

``Logicalization'' of MPI Communication Traces

Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, Rong Zheng

Computer Science Department
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-08-07

May 26, 2008

Keywords: Trace compression, Graphic isomorphism, Performance analysis and modeling

Abstract

Communication traces are integral to performance analysis of parallel programs. However, execution on a
large number of nodes results in a large trace volume that is cumbersome and expensive to analyze. This
paper presents an automatic framework to convert all process traces corresponding to a single parallel
execution of an SPMD MPI message passing program into a single logical program trace. The approach first
identifies the communication topology of the application from the application communication matrix
computed from the traces. Topology identification is based on the application communication structure and
independent of the way ranks (or numbers) are assigned to processes. Once the application topology is
identified, point-to-point communication between processes is converted into logical communication that
represents similar communication across all processes executing the application. This logicalization
framework has been implemented and the results with NAS benchmarks show that it is efficient and
effective. The procedure is part of a system to automatically generate performance skeletons that are short
running programs mimicing core computation and communication characteristics of an application.

“Logicalization” of MPI Communication Traces

Qiang Xu Ravi Prithivathi Jaspal Subhlok Rong Zheng
University of Houston, Department of Computer Science, Houston, TX 77204

Abstract

Communication traces are integral to performance modelingand analysis of parallel programs. How-
ever, execution on a large number of nodes results in a large trace volume that is cumbersome and expen-
sive to analyze. This paper presents an automatic frameworkto convert all process traces corresponding
to the parallel execution of an SPMD MPI program into a singlelogical trace. The approach first com-
putes the application communication matrix from process traces. Topology identification, which includes
graph spectrum analysis and graph isomorphism test, is based on the underlying communication struc-
ture and independent of the way ranks (or numbers) are assigned to processes. Once the application
topology is identified, message exchanges between physicalprocesses are converted into logical commu-
nication that represents similar message exchanges acrossall processes executing the application. This
logicalization framework has been implemented and the performance is analyzed. The results with NAS
benchmarks show that it is efficient and effective.

Index Terms
Trace Compression, Graph isomorphism, Performance analysis and modeling

1 Introduction

Execution and communication traces are central to performance analysis and performance modeling
of parallel applications. However, for long running applications on moderate to large number of nodes,
even relatively coarse grained communication traces can bevery long and their analysis prohibitively
expensive. Fortunately, as high performance scientific applications are generally SPMD programs, in
most cases, the traces for different processes are similar to each other and the communication between
processes is associated with a well defined global communication pattern. A study of DoD and DoE
HPC codes at Los Alamos National Labs [7] and analysis of NAS benchmarks [14] shows that an over-
whelming majority of these codes have a single low degree stencil as the dominant communication
pattern. These characteristics expose the possibility of combining all processor traces into a singlelogi-
cal program tracethat represents the aggregate execution of the program - in the same way as an SPMD
program represents a family of processes that typically execute on different nodes. This paper presents a
framework for automatic construction of a logical program trace from the collection of physical process
traces of an execution of a message passing parallel application.

For illustration, consider the following sections of traces from a message exchange between 4 pro-
cesses in a 1-dimensional ring topology.

1

Process 0 Process 1 Process 2 Process 3
...
snd(P1,...) snd(P2,...) snd(P3,...) snd(P0,...)
rcv(P3,...) rcv(P0,...) rcv(P1,...) rcv(P2,...)
...

The above physical trace can be summarized as the following logical trace:
Program
...
snd(PR,...)
rcv(PL,...)
...
wherePL andPR refer to the logical left and right neighbor, respectively,for each process in a 1-

dimensional ring topology.
The basic goal of the research presented in this paper is to automatically logicalize traces of mes-

sage passing MPI parallel programs. Beside reducing the trace size by a factor equal to the number of
processes, the logical program trace captures the parallelstructure of the application. Note that this log-
icalization is orthogonal to single trace compression, which is based on discovering temporal repeating
patterns in traces. For instance, if the trace forProcess 0above consisted of the sequence:

“... snd(P1,...) rcv(P3,...) snd(P1,...) rcv(P3,...) snd(P1,...) rcv(P3,...) snd(P1,...) rcv(P3,...) ...”
then single trace compression can identify the repeating sequences and reduce the trace to the following
representation:

“.... [snd(P1,...) rcv(P7,...)]4.....”
Single trace compression can be applied to individual process traces as illustrated above, as well as to the
logical trace of an application. We will refer to single trace compression simply astrace compressionin
the rest of this paper, as distinct from logicalization. This paper focuses on trace logicalization, although
trace compression and logicalization are likely to be employed together.

The logicalization framework has been developed for MPI programs and proceeds as follows. The
application is linked with the PMPI library so that all message exchanges are recorded in a trace file
during execution. Summary information consisting of the number of messages and bytes exchanged
between process pairs is recorded and converted to a binaryapplication communication matrixthat
identifies process pairs with significant message traffic during execution. This matrix is then analyzed
to determine the application level communication topology. Once this global topology is determined, a
representative process trace is analyzed in detail and transformed into a logical program trace where all
message sends and receives are to/from a logical neighbor interms of a logical communication topology
(e.g a torus or a grid) instead of a physical process rank.

The key algorithmic challenge in this work is the identification of the application communication
topology from the application communication matrix which represents the inter-process communication
graph. The communication topology is easy to identify if theprocesses are assigned numbers (or ranks)
in a well defined order, but is a much harder problem in general. This is illustrated with a very simple
example in Figure 1. The figure shows 9 executing processes with a 2D grid communication topology.
In Figure 1(a) the processes are assigned numbers in row major order in terms of the underlying 2D grid.
However, if the processes were numbered diagonally with respect to the underlying 2D grid pattern
as indicated in Figure 1(b), the communication graph with process nodes laid out in row major order

2

5
 7
 8

2
 4
 6

0
 1
 3

0
 1
 2

3
 4
 5

6
 7
 8

0
 1
 2

3
 4
 5

6
 7
 8

(a) (b) (c)

Figure 1. 2D grid topology with row major and diagonal proces s numbering

would appear as Figure 1(c). Clearly, the underlying 2D gridtopology is easy to identify in the scenario
represented in Figure 1(a) by a pattern matching approach but much harder when process numbering
follows an unknown or arbitrary order, a relatively simple instance of which is the scenario represented
in Figure 1(c). The state of the art in identifying communication topologies assumes that a simple known
numbering scheme is followed [7].

