
Real Cryptographic Protocol with an Insider Attacker:
Improving Techniques for Proving Undecidability of Checking Security Goals

Zhiyao Liang and Rakesh M. Verma

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-08-02

February 27, 2008

Keywords: Cryptographic protocols, secrecy, authentication, insider, undecidability, formal method.

Abstract

Existing undecidability proofs of checking secrecy of cryptographic protocols have the limitations of
not considering protocols common in literature, which are in the form of communication sequences, since
only protocols as non-matching roles are considered, and not considering an attacker who is an insider
since only an outsider attacker is considered. Therefore the complexity of checking the realistic attacks,
such as the attack to the public key Needham-Schroeder protocol, is unknown. The limitations have been
observed independently and described similarly by Froschle in a recently published paper [1], where two
open problems are posted. This paper investigates these limitations, and we present a generally applicable
approach by reductions with novel features from the reachability problem of 2-counter machines, and we
solve the two open problems. We also prove the undecidability of checking authentication which is the
first detailed proof to the best of our knowledge. A unique feature of the proof is to directly address
the secrecy and authentication goals as defined for the public key Needham-Schroeder protocol, whose
attack has motivated many researches of formal verification of security protocols. This report covers our
workshop paper [2] and provide more details of modeling and proofs.
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I. I NTRODUCTION

SINCE networks are indispensable to all kinds of communications nowadays, checking and analyzing crypto-
graphic protocols are especially important. A significant research direction is to check secrecy and authentication

of protocols against a dominating attacker, first introduced by Dolev and Yao [3], assuming the cryptographic
primitives cannot be broken. Since Lowe discovered an attack (listed in Fig. 2 of Appendix VI-A) on the public
key Needham-Schroeder protocol (PKNS protocol) [4] 17 years after it was published [5], many papers have focused
on the topics in this area using formal methods. An essential part of these researches is to investigate the complexity
of checking security protocols. In this paper we focus on the undecidability results.

Undecidability results are important practically since they are helpful to understanding the problem and to find
scenarios that are decidable. Provided with precise undecidability results, people can focus on more promising di-
rections to find decidable or semi-decidable subcases, or to avoid the trouble by following some prudent engineering
approach to design protocols so that checking the security is decidable, or to understand better the limitations of
some automatic verifier or model checkers, such as why their termination cannot be proved, or why they detect
false attacks. In general the more precise and specific undecidability results are stronger and more helpful.

Two questions need to be asked in order to judge and improve the quality of proving undecidability. 1) Do
the obtained undecidability results exactly cover the realistic problems of practical interest? If not, the complexity
of solving the target problem may still remain unknown, and researchers could spend more effort on proving
decidability without progress, if the problem is actually undecidable. For example, Froschle has considered to
decidability of the two open problems in [1] as possible future research directions, if they are not undecidable.
2) Is there a general and powerful approach so that the undecidability of different cases can be proved similarly,
or even semi-automatically by some programs? Since there are different security goals, different protocols have
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different requirements, and researchers are analyzing problems with very specific requirements, inevitably there
will be different tasks of investigating the undecidability of checking security protocols. It is ideal to have a
common proving approach so different proofs could be discovered similarly while only the exact meaning of
the parameters of the proving template need to be customized. The idea agrees in spirit with some techniques
of artificial intelligence, and automatic theorem proving which take advantages of reusable patterns to provide
solutions. Therefore this research has the potential to utilize these techniques for automation of proofs. This paper
is devoted to the answers of the two questions.

A. Limitations of Existing Undecidability proofs

Undecidability of secrecy checking has been mentioned by other researchers in several papers [6] [7] [8] [9] [10]
[11] [12], and [8] [9] [11] provide proofs with details. In [9] and [8] the authors used MSR (multi-set rewriting) to
analyze protocols. The proof is by a two-stage reduction from the halting problem of Turing machine with the style
of Turing machine tableau to Horn clause theories without function symbols and then from Horn clause theories
to protocols specified as a set or roles. In [11] the authors showed that the undecidability result of [8] can be
proved more directly by a reduction from the reachability problem of a 2-counter machines to the secrecy checking
problem of protocols as sets of roles (we call them role-oriented protocols).

The above proofs of undecidability have three limitations.First , all of the undecidability proofs, except [7], do
not consider a protocol as a sequence of message exchanges, which we call acommunication sequence, or CS for
short. The published protocols we have noticed (see the protocol library [13]) are all in the form of communication
sequences. These undecidability proofs directly consider a protocol as a set of roles, we call this kind of protocols
Role Orientedor RO for short, where each role is a sequence of message sends and receives executed by a principal
(also called an agent). Usually the first step to analyze a protocol as a communication sequence is to translate it
into a set of roles, where the actions executed by the same agent are organized into a role, and the relative order
of actions in the communication sequence is kept. Every step of the communication sequence implies two actions,
one is the message sending, marked with a ‘+’, from the sender’s role, and the other is the corresponding message
receiving, marked with a ’−’, in the receiver’s role. In a CS we only list the sender’s actions but without the+
marks, while the corresponding receiver’s actions are implicit. As an example, the CS and roles of the core of the
public key Needham-Schroeder protocol [5] (PKNS) is listed in Appendix I.

However, there is a difference between an RO protocol translated from a CS, and a RO protocol directly designed
without considering the corresponding CS. The reason is that the first one ismatching, in the sense that every
message sending (or receiving) action in a role can always be matched with (be unified with) a unique message
receiving (or sending) action in another role. The second one could benon-matching. We call aRO protocol
non-matching if for some message received (sent) in a role, the other corresponding role in the protocol where this
message is sent (received) does not exist. In other words, a set of non-matching roles are impossible to be obtained
by parsing any CS. In the proofs of undecidability of secrecy checking mentioned above, except [7], the protocols
considered are non-matching RO.

In [7] the authors showed a proof of the undecidability of secrecy checking by a reduction from the reachability
problem of Petri nets. The protocol constructed in the reduction is called ’real’ and has at least one honest run.
A ’real’ protocol is equivalent to what we call a communication sequence in this paper. However, as noticed by
Froschle in [1], the proof of [7] depends on messages with unbounded size in a run, which is a part of the motivation
of the first open problem of [1] (quoted later in this paper). Bounding message size in a run (or only consider runs
where message size is bounded) is a condition making the undecidability stronger and more interesting as proposed
by [8]. The proof of [7] has another limitation of considering an outsider attacker (the third limitation, described
later).

Second, improper secrecy declaration. This limitation, described below, is directly related to the first limitation
and can show further why the proofs are not quite suitable for practically designed protocols. The proofs (except
[7]) have some role where a term, which is declared as the secret one, is sent out in a message, not encrypted or
trivially encrypted so that the attacker can know the secret term once he can get the message. Suppose this role
belongs to a set of roles which are translated from some practically designed protocol as a CS, we can see that
an honest run of the protocol (running the CS) will inevitably send the message containing a secret term and the
attacker can always know the secret term. In other words, secrecy checking for protocols in the form of a CS with
this ’trivial’ secrecy declaration is always decidable, and the undecidability proofs will not work.
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Froschle has independently noticed the above two limitations in a recently published paper [1]. She mentioned
protocols having an honest run or ‘real’ protocols (notions first used by [7]), and proposed the first open problem,
as quoted below.

“A protocol has anhonest runif all of its rules can be played in the given orders: the first rule, then the
second, and so on. ”

Problem 1.“Is Insecurity decidable for protocols with honest runs when the message size is bounded?”

Third , considering the attacker as an outsider. Gollmann mentioned in [14] that in the attack to the PKNS
protocol [4] the attacker should be considered as an insider. The reason is that in order for the attackerC to carry
out the attacker,C has to wait for an honest agentA to send a message toC first, while A knowsC ’s name and
public key. WhyA can contactC actively? Saying thatC is an insider thatA knows could be a convincing answer.

We further explain the intuition of the insider attacker by emphasizing that the insider attacker should belong to
a group of agents together with other regular agents such that the group is established in the initial stage of a run,
which is an assumption of the protocol run, and the attacker shares the same initial knowledge pattern with the
other agents in this group. Every protocol assumes a perfectinitial knowledge establishing stageat the beginning
of a run. Note that if the initial knowledge of agents are not established perfectly and securly, there is no way
to guarantee any security of the protocol. In this stage, keys and other terms will be distributed among a group
of agents following some initial knowledge policy required by the protocol. We call this group as thelegitimate
agents group. We call every agent belonging to this group as aninsider to this group, and every other agent as an
outsider to this group. The agents in this group knows each other and can contact each other actively.

All of the proofs, cited earlier, assume there is some term, say a keyK, which is known (initially) to all agents
(other than the attacker) participating a run of the protocol, but the attacker does not know the term. This restriction
makes the reasoning of the proofs easier since for any encryption appearing in a run where the encryption key is
K, it is guaranteed that the encryption is not created by the attacker but by some regular agent. Also in these proofs
a regular agent will only try to contact other regular agents, not the attacker. It is clear that the proofs assume that
the attacker does not participate in the initial knowledge establishing stage as other agents did, and the attacker is
an outsider, while all other agents in the run, who are honest, are insiders.

In practice the terminologies of “insider” and “outsider” are used to describe some real security cases. Despite
some difference of the details among cases, essentially the behind meaning is the same. So using this two
terminologies here is quite appropriate. Further discussion is presented in Appendix II. Actually to consider an
insider attacker has special importance, since in practice, the majority of security failures in a system may be due
to an insider attacker [14].

Froschle also independently noticed that in the existing undecidability proofs the attacker is different from any
regular agents in terms of initial knowledge, which is not very “natural”. She described the notion of natural key
policy, and the second open problem in ([1]) as follows.

“A protocol has anatural key policyif in the specification of the initial key knowledge the Intruder is
treated like all other principals.”

Problem 2.“Is Insecurity decidable for protocols with a natural key policy when the message size is
bounded?”

Note that the existing undecidability results cannot cover the two open problems of [1], therefore their solutions
are unknown. Furthur discussion on the two open problems are presented in Appendix III.

A unique feature of our proof is that we directly address the secrecy goal and the attacker as in the public key
Needham-Schroeder protocol, which has been a phenomenal research focus, therefore we exactly address the real
potocols and an insider attacker.

