S@UH

“"Logicalization" of MPI Communication Traces
Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, Rong Zheng

Computer Science Department
University of Houston
Houston, TX, 77204, USA
http://lwww.cs.uh.edu

Technical Report Number UH-CS-08-07
May 26, 2008

Keywords: Trace compression, Graphic isomorphism, Performance analysis and modeling
Abstract

Communication traces are integral to performance analysis of parallel programs. However, execution on a
large number of nodes results in a large trace volume that is cumbersome and expensive to analyze. This
paper presents an automatic framework to convert all process traces corresponding to a single parallel
execution of an SPMD MPI message passing program into a single logical program trace. The approach first
identifies the communication topology of the application from the application communication matrix
computed from the traces. Topology identification is based on the application communication structure and
independent of the way ranks (or numbers) are assigned to processes. Once the application topology is
identified, point-to-point communication between processes is converted into logical communication that
represents similar communication across all processes executing the application. This logicalization
framework has been implemented and the results with NAS benchmarks show that it is efficient and
effective. The procedure is part of a system to automatically generate performance skeletons that are short
running programs mimicing core computation and communication characteristics of an application.

“Logicalization” of MPI Communication Traces

Qiang Xu Ravi Prithivathi Jaspal Subhlok Rong Zheng
University of Houston, Department of Computer Science, $ton, TX 77204

Abstract

Communication traces are integral to performance modeding analysis of parallel programs. How-
ever, execution on a large number of nodes results in a laggetvolume that is cumbersome and expen-
sive to analyze. This paper presents an automatic frametoarnvert all process traces corresponding
to the parallel execution of an SPMD MPI program into a sinigigical trace. The approach first com-
putes the application communication matrix from proceasés. Topology identification, which includes
graph spectrum analysis and graph isomorphism test, isbasghe underlying communication struc-
ture and independent of the way ranks (or numbers) are aedigm processes. Once the application
topology is identified, message exchanges between phgsicaisses are converted into logical commu-
nication that represents similar message exchanges aatbpsocesses executing the application. This
logicalization framework has been implemented and theoperdnce is analyzed. The results with NAS
benchmarks show that it is efficient and effective.

Index Terms
Trace Compression, Graph isomorphism, Performance asalyd modeling

1 Introduction

Execution and communication traces are central to perfocemanalysis and performance modeling
of parallel applications. However, for long running apptions on moderate to large number of nodes,
even relatively coarse grained communication traces caretyelong and their analysis prohibitively
expensive. Fortunately, as high performance scientifitiegons are generally SPMD programs, in
most cases, the traces for different processes are simitaah other and the communication between
processes is associated with a well defined global commtimmcpattern. A study of DoD and DoE
HPC codes at Los Alamos National Labs [7] and analysis of N&&chmarks [14] shows that an over-
whelming majority of these codes have a single low degreecstas the dominant communication
pattern. These characteristics expose the possibilitpwiining all processor traces into a sintggi-
cal program tracethat represents the aggregate execution of the progranhe iseime way as an SPMD
program represents a family of processes that typicallg@eson different nodes. This paper presents a
framework for automatic construction of a logical prograace from the collection of physical process
traces of an execution of a message passing parallel apptica

For illustration, consider the following sections of tradeom a message exchange between 4 pro-
cesses in a 1-dimensional ring topology.

Process 0 Process1 Process?2 Process 3

;r-1d(P1,...) "s.nd(PZ,...) msnd(PS,...)m snd(PO,...)
rcv(P3,...) rcv(PO,...) rcv(P1l,..) rcv(P2,..)

The above physical trace can be summarized as the followigigdl trace:

Program
sndPk,...)
rev(Pr,...)

where P;, and Py refer to the logical left and right neighbor, respectivdty, each process in a 1-
dimensional ring topology.

The basic goal of the research presented in this paper isttonatically logicalize traces of mes-
sage passing MPI parallel programs. Beside reducing tke si@e by a factor equal to the number of
processes, the logical program trace captures the pastllieture of the application. Note that this log-
icalization is orthogonal to single trace compression,clvtis based on discovering temporal repeating
patterns in traces. For instance, if the traceHoycess (above consisted of the sequence:

“...snd(P1,...) rcv(P3,...) snd(P1,...) rcv(P3,...) ¢Rd,...) rcv(P3,...) snd(P1,...) rcv(P3,...) ..”
then single trace compression can identify the repeatiggesees and reduce the trace to the following
representation:

“...[snd(P1,..) rcv(P7,..)}....7
Single trace compression can be applied to individual m®t@ces as illustrated above, as well as to the
logical trace of an application. We will refer to single teamompression simply dsace compressiom
the rest of this paper, as distinct from logicalization. sSlipaper focuses on trace logicalization, although
trace compression and logicalization are likely to be erygrcdogether.

The logicalization framework has been developed for MPgprns and proceeds as follows. The
application is linked with the PMPI library so that all megsaexchanges are recorded in a trace file
during execution. Summary information consisting of thenber of messages and bytes exchanged
between process pairs is recorded and converted to a bapgrljcation communication matrithat
identifies process pairs with significant message traffilmguexecution. This matrix is then analyzed
to determine the application level communication topold@wce this global topology is determined, a
representative process trace is analyzed in detail andftnamed into a logical program trace where all
message sends and receives are to/from a logical neighteymis of a logical communication topology
(e.g atorus or a grid) instead of a physical process rank.