Identifying the underlying topology from a communication graph in general (i.e., without assuming
any numbering scheme) is difficult for two reasons. First, establishing if a given communication graph
matches a given topology is equivalent to solving the well knowngraph isomorphismproblem for which
no polynomial algorithms exist. (It is not known if it is NP-complete). Further, there are many different
types of topologies (different stencils on graph/torus, trees, etc.) and many instantiations within each
topology type (e.g., different number and sizes of dimensions even for a fixed number of nodes). A
naive method would require solving the graph isomorphism problem for each instance of each candidate
topology, which is computationally infeasible.

Our approach to identifying the communication topology of an application represented by a commu-
nication matrix has the following main steps:

1. Identification of candidate topologies:Simple tests exist that can eliminate the possibility that a
given topology could be a match for a given application communication matrix. For example,
a 2D torus stencil topology is possible only if all processeshave 4 communicating neighbors.
Hence if there is any process with more or less than 4 communicating neighbors, this topology
is eliminated. (Of course not every topology where all processes have 4 neighbors is a torus). In
our method, a series of such tests are applied, from simplestto more complex as a decision tree,
to reduce the set of possible candidate topologies. The tests are based on matching the following
between the application communication matrix (or graph) and the invariants of a topology:number
of nodes and edges, sorted list of node degrees, and graph spectrum represented by the eigenvalues
of the adjacency matrix. Typically very few candidate topologies are left after this step, often just
one. However, it is still not proved if any of the remaining candidate topologies is actually the
application communication topology.

2. Exact topology match:This involves proving that the application communication graph is isomor-
phic to the corresponding reference topology graph. While graph isomorphism is known to be a
difficult problem with no known polynomial solution, practical algorithms exist which can solve
the problem efficiently for many scenarios [10]. Also, the size of the problem to be solved is rela-
tively modest as the number of processes is likely to be at most in 100s. We employ the VF2 graph

3

matching algorithm fromVFlib2 library [2, 3] to test for isomorphism between the graphs repre-
sented by the application communication matrix and each remaining candidate reference topology
to establish the final application communication topology.

The tracing required for logicalization procedure is very low overhead in computation time and vol-
ume as only high level message passing calls are recorded. The analysis required for each process trace
is minimal - only the collection of gross communication data, such as the number of messages and bytes
exchanged. Detailed processing is limited to a single representative process trace that is transformed
to a logical program trace. The paper describes the design and implementation of the logicalization
framework. Experimental results are discussed, along withthe limitations and possible extensions.

2 Motivation and context: Trace compression for performance skeletons

The results developed in this paper have broad applicability in performance analysis and modeling.
In this section we discuss the specific context and usage of this research, which is construction of ap-
plication performance skeletons for performance prediction. A performance skeleton is a short running
program that recreates the dominant computation and communication behavior of the original applica-
tion execution. Monitored execution of a performance skeleton in a new environment (e.g, different
number of nodes, different communication library, or different network sharing) is employed to rapidly
estimate the performance of the application it represents in the new environment. The basic procedure
for construction of performance skeletons consists of collection and compression of application traces
followed by the generation of an executable program that recreates the core application behavior. The
procedure for skeleton construction and the effectivenessof skeletons for performance prediction are
discussed in [12, 11, 15, 19]. The research presented in thispaper is part of an improved scalable and
efficient skeleton construction procedure, which is sketched in Figure 2 and detailed in [19].

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure

Construct executable

performance skeleton program

APPLICATION

Data
 Model

Sim 1

Sim 2

Pre

Vis

Stream
 skeleton

Data
 Model

Sim 1

Sim 2

Pr

e

Vi

s

Stream

Figure 2. Skeleton construction

The highlighted logicalization step in Figure 2 is the focusof this paper and discussed in detail in the
following sections. Table 1 presents summary results from thecombinedlogicalization and compression
phases for 16 process NAS benchmarks. The trace length is measured as the number of trace records
(or lines), each representing one MPI operation. The logical trace is approximately the same size as a
single process trace, hence the compression achieved in logicalization equals the number of processes.
The compression ratio presented in Table 1 is the ratio of thesize of full logical (or single process) trace
to the final compressed logical trace. Clearly the approach is effective in reducing a family of raw MPI
traces to a short single compressed logical trace.

4

Table 1. Compression results for NAS programs. Trace length in number of records.
Benchmark Raw Trace Compressed Compression

Name Length Logical Ratio
Per Process Trace Length

BT B/C 17106 44 388.77
SP B/C 26888 89 302.11
CG B/C 41954 10 41954
MG B 8909 590 15.1
MG C 10047 648 15.5
LU B 203048 63 3222.98
LU C 323048 63 5127.75

Average 71695 165 1815.39

3 Related work

The importance of MPI traces in program analysis and visualization is clear from the popularity
of tools like Vampir [1] and Jumpshot [18]. Several tools have been developed to perform statistical
analysis of MPI communication behavior to summarize the execution behavior, an example being [16].
The idea of communication/adjacency matrix for trace analysis for parallel programs was introduced in
[5, 6]. They used communication matrices to discover the logical topology employed in MPI and PVM
applications to develop a parallel program debugger that exploits topological information. In contrast to
collecting summary information from a trace, the goal of thework presented in this paper is to identify
program wide communication topology and combine a set of per-process traces into a single program
trace to streamline and speedup subsequent trace processing.

Perhaps the work closest to this paper is the scalable trace compression presented in Noeth et. al. [8].
They perform task (or process) level compression on the fly, followed by consolidation of compressed
traces that they refer to as inter-node compression. The central difference is that we perform logi-
calization (or inter-node compression) first on process traces, and subsequently perform conventional
compression only on a single logical program trace. In our view, this offers two major advantages. First,
process traces are analyzed only to determine the type and size of message exchanges, not to compress
them. This reduces the overhead considerably. Second, consolidation of a large number of compressed
traces, which is challenging, is not needed. The work presented in [8] performs process trace compres-
sion on the fly, hence full trace need not be recorded. We will revisit the tradeoffs involved in Section 6.

