
Ω is a square discretized by a rectangular Cartesian grid with arbitrary space steps in each direction. The general
situation with arbitrary shape domains might be treated following the line of [12] and will be reported elsewhere.

Let us consider the IBVP:

∂u

∂t
= L[u] + f(x, y, t), (x, y, t) ∈ Ω = (0, 1)2 × (0, T ), (45)

u(x, y, 0) = uo(x, y), (x, y) ∈ (0, 1)2, (46)

u(0, y, t) = a(y, t), u(1, y, t) = b(y, t), y ∈ (0, 1), t ∈ (0, T ), (47)

u(x, 0, t) = c(x, t), u(x, 1, t) = d(x, t), x ∈ (0, 1), t ∈ (0, T ), (48)

whereL is a second order linear elliptic operator. We assume that the problem is well posed and has a unique
solution. Using an appropriate shift in space we can restrict ourselves to the special case:

c(x, t) = d(x, t) = 0, ∀(x, t) ∈ (0, 1)× (0, T ). (49)

We introduce the following discretization in space

0 = x0 < x1 < . . . < x
Nx−1 < x

Nx
= 1, hxj = xj − xj−1,

0 = y0 < y1 < . . . < y
Ny−1 < y

Ny
= 1, hyj = yj − yj−1,

and time
tk = k dt, k ∈ {0, . . . , M}, dt =

T

M
.

The domainΩ = (0, 1)2 is decomposed intoq overlapping stripsΩi = (yl
i, y

r
i )× (0, 1).

We first present the general algorithm whenL is a separable linear operator and refer to the theoretical framework
established in [2] for elliptic operator.

A. The General Algorithm for Separable Operator

Let us assume that the elliptic operatorL is a separable second order operator as follows:

L = L1 + L2

L1 = e1∂xx + f1∂x + g1, L2 = e2∂yy + f2∂y + g2.

e1, f1, g1 are functions of x only, ande2, f2, g2 are functions of y only. We write the discretized problem as follows

Uk+1 − Uk

dt
= Dxx[Uk+1] + Dyy[Uk+1] + f(X,Y, tk+1), k = 0, . . . , M − 1, (50)

with appropriate boundary conditions corresponding to (46-48).
Our main objective is to rewrite the discretized problem in such a way that we can reuse the results of Section 2
that is for the one space dimension case. Let us assume thatDyy has a family of(Ny−1) independent eigenvectors
Φj , j = 1, .., Ny in RNy−1 with corresponding eigenvaluesµj .

The Φj are implicitly the numerical approximation in(0, 1) of the solutions of the following continuous eigen-
vector problems:

L2[v(y)] = µ v(y), v(0) = v(1) = 0. (51)

Let us introduce the decomposition

Uk(X, Y, t) =
Ny−1∑

j=1

Λk
j (X, t)Φj(Y ), uo(X, Y ) =

Ny−1∑

j=1

λk
j (X)Φj(Y ),
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f(X,Y, tk) =
Ny−1∑

j=1

fk
j (X, tk)Φj(Y ),

and

a(Y, tk) =
Ny−1∑

j=1

aj(tk)Φj(Y ), b(Y, tk) =
Ny−1∑

j=1

bj(tk)Φj(Y ).

The discrete solution of (50) satisfies the following set of(Ny − 1) uncoupled problems

Λk+1
j − Λk

j

dt
= Dxx[Λk+1

j ] + µj Λk+1 + fj(X, tk+1), k = 0, . . . , M − 1, (52)

Λ0
j = λj(X), (53)

Λk+1(x0) = aj(tk+1), Λk+1(xNx
) = bj(tk+1), k = 0, . . . , M − 1. (54)

Let us extend the notation of Section 2 for the trace transfer operator

W ks −W∞ → W ks+1 −W∞,

to the two dimensional space case.
This operator can also be decomposed into(Ny − 1) independent trace transfer operators

W ks

j −W∞
j → W ks+1

j −W∞
j ,

that apply to each component of the trace of the solution expanded in the eigenvector basisE = {Φj , j =
1, . . . , (Ny − 1)}. Let Qj be the matrix of this linear operator. The matrixP has now a(Ny − 1) diagonal block
structure, where each block is the matrixQj . Algorithm (I) can be generalized as follows

Algorithm (I bis)

• Step 1 compute the first iterate of ASWR for the two space dimension parabolic problem (45).
• Step 2 expand the trace of the solution in the eigenvector basisE and solve the linear problem component

wise
(Id−Qj)W∞

j = W 1
j −Qj W 0

j , ∀j ∈ {1, . . . , (Ny − 1)}. (55)

Assemble the boundary conditionW∞ =
∑

j=1,...,Ny−1 W∞
j Φj .

• Step 3 compute the second iterate using the exact boundary valueW∞.