The key algorithmic challenge in this work is the identifioat of the application communication
topology from the application communication matrix whiefpresents the inter-process communication
graph. The communication topology is easy to identify if pinecesses are assigned numbers (or ranks)
in a well defined order, but is a much harder problem in gendHais is illustrated with a very simple
example in Figure 1. The figure shows 9 executing processésadD grid communication topology.
In Figure 1(a) the processes are assigned numbers in row ardgr in terms of the underlying 2D grid.
However, if the processes were numbered diagonally withe@sto the underlying 2D grid pattern
as indicated in Figure 1(b), the communication graph witbcpss nodes laid out in row major order

(@) (b)

Figure 1. 2D grid topology with row major and diagonal proces s numbering

would appear as Figure 1(c). Clearly, the underlying 2D tpjablogy is easy to identify in the scenario
represented in Figure 1(a) by a pattern matching approacmboh harder when process numbering
follows an unknown or arbitrary order, a relatively simptetance of which is the scenario represented
in Figure 1(c). The state of the art in identifying communi@a topologies assumes that a simple known
numbering scheme is followed [7].

Identifying the underlying topology from a communicatioragh in general (i.e., without assuming
any numbering scheme) is difficult for two reasons. Firgldsshing if a given communication graph
matches a given topology is equivalent to solving the wediingraph isomorphismroblem for which
no polynomial algorithms exist. (It is not known if it is NFR1mplete). Further, there are many different
types of topologies (different stencils on graph/toruse$;, etc.) and many instantiations within each
topology type (e.g., different number and sizes of dimemsieven for a fixed number of nodes). A
naive method would require solving the graph isomorphisoblgm for each instance of each candidate
topology, which is computationally infeasible.

Our approach to identifying the communication topology &gplication represented by a commu-
nication matrix has the following main steps:

1. Identification of candidate topologie§imple tests exist that can eliminate the possibility that a
given topology could be a match for a given application comization matrix. For example,
a 2D torus stencil topology is possible only if all proceskase 4 communicating neighbors.
Hence if there is any process with more or less than 4 comratingcneighbors, this topology
is eliminated. (Of course not every topology where all peses have 4 neighbors is a torus). In
our method, a series of such tests are applied, from simjglesbre complex as a decision tree,
to reduce the set of possible candidate topologies. The aestbased on matching the following
between the application communication matrix (or grapl)tae invariants of a topologytumber
of nodes and edges, sorted list of node degrees, and graptrgperepresented by the eigenvalues
of the adjacency matrixTypically very few candidate topologies are left aftestkiep, often just
one. However, it is still not proved if any of the remaininghdadate topologies is actually the
application communication topology.

2. Exact topology matchThis involves proving that the application communicatioagh is isomor-
phic to the corresponding reference topology graph. Whidgly isomorphism is known to be a
difficult problem with no known polynomial solution, pracai algorithms exist which can solve
the problem efficiently for many scenarios [10]. Also, theesof the problem to be solved is rela-
tively modest as the number of processes is likely to be at md®0s. We employ the VF2 graph

matching algorithm fronVFIlib2 library [2, 3] to test for isomorphism between the graphseep
sented by the application communication matrix and eaclam@ng candidate reference topology
to establish the final application communication topology.

The tracing required for logicalization procedure is vayy loverhead in computation time and vol-
ume as only high level message passing calls are recordedaridiysis required for each process trace
is minimal - only the collection of gross communication datach as the number of messages and bytes
exchanged. Detailed processing is limited to a single ssprtive process trace that is transformed
to a logical program trace. The paper describes the desidnnaplementation of the logicalization
framework. Experimental results are discussed, along tivéHimitations and possible extensions.

2 Motivation and context: Trace compression for performane skeletons

The results developed in this paper have broad applicalmiiperformance analysis and modeling.
In this section we discuss the specific context and usagasfdlearch, which is construction of ap-
plication performance skeletons for performance preaiictA performance skeleton is a short running
program that recreates the dominant computation and comeation behavior of the original applica-
tion execution. Monitored execution of a performance dkelen a new environment (e.g, different
number of nodes, different communication library, or difiet network sharing) is employed to rapidly
estimate the performance of the application it representise new environment. The basic procedure
for construction of performance skeletons consists ofectitbn and compression of application traces
followed by the generation of an executable program thateges the core application behavior. The
procedure for skeleton construction and the effectivenéskeletons for performance prediction are
discussed in [12, 11, 15, 19]. The research presented ipd#pusr is part of an improved scalable and
efficient skeleton construction procedure, which is skedidn Figure 2 and detailed in [19].

APPLICATION !

\ Construct executable

performance skeleton program
‘ Record execution trace for each process ‘ y

| Logicalize process traces into a single program trace |

T~

‘ Compress the program trace by identifying the loop structure

Figure 2. Skeleton construction

The highlighted logicalization step in Figure 2 is the foofishis paper and discussed in detail in the
following sections. Table 1 presents summary results flomecdmbinedogicalization and compression
phases for 16 process NAS benchmarks. The trace length sumeebas the number of trace records
(or lines), each representing one MPI operation. The lddgiaae is approximately the same size as a
single process trace, hence the compression achievedigaliagtion equals the number of processes.
The compression ratio presented in Table 1 is the ratio adittesof full logical (or single process) trace
to the final compressed logical trace. Clearly the approséfféctive in reducing a family of raw MPI
traces to a short single compressed logical trace.

4

Table 1. Compression results for NAS programs. Trace length in number of records.