We have borrowed part of our pattern identification methodology from Kerbyson et.al. [7] but our al-
gorithm for identifying communication patterns represents a significant improvement. In [7], the authors
first develop the real unweighted point-to-point communication matrix from an application execution and
then measure the degree ofmatchwith a set of predefined communication template matrices represent-
ing regularly occurring communication patterns in scientific applications. Their method assumes that
the nodes are numbered in a “reasonable” way, e.g., along therows or columns for a 2-dimensional grid.
The basic goal of our approach to topology identification is similar. However, more complex processing
steps, that include eigenvalue and graph isomorphism computations, are necessary to identify communi-
cation patterns with no assumptions about the numbering of processes. Also, the motivation in [7, 13] is
to understand the communication patterns in an applicationwhile our goal is to convert a suite of process

5

traces into a single program trace.
A compiler assisted approach to identification of MPI patterns is presented in [9]. Our work is most

relevant when the application communication follows a relatively static pattern and this is known to be
the case for most scientific applications [17, 7, 14]. Finally, this work is in the context of development
and usage of performance skeletons that are presented in [11, 15, 19].

4 Logicalization methodology

The trace logicalization procedure has the following main steps:

1. Generation of a binary application communication matrixfrom application process traces.

2. Identification of the application communication topology from the application communication
matrix.

3. Generation of a single logical program trace from a selected physical trace and topology informa-
tion.

Each of these steps is presented separately in this section.The central assumption is that there is a
dominant regular communication pattern in the trace being processed, else no topology is identified.
Extension to traces that have multiple phases of different patterns, or multiple concurrent patterns, are
discussed in Section 6.

4.1 Generation of application communication matrix

For generation of a physical trace, the MPI application is linked with the PMPI library, which allows
lightweight recording of communication operations through user provided functions. During execution
a trace file is generated for each process. Attributes recorded for each MPI call include the type of
call, the rank of the source/destination process, and the number of bytes transferred, along with timing
information.

Samples from beginning and end of the trace recorded on Node 0for NAS BT Class S benchmark
running on 4 Nodes are illustrated in Table 2. The complete trace consists of 2278 MPI calls. The table
shows the raw trace along with a listing of the calls with key parameters. The first call is a broadcast
of a single integer rooted at rank 0. The 4th call is an integerreceive of 360 doubles from the process
with rank 1. The trace displayed here only lists the communication calls, which are interleaved with
computation sections.

The next step is the generation of afull application communication matrix. The matrix records the
total data transferred between each pair of processes involved in the execution. In most SPMD appli-
cations, some entries in this matrix represent a large amount of data transfer while many entries are
zero, implying that there was no communication between the corresponding pair of processes. The full
communication matrix is then converted to abinary application communication matrix, where communi-
cating pairs of processes are represented by 1 and non-communicating pairs of processes are represented
by 0. As a simple example, the full communication matrix and the binary communication matrix for 8
process NAS MG benchmark are shown in Table 3.

6

Table 2. A sample execution trace
#Generating Logfile
Node=0 #939220507ss#0#939220507
1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIINT, 0,...)]
2. 2#2#136373224#1#27#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIDOUBLE, 0,...)]
3. 2#3#135838396#3#28#0#134#0#939220509#939220509 [MPI Bcast(...3, MPIINT, 0,...)]
4. 7#1#135789088#360#27#1#3000#138#153016848#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)]
5. 7#2#135786208#360#27#1#2000#138#153017012#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)]
6. 7#3#135794848#360#27#2#5000#138#153017176#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)]
7. 7#4#135791968#360#27#2#4000#138#153017340#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)]
8. 7#5#135800608#360#27#3#6000#138#153017504#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)]
9. 7#6#135797728#360#27#3#7000#138#153017668#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)]
10. 9#1#135812616#360#27#1#2000#138#153002824#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)]
11. 9#2#135809736#360#27#1#3000#138#153002964#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)]
12. 9#3#135818376#360#27#2#4000#138#153003104#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)]
13. 9#4#135815496#360#27#2#5000#138#153003244#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)]
14. 9#5#135824136#360#27#3#7000#138#153003384#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)]
15. 9#6#135821256#360#27#3#6000#138#153003524#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)]
16. 22#1#12#153016848#153017012#153017176#153017340#153017504 [MPI Waitall(...)]

#153017668#153002824#153002964#153003104#153003244#153003384
#153003524#0#939220509#939220513

17. 9#7#135786208#1470#27#1#3000#136#153003524#0#939220513#939220513 [MPI Isend(... 1, MPIDOUBLE, 1470, ...)]
18. 7#7#135809736#1470#27#1#3003#136#153017668#0#939220513#939220513 [MPI Irecv(... 1, MPIDOUBLE, 1470,...)]
19. 21#1#153003524#0##939220513#939220513 [MPI Wait(...)]
20. 21#2#153017668#0##939220513#939220513 [MPI Wait(...)]
......
2277. 3#1#3220724688#3220724696#1#27#100#0#134#0#939220642#939220642 [MPI Reduce(...1, MPIDOUBLE,

MPI MAX, ...)]
2278. 1#2#91#0#939220642#939220642 [MPI Barrier]
#Finished writing logfile for node=0#939220642#939220646

Communication Filtering: Most parallel scientific applications show a distinct dominant commu-
nication pattern, typically a simple stencil. However, occasional minor communication is sometimes
recorded between other processes. This can be inherent in the algorithm or due to other reasons, such as
distribution and collection of data at the beginning and endof execution. Very low level communication
(in terms of number of calls and volume of data exchanged) is not considered central to construction of
performance skeletons and similar relative performance modeling applications. A filtering step removes
matrix entries corresponding to such very low level communication based on a threshold. A heuristic
threshold of 5% was used in our experiments. The best possible threshold value can only be determined
by far more extensive experimentaions than was feasible. However, our qualitative observation is that
that the main pattern is generally dominating, hence most reasonable threshold values would suffice.

Table 3. Full Application Communication Matrix (traffic in K Bytes/sec) and Binary Application Com-
munication Matrix for 8 process MG benchmark

KBytes P0 P1 P2 P3 P4 P5 P6 P7
P0 0 141 144 0 148 0 0 0
P1 141 0 0 144 0 148 0 0
P2 144 0 0 141 0 0 148 0
P3 0 144 141 0 0 0 0 148
P4 148 0 0 0 0 141 144 0
P5 148 0 0 0 141 0 0 144
P6 0 0 148 0 144 0 0 141
P7 0 0 0 148 0 144 0 141

=⇒

P0 P1 P2 P3 P4 P5 P6 P7
P0 0 1 1 0 1 0 0 0
P1 1 0 0 1 0 1 0 0
P2 1 0 0 1 0 0 1 0
P3 0 1 1 0 0 0 0 1
P4 1 0 0 0 0 1 1 0
P5 1 0 0 0 1 0 0 1
P6 0 0 1 0 1 0 0 1
P7 0 0 0 1 0 1 0 1

7

This step was not relevant for our example codes, except thatit was critical for discovering the main
communication pattern for the MG benchmark for 16 and highernumbers of processes. The full com-
munication matrix and the binary communication matrix after filtering for 16-process MG benchmark
are shown in Table 4. The volume of the communication not associated with the main communication
pattern was around 0.5% compared to the main communication pattern. An accuracy measure is in-
troduced in the framework that quantifies the extent of low volume communication that is lost in the
logicalization process.