Our reduction scheme using 2-counter machine is inspired from [11]. However, there are some key differences.
First, the proofs in [11] assume non-matching RO protocols and an outsider attacker and we need new ideas of
reduction to avoid the limitations. Furthermore, we have found and fixed two minor errors in the work of [11]: a
counter can be negative, and zero can be used as a positive number. [15]. The proof of correctness of the reduction
in [11] is sketchy and consequently misses the two errors. Details of the errors and our fixes in the Appendix of
[15]. We have adapted the approach of using 2-counter machine in [15] to prove the undecidability of an open
problem pinpointed by [8]. Our work in [15] give us some confidence and motivation in finding a general and
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powerful proof scheme. However the proof in [15] also has the limitations of assuming non-mathing RO protocols
and an outsider attacker.

II. A G ENERAL TEMPLATE FORPROVING UNDECIDABILITY OF CHECKING SECURITY PROTOCOL

We present a proof template here. Section IV demonstrate in details how this template is fulfilled into actual
proofs.

1) Modeling. The protocol is a set of matching roles which can be translated from a communication sequence.
We prefer a modeling which clarifies a set of concepts: communication sequence versus roles; matching roles versus
non-matching roles; role versus role instance; regular agent versus attacker; the agents participate in a run versus
the agent names appearing in the protocol; term template versus term instance; the initial knowledge patterns of
the attacker and the regular agents. Each role is a sequence of action templates. A protocol run consists a set of
role instances. The actions of these role instances can either be considered as in a linear trace (no two actions can
occur at the same time) by interleaving the role instances, or equivalent the earlier relationship between two actions
is a partial order while two actions are allowed to occur at the same time. We will discuss the two options later
in Section III. The definition of a security goals such as secrecy or authentication should be the same as what are
defined in the literature for realistic protocols independent to the choice of proof techniques. We incorporate the
PKNS protocol and its secrecy and authentication goals into the proof.

2) Encoding. A configuration of a 2-counter machine in a computation (defined later in Section IV) is represented
as a term in a special form in a protocol run. Also a counter value is represented by a specific term in a protocol
run. We suggest that the encoding scheme for a configuration and a counter value can be very flexible. For example,
in the published proofs two consecutive locations of a turing machine tape or two consecutive counter values of
a 2-counter machine are represented by a term{X1, X2}↔K , whereX1 andX2 are atomic terms, usually nonces.
However, a working encoding scheme can be in other forms, i.e.,X1 andX2 could even be composite terms, as
long as the correctness of the reduction can be justified. The flexibility of designing the encoding schemes is a
source of the power of the proving system.

3) Translating a 2-counter machine into a protocol. Each transition rule of a deterministic 2-counter machine
M is translated into a distinct role (or even a distinct set of roles) of the corresponding protocolPro. There
are possibly 25 different combinations of a transition rule ofM , depending to whether a counter will increase,
decrease or remain the same. There is no need to explicitly describe the 25 different ways of translation. Instead,
a set of rewriting rules, and a general role template are provided for the translation. When a transition rule ofM
is translated, the rewrite rules will be applied as much as possible to the general role template to remove some
terms and the result is the translated role. In addition, a set of starting roles and a set of final roles are needed.
The starting roles are used to provide the initial configuration term which encodes the initial configuration ofM .
The final roles are used to show that when a final configuration term is produced in a run, which encodes a final
configuration reached byM in a computation, the security goal is violated. The design of the final roles are flexible,
but should capture the target security goal precisely. We incorporate the PKNS protocol into the final roles. A set
of helper roles may also be needed to reproduce a term into a different form, such as the copy roles in the proof
of this paper (introduced later).

4) The two-directional proof. Direction 1: to prove that ifM can reach a final configuration, there is an attack
of Pro that violates the security goal. The attack can be constructed step by step following the computation ofM .
I.e., when a transition rulet is applied during the computation ofM , supposet is translated into a roleR of Pro,
then a role instance ofR is executed. The configuration term generated from the earlier step is used as a input in
the current step. When the final configuration term is generated, it triggers the security failure, e.g., the attack to
the PKNS protocol is carried out. A lemma can be used to show that for each message received by a regular agent
in a run, the attacker can construct it before it is received.

Direction 2, to prove that ifPro has an attack where the security goal is violated, then the two counter machine
can reach a final configuration in a computation. Several observations need to be justified to show the soundness
of the encoding scheme: every term can only encode a unique number; it is impossible that a term can encode
a negative number; A term encoding zero (or a positive number) cannot be used to encode a positive number
(or zero). Then we need to show that the security goal can be violated only if a final configuration term can be
produced. This can be proved by a stronger lemma showing that for each configuration termT generated in a run
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of Pro, T encodes a reachable configuration of the 2-counter machineM . Since a final configuration term ofPro
can only encode a final configuration reachable toM , this direction is proved.

The “parameters” of this proving system are the encoding schemes and the translation scheme, and the design of
initial and final roles (aspects 2 and 3). To prove the undecidability of a different problem, we only need to provide
the exact choices for these parameters, while the modeling is the same, and the 2-directional proof should be largely
identical. Choosing the arguments of the parameters may require a little creativity from user and full automation
seems to be not easy now. However we do notice that there are considerable reusable pattern for customization
of the arguments to these parameters. For example, the logic behind the rewrite rules are the same for different
problems so it is straightforward to adjust the representation of the rewrite rules for different problems. The 2-
directional reasoning requires a lot details, especially for complex problems, and consumes most of the space of
a proof. However the 2-directional proof is suitable for using mechanical tools thus manual mistakes and labors
could be avoided.

III. M ODELING

A. Notations

Notations are chosen in a style that is commonly used in the literature, e.g., [16]. The notations for asymmetric
keys and the idea of symbols are new. Notations are described by the following grammar, followed by some
explanations.

String ::= Lowercaseletter | Uppercaseletter | Number |StringString
Symbol ::= String | StringString | StringString

Asymmetrickey ::= k1
Symbol | k0

Symbol

Atomicterm ::= Symbol | Asymmetrickey | kSymbol:Symbol

Term ::= Atomicterm | [Term, Term] | {Term}→Asymmetrickey |{Term}↔Term

A symbol is a string of letters and numbers, possibly with a superscript or subscript, which is also a string of
letters and numbers. Avariable is a symbol with at least one uppercase letter, such asNA, A2, A. The meaning
of a symbol will be clear in the context of the analysis of a protocol, for example a set of agent names will be
defined in a run of a protocol. A symbol could be an agent, usually in the form ofA, A1, B, or a nonce, usually
in the form ofNA, nb.

A pair of asymmetric keys is represented ask1
X andk0

X . X is the unique ID (UID) of the asymmetric key pair.
This notation can also describe the asymmetric keys generated during a run. WhenX is the name of an agent,k0

X

andk1
X represent the established private key and public key of the agentX, respectively. WhenX is not a name

of an agent, it must be a unique symbol representing the UID of the key pair, andX should not be used alone or
known by any agent as an explicit term. Then the superscripts 0 and 1 only indicate that they are inverse to each
other, and the choice of0 or 1 is arbitrary and they do not mean which one is public or private.

A constant is an atomic term with no uppercase letter, such asa, na, r1.
An atomic termis a symbol, an asymmetric key, or an established symmetric key. An established symmetric key

shared byA andB is represented askA:B, whereA andB should represent some agent names. The lowercasek
is reserved as a special notation to describe keys. When a new symmetric key is dynamically generated in a run,
it can be any term and should not be described with the formkA:B.

A term is an atomic term, or a list, or an asymmetric encryption, or a symmetric encryption. A list has the
form of [X, Y, · · · ], whereX and Y are terms and the list contains finite number of member terms. A list is
a simpler representation of a sequence of nested pairs. For example[W,X, Y, Z] is the same as[W, [X, [Y, Z]]].
When a message is a list, the top level enclosing[ ] is omitted. An asymmetric encryption, has the form of{T}→ki

A
,

i ∈ {0, 1}, whereT is the encrypted term, andki
A is the atomic encryption key. A symmetric encryption has

the form of {T}↔Y , whereT is the encrypted term andY is the term working as the encryption key. For both
asymmetric or symmetric encryption, when a list, say[X, Y, Z, · · · ] is encrypted, the enclosing square brackets are
removed from within “{ }”. The word ground means variable free.

An atomic term is the smallest indecomposable term. A symbol is the smallest unit to construct a representation
or a name of a term. The notationk0

a is still an atomic term, and the subscript/superscript are only used to describe
some attributes of the key.
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When a term is not an atomic term, it is called acomposite term. A composite terms is allowed to be the
key (composite keys) for a symmetric encryption, but a key for an asymmetric encryption should be an atomic
term. This assumption about composite keys and atomic keys can show the difference between different encryption
algorithms, and is also assumed by other papers including [17] and [18].

It is helpful to clarify the difference between term templates and term instances. Term templates, or simply terms,
can contain variables, while term instances are ground terms. How a variable is instantiated will be clear when we
describe a run of a protocol. Amessageis a term. Every message appearing in a run is a ground term.

Often, constants can appear in a protocol, which can be understood as special terms that have some fixed value,
such as the fixed name of the server. We will explain the meaning of a term when necessary. A special constant
is the upper case letterI that is reserved as the name of the attacker.I commonly stands for “intruder”, which is
proper since in all other papers we have noticed analyzing the complexity of checking security protocol the attacker
is an outsider in the reductions. The terminologies of insider and outsider will be explained later.

We assume the free term algebra, which means that there is only one way to construct a term. In other words,
given two termsT1 andT2 that are constructed differently, the bit-string thatT1 represents must be different from
the one thatT2 represents. This assumption is commonly made in papers based on the Dolev-Yao model.

B. Protocol, Attacker, and Protocol Run

Definition 1: An agent is a tuple〈name, init〉, wherename is the unique name of the agent, andinit is the
initial knowledge of the agent. It is a set of terms that are built in an assumedinitial knowledge establishing stage
(explained earlier), and are considered known to the agent initially before a run. If an agent always acts according
to the description of the protocol, it is called aregular agent. If the name of an agent isA, the init field of the
agent is referred asA.init.

The initial knowledge patterns of agents will be specified in the protocol. A role (defined later) may specify
some requirements ofinit for the agents who can execute the role. An agent can participate in a run several times,
each time executing a different role instance.An agent is called a principal in some papers. The definition of agent
can be expanded to address more specific situations, such as to add a memory field [19] which indicates the set of
terms an agent has “seen” in a run.

Definition 2: A role typeor role templateor a role for short, is a tuple:〈agent, acts, conds〉.
• agent is the term representing the name of the agent who will execute the role. If the agent name is a constant,

say s, then it means that the role can only be executed by a fixed agent, whose name iss, usually a special
server. If this field is a termP , by convention, we can call this role asP ’s role.