Benchmark| Raw Trace| Compressed Compression
Name Length Logical Ratio
Per Process Trace Length
BT B/C 17106 44 388.77
SP B/C 26888 89 302.11
CGB/C 41954 10 41954
MG B 8909 590 15.1
MG C 10047 648 155
LUB 203048 63 3222.98
LUC 323048 63 5127.75
Average 71695 165 1815.39

3 Related work

The importance of MPI traces in program analysis and vigaabn is clear from the popularity
of tools like Vampir [1] and Jumpshot [18]. Several tools édeen developed to perform statistical
analysis of MPI communication behavior to summarize theeten behavior, an example being [16].
The idea of communication/adjacency matrix for trace asialfor parallel programs was introduced in
[5, 6]. They used communication matrices to discover thekddgopology employed in MPI and PVM
applications to develop a parallel program debugger thalbéx topological information. In contrast to
collecting summary information from a trace, the goal of Wk presented in this paper is to identify
program wide communication topology and combine a set ofpecess traces into a single program
trace to streamline and speedup subsequent trace pragessin

Perhaps the work closest to this paper is the scalable toanpression presented in Noeth et. al. [8].
They perform task (or process) level compression on thedligWed by consolidation of compressed
traces that they refer to as inter-node compression. Theateatfference is that we perform logi-
calization (or inter-node compression) first on processeaand subsequently perform conventional
compression only on a single logical program trace. In oewythis offers two major advantages. First,
process traces are analyzed only to determine the type aadfsimessage exchanges, not to compress
them. This reduces the overhead considerably. Secondylabetson of a large number of compressed
traces, which is challenging, is not needed. The work pteskin [8] performs process trace compres-
sion on the fly, hence full trace need not be recorded. We euikit the tradeoffs involved in Section 6.

We have borrowed part of our pattern identification methogglfrom Kerbyson et.al. [7] but our al-
gorithm for identifying communication patterns represamsignificant improvement. In [7], the authors
first develop the real unweighted point-to-point commuticzamatrix from an application execution and
then measure the degreematchwith a set of predefined communication template matricesessmt-
ing regularly occurring communication patterns in sci@ngpplications. Their method assumes that
the nodes are numbered in a “reasonable” way, e.g., alormgweeor columns for a 2-dimensional grid.
The basic goal of our approach to topology identificationnslar. However, more complex processing
steps, that include eigenvalue and graph isomorphism ctatipas, are necessary to identify communi-
cation patterns with no assumptions about the numberingoaigsses. Also, the motivationin [7, 13] is
to understand the communication patterns in an applicatfole our goal is to convert a suite of process

5

traces into a single program trace.

A compiler assisted approach to identification of MPI paisas presented in [9]. Our work is most
relevant when the application communication follows atreddy static pattern and this is known to be
the case for most scientific applications [17, 7, 14]. Findhis work is in the context of development
and usage of performance skeletons that are presented,ibg,119].

4 Logicalization methodology
The trace logicalization procedure has the following maaps:

1. Generation of a binary application communication m&texn application process traces.

2. ldentification of the application communication topoldigom the application communication
matrix.

3. Generation of a single logical program trace from a seteptysical trace and topology informa-
tion.

Each of these steps is presented separately in this sedti@ncentral assumption is that there is a
dominant regular communication pattern in the trace bemggssed, else no topology is identified.
Extension to traces that have multiple phases of differattems, or multiple concurrent patterns, are
discussed in Section 6.

4.1 Generation of application communication matrix

For generation of a physical trace, the MPI applicationrikdid with the PMPI library, which allows
lightweight recording of communication operations througger provided functions. During execution
a trace file is generated for each process. Attributes redofor each MPI call include the type of
call, the rank of the source/destination process, and th&eu of bytes transferred, along with timing
information.

Samples from beginning and end of the trace recorded on NddeNIAS BT Class S benchmark
running on 4 Nodes are illustrated in Table 2. The complaieeticonsists of 2278 MPI calls. The table
shows the raw trace along with a listing of the calls with keygmeters. The first call is a broadcast
of a single integer rooted at rank 0. The 4th call is an integeeive of 360 doubles from the process
with rank 1. The trace displayed here only lists the commatioa calls, which are interleaved with
computation sections.

The next step is the generation ofwdl application communication matrixThe matrix records the
total data transferred between each pair of processes/etvah the execution. In most SPMD appli-
cations, some entries in this matrix represent a large atmiudata transfer while many entries are
zero, implying that there was no communication between ¢heesponding pair of processes. The full
communication matrix is then converted tbiaary application communication mattiwhere communi-
cating pairs of processes are represented by 1 and non-coigating pairs of processes are represented
by 0. As a simple example, the full communication matrix amel hinary communication matrix for 8
process NAS MG benchmark are shown in Table 3.