Table 4. Full and Binary Communication Matrix (traffic in KBy tes/sec) for 16-process MG benchmark.
The highlighted entries are small values that are eliminate d by filtering.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
P0 0 87.09 89.09 0 91.19 0 0 0 0 0 0 0 91.19 0 0 0
P1 87.09 0 0 89.09 0 91.19 0 0 0 0 0 0 0 91.19 0 0
P2 89.09 0 0 87.09 0 0 91.19 0 0 0 0 0 0 0 91.19 0
P3 0 89.09 87.09 0 0 0 0 91.19 0 0 0 0 0 0 0 91.19
P4 91.21 0 0 0 0 87.09 89.10 0 91.23 0 0 0 0.46 0 0 0
P5 0 91.21 0 0 87.09 0 0 89.10 0 91.23 0 0 0 0.46 0 0
P6 0 0 91.21 0 89.10 0 0 87.09 0 0 91.23 0 0 0 0.46 0
P7 0 0 0 91.21 0 89.10 87.09 0 0 0 0 91.23 0 0 0 0.46
P8 0 0 0 0 91.19 0 0 0 0 87.09 89.09 0 91.19 0 0 0
P9 0 0 0 0 0 91.19 0 0 87.09 0 0 89.09 0 91.19 0 0
P10 0 0 0 0 0 0 91.19 0 89.09 0 0 87.09 0 0 91.19 0
P11 0 0 0 0 0 0 0 91.19 8 89.09 87.09 0 0 0 0 91.19
P12 91.23 0 0 0 0.46 0 0 0 91.21 0 0 0 0 87.10 89.10 0
P13 0 91.23 0 0 0 0.46 0 0 0 91.21 0 0 87.09 0 0 89.10
P14 0 0 91.23 0 0 0 0.46 0 0 0 91.21 0 89.10 0 0 87.09
P15 0 0 0 91.23 0 0 0 0.46 0 0 0 91.21 0 89.10 87.10 0

⇓
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0
P1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
P2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
P3 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1
P4 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
P5 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
P6 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0
P7 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0
P8 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0
P9 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0
P10 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0
P11 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1
P12 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
P13 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1
P14 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1
P15 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0

4.2 Identification of application communication topology

The procedure in the previous section yields a binary application communication matrix. In this sec-
tion we present a procedure to determine if this applicationcommunication matrix represents an instance
of a topology such as a grid, torus, tree or another stencil that is part of a reference communication ma-

8

trix library. This is a challenging problem for two reasons.First, reference patterns in the library are
normally stored as abstract types. Each type of pattern can have numerous instances. For example, a
2-D grid is an instance of a grid pattern, and it represents a differentX × Y grid for every distinct pair
(X, Y). The number of instances can be large even when the total number of processesX · Y is fixed
because of different factorizations. Thus, the question ofwhich graph to match withis a non-trivial one.
Second, for a graph representing a topology, numbering of vertices is not unique. Different number-
ings of a graph correspond to different permutations of the rows and columns of its adjacency matrix.
Naive comparison of the adjacency matrix corresponding to an application communication matrix with
a reference graph corresponding to an identical topology but different ordering of vertices will lead to a
mismatch. Therefore efficient algorithms need to be devisedto eliminate the patterns that can be easily
proved tonot be the topology corresponding to an application communication matrix, and to verify if
an application communication matrix indeed corresponds toa reference pattern independent of vertex
numbering.

Two graphsG andH with graph verticesVn = {1, 2, ..., n} are said to be isomorphic if there is a
permutationp of Vn such that{u, v} is in the set of graph edgesE(G) iff {p(u), p(v)} is in the set of
graph edgesE(H). No polynomial algorithm exists to determine if two graphs are isomorphic although
the problem is not proven to be NP-complete. (On the other hand, the subgraph isomorphism problem,
i.e., finding if a graph is isomorphic to a subgraph of anothergraph, is known to be NP-complete.)
The problem of identifying the topology from an applicationcommunication matrix is essentially one
of determining if an instance of a reference pattern exists whose graph is isomorphic to the application
communication graph represented by the matrix.

The problem of identifying the communication topology can be divided into two sub-problems,
namely, i) determining candidate patterns in the referencelibrary and ii) determining an exact matching
reference topology. Note that determining whether the application matrixcontainsa set of reference
patterns is equivalent to the harder subgraph isomorphism problem that is left to future work.

Identification of candidate patterns

Although there is no general polynomial solution to graph isomorphism, relatively efficient practical
solutions exist. However, enumerating through all the reference patterns and checking for isomorphism
is clearly infeasible in practice. It is widely believed that there is no simple-to-calculate complete graph
invariant, i.e., there are simple-to-calculate invariants that hold across all isomorphic graphs, but there
also exist non-isomorphic graphs which have the same set of invariants. Hence, graph invariants cannot
be employed to establish isomorphism, but they can be utilized to narrow down the reference patterns that
are potential matches. To compute candidate reference patterns, the following attributes of an application
graphG(V, E) are examined:

1. Number of vertices|V |.

2. Number of edges|E|.

3. Node degree in descending order

4. Graph spectrum,λ(G), the set of eigenvalues of the adjacency matrix.

9

It is known that the above parameters are invariants with respect to permutation of the adjacency
matrix. Clearly the first three quantities are very simple tocompute. The complexity for computing
λ(G) is O(n3) using the Gauss-Jordan reduction. Several solver packagesexist for computing eigen-
values for sparse matrices [4]. In determining the candidate reference patterns, we adopt a decision tree
based approach that eliminates most patterns efficiently byemploying invariants in increasing order of
computational complexity.