• acts is the sequence of actions of message sends and receives. Each action of a role is a structure of symbols
and has a message number assigned by thecommunication sequence(CS) of the protocol. If an action in
P ’s role sends a messageMsg, then it has the form

n. #P (T1, T2 · · · ) + (P ⇒ B) : Msg ,
wheren is the message number (or equivalently step number),B is the intended receiver agent, and the fresh
term generation part#P (T1, T2 · · · ) is optional. If an action inP ’s role receives a messageMsg, then it has
the form

n. − (B ⇒ P ) : Msg
wheren is the message number,B is the supposed sender agent of the message. Theacts of a role implies
a set of variables that appear inacts, and they are the symbols with at least one uppercase letter.

• conds reprsents the required conditions on terms in theacts that are not implicitly expressible by theacts.
These conditions represent some computation features ofP at the step ofP ’s program. The common forms
of a condition include, but not restricted to:X 6= Y (values of the two termsX andY are different);X /∈ Q
(term X is not included in the setQ, whereQ is defined in the context of the protocol). Theacts of a role
can be parsed from theCS of a protocol, as showed in Appendix I

Definition 3: A role instanceis a tuple〈rid, agent, role, end, vmap, events〉.
• rid is the unique ID of the role instance. It is for reasoning purpose only and is not necessarily a term.
• agent is the name (a ground term) of the agent who executes the role instance.
• role is the name of role template for this role instance. By convention it is a term representing an agent name.
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• end is the largest (latest) message number of the events of the role instance. Suppose the largest message
number ofrole is n, thenend ≤ n.

• vmap is a function (a substitution) that maps a variable to a ground term. To applyvmap to a termT can be
denoted asvmap(T ) or T · vmap. For a constant or a composite ground termT , vmap(T ) = T . vmap can
also be obviously extended as a substitution to map a term or a condition to its ground instance. Note that
vmap(role.conds) should be satisfied.

• events is a sequence of ground events, which instantiate the prefix of the sequence of steps of therole, up to
message numberend. Each event is a pair〈act, time〉. For an action ofrole with message numberm, m ≤ end,
call it Actm, the corresponding event in the role instance has the form[actm, timem]. actm = vmap(actm)
is a ground structure of symbols that instantiatesActm. timem is a positive real number.timem < timem′ if
and only if m < m′.

A role instance does not need to cover all steps of the corresponding role. Since a role instance should always
be discussed in a context of a run, every event is associated with atime field representing its occurring time in a
run.

Definition 4: An eventis a tuple〈act, time〉, whereact is a ground structure of symbols representing an action,
and time is a positive real number representing when the even occurs after the start of the run. An event could
be of two possible kinds. Aregular event, which is an event executed by a regular agent that belongs to a role
instance. If a regular event sends a message, then thetime field represent the time that the message is sent (the
time when the sending action is finished) in the run. If a regular event receives a message, thetime field represents
the time that the message is received by the agent (the time when the receiving action is finished). Anattacker
event, which is an event executed by the attacker and does not belong to any role instance. In this paper theact
field of an attacker event has only one form:#I(T1, · · ·Tn), which represent the computation of the attackerI to
generate the fresh termsT1 to Tn. The time field represent the time whenI finishes generating these fresh terms
in the run.

In the real world in a run of a protocol, the time when message is sent or received is physical. The time field is
used to simulate, but not to exactly represent, the physical time of an event. In a symbolic run for our reasoning
purpose, we only care about who is earlier or later between two events. The attacker’s actions of sending or receiving
messages are not recorded explicitly as events in a run since they are all implicit in a run: the attacker, who controls
the network, records immediately all message sent by regular agent, and send all messages that are received by
regular agents immediately before they are received.

Definition 5: A protocol Pro is a tuple〈PID, CS, roles, AN, rsts〉
• PID: The unique ID of the protocol, for reasoning purpose only.
• CS: The communication sequence.
• roles: A set of role templates.roles should be obtained by parsingCS as discussed earlier, androles are

matching.
• AN : The set of names of a group of agents (legitimate agents group) who have participated in the initial

knowledge establishing stage and ready to participate in a run ofPro. If an agent nameX is included in
AN , thenX is called aninsider, otherwiseX is anoutsider. SometimesAN can be split into several smaller
groups depending on the situation.AN will be instantiated by a set of agent names in a run. Note that in a
protocolAN may only be the name of a set to be referred inrsts, and the exact members of this set are not
specified until a run of the protocol is discussed.

• rsts: The restrictions describing the patterns of the initial knowledge of the agents inAN . Note that usually
AN are referred inrsts in order to define these patterns. Thersts field also includes the definitions of related
sets, such as a set of terms known to a certain group of agents.

Definition 6: The behavior of aDolev-Yao attacker[3], or anattacker for short, is a tuple[name, init, knowI ].
• name : By conventionname = I.
• init: A set of ground terms that is the initial knowledge of the attacker. This field can be referred asI.init.

When a run is discussed the exact terms included inI.init will be specified according to the attacker’s initial
knowledge pattern specified in the run.

• knowI : A function. After a setE of events have occurred in a run (before a certain time),knowI(E) is the
set of terms that the attacker can obtain, which will be explained later in this definition.
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The behavior ofI in a protocol run can be summarized by three aspects:
1) I records every message immediately when the message appears in the network.
2) I can prevent a principal from receiving a message that has been sent.
3) I has the freedom to send out any term to any agent as a message at any time of the run, as long asI can

obtain the term before sending it out.
Given a setE of events that have occurred,knowI(E) is calculated as the closure of applying the following

rules, each has the formcondition Z⇒ Result
• Initial knowledge:X ∈ initI Z⇒ X ∈ knowI(E)
• Sent message recording:

msg is a message sent in a regular event inE Z⇒ msg ∈ knowI(E)
• Fresh term generation:

Xi is a fresh term generated in an attacker evente, e ∈ E, i.e., e has the form[#I(X1, · · ·Xn), time] Z⇒
Xi ∈ knowI(E), for all i, 1 ≤ i ≤ n.

• Synthesis:
– List construction:X, Y, Z, . . . ∈ knowI(E) Z⇒ [X, Y, Z, . . .] ∈ knowI(E)
– Asymmetric key encryption:X ∈ knowI(E) andki

G ∈ knowI(E), i ∈ {0, 1} Z⇒ {X}→ki
G
∈ knowI(E)

– Symmetric key encryption:X ∈ knowI(E), andY ∈ knowI(E) Z⇒ {X}↔Y ∈ knowI(E).
• Analysis:

– List breaking:[X, Y, · · · ] ∈ knowI(E) Z⇒ {X, Y, · · · } ⊂ knowI(E)
– Asymmetric key decryption:{X}→km

G
∈ knowI(E), k1−m

G ∈ knowI(E), m ∈ {0, 1} Z⇒ X ∈ knowI(E)
– Symmetric key decryption:{X}↔Y ∈ knowI(E), Y ∈ knowI(E) Z⇒ X ∈ knowI(E)

Definition 7: A run of a protocolPro with an attackerD is a tuple:〈Pro, D, R, AN, E, conds〉. Pro is the
protocol.D is the initial knowledge pattern of the attacker who is involved in the run.R: is a set of role instances
that are executed honestly by regular agents.AN is the set of ground names of the agents who can participate in the
assumed perfect initial knowledge establishing stage of the run, including all of the regular agents and sometimes
the attacker, involved in the run. The agents inAN are insiders.AN instantiates theAN field of Pro. E is A set
of events that have occured.conds is the conditions required, listed as the following.
1) Pro.rsts should be satisfied. That is, for each agentP in AN , P.init is assigned with a set of ground terms
according toPro.rsts.
2) If I ∈ AN , I is an insider attacker, then its initial knowledge patternD should be the same as other regular
agents described inPro.rsts. Otherwise ifI is an outsider attacker, then D could be different from the initial
knowledge patterns of other agents. Usually an outsider attacker knows less than an insider, andD may specify
that init.I include the names and public keys of all agents inAN , and some constants that are known to all agents.
3) The set ofregular events inE include, nothing more and nothing less, all the events of all the role instances in
R. That is,

⋃
r∈R r.events.

4) For any regular evente = [act, t] in E, if e receives a messagemsg, let Ee = {d| d ∈ E, d.time < t}, then
msg ∈ knowI(Ee).
The set of all possible runs of a protocolPro and with some specific initial knowledge patternD of the attacker,
is denoted asRunsD:Pro.

Since the attacker’s intention to follow the protocol is not clear, only regular agents’ events are organized into
role instance. The attacker’s message sending and receiving behaviors are not described in a run, since they are
implicit by the definition. We assume a powerful attacker who can do any amount of computations, as described for
knowI(E), in extremely short amount of time, i.e, shorter then the closest time distance between any two events.
The attacker controls the network in a superb way such that the attacker can record or send a message in no time.

In general there are two kinds of modeling in terms of describing a run. The first kind, we call trace based
modeling, such as [20] and [18], is that a run is considered as a linear sequence (a trace) of all the events, which
may imply that no two events occurs at the same time. The second kind, we call partial-order based, such as the
strand space model [21] [22], does not require a total order, and the earlier relationship between two events is a
partial order, which suggest that two events can occur at the same time. The two kinds of model are equivalent. In
[19] and [2] we used trace based model for the proofs. Here we define a run using the partial order based model,
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since we found that induction based proof can be established on partial order based model without additional
complexity, which is interesting to show. Further more we consider traced is more natural than the trace based one
and could be more convenient to design checking algorithms (the topics out of the scope of this paper).

Definition 8: Given a protocolPro, a specific patternD of the attacker’s initial knowledge, and a set of secret
termsSEC (declared in a certain way), thesecrecy problemis to check the validity of the following statement.

∃run,∃X, run ∈ runsD:Pro, X ∈ SEC : X ∈ knowI(run.E)

It is obvious that assuming more than one attacker is not more dangerous than assuming just one attacker, since
when every attacker can control the network, and they can communicate with each other and share information, the
result is the same as one powerful attacker. See [23] for more discussion on this topic. We are not considering the
special case that possibly there are several attackers and they cannot directly communicate and share information
with each other. So it is justified that we only consider one attacker.

In general the number of agents who can participate in a run should be allowed to be unbounded. In [24] the
author proved that the number of agents can be considered bounded for analysis of security protocols. However
we do not need to bound the number of agents for the proof in this paper.