Table 2. A sample execution trace

#Generating Lodfile
Node=0 #939220507ss#0#939220507
1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIINT, 0,...]
2. 2#2#136373224#1#27#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIDOUBLE, 0,...)
3. 2#3#135838396#3#28#0#134#0#939220509#939220509 MPI_Bcast(...3, MPIINT, 0,...]
4. T#1#135789088#360#27#1#3000#138#153016848#0#983022939220509 MPI_lrecv(... 1, MPLDOUBLE, 360, ..]
5. 7#2#135786208#360#27#1#2000#138#153017012#0#93022939220509 MPI_Irecv(... 1, MPILDOUBLE, 360, ..
6. 7#3#135794848#360#27#2#5000#138#153017176#0#93922939220509 MPI_lrecv(... 2, MPLDOUBLE, 360, ..
7. T#4#135791968#360#27#2#4000#138#153017340#0#93022939220509 MPI_Irecv(... 2, MPLDOUBLE, 360, .
8. 7#5#135800608#360#27#3#6000#138#153017504#0#983022939220509 MPI_lrecv(... 3, MPLDOUBLE, 360, ..]
9. T#6#135797728#360#27#3#7000#138#153017668#0#93022939220509 MPI_Irecv(... 3, MPLDOUBLE, 360, ..
10. 9#1#135812616#360#27#1#2000#138#153002824#0209392#939220509 MPI_Isend(... 1, MPIDOUBLE, 360, ..
11. 9#2#135809736#360#27#1#3000#138#153002964#080802#939220509 MPI_Isend(... 1, MPIDOUBLE, 360, ..
12. 9#3#135818376#360#27#2#4000#138#153003104#020392#939220509 MPI_Isend(... 2, MPIDOUBLE, 360, ..
13. 9#4#135815496#360#27#2#5000#138#153003244#080809#939220509 MPI_Isend(... 2, MPIDOUBLE, 360, .
14. 9#5#135824136#360#27#3#7000#138#153003384#020392#939220509 MPI_Isend(... 3, MPIDOUBLE, 360, .
15. 9#6#135821256#360#27#3#6000#138#153003524#08083092#939220509 MPI_Isend(... 3, MPIDOUBLE, 360, .
16. 22#1#12#153016848#153017012#153017176#153017380%7504 MPI_Waitall(...)
#153017668#153002824#153002964#153003104#15300823@@3384
#153003524#0#939220509#939220513
17. 9#7#135786208#1470#27#1#3000#136#153003524#P20393#939220513 MPI_Isend(... 1, MPIDOUBLE, 1470, ..])
18. 7#7#135809736#1470#27#1#3003#136#153017668#220393#939220513 MPI._Irecv(... 1, MPILDOUBLE, 1470,..])
19. 21#1#153003524#0##939220513#939220513 MPI[Wait(...)
20. 21#2#153017668#0##939220513#939220513 MPI[Wait(...)
2277. 3#1#3220724688#3220724696#1#27#100#0#134#220882#939220642 MPI_Reduce(...1, MEDOUBLE,
MPI_MAX, ...]

2278. 1#2#91#0#939220642#939220642 [MPI_Barrier]
#Finished writing logfile for node=0#939220642#939220646

Communication Filtering: Most parallel scientific applications show a distinct doamhcommu-
nication pattern, typically a simple stencil. However, agional minor communication is sometimes
recorded between other processes. This can be inheremt abgbrithm or due to other reasons, such as
distribution and collection of data at the beginning and ehelxecution. Very low level communication
(in terms of number of calls and volume of data exchangedyti€onsidered central to construction of
performance skeletons and similar relative performanceeatiug applications. A filtering step removes
matrix entries corresponding to such very low level comroation based on a threshold. A heuristic
threshold of 5% was used in our experiments. The best pedsitdshold value can only be determined
by far more extensive experimentaions than was feasibleveider, our qualitative observation is that
that the main pattern is generally dominating, hence ma@sarable threshold values would suffice.

Table 3. Full Application Communication Matrix (traffic in K Bytes/sec) and Binary Application Com-
munication Matrix for 8 process MG benchmark

KBytes | PO | P1 | P2 P3 | P4 | P5 | P6 | P7 PO| PL| P2| P3| P4|P5| P6| P7
PO 0 141 | 144 | O 148 0 0 0 PO| O 1 1 0 1 0 0 0
P1 141 0 0 144 | O 148 0 0 PL| 1 0 0 1 0 1 0 0
P2 144 | 0 0 141 0 0 148 0 P2 | 1 0 0 1 0 0 1 0
P3 0 1441 141 | O 0 0 0 148 - P3| O 1 1 0 0 0 0 1
P4 148 0 0 0 0 141 | 144 | O P4 | 1 0 0 0 0 1 1 0
P5 148 0 0 0 141 0 0 144 P5| 1 0 0 0 1 0 0 1
P6 0 0 148 | O 144 0 0 141 P6| O 0 1 0 1 0 0 1
P7 0 0 0 148 0 144 | O 141 P7| O 0 0 1 0 1 0 1

This step was not relevant for our example codes, excepitthats critical for discovering the main

communication pattern for the MG benchmark for 16 and highwenbers of processes. The full com-
munication matrix and the binary communication matrix iaftkering for 16-process MG benchmark
are shown in Table 4. The volume of the communication not@ated with the main communication
pattern was around 0.5% compared to the main communicatitierp. An accuracy measure is in-
troduced in the framework that quantifies the extent of loluree communication that is lost in the
logicalization process.

Table 4. Full and Binary Communication Matrix (traffic in KBy tes/sec) for 16-process MG benchmark.
The highlighted entries are small values that are eliminate d by filtering.

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 | P10 | P11 | P12 | P13 | P14 | P15
PO 0 |87.09]89.09| O 91.19| 0 0 0 0 0 0 0 91.19| 0 0 0
PL | 87.09| 0© 0 89.09| 0 91.19| © 0 0 0 0 0 0 91.19| 0 0
P2 | 89.09| O 0 87.09| 0 0 91.19| 0 0 0 0 0 0 0 91.19| O
P3 0 |89.09|87.09| 0O 0 0 0 91.19| © 0 0 0 0 0 0 91.19
P4 [9121 © 0 0 0 87.09 | 89.10| O 91.23 0 0 0 0 0 0
P5 0 9121] © 0 |[87.09] o0 0 89.10| © 91.23] © 0 0 0.46 0 0
P6 0 0 9121 0 | 8910 O 0 87.09| 0 0 91.23| 0 0 0 0
P7 0 0 0 91.21] 0 89.10 | 87.09| 0O 0 0 0 91.23| 0 0 0
P8 0 0 0 0 91.19| 0 0 0 0 87.09 | 89.09| 0 91.19| 0 0 0
P9 0 0 0 0 0 91.19| O© 0 |87.09 O 0 89.09| O 91.19| 0 0
PI0| O 0 0 0 0 0 9119 0 | 89.09| O 0 87.09| 0 0 91.19| 0
PI1| O 0 0 0 0 0 0 91.19| 8 89.09 | 87.09| O 0 0 0 91.19
P12] 91.23] © 0 0 0 0 0 9121 O 0 0 0 87.10 | 89.10| O
P13 © 91.23] © 0 0 0.46 0 0 0 91.21] © 0 |[87.09] 0 0 89.10
P14| 0 0 91.23| © 0 0 0 0 0 9121 0 | 89.10| O 0 87.09
PI5| 0 0 0 91.23] © 0 0 0.46 0 0 0 91.21] © 89.10 | 87.10| O