Nodes, edges and prime factors Let the number of vertices of the graph to be matchedG be|V | = n.
Let m be the maximum dimension of the euclidean structures - graphs, tori and stencils based on them
- in the reference library. The first step is to factorizen into products of the formn0 · n1 · · ·nm [20]1.
Clearly, these are the only patterns that can possibly match. For each such product form as well as other
patterns (e.g. binary trees), we compute the edge count of reference patterns. Through elimination, we
have the subset of reference graphs asS1 = {G1

1
, G1

2
, . . . , G1

l1
}, which have the same number of edges

asG.

Degree ordering In the second step, we order the vertex degrees ofg ∈ S1 in descending order and
eliminate those with different sequences. Let the resulting subset beS2 = {G2

1
, G2

2
, . . . , G2

l2
}.

Computing graph spectrum As the final step, we compute the graph spectrum ofλ(G) andλ(g),
∀g ∈ S2 and eliminate those with different graph spectrum. Let the resulting subset beS3 = {G3

1
, G3

2
, . . . , G3

l3
}.

By the end of this procedure, it is likely that we are left witha single candidate topology. However,
one cannot yet conclude that it is the matched topology. The invariants employed can eliminate a pattern
from consideration but do not guarantee a match.

Exact matching to establish topology

We apply graph isomorphism algorithms to determine whetherapplication communication graphG
matches with any of the graphs in the candidate setS3. While there are no known polynomial algorithms
for graph isomorphism, practically efficient solution approaches exist. We chose the VFLib 2.0 graph
matching library [2], developed at the University of Naples“Federico II”. VFLib2 implements the VF2
graph matching algorithm along with a few other algorithms including Schmidt-Druffel algorithm and
Ullmann’s algorithm. We chose VFlib2 library, in part, because of the ease of integration with C++
programs. Evaluation studies show that the VF2 algorithm can solve a graph isomorphism problem of
thousands of nodes in less than a minute [2]. A comparison of different graph isomorphism algorithms
is given in [10].

The VF2 algorithm takes a bottom-up approach [3]. It tries toextend an existing mapping of nodes
and edges until a full mapping is reached, starting from the empty mapping. This is equivalent to a
depth-first search in the tree of all possible permutations where branches that cannot lead to a feasible
solution are pruned early. In addition to a binary value indicating whether a match is found, the VF2
algorithm also outputs two arrays containing the labels of nodes paired by the matching algorithm.

1Graphs of lower dimensioni can be represented by settingi = i + 1 = · · · = 1

10

4.3 Generation of logical execution trace

The logical communication trace of an application execution is similar to the physical communication
trace generated at an execution node, except that all communication events refer to neighbors in a logical
topology instead of a physical process number (or rank). Forpresenting the logical trace generation
procedure, we assume that the application communication topology has been established and matches a
known reference pattern.

We first define the set ofmaximal communicationprocesses for a communication topology, as the set
of processes that have all possible communication neighbors within the pattern. For fully symmetrical
communication patterns, e.g 2D torus or All-All, all processes are maximal communication processes.
However, that is not the case for asymmetrical communication patterns. For example, in a linear array
pattern, all processesexceptthe endpoints of the array are maximal communication processes. The
reason is that interior processes communicate with 2 neighbors, while the endpoints communicate with
just one neighbor. Similarly, for a 2D grid pattern, all processesexceptthe processes on the perimeter of
the grid pattern (i.e. first and last rows and columns) are maximal communication processes.

For every application communication topologyD with a maximum ofk communicating neighbors,
we defineD1, D2, D3, ...Dk as the set of logical neighbor processes/directions. For illustration, for a
2D grid or torus structure,k = 4 andD1, D2, D3, D4 intuitively representNorth, East, South, West

neighbors respectively.
We now describe the process of generating logical communication trace from physical traces and a

known application communication topologyD with maximum communication degreek.

1. Identify any one maximal communication process, sayP0 .

2. Let i1, i2, i3, ...ik be the ranks of the processesP0 communicates with.

3. Rewrite the trace ofP0 by replacing all references toi1, i2, i3, ...ik in communication operations
with corresponding references toD1, D2, D3, ...Dk , respectively. This is the logical trace.

The logical trace represents the entire program execution.The trace is interpreted in connection with
the corresponding communication topology. Some of the communication operations are relevant only
for some processes in the pattern for asymmetrical patterns. If the logical trace is used to generate
a physical trace for a given process rank, actual communication is generated subject to the condition
that the corresponding neighbor exists in the topology (e.g., theNorth neighbor does not exist for the
top row of processes in a 2D grid, and hence that communication is not valid). Finally, all collective
operations are unchanged from the physical trace to the logical trace - collective operations are already
global logical operations across the executing processes and no change is needed. There is an implicit
assumption that they apply toMPI COMMWORLDcommunicator and we discuss handling of multiple
communicators in the discussion in this paper.

A section of physical and corresponding logical traces for the 16 process BT benchmark are shown
in Table 5. Note that the directions are labeled as North, South, etc. for simplicity and will, in fact, be
indices in a general topology matrix.

Communication outside the main topology Any communication operation that references a process
rank that is not in the established topology is not included in the logical trace. The reason is that

11

Table 5. Sections of a sample physical trace and correspondi ng logical trace for BT benchmark

PHYSICAL TRACE

......

MPI Isend(...1, MPI DOUBLE, 480, ...)

MPI Irecv(...3, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

MPI Isend(...4, MPI DOUBLE, 480, ...)

MPI Irecv(...12, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

MPI Isend(...7, MPI DOUBLE, 480, ...)

MPI Irecv(...13, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

LOGICAL TRACE

......

MPI Isend(...EAST, MPI DOUBLE, 480, ...)

MPI Irecv(...WEST, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTH , MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTHEAST , MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

......

corresponding operations do not exist across the parallel application. In fact, whenever communication
filtering discussed in section 3 is applied, such local communication is expected in the physical trace. In
our implementation we record the fraction of communicationthat falls in this category as that represents
an inaccuracy in this approach.

5 Experiments and results

The framework for application pattern identification and trace logicalization has been implemented.
Experiments were conducted with MPI NAS benchmarks EP, MG, SP, BT, LU, CG, and FT executing
with up to 128 processes on a cluster. We discuss the results for the benchmarks executing on 4, 8(9),
16 , 32(36) , 64 and 128(121) processes. (Some benchmarks runonly on perfect square numbers of
processes.)