Since we address the undecidability of analyzing a protocol, the number of role instances should not be bounded.
It has been proved that, e.g. [17], if the number of role instances is bounded, secrecy is decidable.

IV. PROVING UNDECIDABILITY OF CHECKING SECRECY AND AUTHENTICATION

We want to prove that, an arbitrary deterministic 2-counter machine [25] with no input, call itM , can reach
its final configuration, if and only if the corresponding protocolPro has a secrecy attack.Pro is a matching RO
protocol. The well-known definition of a deterministic 2-counter machine is presented in Appendix IV. The attack
is a run ofPro where the attacker, who is an insider, finally knows some secret term. The secret term is declared
by the same wayNb is declared as the secret term for the well-known attack to the PKNS protocol [4]. Since the
2-directional proof can be carried out in a straightforward style, we focus on presenting the “parameters” of the
proof template, which are the encoding schemes and protocol design. The remaining technical details are included
in Appendix VI.

Theorem1: Secrecy checking of matching RO protocols is undecidable while considering an insider attacker,
and runs of protocols with bounded message size.

Proof: Given a 2-counter machineM = (Q, δ), whereQ is a set of states andδ is a set of transition rules.
let Q = {q0, qfinal, q1, q2, · · · , qm} and δ = {T1, T2, · · · , Tn}. The proof follows the template presented in
Section II.

Encoding is a correspondence between a term and its designed meaning in a reduction. In the reductions of
undecidability [7] [8] [11] and NP-hardness [17] [12] encoding is implemented by encryptions using some symmetric
key shared by agents. Using shared symmetric key could make the proofs easier and we could also design the
encoding scheme using symmetric keys. However we implement encoding in the reduction using only public keys
and private keys, for three reasons . First, it is an interesting challenge since we have not noticed a reduction proof
using only initially distributed public keys and private keys. Second, the result could be more practical noticing
that in the well-known attack to the PKNS protocol, where the attacker is an insider, there is no shared symmetric
key between two agents. Third, the attack is more convincing. For a term encrypted by a symmetric key unknown
to I, I cannot construct it nor decrypt it, which leaves a question of how can the attackerI know its actions in
the attack while so many terms are blind toI. But when a term is encrypted by an asymmetric key unknown to
I, while I knows the decryption key,I still cannot construct the term, butI can decrypt it and understand the
message, and so has a clear view of the (more convincing) attack.

A configuration termhas the form{5, B, e, q, C1, C2}→k0
A

, whereA andB are two different regular agent names,
which means{A,B} ⊂ AN (AN is the set of insider names specified in a run),A 6= I, B 6= I, A 6= B. C1 and
C2 could any terms.e is a special constant used in the reduction as an evidence to distinguish a real configuration
term from a term of the form{5, B, NA, q, C1, C2}→k0

A
, whereNA is a nonce generated byA in the first message of

the roleSf (introduced later),1 ≤ f ≤ n. An honestly generated nonceNA cannot bee, due to the assumption of
unbounded fresh nonce generation.q is a constant that could be any state inQ (The set of states of the two counter
machineM ). The regular agent nameB included in a configuration term is also designed to prevent theI from
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getting a (final) configuration term trivially. Note thatI can easily get a term{5, I, e, qfinal, C1, C2}→k0
A

, which is
not a configuration term (I is inside, notB), whenA plays the roleSfinal (introduced later) andA talks with I.
Note thatI cannot construct a configuration term sinceI does not knowk0

A. The Design of usingB and e for
a configuration term is to ensure thatI cannot get a configuration term trivially, except the starting configuration
term {5, B, e, q0, z, z}→k0

A
corresponding to(q0, 0, 0), and I have to do a run to simulate a computation ofM in

order to get non-trivial configuration terms which include the final configuration terms.
A connection termhas the form of{7, B, C1, C2}→k0

A
, where{A,B} ⊂ AN , A 6= B, A 6= I, B 6= I. Connection

terms are used to build the encoding of a counter value described later. The encryptions containing constant 5 are
distinguished from, and cannot be unified with, the encryptions containing constant 7. Asecret termis a term
NB generated by a role instance ofRfinal (introduced later) which is executed by a regular agentB, B 6= I,
whereB tries to sendNB to agentA, A 6= I. The secret term is declared in the same way as in the public key
Needham-Schroeder protocol [4].

The protocolPro is constructed according toM . Pro requires the initial knowledge pattern of agents as follows.
∀P, P ∈ AN : P.init = AN ∪ {k1

B|B ∈ AN} ∪Q ∪ {e, z, 1, 2, 3, 5, 7, k0
P }

The set of roles ofPro is the follows.
{S0, R0} ∪ { S1, R1, · · · , Sn, Rn} ∪ {Scopy1, Rcopy1, Scopy2, Rcopy2, Sfinal, Rfinal}

Note that there aren transition rules inδ. AN is the names of the set of insiders in a run.
For eachrun of Pro, we considerI is an insider, which means thatI ∈ run.AN and thatI.init has the same

pattern as other agents, described above, just instantiateP with I.
We describe a matching pair of rolesSi andRi, i ∈ {0, 1, · · ·n, final} by the CS between them. The actions of

two matching roles can be straightforwardly parsed from the CS between them. We choose different variable names
in different matching pairs of roles so there is no confusion when the CSs of these pairs of roles are concatenated
to form the CS of the whole protocol. The CS of the whole protocol can be chosen as a sequence starting with
the CS betweenS0 andR0, followed by the one betweenS1 andR1, and then continues until the one betweenSn

andRn is appended, and then the one betweenSfinal andRfinal is appended. Actually any interleaving of actions
steps of the pairs of roles will be a corresponding CS of the protocol.

Two rolesS0 andR0 are designed to generate the initial configuration term.S0 andR0 are executed byA0 and
B0 respectively. The CS between them is the following.
1. +(A0 ⇒ B0) : A0, B0, {5, B0, e, q0, z, z}→k0

A0

Call the message appearing in the above CS betweenS0 andR0 asMsg. ThenS0 contains one action of sending
Msg andR0 contains one action of receivingMsg.

The two rolesScopy1 andRcopy1 are used to rewrite a configuration term, they are executed by agentsP1 and
G1 respectively. The CS (containing only message sending actions) between them is the follows.
1. #P1(N1P1, N2P1, N3P1)

+(P1 ⇒ G1) : P1, G1, {5, G1, N1P1, N2P1, N3P1}→k0
P1

2. +(G1 ⇒ P1) : G1, P1, {5, P1, N1P1, N2P1, N3P1}→k0
G1

The two rolesScopy2 andRcopy2 are used to rewrite a connection term, they are executed by agentsP2 andG2
respectively. The CS between them is the follows.
1. #P2(N1P2, N2P2)

+(P2 ⇒ G2) : P2, G2, {7, G2, N1P2, N2P2}→k0
P2

2. +(G2 ⇒ P2) : G2, P2, {7, P2, N1P2, N2P2}→k0
G2

The two rolesSfinal and Rfinal carry out an adjusted version of the public key Needham-Schroeder protocol,
they are executed by agentsA andB respectively. The communication sequence betweenA andB is the follows.
1. #A(NA, C1final, C2final) +(A ⇒ B) :

{1, NA, A, {5, B, e, qfinal, C1final, C2final}→k0
A
}→k1

B

2. #B(NB) +(B ⇒ A) : {2, NA, NB}→k1
A

3. +(A ⇒ B) : {3, NB}→k1
B

For eachTf ∈ δ, for somef , 1 ≤ f ≤ n, supposeTf = [q, i1, i2] → [q′, j1, j2]. Tf corresponds to two roles
Sf and Rf (starter and responder), executed by agentsAf and Bf respectively. The general template of the CS
betweenSf andRf is the following, while the exact CS betweenAf andBf will be formed after a set of rewrite
rules, which are described later, are applied to this general template.
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1. #Af
(C1f , C2f , C1−1

f , C2−1
f , Nf ) + (Af ⇒ Bf ) :

Af , Bf , {5, Bf , Nf , q, C1f , C2f}→k0
Af

, {7, Bf , C1−1
f , C1f}→k0

Af

, {7, Bf , C2−1
f , C2f}→k0

Af

2. #Bf
(C1+1

f , C2+1
f ) + (Bf ⇒ Af ) :

Bf , Af , {5, Af , Nf , q′, C1′f , C2′f}→k0
Bf

, {7, Af , C1f , C1+1
f }→k0

Bf

, {7, Af , C2f , C2+1
f }→k0

Bf

In the first messageAf will choosesBf as the interlocutor,Bf ∈ AN andBf 6= Af . Note thatBf will carry
the nonceNf received in the first message to the second message. The variablesCh′f , h ∈ {1, 2}, will not appear
in the actual CS betweenSf and Rf since they will be replaced byChf or Ch−1

f or Ch+1
f , after applying the

rewrite rules.
For h ∈ {1, 2}, the following rewrite rules, each is described as “conditionZ⇒ effects”, will be applied as much

as possible to the general template betweenSf andRf , according to the conditions satisifed by the transition rule
Tf of M , 1 ≤ f ≤ n. W � V means to replaceW with V in the above template.W � ε means to remove
W . An implicit rule is that any term in the template that is not removed or changed will still appear in the CS
betweenSf andRf . Especially, if every term included in an action of#agentName(terms) is removed, then this
whole fresh term generation action is removed. Note that when a rule is applied, the term removing tasks in RHS
are arranged following the order from left to right, so that the smaller terms are removed later and the bigger terms
containing the smaller terms are removed earlier, to avoid possible confusion.
1. ih = 0 Z⇒ Chf � z; {7, Bf , Ch−1

f , Chf}→k0
Af

� ε

2. ih = 1 Z⇒ {7, Bf , Ch−1
f , Chf}→k0

Af

∈ Msg1

3. jh = +1 Z⇒ Ch′f � Ch+1
f

4. jh = 0 Z⇒ Ch′f � Chf ; {7, Af , Chf , Ch+1
f }→k0

Bf

� ε; Ch+1
f � ε

5. jh = −1 Z⇒ Ch′f � Ch−1
f ; {7, Af , Chf , Ch+1

f }→k0
Bf

� ε; Ch+1
f � ε

The counter value 0 must be represented byz. When a counterh should be positive, the term{7, Bf , Ch−1
f ,

Chf}→k0
Af

is needed inMsg1, which shows thatCh−1
f encodes a number one less than the number encoded by

Chf . Verbose explanation of the rewrite rules are presented in Appendix V.
If M can reach a final configuration(qfinal, , ) starting from(q0, 0, 0) by some finite computationComp, then

Comp can be represented as a finite sequence of configurations connected by applicable rules inδ, as follows.
(q0, 0, 0) −→t1 (Q1, V 1

1 , V 1
2 ) · · · (Qu−1, V u−1

1 , V u−1
2 ) −→tu (Qu, V u

1 , V u
2 )

Hereu > 0, t1, · · · , tu ∈ δ.
A special representation{7, A/B, z,X}→k0

A/B
represents either the term{7, A, z,X}→k0

B
or {7, B, z,X}→kA0

, A 6= B.