PO[PL|[P2 P3| P4 P5|P6| P7| P8 PO| P10 | P11l | P12 | P13 P14 P15

PO 0| 1|1 [0|1T]0]0]0[O0[]O0] O 0 1 0 0 0

PL| 1] 0|01 |0 1T]0]0|0[O0] O 0 0 1 0 0

P2 1] 0|01 |0 0| 1T]0[0[O0] O 0 0 0 1 0

P 0| 1|1 [0|0]0]0]1[0[0] 0 0 0 0 0 1

pAl1]lo]lofJofjo]1]1]o]1]o0 0 0 [ol 0 0 0

ps|of1]oflofl1]ofo]1]o]1] o 0 o || o 0

Pl o] o] 1ol 1]o]o]1lof[o] 1 0 0 0 [o] o

p7lojJoJo|[1lo]1]1]olo]o] o 1 0 0 0o | [

PE| 0] 0] 0|0 |1T]0]0]O0|O0][|1] 1 0 1 0 0 0

PO 0] 0|0 |O0O|O0O|]1T|]0]O0O|1T[O0] O 1 0 1 0 0

PIO| 0| 0| 0| O] 0] O] 1|01][0] 0 1 0 0 1 0

PI1| 0 | 0O | O | 0| 0]O0O]O0| 1T 0] 1] 1 0 0 0 0 1

P2l 1o oo |[|[o]o]o]1]o0 0 0 0 1 1 0

P3|l o] 1]o]o|o|[]o|]o]o]1 0 0 1 0 0 1

Pajofo|1|lofo]o|o]o]ofo] 1 0 1 0 0 1

PI5| 0| 0o|OoO|1]o0]o]o|[M[o]o] o 1 0 1 1 0

4.2 Identification of application communication topology

The procedure in the previous section yields a binary apfiin communication matrix. In this sec-
tion we present a procedure to determine if this applicat@mnmunication matrix represents an instance
of a topology such as a grid, torus, tree or another steralishpart of a reference communication ma-

8

trix library. This is a challenging problem for two reasorarst, reference patterns in the library are
normally stored as abstract types. Each type of pattern aa@ humerous instances. For example, a
2-D grid is an instance of a grid pattern, and it represeniffereint X x Y grid for every distinct pair
(X,Y). The number of instances can be large even when the totaleruofiprocesseX - Y is fixed
because of different factorizations. Thus, the questiomto€h graph to match witis a non-trivial one.
Second, for a graph representing a topology, humbering ices is not unique. Different number-
ings of a graph correspond to different permutations of tvesrand columns of its adjacency matrix.
Naive comparison of the adjacency matrix correspondingntagplication communication matrix with
a reference graph corresponding to an identical topologifferent ordering of vertices will lead to a
mismatch. Therefore efficient algorithms need to be devisadiminate the patterns that can be easily
proved tonot be the topology corresponding to an application commuigicanatrix, and to verify if

an application communication matrix indeed corresponds teference pattern independent of vertex
numbering.

Two graphsG and H with graph verticed/,, = {1,2,...,n} are said to be isomorphic if there is a
permutatiory of V,, such that{u, v} is in the set of graph edgds(G) iff {p(u),p(v)} is in the set of
graph edge# (H). No polynomial algorithm exists to determine if two graphs somorphic although
the problem is not proven to be NP-complete. (On the othed héwe subgraph isomorphism problem,
i.e., finding if a graph is isomorphic to a subgraph of anotj@ph, is known to be NP-complete.)
The problem of identifying the topology from an applicaticommunication matrix is essentially one
of determining if an instance of a reference pattern existssg graph is isomorphic to the application
communication graph represented by the matrix.

The problem of identifying the communication topology cam divided into two sub-problems,
namely, i) determining candidate patterns in the referdibcary and ii) determining an exact matching
reference topology. Note that determining whether theiegigbn matrixcontainsa set of reference
patterns is equivalent to the harder subgraph isomorphisiyigm that is left to future work.

Identification of candidate patterns

Although there is no general polynomial solution to graptmsrphism, relatively efficient practical
solutions exist. However, enumerating through all thereafee patterns and checking for isomorphism
is clearly infeasible in practice. It is widely believed thiaere is no simple-to-calculate complete graph
invariant, i.e., there are simple-to-calculate invasahtat hold across all isomorphic graphs, but there
also exist non-isomorphic graphs which have the same satvafiants. Hence, graph invariants cannot
be employed to establish isomorphism, but they can be edilia narrow down the reference patterns that
are potential matches. To compute candidate referencapsitthe following attributes of an application
graphG(V, E) are examined:

1. Number of vertice§V/|.

2. Number of edgeg-|.

3. Node degree in descending order
4

. Graph spectrum\(G), the set of eigenvalues of the adjacency matrix.

It is known that the above parameters are invariants witheeisto permutation of the adjacency
matrix. Clearly the first three quantities are very simpletonpute. The complexity for computing
A(G) is O(n?) using the Gauss-Jordan reduction. Several solver packaggsfor computing eigen-
values for sparse matrices [4]. In determining the candidaference patterns, we adopt a decision tree
based approach that eliminates most patterns efficientgntgyloying invariants in increasing order of
computational complexity.