Let us emphasize that the sub-domain problems inΩj × (0, T ) can be integrated by any existing efficient
numerical solver. It is only the acceleration step 2 that requires the decomposition of thetrace of the solution into
the eigenvector basisE.

Because all eigenvector components of the solution are independents, we have then as in the one dimension
space case

Theorem 3.1:If the ASWR algorithm converges, then AASWR is a direct solver.

The construction of theQj can be done exactly as in the one space dimension case.
This preprocessing step consists of solving2 q (Ny − 1) problems analogous to (35-37) in(yl

i, y
r
i )× (0, T ),

V k+1
i − V k

i

dt
= Dxx[V k+1

i ] + µj V k+1
i , k = 0, . . . , M − 1, (56)

V 0
i = 0, (57)

V k+1
i (yl

i) = 0, V k+1
i (yr

i ) = δk+1
1 , k = 0, . . . ,M − 1, (58)

and

V k+1
i − V k

i

dt
= Dxx[V k+1

i ] + µj V k+1
i , k = 0, . . . , M − 1, (59)

V 0
i = 0, (60)

V k+1
i (yl

i) = δk+1
1 , V k+1

i (yr
i ) = 0, k = 0, . . . ,M − 1. (61)
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for each eigenvalueµj , j = 1, . . . , Ny − 1 and each sub-domaini = 1, . . . , q.
These sub-problems (56-58) and (59-61) can be computed with embarrassing parallelism.
Thanks to the block diagonal decomposition ofP one can generalizealgorithm (II) to two space dimensions

as well and repeat Theorem 2.2. We will see in Section 3.2 how one can take advantage of the eventual large
eigenvalue|µj | >> 1 of Dyy in a parallel implementation. The extension of the method presented here to the three
dimensional case under the assumption of separability of the discrete elliptic operator is straightforward.

We now illustrate our method for the heat equation problem.

B. Application to the Heat Equation

We consider the standard heat equation problem discretized in space on a five point stencil with central finite
differences on a regular Cartesian mesh. We have in this situation

Φj = sin(j π y), µj = − 4
h2

y

sin2(jπ
hy

2
).

The time stepping:

Uk+1
i,j − Uk

i,j

dt
=

Ui+1,j − 2Ui,j + Ui−1,j

h2
x

+
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

+ Fi, j
k+1,

can be processed fairly efficiently using the Fourier sin transform in space. By following a fast Fourier like
procedure to compute the data in theNy − 1 uncoupled IBVP (52 - 54) with a tridiagonal solver for each set of
linear equations. Using notation similar to the one in Section 2.4, this SM involves

n1 = C3 Nx M Ny log(Ny) flops,

whereC3 is an integer constant.
Following the same steps as in Section 2.4, one can show that AASWR requires roughly two times as many

floating point operations. But as stated before the AASWR algorithm is a parallel algorithm fairly tolerant to high
latency networks. We have verified also that AASWR performs better than SM on a scalar processor with small
number of time steps and large problem size.

We have checked the accuracy of our AASWR solver on a two dimensional problem with singular sources as
follows:

F (x, y) =
∑

j=1..3

fj(t)δ(xj , yj , rj).

The delta functions are equal to one in a disk of center(xj , yj) and radiusrj , and zero elsewhere. Figure 8 and
9, gives a representation of the solution with three different time periodic source terms. In this simulation the
time interval is(0, π). The space grid is given byNx = 200 and Ny = 197. We use four strip subdomains. The
difference in the discrete maximum norm on(0, 1)2 × (0, π) between the SM solution and the AASWR is of the
order of10−13.

Remark:our result can be easily generalized to tensorial products of a one dimensional grid with adaptive space
stepping. The key hypothesis is the separability of the discrete operatorDxx +Dyy on the tensorial product of grid.
Becausehy is not a constant, the eigenvectorsΦj are not known analytically and should be computed numerically
as in [2].

We have shown in [3] for ASWR that it was not necessary to accelerate with the exact Aitken’like acceleration
formula all sin components of the trace of the solution on the artificial interface. A similar technique applies to the
AASWR algorithm for our benchmark problems. We observe that the propagation of the error in space for each
component in the eigenvector basisE decays monotonically as|µj | grows. Further one usually has simultaneously
||Λk

j || << 1, for largej components [6].
On can check that the linear convergence rate of ASWR for the sin wave componentΦj(y) of the solution is

approximativelyγj(h) with

γj(x) = exp(− dist(x) (
dt

1 − µj dt
)

1
2 ),
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Fig. 8. Contour line of the solution at four different times.

Fig. 9. Representation of the solution at four different times.

anddist(x) is the distance of the grid point of first coordinatex to the artificial interface ofS. Further we have
||Qr,l

j,i||∞, ||Ql,r
j,i||∞ ∼ γj(1/q − h).