Similarly {5, A/B, e, X, Y }→k0
A/B

can represent either{5, A, e, X, Y }→k0
B

or {5, B, e, X, Y }→k0
A

.
After running a setE of events in arun of Pro, we say a termX is theencodingof a positive integerN , if

and only if there is a sequence of terms :
{7, A/B, z,X1}→k0

A/B
, {7, A/B, X1, X2}→k0

A/B
, · · · , {7, A/B, XN−2, XN−1}→k0

A/B
, {7, A/B, XN−1, X}→k0

A/B

such that (A and B are two different regular agent names){A,B} ⊂ run.AN , A 6= B, A 6= I, B 6= I, and the
attacker knows each elementT of this sequence (T ∈ knowI(E)). Note that in this sequence the connection terms
can have differnt encryption keys, some are encrypted byk0

A andB appears in the encrypted text, while some are
encrypted byk0

B and A appears in the encrypted text. HereX and Xj , for some integerj, 1 ≤ j ≤ N − 1, are
different variables that can represent any terms (could be composite terms). We callN the i value of X (i stands
for integer), orX is theencodingof N , or X encodesN , denoted asN = X. The above term sequence is called
the encoding sequenceof X. The encoding sequence ofz is z.

Since all the agents (includingI) are symmetric, i.e., they have the same intial knowledge pattern, it is obvious
that if there is a run where a secretnd is leaked which is generated byd for c, then there is a run where a secret
nb is leaked wherenb is generated byb for a. Without loss of generalization, we consider only the secret termnb

between two agentsb anda. For this reason, the rest of the proof only considers configuration terms of the form
{5, a/b, e, X, Y }→k0

a/b
and connection terms of the form{7, a/b, X, Y }→k0

a/b
.

The encoding of0 is the constantz. So 0 = z. The encodings of numbers are connected in a connection term
to show the consecutive order between numbers. For example{7, B, X, Y }→k0

A
in an encoding sequence means that

X = Y − 1.
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Direction 1: Suppose there is a computation ofM call it Comp, andComp hasu transition steps,1 ≤ u, such
that afterComp, M can reach a final configuration(qfinal, , ) from the initial configuration, we prove that there
exists arun, such thatrun ∈ RunsD:Pro whereD is the initial knowledge patter of the insider attacker described
earlier in this proof, and some secret term is included inknowI(run.E).

We prove this direction by constructing arun simulatingComp. Pro is the protocol just described.run.AN =
[I, a, b]. Only three agents are enough here to instantiate the sender and receiver variables in each role instance.
run starts with a role instance ofS0 executed bya, to generate the initial configuration term{5, b, e, q0, z, z}→k0

a
.

Then for each transition step ofComp of applying a transition rulet, a role instance, sayr, of the corresponding
role Rf which is translated fromt, is executed.r receives a configuration term encoding the previous configuration,
and produce a configuration term encoding the next configuration ofComp. In addition, some role instances of
Rcopy1 and Rcopy2 are executed to swap the positions ofa and b in the newly generated configuration term and
number connection terms, in order to maintain the encoding scheme. A lemma is proved by induction on each
step ofComp to show that the attacker can always obtain the message needed for the next step of the attack.
Finally, when the final configuration term is generated, the attacker use it to carry out an attack betweenSfinal

andRfinal, which is the same as the well-known attack to the PKNS protocol. When we show the role instances
to the constructed run we do not need to specify thetime associated with each event, since the role instances, and
their events, are executed consecutively and no two events need to be executed at the same time, thereforetime
fields can be assigned like consecutively 1, 2, and so on according to the order that the event is introduced in the
run. Details are presented in Appendix VI-A.

Direction 2: We have to show that for anyrun, run ∈ RunsD:Pro, if there is a secret termnb such that
nb ∈ knowI(run.E), then the 2-counter machineM can reach a final configuration(qfinal, , ).

The proof design is the follows. The only way the attacker can knownb is by a Needham-Schroeder attack
showed in the finishing events in Direction 1. The only way forI to execute such a Needham-Schroder attack is
to know a term{5, b, e, qfinal, C1, C2}→k0

a
. And the only way to know this term is to carry out a run ofPro which

simulates a computation ofM reaching a final configuration.
We can observe that in a run every term can encode at most one number, and 0 can only be encoded byz. We

can use stronger lemma to show that every configuration term generated in a run ofPro encodes a configuration
reachable toM . And it is obvious that the secret term is leaked if and only if the attacker can obtain a final
configuration term. Details of the proof of Direction 2 are included in Appendix VI-B.

A. Undecidability of checking authentication

Formal definition of authentication goals for security protocols have been discussed by by several papers. The
most clarified and widely used definitions of authentiction goals are presented by Lowe in [26] as the correspondence
between role instances with shared data. An example of the authentication goal of the PKNS protocol is discussed
in [26] as follows.

For PKNS protocol, the role of A can be represented by a schema of four parameters:RoleA(A,B, NA, NB).
Similarly, role of B can be represented asRoleB(A,B, NA, NB). According to the protocol as a communication
sequence, some atomic terms should appear in both roles, this atomic terms are considered being shared by both
roles. In PKNS,RoleA and RoleB share all of the parameters. In every role instance ofRoleA or RoleB, the
parameters are instantiated by some specific values. According to the PKNS protocol,RoleA andRoleB share all
the parameters. Recentness is another requirement to define a strict authentication goal, which means for a role
instancer finished in a run there can only be a unique corresponding role instancer′ appeared in the run.r′ is
only required to finish a prefix up to the last message that is supposed to be sent fromr′ and received byr. Note
that for a goal ofRole1 to authenticateRole2, both the agents who executeRole1 andRole2 should be a regular
agent, otherwise the goal is not defined, since the behavior of the attacker cannot be organized into role instances.

Definition 9: Given a protocolPro as a communication sequence, and two rolesRole1 andRole2 parsed from
Pro. SupposeS is a set of parameters shared byRole1 andRole2 according toPro. AssumeS always include
the two agent names who executeRole1 andRole2. Let M be the last message that is sent byRole2 and received
by Role1 according toPro. The authentication goal ofRole1 to authenticateRole2, denoted asRole1 → Role2,
means that for a role instancer of Role1 in a run, there is one and only one role instancer′ of Role2 in the run
which has been executed up toM , and each variable inS is instantiated by the same value inr as inr′.
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Theorem2: Authentication checking of matching RO protocols is undecidable while considering an insider
attacker, and runs of protocols with bounded message size.

Same as the attack to PKNS, the leaked secret term triggers an authentication attack, which is the proof idea.
Further details are provided in Appendix VI-C.

We did not notice any existing proof of undecidability of authentication. An authentication goal can only be
defined based on a CS. Since the existing proofs undecidability of secrecy are based on (non-matching) roles, not
on a CS, they cannot be adapted to show the undecidability of authentication, which could explain why the proof
is missing.

V. SUMMARY

In order to prove the complexity results of checking security protocols, the protocol and security goals of secrecy
and authentication in the proofs should be described exactly as in the realistic cases. We present a thorough analysis
of the problems of checking secrecy and authentication for security protocols and prove the undecidability which
is first to be directly applicable to protocols common in literature (matching RO protocols) with an insider attacker.
We directly address the secrecy and authentication goals of the PKNS protocol. The proof of authentication is the
first to our best knowledge. Our approach is powerful enough to solve the two open problems posted in [1]. Our
approach has the advantage of using a clarified modeling and very flexible reduction techniques.

The proving approach is general and can be reused to deal with problems beyond the theorems of this paper.
We have adapted this approach to prove the undecidability of a complex problem of secrecy checking [15], and a
special kind of replay attack (thanks to our undecidability proof of authentication).

Our vision is that an undecidability proof for checking cryptographic protocols can be built with only a small
amount of human input. Although the remaining reasoning of the proof needs a lot of details, it could be carried
out as routines by some mechanical reasoning tools. The techniques of artificial intelligence, such as case-based
reasoning, could be used to provide customized proofs based on a common general proof template with further
convenience.
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APPENDIX I
THE COMMUNICATION SEQUENCE AND ROLES OF THEPKNS PROTOCOL

The core of the public key Needham-Schroeder protocol [5] (PKNS) is described as the communication sequence
(CS) of three steps listed in Fig. 1, together with the two rolesRoleA andRoleB that can be parsed from the CS.

CS
1. #A(NA) (A ⇒ B) : {NA, A}→k1

B

2. #B(NB) (B ⇒ A) : {NA, NB}→k1
A

3. (A ⇒ B) : {NB}→k1
B

RoleA

1. #A(NA) +(A ⇒ B) : {NA, A}→k1
B

2. −(B ⇒ A) : {NA, NB}→k1
A

3. +(A ⇒ B) : {NB}→k1
B

RoleB

1. −(A ⇒ B) : {NA, A}→k1
B

2. #B(NB) +(B ⇒ A) : {NA, NB}→k1
A

3. −(A ⇒ B) : {NB}→k1
B

Fig. 1. The communication sequence of the PKNS protocol and its two roles.

APPENDIX II
INSIDERS VS. OUTSIDER

The usually meanings of insiders and outsiders are the follows. 1) There is a common organization which defines
the background group for the insiders. 2) Insiders can recognize each other or at least knows the identities or names
of each other. So normally an insider will try to start a conversation for the internal business of the organization
only to another insider, not to anybody in the world. 3) Insiders have some privilege that the outsiders do not
have. The scenario of the checking security protocols discussed in this paper is exactly the same. 1) The agents
who participated the initially knowledge establishing stage implies a group of legitimate agents. 2) The names of
legitimate agents are known to each other. WhenA start a communication withB, B must be known toA and
B should also be an insider. 3) In the published proofs, regular agents knows some special terms, say a keyK,
where other agents do not know, including the attacker. So using the terms “insider” and “outsider” for the agents
in a security protocol run is quite appropriate.
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APPENDIX III
WHY THE TWO PROBLEMS ARE OPEN

Existing undecidability results cannot cover the two open problems posted in [1]. The complexity of checking
secrecy and authentication for realistic protocols with an insider attacker is unknown, due to the following two
reasons. 1. In general it is not clear whether the problem of checking security always becomes easier or harder
assuming a more powerful attacker than assuming an attacker with less privileges. When the attacker has more
choices to do attacks, the situation could be more complex to check whether the system will fail, but sometimes it
can also be obvious to see that the strong attacker can easily penetrate the protection. Proving the undecidability
of checking secrecy assuming an outsider attacker does not imply the same undecidability assuming an insider
attacker. 2. we can see that the set of protocols represented as any set of roles (non-matching or matching) covers
two disjoint sets of protocols, the protocols as non-matching set of roles and the protocols as matching roles. While
the undecidability result for protocols as non-matching roles implies the undecidability for protocols as any set of
roles, it does not imply the undecidability for protocols as matching roles, the realistic ones.