Nodes, edges and prime factors Let the number of vertices of the graph to be matofddek |V | = n.
Let m be the maximum dimension of the euclidean structures - graph and stencils based on them
- in the reference library. The first step is to factorizento products of the formg - n; - - - n,,, [20]*.
Clearly, these are the only patterns that can possibly m&mwheach such product form as well as other
patterns (e.g. binary trees), we compute the edge counfeseree patterns. Through elimination, we
have the subset of reference graphsas- {G1,G3, ..., G}l}, which have the same number of edges
asG.

Degree ordering In the second step, we order the vertex degrees ®fS; in descending order and
eliminate those with different sequences. Let the resyiibset bes, = {G?,G3,..., G} }.

Computing graph spectrum As the final step, we compute the graph spectrum(@f) and A(g),

Vg € S, and eliminate those with different graph spectrum. Letéseilting subsetbé; = {G},G3,..., G} }.
By the end of this procedure, it is likely that we are left wétlsingle candidate topology. However,

one cannot yet conclude that it is the matched topology. iiveriants employed can eliminate a pattern

from consideration but do not guarantee a match.

Exact matching to establish topology

We apply graph isomorphism algorithms to determine whe#ipglication communication grapfi
matches with any of the graphs in the candidatesgeWhile there are no known polynomial algorithms
for graph isomorphism, practically efficient solution apgches exist. We chose the VFLib 2.0 graph
matching library [2], developed at the University of NaplEsderico 11”. VFLib2 implements the VF2
graph matching algorithm along with a few other algorithmduding Schmidt-Druffel algorithm and
Ullmann’s algorithm. We chose VFIlib2 library, in part, besa of the ease of integration with C++
programs. Evaluation studies show that the VF2 algorithmsmdve a graph isomorphism problem of
thousands of nodes in less than a minute [2]. A comparisofiffefent graph isomorphism algorithms
is given in [10].

The VF2 algorithm takes a bottom-up approach [3]. It triegxtend an existing mapping of nodes
and edges until a full mapping is reached, starting from ti@tg mapping. This is equivalent to a
depth-first search in the tree of all possible permutatiohsrer branches that cannot lead to a feasible
solution are pruned early. In addition to a binary value ¢gatihng whether a match is found, the VF2
algorithm also outputs two arrays containing the labelsoofas paired by the matching algorithm.

1Graphs of lower dimensioican be represented by setting i +1=--- =1

10

4.3 Generation of logical execution trace

The logical communication trace of an application execuisssimilar to the physical communication
trace generated at an execution node, except that all coroatiom events refer to neighbors in a logical
topology instead of a physical process number (or rank). pFesenting the logical trace generation
procedure, we assume that the application communicatmidgy has been established and matches a
known reference pattern.

We first define the set ahaximal communicatioprocesses for a communication topology, as the set
of processes that have all possible communication neighlithin the pattern. For fully symmetrical
communication patterns, e.g 2D torus or All-All, all proses are maximal communication processes.
However, that is not the case for asymmetrical communiogiaiterns. For example, in a linear array
pattern, all processesxceptthe endpoints of the array are maximal communication psEes The
reason is that interior processes communicate with 2 neighlwhile the endpoints communicate with
just one neighbor. Similarly, for a 2D grid pattern, all pesse®xcepthe processes on the perimeter of
the grid pattern (i.e. first and last rows and columns) areimalcommunication processes.

For every application communication topolo@gywith a maximum oft communicating neighbors,
we defineDy, D,, D5, ...D,, as the set of logical neighbor processes/directions. hkestiktion, for a
2D grid or torus structures = 4 and Dy, D», D3, D, intuitively representNorth, East, South, West
neighbors respectively.

We now describe the process of generating logical commtioic&race from physical traces and a
known application communication topologywith maximum communication degrée

1. Identify any one maximal communication process, Bay
2. Letiy, iq, i3, ...i;, be the ranks of the processBscommunicates with.

3. Rewrite the trace oF, by replacing all references 19, i,, i3, ...7;, iIn communication operations
with corresponding references i, D, D3, ...D,, , respectively. This is the logical trace.

The logical trace represents the entire program execufibe trace is interpreted in connection with
the corresponding communication topology. Some of the comaoation operations are relevant only
for some processes in the pattern for asymmetrical pattelfnihe logical trace is used to generate
a physical trace for a given process rank, actual commuait& generated subject to the condition
that the corresponding neighbor exists in the topology.,(¢éhg North neighbor does not exist for the
top row of processes in a 2D grid, and hence that communit&ioot valid). Finally, all collective
operations are unchanged from the physical trace to thedbtyace - collective operations are already
global logical operations across the executing processgsa change is needed. There is an implicit
assumption that they apply MPI COMMWORLDcommunicator and we discuss handling of multiple
communicators in the discussion in this paper.

A section of physical and corresponding logical traces lier 16 process BT benchmark are shown
in Table 5. Note that the directions are labeled as Northil§aic. for simplicity and will, in fact, be
indices in a general topology matrix.