5.1 Identification of communication topology

A full application communication matrix was generated for each program and then converted to a
binary communication matrix based on the discussion in Section 3. Filtering discussed in that section
was necessary to generate a binary matrix only for MG benchmark for sizes higher than 16 processes

The FT benchmark and EP benchmark showed no point-to-point communication and hence an empty
communication matrix. The EP benchmark indeed has no communication. The FT benchmark only has
collective All-All communication which implies that the physical trace is essentially the logical trace.
We will not discuss them any further.

The matching procedure was then applied to the remaining benchmarks. The reference library em-
ployed for comparison initially consisted of the followingpatterns:

12

• Grids: Any number of dimensions

• Torus: Any number of dimensions

• Common stencils (6pt, 8pt) on 2D/3D meshes.

• All to All

• Binary Tree

Note that the topologies listed are abstract and represent all sizes and dimensions. Also, it is fairly
straightforward to add a new topology to the library. Hypercubes are not listed as they are special cases
of a torus or a grid configuration. Also, the CG benchmark originally did not match any topology in the
reference library. The topology of CG for size 16 is illustrated in Figure 3. Subsequently, this pattern
was manually added to the library. The results presented include this addition.

0
 2
 8
 10

1
 3
 9
 11

4
 6
 12
 14

5
 7
 13
 15

Figure 3. CG communication pattern

The matching procedure can be considered to consist of 3 distinct steps based on the description in
Section 4.2.

1. Simple Tests: Finding all possible sizes of grid/tori based on prime factors of the number of
processesN , and then matching the number of edges and the degree orderedsequence of nodes.

2. Graph Spectrum Test: Based on computing eigenvalues.

3. Isomorphism Test: Applies graph isomorphism to establish a topology.

Table 7 lists the topologies that remain as candidates aftereach of the tests is applied, along with
the final established topology. We discovered that many topologies in our abstract lists are themselves
isomorphic to each other. In Table 7 every unique topology isin boldface. All topologiesnot in boldface
and listed below one in boldface are isomorphic to the boldface topology above them. Note that BT and
SP benchmarks have identical communication graphs and topologies and are listed together.

We make the following observations from Table 7:

13

• All benchmarks in our test suite were matched correctly, although CG was matched only when a
custom stencil was added. SP and BT are 6 point stencils whileLU, CG, and MG are grids or
torus. In fact, MG has a hypercube structure up to size 64 which is a special case of a grid/torus.

• The simple tests that we listed are very effective in reducing the set of candidate patterns. In all
cases a very small set of candidate patterns were left after these tests were employed.

• The graph spectrum test was also very effective, and in fact,eliminated all candidates except for
the final correct topology.

5.2 Generation of logical traces

Traces for the benchmark programs were converted to logicaltraces. For all benchmarks except
MG, each communication call in the trace was directly mappedto a logical call within the program’s
communication topology. In the case of MG, some processes performed communication that could not
be mapped to the application topology and was discarded. However, the fraction of such calls was
low. As a typical example, for the case of MG benchmark running on 32 nodes, only 5.6% percent
of the communication calls carrying 2.7% percent of the traffic were not included in the logical trace.
Hence the accuracy metric we employ shows perfect accuracy for all benchmarks except for a modest
inaccuracy for the MG benchmark.

These logical traces were compressed by identifying repeating loops and deployed to construct perfor-
mance skeletons [19]. The summary results from combined andcompression, along with the procedure
for skeleton construction, are outlined in Section 2. However, a detailed discussion is beyond the scope
of this paper.

5.3 Performance

Processing time for NAS benchmarks

4 processes 8/9 processes 16 processes 32/36 processes 64 processes 121/128 processes
Name Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time

Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs)
BT 2278 0.63 12282 1.73 17106 2.64 26754 8.35 36402 13.19 50874 30.76

(90 KB) (490 KB) (731 KB) (1081 KB) (1459 KB) (2106 KB)
SP 12452 1.39 19670 2.09 26888 4.14 41324 12.55 55760 20.34 77414 49.16

(533 KB) (824 KB) (1147 KB) (17543 KB) (2365 KB) (3365 KB)
CG 5042 0.91 41954 3.31 41954 4.52 59964 11.94 59964 19.89 77978 47.89

(186 KB) (1599 KB) (1667 KB) (2376 KB) (2376 KB) (3224 KB)
LU 2338 0.69 152294 6.43 203048 15.39 203048 35.46 203048 66.28 203048 134.30

(95 KB) (6661 KB) (9185 KB) (9186 KB) (9088 KB) (9433 KB)
MG 1433 0.73 8867 1.98 8909 2.48 8951 4.56 8953 4.75 9035 7.33

(57 KB) (403 KB) (373 KB) (374 KB) (373 KB) (386 KB)

Table 6. Trace Size (per process) and processing time for log icalization

The sizes of the traces for the NAS benchmark programs and thetotal time to logicalize them is listed
in Table 6. A trace record corresponds to a traced MPI call. Since tracing is fairly lightweight, trace
sizes are modest and the tracing overhead is low; within 1% ofthe execution time for all the benchmark
programs. The longest trace was around 200K records and around 10 MBytes per process for 128 process
LU benchmark. The processing times are computed on an ordinary PC - a 1.86 GHz Pentium M with
1GB RAM. Processing times are fairly low with a maximum of 134seconds for the above mentioned

14

LU benchmark. The processing time tracked the total number of lines in the trace almost linearly as
plotted in Figure 4.

0

20

40

60

80

100

120

140

160

0
 5000000
 10000000
 15000000
 20000000
 25000000

Total number of lines in trace files

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

Figure 4. Trace length and processing time for logicalizati on

The processing time is dominated by the construction of the communication matrix as that is the only
step that analyzes the trace from each process, even though the actual processing on each trace entry is
minimal. The only tests in the framework that are potentially computationally expensive are the graph
spectrum test and the graph isomorphism test. The processing time for them is plotted in Figure 5. We
observe that graph spectrum testing time is under one secondfor every case, and graph isomorphism
testing time cannot be observed on this graph as it is in millisecond range in every case. An important
reason for the low overhead of graph spectrum and graph isomorphism tests is that they had to be applied
on very few candidate topologies (often 1 or 2) as simple tests discussed earlier were extremely effective
in reducing the number of candidate topologies. The simple tests also executed in negligible time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BT/SP
 LU
 CG
 MG

T
im

e(
s)

Graph spectrum
 Isomorphism

Figure 5. Graph spectrum and isomorphism processing time fo r 121/128 process NAS benchmarks

Scalability analysis with synthetic data

The results noted above for the NAS benchmarks are very encouraging. However, this is a small test
suite, the number of processes was limited to 128, and virtually all the processes were numbered along
the axes for grid/torus topologies. In this section, we analyze potential performance issues as we scale
to over 1000 nodes and encounter cases with irregular numbering of processes.