APPENDIX IV
DETERMINISTIC 2-COUNTER MACHINE

Definition 10: A deterministic 2-counter machine[25] with empty input is a pair(Q, δ), whereQ is a set of
states including the starting stateq0 and the accepting stateqfinal andδ is a set of transition rules. A configuration of
a 2-counter machine is a tuple(q, C1, C2), whereq is the current state andC1 andC2 are two non-negative integers
representing the two counters. The 2-counter machine can detect whether a counter is0 or not. A transition rule,
(call the ruleT ∈ δ) is of the form [q, i1, i2] → [q′, j1, j2], whereq, q′ ∈ Q; i1, i2 ∈ {0, 1}; j1, j2 ∈ {−1, 0,+1}.
An application ofT can be described as(q, C1, C2) −→T (q′, C ′

1, C
′
2), where LHS and RHS are the configuration

before and after the transition respectively. Forh ∈ 1, 2, when ih = 0, it means thatCh = 0. When ih = 1, it
means thatCh > 0. Whenjh = +1 (jh = 0, jh = −1), it means that after the transition,C ′

h = Ch + 1 (C ′
h = Ch,

C ′
h = Ch − 1). Especially, whenjh = −1, ih must be1, since decrementing0 is not allowed. The reachability

problem of such a 2-counter machine is to decide that, starting from the initial configuration(q0, 0, 0), after applying
some applicable transition rules, whether some final configuration(qfinal, , ) can be reached, whererepresents
an arbitrary possible value. We assume (for convenience) thatq0 6= qfinal and, for nontriviality, thatδ is not empty.

It is obvious that a 2-counter machine allowingq0 = qfinal can be equivalently simulated by a 2-counter machine
defined above, and the halting problem of 2-counter machines defined above is undecidable.

APPENDIX V
MORE EXPLANATION OF THE REWRITE RULES FORTHEOREM 1

Here is some explanation of the rewrite rules presented in the proof of Theorem 1 arranged by the rule numbers.
1) Counter value 0 must be represented byz. There is no previous counter value for 0. So the term{7, Bf , Ch−1

f ,

Chf}→k0
Af

, which shows thatCh−1
f encodes a number one less than the numberChf (Chf = z) encodes, should

not be required.
2) When a counter is positive, we emphasize that there must be evidence showing the counter has a preceding

nonnegative value. This rule is redundant since it is covered by the default rule.
3) When a counter is incremented, the variableCh′f is replaced by a nonceCh+1

f generated byBf . The history
records showing that the new counter value is incremented from its precedent is represented by the connection
term {7, Af , Chf , Ch+1

f }→k0
Bf

.

4) When a counter is kept the same in the transition, neither the new nonce nor the record of counter value
increment is needed.

5) When a counter is decremented, the variableCh′f is replaced by the preceding counter representationCh−1
f .

The new nonce which should represent an incremented counter and the record of the counter increment are
not needed. Note that whenjh = −1, ih must be 1 for a valid transition ruleTf , and rule 2 applies.
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APPENDIX VI
DETAILED PROOFS

A. Proving Direction 1 for Theorem 1

We focus on describingrun.E, while the set of role instancesrun.R will be clear oncerun.E has been described.
run.E is described below.

We need to prove that the constructedrun is a run, orrun ∈ RunsD:Pro. More specificly, we have to show
that the attacker can construct every message before it is received by a regular agent.

run.E can be divided into three parts: the starting actions, and the transition actions, and the finishing actions.
A secret term is obtained by the attacker at the end of the ending actions. We buildrun.E by appending actions
to run.E, starting from an empty sequence.

The starting actions. run.E starts with the events of a role instance ofS0, call it s0, which is executed bya.
So s0 ∈ run.R. , s0.acts includes one event

+(a ⇒ b) : a, b, {5, b, e, q0, z, z}→k0
a

,
and this event is appended inrun.E.

Thetransition actions: Suppose thewth step inComp is (q, V1, V2) −→t (q′, V ′
1 , V

′
2), where1 ≤ w ≤ u andt ∈ δ.

By the construction ofPro, the transition rulet corresponds to a pair of transition roles in the protocol, saySf and
Rf , where1 ≤ f ≤ n. Thewth step inComp corresponds to one role instance ofRf , call it rw, one role instance
of Rcopy1, call it pw, and two role instances ofRcopy2, call themp1w andp2w. So {rw, pw, p1w, p2w} ⊂ run.R,
and they are executed byb, a, a, anda respectively. The events of the four role instances, totally (at most) eight
events, are appended torun.E. According to the protocol, these events can be described in the general template
as below, where the exact form of these events depends on the specific roleRf . The events of a role instancer is
denoted asr.acts.
rw.acts =

−(a ⇒ b) : a, b, {5, b, e, q, C1f , C2f}→k0
a
,

{7, b, C1−1
f , C1f}→k0

a
, {7, b, C2−1

f , C2f}→k0
a

#b(C1+1
f , C2+1

f ) +(b ⇒ a) : b, a, {5, a, e, q′, C1′f , C2′f}→k0
b
,

{7, a, C1f , C1+1
f }→k0

b
, {7, a, C2f , C2+1

f }→k0
b

pw.acts = −(b ⇒ a) : b, a, {5, a, e, q′, C1′f , C2′f}→k0
b

+(a ⇒ b) : a, b, {5, b, e, q′, C1′f , C2′f}→k0
a

p1w.acts = −(b ⇒ a) : b, a, {7, a, C1f , C1+1
f }→k0

b

+(a ⇒ b) : a, b, {7, b, C1f , C1+1
f }→k0

a

p2w.acts = −(b ⇒ a) : b, a, {7, a, C2f , C2+1
f }→k0

b

+(a ⇒ b) : a, b, {7, b, C2f , C2+1
f }→k0

a

Note that whether we needphw, h ∈ {1, 2}, depends on whether{7, Af , Chf , Ch+1
f }→k0

Bf

appears in the second

message ofRf or not. So we may need 4, 6, or 8 actions steps when we need neither of, one of, or both of,p1w

andp2w respectively.
We need to specify the instantiation of the variables in the above template of steps. Note that the attacker

impersonatesa , constructs and sends the first message received byb in rw. The nonce variableNf in Rf , which
should normally be instantiated by a fresh nonce, is instantiated by the constante in rw. Intuitively we want the
configuration term{5, b, e, q, C1f , C2f}→k0

a
encodes the configuration(q, V1, V2) of M . Let Ew be the prefix ofE

which ends immediately before the first event ofrw. We require that the instantiation ofChf must encodeVh,
denoted asVh = Chf , for h ∈ {1, 2}, after runningEw. Whether{7, b, Ch−1

f , Chf}→k0
a

appears in the first message
of rw.acts, h ∈ {1, 2} depends on the specificRf . If Ch−1

f appears inRf , we require the instantiation ofCh−1
f

satisfys that thatVh − 1 = Ch−1
f . No need to specify the values of the two variableC1′f and C2′f , since they

will be replaced by other variables according toRf . The variableCh+1
f , h = 1or2, if it will appear in Rf , is

instantiated by a nonce freshly generated byb in the second event ofrw.
Now we need to show that every message received byb or a in the above sequence can be obtained by the

attacker before it is received. We only need to show that for the first message, call itMsg, received byb in rw

can be obtained byI, denoted asMsg ∈ knowI(Ew), which can be proven by the following stronger lemma.
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Lemma1: In the constructed run, for the role instancerw, thewth transition step ofM , andEw just described,
the following three facts are true.

1) There exists{5, b, e, q, C1, C2}→k0
a
∈ knowI(Ew), such thatV1 = C1 andV2 = C2.

2) Forh ∈ {1, 2}, if Vh > 0, then{7, b, Ch−1
f , Chf}→k0

a
∈ knowI(Ew), such that after runningEw, Vh−1 = Ch−1

f .

3) After running the events listed earlier, we call the set of of executed events in the run so far asE′
w. After E′

w,
V ′

h = C ′
h, for h ∈ {1, 2}, and{5, b, e, q′, C ′

1, C
′
2}→k0

a
∈ knowI(E′

w).
Proof: This lemma can be proven by induction on the length of the computation steps ofM . When we say

a termT encodes a numberN , we can find at least one encoding sequence ofT formed byN connection terms
appeared in the run. A CS ofT may have have connection terms wherea andb are in different positions, some like
{7, b,X, Y }→k0

a
, and some like{7, a,X, Y }→k0

b
. To prove this lemma we only need to consider a CS where connection

terms are in the form{7, b,X, Y }→k0
a
, thanks to the roleRcopy2.

Base case: The first transition step ofComp (w = 1) must have the form(q0, 0, 0) −→t (q′, V ′
1 , V

′
2), for some

q′ ∈ Q, andV ′
1 , V

′
2 ∈ {0, 1}. Supposet is translated intoSf andRf of the protocol, for somef , 1 ≤ f ≤ n, andrw

is a role instance ofRf . Proving the first fact: Obviously{5, b, q0, z, z}→k0
a
∈ knowI(E1) since{5, b, q0, z, z}→k0

a
is

just produced by the starting event. Since0 = z, the first fact is proved. Proving the second fact: SinceV1 = V2 = 0,
the second fact is trivially true. Proving the third fact: In the first transition step ofComp, for h ∈ {1, 2}, either
V ′

h = Vh +1 = 1 or V ′
h = Vh = 0. If V ′

h = 1, then according to the design ofPro and the run ofPro in direction 1,
the second message ofr1 which is a role instance ofRf executed byb must include a term{7, a, z, Ch+1

f }→k0
b
. Then

in the run this term is sent byI to the role instanceph1 which is a role instance ofRcopy2 executed bya, anda
will send{7, b, z, Ch+1

f }→k0
a

in the second event ofph1, and this single connection term forms an encoding sequence
of Ch+1

f . So after runningE′
1, V ′

h = 1 = Ch+1
f = Ch′f . If V ′

h = 0, thenV ′
h = 0 = Ch′f , whereCh′f = Chf = z.