Communication outside the main topology Any communication operation that references a process
rank that is not in the established topology is not includedhie logical trace. The reason is that

11

Table 5. Sections of a sample physical trace and correspondi ng logical trace for BT benchmark

PHYSICAL TRACE LOGICAL TRACE

MPI_Isend(...1, MPI_.DOUBLE, 480, ...) MPI_Isend(..EAST, MPI_LDOUBLE, 480, ...)
MPI_Irecv(...3, MPI_.DOUBLE, 480, ...) MPI_Irecv(.. WEST, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */ MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */ MPI_Wait() /* wait for Irecv */

MPI_Isend(..4, MPI_LDOUBLE, 480, ...) MPI_Isend(..SOUTH, MPI_DOUBLE, 480, ...)
MPI_Irecv(..12, MPI_.DOUBLE, 480, ...) MPI_Irecv(..NORTH, MPI_LDOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */ MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */ MPI_Wait() /* wait for Irecv */

MPI_Isend(...7, MPI_.DOUBLE, 480, ...) MPI_Isend(..SOUTHWEST, MPI_DOUBLE, 480, ...)
MPI_Irecv(..13, MPI_.DOUBLE, 480, ...) MPI_Irecv(..NORTHEAST, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */ MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */ MPI_Wait() /* wait for Irecv */

corresponding operations do not exist across the paraglication. In fact, whenever communication

filtering discussed in section 3 is applied, such local comigation is expected in the physical trace. In
our implementation we record the fraction of communicathaat falls in this category as that represents
an inaccuracy in this approach.

5 Experiments and results

The framework for application pattern identification anace logicalization has been implemented.
Experiments were conducted with MPI NAS benchmarks EP, M& BS, LU, CG, and FT executing
with up to 128 processes on a cluster. We discuss the resultsd benchmarks executing on 4, 8(9),
16 , 32(36) , 64 and 128(121) processes. (Some benchmarlantymon perfect square numbers of
processes.)

5.1 Identification of communication topology

A full application communication matrix was generated facle program and then converted to a
binary communication matrix based on the discussion ini@e&. Filtering discussed in that section
was necessary to generate a binary matrix only for MG bendhfoasizes higher than 16 processes

The FT benchmark and EP benchmark showed no point-to-pomibwnication and hence an empty
communication matrix. The EP benchmark indeed has no conwation. The FT benchmark only has
collective All-All communication which implies that the psical trace is essentially the logical trace.
We will not discuss them any further.

The matching procedure was then applied to the remaininghmearks. The reference library em-
ployed for comparison initially consisted of the followipgtterns:

12

Grids: Any number of dimensions

Torus: Any number of dimensions

Common stencils (6pt, 8pt) on 2D/3D meshes.

All to All

e Binary Tree
Note that the topologies listed are abstract and repredlesives and dimensions. Also, it is fairly
straightforward to add a new topology to the library. Hypires are not listed as they are special cases
of a torus or a grid configuration. Also, the CG benchmarkiogtly did not match any topology in the

reference library. The topology of CG for size 16 is illustdhin Figure 3. Subsequently, this pattern
was manually added to the library. The results presentdddedhis addition.

DS,
| :u i
X
|11

Figure 3. CG communication pattern

The matching procedure can be considered to consist of Bdisteps based on the description in
Section 4.2.

1. Simple Tests: Finding all possible sizes of grid/tori based on prime fextof the number of
processedV, and then matching the number of edges and the degree oskadnce of nodes.

2. Graph Spectrum Test: Based on computing eigenvalues.
3. Isomorphism Test: Applies graph isomorphism to establish a topology.

Table 7 lists the topologies that remain as candidates afteh of the tests is applied, along with
the final established topology. We discovered that manyltgpes in our abstract lists are themselves
isomorphic to each other. In Table 7 every unique topology mldface All topologiesnotin boldface
and listed below one in boldface are isomorphic to the boklfapology above them. Note that BT and
SP benchmarks have identical communication graphs andbigips and are listed together.

We make the following observations from Table 7:

13

e All benchmarks in our test suite were matched correctihaaigh CG was matched only when a
custom stencil was added. SP and BT are 6 point stencils WhileCG, and MG are grids or
torus. In fact, MG has a hypercube structure up to size 64iwikia special case of a grid/torus.

e The simple tests that we listed are very effective in redytie set of candidate patterns. In all
cases a very small set of candidate patterns were left &fteettests were employed.

e The graph spectrum test was also very effective, and in éictjnated all candidates except for
the final correct topology.

5.2 Generation of logical traces

Traces for the benchmark programs were converted to logriaeés. For all benchmarks except
MG, each communication call in the trace was directly mapipea logical call within the program’s
communication topology. In the case of MG, some processdsrpeed communication that could not
be mapped to the application topology and was discarded. eMenyvthe fraction of such calls was
low. As a typical example, for the case of MG benchmark rugron 32 nodes, only 5.6% percent
of the communication calls carrying 2.7% percent of thefizafere not included in the logical trace.
Hence the accuracy metric we employ shows perfect accuta@llfbenchmarks except for a modest
inaccuracy for the MG benchmark.

These logical traces were compressed by identifying repgkttops and deployed to construct perfor-
mance skeletons [19]. The summary results from combinedangpression, along with the procedure
for skeleton construction, are outlined in Section 2. Hosvea detailed discussion is beyond the scope
of this paper.