We have already noted that matrix construction time is linear, and hence predictable, and the simple
tests are extremely fast. Potential performance issues maybe encountered in 1) Graph spectrum test

15

that involves computation of eigenvalues withO(N3) complexity and 2) Graph isomorphism test which
is based on a non polynomial heuristic. We investigate the performance of these tests further with the
following synthetic data:

1. Ordered and Unordered grids:Matching an application matrix representing a 2D grid against a
corresponding template topology for varying sizes. In the ordered case the grid nodes are num-
bered in the normal row major order. In the unordered case, 2/3rds of the graph nodes were
arbitrarily renumbered after starting with a row major order, leading to a partially randomized
ordering.

2. Ordered and Unordered stencils:Similar to the above grid case except matching is for a 6 point
stencil pattern on a 2D grid.

The results for graph spectrum computation are plotted in Figure 6. The computation times are within
70 seconds for up to 1000 nodes or processes, hence it appearsthat this test is sufficiently efficient for
larger practical scenarios.

0

10

20

30

40

50

60

70

0
 250
 500
 750
 1000

Number of Processes (Graph Nodes)

T
im

e(
s)

Ordered Grid
 Unordered Grid
 Ordered Stencil
 Unordered Stencil

Figure 6. Graph spectrum performance on synthetic communic ation patterns

The results for graph isomorphism test are plotted in Figure7. The processing times are very low for
all topologies up to 1000 nodes, except for for unordered stencil. The processing time for the unordered
stencil rises rapidly, and was around 4000 seconds for 529 nodes. Larger size cases could not be com-
pleted. We speculate that the reasons are related to heuristics employed for graph isomorphism. This
represents a potential limitation. However, this is a problem only for very irregular numbering of nodes.
We believe that it is important to allow all possible numbering of nodes, as we cannot predict what num-
bering an application may follow. However, we do not expect any application to follow a nearly random
numbering that was used in this stress test. Overall, we conclude that the methodology is effective for
1000 or more nodes for any numbering of processes that are likely to be encountered in practice.

6 Discussion

We present some observations on the enhancement of the methodology and extensions of the ap-
proach.

16

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0
 250
 500
 750
 1000

Number of Nodes (Graph Nodes)

T
im

e(
s)

Ordered Grid
 Unordered Grid
 Ordered Stencil
 Unordered Stencil

Figure 7. Graph isomorphism performance on synthetic commu nication patterns

6.1 Methodology

Performance of graph spectrum and isomorphism: One unexpected experimental result is that the
execution time of polynomial eigenvalue computation for the graph spectrum test, although low, was
much higher than the execution time for the heuristic graph isomorphism test for all benchmarks. Since
graph spectrum test is meant to reduce the cases for graph isomorphism test, this result brings into
question the need for the graph spectrum test. However, as the synthetic graph results show, graph
isomorphism processing time is highly variable and very sensitive to numbering of nodes in isomorphic
graphs. It was very expensive for some randomly numbered synthetic data. Hence we still believe it
is appropriate to have the eigenvalue based test in the suite. One possibility is a framework based on
concurrent application of graph spectrum and graph isomorphism tests.

On the fly implementation: Our implementation is based on stored trace files. However, processing
on each trace file is minimal - it simply involves recording the number of communication calls and data
transfered. Related work [8] emphasizes on-the-fly processing of traces citing very large trace files for
some applications. However, the size of the traces we recordis significantly smaller than those reported
in this work for the same benchmarks. Trace size is related tothe end application of profiling and the
difference in this case may be the recording of call chains. Hashing can also be used to reduce trace
volumes inexpensively. While the bulk of the trace processing in our method can be done on-the-fly, our
experience and results do not indicate that it is critical.

6.2 Limitations and extensions

We discuss some of the restrictions and extensions of the implementation presented in this paper.

Static and known patterns: The approach assumes that the dominant execution pattern isknown and
static. However, it is important to note that the pattern library is extensible and entire families of patterns
can be specified succintly, such as all sizes and dimensions of grids or all trees with a specific degree.
When the procedure fails because a pattern is unknown, specifying the pattern manually still allows the
construction of the logical trace.

17

Multiple phases: An application can have multiple phases where the communication pattern changes
across phases. Clearly the approach presented in this paperwill be far more effective if the phases
were separated and logicalization was done one phase at a time. Phase separation based on detection of
change in the communication pattern is possible but we have not implemented it.

Multiple patterns: Communication in some applications consists of multiple well defined patterns.
One form is where the patterns are spatially separated, e.g., by the use of MPI communicators. We can
identify the communicator structure from the trace. It is possible to discover topologies independently
within separate communicators but this is not implemented.Another form is where multiple patterns ex-
ist temporally across all processes during execution. A known pattern is computation on a grid followed
by a tree reduction. Our current approach is limited to a single pattern. The approach can be extended to
identify mixed well defined patterns which have been studiedin [7]. However, the computation feasibil-
ity for larger application sizes is yet to be determined. Such an approach would involve addressing the
subgraph isomorphism problem. This problem is known to be NP-complete and our experiments show
that it is computationally expensive in practice also.

7 Conclusions

Application communication traces are at the core of performance analysis and performance model-
ing of communicating parallel programs. This paper presents a framework to automatically construct
a single logical trace that is representative of the overallparallel execution. The approach is based on
identifying the communication topology of the applicationand converting all point-to-point communi-
cation calls between physical processes to logical calls representing the global communication pattern.
The methodology is independent of the numbering of processes in the system. The key contribution
is an algorithmic framework to identify the global communication topology from distributed message
exchange data that is effective and efficient.

Results are presented that show that the procedure was successful and efficient for the NAS benchmark
suite. Detailed analysis of performance data show that the execution time of trace logicalization is likely
to be modest for most, if not all, realistic scenarios. The basic limitation of the approach is that the
dominant application communication patterns must be static. Some potential weaknesses of the approach
and extension to a wider class of applications and scenariosis discussed. The paper lays the foundation
for a new approach to summarization and reduction of messagepassing traces that is powerful and likely
to be enhanced by future research.