So it must be true theV ′
h = Ch′f . A term of the form{5, a, e, q′, C1′f , C2′f}→k0

b
is generated in the second event of

r1, while e is carried along inr1. This term is sent to the role instancep11 executed bya, and thena will send in
the second event ofp11 the term{5, b, e, q′, C1′f , C2′f}→k0

a
. Also by the design ofPro, q′ and q in Rf are always

the same as theq′ andq in t. The third fact is proved. The base case is proven.
Induction step: Suppose for thew − 1th step, the lemma is true, while for a stronger consideration we only

consider the CS of a term where every connection term is encrypted byk0
a. We need to prove that the lemma is

also true for thewth transition step.
Fact 1. Thewth transition step ofComp is of the form(q, V1, V2) −→t (q′, V ′

1 , V
′
2). The configuration(q, V1, V2)

must be reached by thew − 1th step. By the induction hypothesis, for thew − 1th step, which just occurred, the
lemma is satisfied, so there must be a term{5, b, e, q, X1, X2}→k0

a
already generated and collected intoknowI(E′

w−1),
whereV1 = X1 andV2 = X2. SinceE′

w−1 is the same asEw, The first fact is proven.
Fact 2. If Vh > 0, then according to the design ofPro, the instance of{7, b, Ch−1

f , Chf}→k0
a

will appear in the
first message ofrw, which is a role instantce ofRf . By Fact 1 above,V hf = Chf after runningEw. By the
induction hypothesis, there must be a encoding sequence ofChf , where every connection term is encrypted byk0

a,
and the last term of this sequence has the form{7, b,X, Chf}→k0

a
, andX = V hf −1. The instance{7, b,X, Chf}→k0

a

must be included inknowI(Ew), and is used to instantiate{7, b, Ch−1
f , Chf}→k0

a
. The second fact is proven. We

can see that given a specificChf , the term{7, b,X, Chf}→k0
a

is unique is a run, by Observation 3 in the proof of
Direction 2.

Fact 3. We need to show thatV ′
h = Ch′f after executingE′

w. There are three possible cases for the value ofjh

in t, for h ∈ {1, 2}.
• jh = −1 andV ′

h = Vh−1. According to the design ofRf , Ch′f = Ch−1
f . By the proven fact 2,V ′

h = Vh−1 =
C−1

h = C ′
h.

• jh = 0 andV ′
h = Vh. According to the design ofPro, Ch′f = Chf . By the proven fact 1,V ′

h = Vh = Chf =
Ch′f .

• jh = +1 andV ′
h = Vh + 1. Then according to the design ofRf , Ch′f = Ch+1

f ]. According to the design of
the protocol and the run, in the second message ofrw, there must be a term{7, a, Chf , Ch+1

f ]}→k0
b

generated

in the second message ofrw, whereC+1
h is a fresh nonce generated by the b. Then this term is sent to role

instancephw executed bya and in the second event ofphw a term {7, b, Chf , Ch+1
f }→k0

a
is generated and
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is obviously collected inknowI(E′
W ). By the proven fact 1,Vh = Ch. Then by the definition of encoding,

after runningE′
w, V ′

h = Vh + 1 = Ch+1
f = Ch′f . Now we finish proving fact 3. In the second event ofrw

the term{5, a, e, C1′f , C2′f}→k0
b

is generated. Note thate is forwarded from the message received byrw. Then
according to the design ofrun, the attacker send this term to the role instancep1w executed bya, then the
term T = {5, b, e, C1′f , C2′f}→k0

a
is generated in the second event ofpw. T ∈ know

E′
w

I . Fact 3 is proved.
Lemma 1 is proved.

The finishing events: The well-known attack to the PKNS protocol discovered by [4] is listed in Fig. 2, side by
side with the finishing action steps. The receiving event ofB in the form of−(I(A) ⇒ B) : Msg means thatB
considers the message is sent fromA but actually is sent fromI, while I impersonatesA. The finishing events are
carried out to two role instancessfinish and rfinish, of the two rolesSfinal andRfinal respectively, executed by
a and b respectively.sfinish and rfinish are included inrun.R. The events ofsfinish and rfinish are interleaved
in a sequence exactly as the attack to the PKNS protocol, and this sequence is appended torun.E.

In the sequence of final events, 1) 4) and 5) belong tosfinish, while 2) 3) and 6) belong to andrfinish. In 2, the
attacker impersonatesa and constructs a fake message where the term{5, b, e, qfinal, C1, C2}→k0

a
is instantiated by

any final configuration termI can obtain from running the transition events. SinceM will reach a final configuration,
by Lemma 1, it is guaranteed that a term of the form{5, b, e, qfinal, C1, C2}→k0

a
is included inknowI(E′) where

E′ is the prefix ofE up to the last transition events. Then there is no problem that the attacker can obtain the
messages of 2) and 4), before they are received, and thennb ∈ knowI(E) after 5), andnb is a secret term. The
event 6) is not necessary for the attacker to steal the secrecynb, but it is needed to finish an authentication attack
to b, discussed later in this section. Direction 1 is proven.

1) #A(NA)
+(A ⇒ I) : {A,NA}→k1

I

2) −(I(A) ⇒ B) : {A,NA}→k1
B

3) #B(NB)
+(B ⇒ I(A)) : {NA, NB}→k1

A

4) −(I ⇒ A) : {NA, NB}→k1
A

5) +(A ⇒ I) : {NB}→k1
I

6) −(I(A) ⇒ B) {NB}→k1
B

Fig. 2. The attack to PKNS protocol

1) #a(na, c1a, c2a)
+(a ⇒ I) : {1, a, na, {5, I, e, qfinal, c1a, c2a}→k0

a
}→k1

I

2) −(I(a) ⇒ b) : {1, a, na, {5, b, e, qfinal, C1, C2}→k0
a
}→k1

b

3) #b(nb)
+(b ⇒ I(a)) : {2, na, nb}→k1

a

4) −(I ⇒ a) : {2, na, nb}→k1
a

5) +(a ⇒ I) : {3, nb}→k1
I

6) −(I(a) ⇒ b) {3, nb}→k1
b

Fig. 3. The final action steps of the run construct in the proof of Theorem 1.

B. Proving Direction 2 for Theorem 1

Proving the Observations in Direction 2The following five observations are helpful to prove direction 2.
Observation 1: First, every connection term of the form{7, a/b, Ch−1

f , Chf}→k0
a/b

, and every configuration term

of the form{5, a/b, e, q,X, Y }→k0
a/b

must be constructed by a regular agenta or b, a 6= I B 6= I. The reason is that

the attacker does not knowk0
a or k0

b . Second, two encrypted terms appearing inrun with different format cannot
be unified and cannot be used interchangeably, due to the constants 1, 2, 3, 5 and 7.
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Observation 2: A term of the form{7, a/b, X, z}→k0
a/b

will never be generated in the run. If it can be generated,

it must be an instance of the term{7, Af , Chf , Ch+1
f ]}→k0

Bf

, for h ∈ {1, 2}. But thenz is a freshly generated nonce

by a or b, impossible due to the assumption of unbounded fresh terms.
Observation 3: Given any termX, for all of the terms appearing in a run ofPro in the form of{7, a/b, Y,X}→k0

a/b
,

Y is the same. In other words,X can only appear after a unique termY in any connection term. By the construction
of the protocol,{7, a/b, Y,X}→k0

a/b
can only be generated as a connection term in three cases: 1) in the first message

of role instance ofSf ; 2) in the second message of a role instance ofRf , 1 ≤ f ≤ n; 3) in the second message
of a role instance ofScopy2; 4) in the second message of a role instance ofRcopy2.

We show if there is a termT of the form {7, a/b, Y,X}→k0
a/b

generated in case 4), there must be a term of the

form {7, a/b, Y,X}→k0
a/b

which is generated earlier in case 1) or 2) or 3). Note in case 4) a role instancer of
Rcopy2 will not change the order betweenY and X, in the sense that if in the second message ofr a termT =
{7, a/b, Y,X}→k0

a/b
is sent, then in the first message ofr a termT ′ of {7, a/b, Y,X}→k0

a/b
must be received while the

position ofa andb are swapped. The question is howT ′ is generated. If we considerT ′ again is generated in case
4), then we can find another earlier generated term again of the form{7, a/b, Y,X}→k0

a/b
. This backward reasoning

cannot be infinite since the run has finite many events. So case 4) can be reduced to case 1) or 2) or 3).
Suppose to the contrary there are two termsT1 = {7, a/b, Y, X}→k0

a/b
andT2={7, a/b, Y ′, X}→k0

a/b
whereY 6= Y ′.

There are three situations. First,T1 and T2 are both generated in cases 1) or 2) or 3). It is impossible, since it
meansX will be generated as a fresh nonce twice. Second, one ofT1 andT2 is generated in case 1) or 2) or 3),
while the other one is generated in case 4). Third, bothT1 andT2 are generated in case 4). The second and third
situations both imply the first situation, by the reasoning of the above paragraph, and are impossible.

Observation 4: For every termX, X can only encode at most one number, and especiallyz can only encode 0.
We can see Observation 4 directly by Observation 3. IfX is z, then by Observation 2, there can only be one

encoding sequence ofz, which is z itself. For an encoding sequence ofX, if X 6= z, then by the definition of
encoding sequence, there must be a term{7, a/b, Y,X}→k0

a/b
appearing at the end of a encoding sequence ofX. By

Observation 3, the termY preceding toX is fixed. By the same reasoning, the term preceding toY in a encoding
sequence ofX is also fixed. The same reasoning can be applied recursively backwards, until the termz, which
is the starting point of a encoding sequence, and it is impossible forz to appear in the middle of the encoding
sequence, by Observation 2.

On the other hand, it is possible that there exist two different terms of the form{7, a/b, X, Y1}→k0
a/b

, and{7, a/b, X,

Y2}→k0
a/b

, whereY1 6= Y2. The reason is that during the run of the 2-counter machine, a counter can reach a number
(encoded byX) several times, and then incremented multiple times fromX, corresponding to the run of the
protocol, each time a different nonceCh+1

f is used as the incremented value. In other words, a number can be
encoded by several different terms, while each term can only encode one number. If we connect the encoding terms
together whereX is the parent ofY if there is a term{7, a/b, X, Y }→k0

a/b
appearing in the run, then we can form a

tree, whose top node isz. Every node (a term) of the tree, can have several children nodes, but can only have one
parent node. Each term can appear at most once as a node in the tree.