For the trace components that correspond to large eigenvaluesµj , ASWR has a fast linear rate of convergence,
and the acceleration may not be necessary. For intermediate values, one may neglect completely the global coupling
of all domains in (55), that is to neglect the cross termsQr,l

j,i andQl,r
j,i of the block pentadiagonal matrixQj - see

Figure 5. For all other eigenvalue components that correspond to the slow decay of the error in space, one must
solve the complete linear system as in (55). As observed in [3] a parallel implementation can take advantage of
this feature by reducing dramatically the size of the messages between the sub-domains.

We will now discuss some details of the parallel implementation of our method that are specific to spaceand
time decomposition.

IV. D ISCUSSION OF THEPARALLEL ALGORITHM IMPLEMENTATION

First, let us discuss the properties of AASWR that should be used in a parallel implementation of the method. We
will describe theoretically the parallel algorithm using the general framework of message passing on a distributed
network of processors and show that our new method provides a rigorous framework to optimize the use of a
parallel architecture.

To formalize the algorithm, one introduces the following notations:V k(δright) andV k(δleft), are the solutions
at time stept = tk of the set of problems (35-40) in the one space dimension case, (56-61) respectively in the
two space dimension case.U(W ks(tk)) is the solution of the set of subproblems of the domain decomposition
algorithm at iterateks with boundary conditionsW ks on S at time levelt = tk.
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Prior to the AASWR algorithm one computes in parallelV k(δleft), and V k(δright), in order to construct the
matrix P of (27) or its equivalent with multi-dimension problems. This can be done, in the one space dimension
case, with no message passing required, on2 × q processors whereq is the number of sub-domains. In the two
dimensional case one can distribute the process on2 × q × Ny processors since all eigenvector components are
given by the solution of a set ofNy decoupled (one space dimension) parabolic problems.

The first step of AASWR is the parallel computation of the solution of the IBVP (13) or (45) in each sub-domain
Ωi× (0, T ), i = 1 . . . q. It is important to notice that the acceleration of the interface components ofS at time step
tk1 does not depend on the interface components ofS at later time stepstk2 , k2 > k1. This property is reflected in
the fact that the blocks of the pentadiagonal matrixP are lower tridiagonal matrices. Consequently the resolution
of the linear system in the acceleration step (27) or its equivalent with multi-dimension problems can progress
with the time stepping onU(W0(tk)). A message passing parallel implementation of the algorithm should then
distribute each time step of the first iterate ofW 1 as soon as they are computed.

Similarly as soon as the accelerated time leveltk of W∞ is produced by Step 2 ofalgorithm (I), the exact
discrete solution at time leveltk can be computed.

To summarize, the AASWR algorithm gives rise to fourparallel time stepping processes:

• (i) computeV k+1
left ,

• (ii) computeV k+1
right,

• (iii) computeU(W 0(tk+1)),
• (iv) computeW∞(tk) based on (i-iii) at time steptk and then computeU(W∞(tk)).

These four parallel computations need the first time step for (i-iii) to be achieved. In the one space dimensional
case, AASWR may run on4× q processors!

Let us notice that the parallel implementation of the acceleration step itself (27) is not obvious. We refer to [30]
for a discussion of such parallel algorithms. However, the solution of the linear system in (27) is at least an order
Nx

q times cheaper than the rest of the calculation in Algorithm I or Ibis. It can be done then redundantly on the q
processors that execute (iv).

In practice one should minimize the overhead due to the latency of the network. The communication step should be
executed everynq time steps wherenq is a small integer to be optimized experimentally. One then uses non-blocking
communications to overlap communication of sub-domain boundaries by computations of sub-domain solutions.
The optimal choice ofnq depends critically on the ratio between the network performance and the floating point
performance of the processors. The detailed specific implementation depends strongly on the computer architecture.
An experimental study, with particular emphasis on grid computing will be published in a companion paper.

V. CONCLUSION

In this paper we have shown how to generalize the Aitken-like acceleration method of the additive Schwarz
algorithm for elliptic problems to the additive Schwarz waveform relaxation for parabolic problems. This new
domain decomposition algorithm is in spaceand time. Since the concept of our acceleration technique is general
and might be applied in principle to any block-wise relaxation scheme, we expect that it can be combined with
some optimized transmission conditions for the same PDE problem. We have shown that our technique

(1) is a direct solver that requires at most four solves per sub-domain in the case of a one space dimension linear
parabolic problem with time independent coefficients, (2) can be applied easily to multi-dimensional problems,
provided that the operator is separable in space, (3) is an efficient iterative procedure for parabolic problems that
are weak nonlinear perturbations of linear operators with time independent coefficients, (4) provides a rigorous
framework to optimize the parallel implementation on a slow network of computers.

A further step in the development of our methodology would be to consider unstructured meshes, and approximate
the trace transfer operator with for example, the coarse grid interface approximation presented in [12].
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