Acknowledgement: This material is based upon work supported by the National Science Foundation
under Grant No. ACI- 0234328 and Grant No. CNS-0410797

References

[1] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Performance optimization for large scale computing:
The scalable VAMPIR approach. InInternational Conference on Computational Science (2), pages 751–760,
2001.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the VF graph matching
algorithm. InProc. of the 10th ICIAP, volume 2, pages 1038–1041. IEEE Computer Society Press, 1999.

18

[3] P. Foggia, C. Sansone, and M. Vento. An improved algorithm for matching large graphs. InThe 3rd IAPR-
TC15 Workshop on Graph-based Representations, 2001.

[4] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A surveyof software for sparse eigen-
value problems. Technical Report STR-6, Universidad Politécnica de Valencia, 2006. Available at
http://www.grycap.upv.es/slepc.

[5] S. Huband and C. McDonald. Debugging parallel programs using incomplete information. In1st IEEE
Computer Society International Workshop on Cluster Computing, pages 278–286, 1999.

[6] S. Huband and C. McDonald. A preliminary topological debugger for MPI programs. In1st International
Symposium on Cluster Computing and the Grid (CCGRID 2001), page p. 422, 2001.

[7] D. Kerbyson and K. Barker. Automatic identification of application communication patterns via templates.
In 18th International Conference on Parallel and DistributedComputing Systems, Las Vegas, NV, September
2005.

[8] M. Noeth, F. Mueller, M. Schulz, and M. de Supinski. Scalable compression and replay of communication
traces in massively parallel environments. In21th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007), Long Beach, CA, April 2007.

[9] R. M. Shuyi Shao, Alex K. Jones. A compiler-based communication analysis approach for multiprocessor
systems. In20th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2007), Rhodes
Island, Greece., April 2006.

[10] J. Singler. Graph isomorphism implementation in LEDA 5.1. http://www.algorithmic-
solutions.de/bilder/graphiso.pdf.

[11] S. Sodhi and J. Subhlok. Automatic construction and evaluation of performance skeletons. In19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2005), Denver, CO, April 2005.

[12] S. Sodhi, Q. Xu, and J. Subhlok. Performance predictionwith skeletons.Cluster Computing: The Journal
of Networks, Software Tools and Applications, 2008. Available Online through Springerlink.

[13] D. P. Spooner and D. J. Kerbyson. Performance feature identification by comparative trace analysis.Future
Generation Comp. Syst., 22(3):369–380, 2006.

[14] T. Tabe and Q. Stout. The use of the MPI communication library in the NAS Parallel Benchmark. Technical
Report CSE-TR-386-99, Department of Computer Science, University of Michigan, Nov 1999.

[15] A. Toomula and J. Subhlok. Replication memory behaviorfor performance prediction. InLCR 2004: The
7th Workshop on Languages, Compilers, and Run-time Supportfor Scalable Systems, Houston, TX, October
2004.

[16] J. S. Vetter and M. O. McCracken. Statistical scalability analysis of communication operations in distributed
applications. In2001 ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP’01), pages 123–132, 2001.

[17] J. S. Vetter and F. Mueller. Communication characteristics of large-scale scientific applications for contem-
porary cluster architectures.J. Parallel Distrib. Comput., 63(9):853–865, 2003.

19

[18] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk, and W. Gropp. From trace
generation to visualization: A performance framework for distributed parallel systems. InProc. of SC2000:
High Performance Networking and Computing, November 2000.

[19] Q. Xu. Automatic Construction of Coordinated Performance Skeletons. PhD thesis, University of Houston,
August 2007.

[20] B. Yorgey. Generating multiset partitions.The Monad.Reader, (8):5–20, Sept 2007.

20

Benchmark Processes Simple Tests Graph Spectrum Test Isomorphism Test

BT/SP

9 3×3 6-p stencil 3×3 6-p stencil 3×3 6-p stencil
16 4×4 6-p stencil 4×4 6-p stencil 4×4 6-p stencil
36 6×6 6-p stencil 6×6 6-p stencil 6×6 6-p stencil

4×3×3 torus
2×2×3×3 torus

64 8×8 6-p stencil 8×8 6-p stencil 8×8 6-p stencil
2×2×2×2×2×2 grid
4×2×2×2×2 torus
4×4×2×2 torus
4×4×4 torus

121 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil

LU

8 4×2 grid 4×2 grid 4×2 grid
CG stencil CG stencil CG stencil

16 4×4 grid 4×4 grid 4×4 grid
32 8×4 grid 8×4 grid 8×4 grid
64 8×8 grid 8×8 grid 8×8 grid
128 16×8 grid 16×8 grid 16×8 grid

CG

8 4×2 grid 4×2 grid 4×2 grid
CG stencil CG stencil CG stencil

16 CG stencil CG stencil CG stencil
8×2 grid

32 CG stencil CG stencil CG stencil
8×2×2 grid

64 CG stencil CG stencil CG stencil
16×2×2 grid

128 CG stencil CG stencil CG stencil
16×2×2×2 grid

MG

8 2×2×2 grid 2×2×2 grid 2×2×2 grid
4×2 torus 4×2 torus 4×2 torus

16 2×2×2×2 grid 2×2×2×2 grid 2×2×2×2 grid
4×2×2 torus 4×2×2 torus 4×2×2 torus
4×4 torus 4×4 torus 4×4 torus

32 2×2×2×2×2 grid 2×2×2×2×2 grid 2×2×2×2×2 grid
4×2×2×2 torus 4×2×2×2 torus 4×2×2×2 torus
4×4×2 torus 4×4×2 torus 4×4×2 torus

64 2×2×2×2×2×2 grid 2×2×2×2×2×2 grid 2×2×2×2×2×2 grid
4×2×2×2×2 torus 4×2×2×2×2 torus 4×2×2×2×2 torus
4×4×2×2 torus 4×4×2×2 torus 4×4×2×2 torus
4×4×4 torus 4×4×4 torus 4×4×4 torus
8×8 6-p stencil

128 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus
8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus
8×4×4 torus 8×4×4 torus 8×4×4 torus

Table 7. Identification of communication topologies of NAS b enchmarks. Unique topologies are
listed in boldface. Topologies listed not in boldface are is omorphic to the boldface topology above
them.

21