Observation 5: The number0 can only be encoded byz.
By Observation 2, it is impossible forz to encode any positive number. One concern is that ifX appears in

{7, b,X, Y }→k0
a

whereY encodes1, andX 6= z, thenX could be used as a term encoding0. But since 1 is the
i value of Y , there must be a term{z, Y }→k1

g2
by the definition ofi value. It is impossible by Observation 3.

We prove direction 2 by proving a stronger result below.
Lemma2: For an run of the protocolPro, call it run, considering an insiderI as described earlier. For every

configuration termT generated in the form{5, a/b, e, q, C1, C2}→k0
a/b

, andT ∈ knowI(run.E), T encodes a reachable

configuration, say(q, V1, V2), of the two counter machineM = (Q, δ), in the sense thatVh = Ch, for h ∈ {1, 2}.
Proof: This lemma is proved by induction on the sequence of the configuration terms thatI can obtain in a

run of Pro.
For a termT in the form of{5, a/b, e, q, C1, C2}→k0

a/b
, according to the design ofPro, there are four situations

that T can be generated in arun. 1) T is generated in a role instance ofS0 executed bya or b. 2) In the second
event of a role instance ofRcopy1 executed bya or b. 3) In the first message of a role instance ofSfinal exeucted
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by a or b. 4) In the second message of a role instance of a roleRf , for somef , 1 ≤ f ≤ n. Note thatT cannot
be generated byI sinceI will never knowk0

a or k0
b . T cannot be generated in the first event of some role instance

of Sf or Scopy1 executed bya or b, since a fresh nonce honestly generated bya or b will take the position ofe in
T , and it is impossible to bee. For T genenerated in situation 3), it is impossible forI to know T sinceT cannot
appear in another message, and the only possible appearence ofT in a run is being encrypted usingk1

a or k1
b , while

I does not knowk0
a or k0

b and cannot decrypt the message to knowT . So we only need to considerT generted in
situation 1) 2) or 4). In situations 2) or 4),T is generated after the role instance receiving a term also in the form
{5, a/b, e, q, C1, C2}→k0

a/b
, which must be generated and known toI earlier thanT . So the firstT known toI must

be generated in situation 1), which is the base case of the induction.
Base case: T is generated in a role instance ofS0, andT must be{5, a, e, q0, z, z}→k0

b
, or {5, b, e, q0, z, z}→k0

a
. since

z encodes 0, and the starting configuaration(q0, z, z) is a reachable one toM , base case is proven.
Induction step: Suppose for a configuration termT known toI in run, all of the earlier generated configuration

terms (note that they are known toI immediately after they are generated) satisfy the lemma, we need to prove
that T also encodes a reachable configuration ofM .

There are three possible cases. First,T is generated in situation 1). The lemma is true by the same reason for
the base case.

Second,T is generated in situation 2) by a role instancer of Rcopy1. Say T is {5, b, e, q, X, Y }→k0
a
, and r is

executed bya. Then the term{5, a, e, q,X, Y }→k0
b
, call it T ′, must be received earlier inr beforer sendsT . By the

induction hypothesis,T ′ encodes a reachable configuration(q, V1, V2) of M , whereV1 = X andV2 = Y . ThenT
should encode the same configuration, snceq, X, andY appear in the same inT as inT ′. So the lemma is true
in the second case.

Third, T is generated in situation 4) by a role instancer of Rf , 1 ≤ f ≤ n. According to the design
of Rf , T must be the term, say{5, a/b, e, q′, C1′f , C2′f}→k0

a/b
. Then r must receive in its first event a term

{5, a/b, e, q, C1f , C2f}→k0
a/b

, which is a configuration term, call itT ′. By the induction hypothesis,T ′ must encode

some reachable configuration(q, V1, V2), whereV1 = C1f andV2 = C2f . SupposeRf corresponds to a transition
rule t of M , we want to show thatT encodes the configuration(q′, V ′

1 , V
′
2), which is reached by applyingt to

(q, V1, V2) in a computation ofM .
First, we show thatt is applicable to(q, V1, V2). t must have the form of[q, i1, i2] → [q′, j1, j2]. There are

different cases to consider based on the possible values ofih, for h ∈ {1, 2}.
• If ih = 1, we need to show thatVh > 0. By the construction ofRf , there is a term{7, Bf , Ch−1

f , Ch}→k0
Af

included in the first message ofRf . This term must be instantiated by a ground connection term inr, as
showed by Observation 1. By Observation 2,Chf 6= z. SinceChf must encode either a positive number or
0, while 0 can only be encoded byz as showed by Observation 5, soChf > 0. By the induction hypothesis,
Vh = Chf . So Vh > 0.

• If ih = 0, then we need to show thatVh = 0. By the construction ofRf , Chf = z. Obviously0 = Vh = Chf .
So t is applicable to(q, V1, V2).

Second, we need to show that after applyingt to (q, V1, V2), the new reachable configuration(q′, V ′
1 , V

′
2) is

encoded byT . By the construction ofRf , the state constantsq andq′ in r match with states oft, so we only need
to show thatV ′

h = C ′
h. There are different cases to consider for the possible values ofjh, for h ∈ {1, 2}.

• If jh = 0, thenV ′
h = Vh. Then, by the construction ofRf , it must be true thatCh′f = Chf . SinceVh = Chf

by the induction assumption,V ′
h = Ch′f .

• If jh = +1, thenV ′
h = Vh+1. By the construction ofRf , In the second message ofr, there must be a termCh+1

f

freshly generated, and a connection term{7, Af , Chf , Ch+1
f ]}→k0

Bf

is generated, andCh′f = Ch+1
f . Note that

in r Af andBf are instantiated either bya or b. Then by the definition of encoding,Chf +1 = Ch+1
f = Ch′f .

SinceVh = Chf , by the induction hypothesis, andChf can only encode a unique number by Observation 4,
V ′

h = Vh + 1 = Chf + 1 = Ch′f .

• If jh = −1, thenV ′
h = Vh−1. By the construction ofRf , there must be a term{7, Bf , Ch−1

f , Chf}→k0
Af

included

in the first message ofr. Ch′f = Ch−1
f . By the induction hypothesis,Vh = Chf , andVh > 0. By Observation

3, Chf 6= z, sincez can only encode 0. Then by the definition of encoding sequence, there exists a term
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{7, a/b, Y, Chf}→k0
a/b

in the encoding sequence ofChf , which has appeared in the run and known toI, where

Vh−1 = Chf−1 = Y . By Observation 3, theY appearing in{7, a/b, Y, Chf}→k0
a/b

is unique, Then, the attacker

can only use{7, a/b, Y, Chf}→k0
a/b

as the term{7, Bf , Ch−1
f , Chf}→k0

Af

. So V ′
h = Vh − 1 = Ch−1

f = Ch′f .

So the induction step is proved. Lemma 2 is proved.
Lemma3: Considering arun of the protocolPro with an insider attacker, for a secret termnb generated by

b for a, nb ∈ knowI(run.E) if and only if there is a configuration termT of the form{5, b, e, qfinal, C1, C2}→k0
a

such thatT ∈ knowI(run.E) beforeI knowsnb.
Proof: This lemma follows the analysis of the behavior of the PKNS protocol and its attack, which has been

extensively studied [4] [27]. Details of the attack are listed in Fig. 2. For the PKNS protocol,I can steal the secret
term NB if and only if I can construct a message{A,NA}→k0

B
and then send it toB (showed above in event 2),

whereI got NA from a message{A,NA}→k0
I

sent earlier fromA to I.
Although in the communication sequence betweenSfinal andRfinal the NS protocol is adjusted, but the same rea-

soning can show thatI can stealnb if and only if I can construct a messagea, b, {a, na, {5, b, e, qfinal, C1, C2}→k0
a
}→k1

b
},

wherena is sent froma to I. SinceI can always get such ana, it is clear thatI can stealnb if and only I can get
{5, b, e, qfinal, C1, C2}→k0

a
. The constants 1, 2, 3, 5, and 7 makes different kinds of encryption terms not pair-wisely

unifiable, which makes the proof more obvious. Lemma 3 is proved.
Now we finish the proof of direction 2. By Lemma 3 and Lemma 2, the attacker can obtain a secret term if and

only if M can reach a final configuration. It is crucial for the attacker to be an insider to carry out the attack to
the NS protocol, otherwiseA will not send a message toI and I cannot getNa to trigger the attack. Therefore
I has to be an insider to stealnb. The message size (the number of atomic terms appearing in a message) can be
bounded by 19 in a run, which is the size of the longest message which may appear in the roleRf , 1 ≤ f ≤ n.
The number of agents can be bounded by 3. The number of events in a role can be bounded by 2. Theorem 1 is
proved.

C. Proving Theorem 2

Proof: The secrecy attack to PKNS protocol listed in Fig. 2 is also an authentication attack, since the goal
RoleB → RoleA with shared data{A,B, NA, NB} is violated. When a role instance ofRoleB(A,B, NA, NB)
finishes in the attack which is a run, the corresponding role instance ofRoleA(A,B, NA, NB) does not exist, while
only a role instance ofRoleA(A, I,NA, NB) exists. This attack has been extensively studied. The attacker can
launch this attack if and only ifI can obtain the neededNA to construct the message of 2) to be received byB.
In order for I to obtainNA, I have to be an insider so thatA recognizeI and is willing to start a conversation
with I.

We choose the goal ofRfinal → Sfinal. According to the CS between the two roles listed earlier, the two roles
share all of the parameters{A,B, NA, NB, C1final, C2final}. In the attack showed in Fig. 2, this goal is violated
since when a role instanceRfinal(A,B, NA, NB, C1final, C2final) finishes, the corresponding role instance of
Sfinal(A,B, NA, NB, C1final, C2final) does not exist. By the same reasoning,I can launch the attack if and only
if I can obtain the termsNA and a configuration term of the form{5, B, e, qfinal, C1final, C2final}→k0

A
, which

meansI has to be an insider to chosen byA as the interlocutor, and the 2-counter machine has to reach a final
configuration, showed by the proof of Theorem 1. In conclusion, the authentication goalRfinal → Sfinal can be
violated if and only ifM can reach a final configuration.