5.3 Performance

Processing time for NAS benchmarks

4 processes 8/9 processes 16 processes 32/36 processes 64 processes 121/128 processes
Name Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time
Records (Size)| (secs) | Records (Size)| (secs) | Records (Size)| (secs) | Records (Size)| (secs) | Records (Size)| (secs) | Records (Size)| (secs)
BT 2278 0.63 12282 1.73 17106 2.64 26754 8.35 36402 13.19 50874 30.76
(90 KB) (490 KB) (731 KB) (1081 KB) (1459 KB) (2106 KB)
SP 12452 1.39 19670 2.09 26888 4.14 41324 12.55 55760 20.34 77414 49.16
(533 KB) (824 KB) (1147 KB) (17543 KB) (2365 KB) (3365 KB)
CG 5042 0.91 41954 3.31 41954 4.52 59964 11.94 59964 19.89 77978 47.89
(186 KB) (1599 KB) (1667 KB) (2376 KB) (2376 KB) (3224 KB)
LU 2338 0.69 152294 6.43 203048 15.39 203048 35.46 203048 66.28 203048 134.30
(95 KB) (6661 KB) (9185 KB) (9186 KB) (9088 KB) (9433 KB)
MG 1433 0.73 8867 1.98 8909 2.48 8951 4.56 8953 4.75 9035 7.33
(57 KB) (403 KB) (373 KB) (374 KB) (373 KB) (386 KB)

Table 6. Trace Size (per process) and processing time for log icalization

The sizes of the traces for the NAS benchmark programs artdtidgime to logicalize them is listed
in Table 6. A trace record corresponds to a traced MPI calcéiracing is fairly lightweight, trace
sizes are modest and the tracing overhead is low; within 1&eé&xecution time for all the benchmark
programs. The longest trace was around 200K records andaid@uMBytes per process for 128 process
LU benchmark. The processing times are computed on an oydi@ - a 1.86 GHz Pentium M with
1GB RAM. Processing times are fairly low with a maximum of Istonds for the above mentioned

14

LU benchmark. The processing time tracked the total numbénes in the trace almost linearly as
plotted in Figure 4.

100

80

60

‘e
40

5000000 10000000 15000000 20000000 25000000

Total number of lines in trace files

Figure 4. Trace length and processing time for logicalizati on

The processing time is dominated by the construction of dmenaunication matrix as that is the only
step that analyzes the trace from each process, even thioeigictiual processing on each trace entry is
minimal. The only tests in the framework that are potentiabmputationally expensive are the graph
spectrum test and the graph isomorphism test. The proggessie for them is plotted in Figure 5. We
observe that graph spectrum testing time is under one sdoomyery case, and graph isomorphism
testing time cannot be observed on this graph as it is ingedhnd range in every case. An important
reason for the low overhead of graph spectrum and graph iguison tests is that they had to be applied
on very few candidate topologies (often 1 or 2) as simpletéiscussed earlier were extremely effective
in reducing the number of candidate topologies. The singdistalso executed in negligible time.

‘ —&— Graph spectrum —%— Isomorphism ‘

0.8
0.7
5 06
2 o5
E 04
= 03 I
0.2 — —— o

L
BT/SP LU CG MG

Figure 5. Graph spectrum and isomorphism processing time fo r 121/128 process NAS benchmarks

Scalability analysis with synthetic data

The results noted above for the NAS benchmarks are very eagimg. However, this is a small test
suite, the number of processes was limited to 128, and Viytaththe processes were numbered along
the axes for grid/torus topologies. In this section, we yr®botential performance issues as we scale
to over 1000 nodes and encounter cases with irregular numgoafprocesses.

We have already noted that matrix construction time is lin@ad hence predictable, and the simple
tests are extremely fast. Potential performance issueshmancountered in 1) Graph spectrum test

15

that involves computation of eigenvalues with N?) complexity and 2) Graph isomorphism test which
is based on a non polynomial heuristic. We investigate tmpraance of these tests further with the
following synthetic data:

1. Ordered and Unordered gridsMatching an application matrix representing a 2D grid agan
corresponding template topology for varying sizes. In traeced case the grid nodes are num-
bered in the normal row major order. In the unordered cass¥d®&/of the graph nodes were
arbitrarily renumbered after starting with a row major ardeading to a partially randomized
ordering.

2. Ordered and Unordered stencilSimilar to the above grid case except matching is for a 6 point
stencil pattern on a 2D grid.

The results for graph spectrum computation are plottedgaréi 6. The computation times are within
70 seconds for up to 1000 nodes or processes, hence it appattisis test is sufficiently efficient for
larger practical scenarios.

‘+ Ordered Grid —&- Unordered Grid —%— Ordered Stencil —— Unordered Stencil

Number of Processes (Graph Nodes)

Figure 6. Graph spectrum performance on synthetic communic ation patterns

The results for graph isomorphism test are plotted in FigurEhe processing times are very low for
all topologies up to 1000 nodes, except for for unordereaiciteThe processing time for the unordered
stencil rises rapidly, and was around 4000 seconds for 588s1d_arger size cases could not be com-
pleted. We speculate that the reasons are related to hesiestployed for graph isomorphism. This
represents a potential limitation. However, this is a peabbnly for very irregular numbering of nodes.
We believe that it is important to allow all possible numhgrof nodes, as we cannot predict what num-
bering an application may follow. However, we do not expegt application to follow a nearly random
numbering that was used in this stress test. Overall, welgdad¢hat the methodology is effective for
1000 or more nodes for any numbering of processes that alg tilkk be encountered in practice.

6 Discussion

We present some observations on the enhancement of the dokibg and extensions of the ap-
proach.

16

—e—Ordered Grid —-Unordered Grid —%— Ordered Stencil —4— Unordered Stencil

1.E+04

1E+03
1E+02
1E+01 |
1.E+00 = =

1.E-01 }

Time(s)

1.E-02 |

1.E-03 |

1.E-04 |

1.E-05

Number of Nodes (Graph Nodes)

Figure 7. Graph isomorphism performance on synthetic commu nication patterns

6.1 Methodology

Performance of graph spectrum and isomorphism: One unexpected experimental result is that the
execution time of polynomial eigenvalue computation fa tgraph spectrum test, although low, was
much higher than the execution time for the heuristic grapmiorphism test for all benchmarks. Since
graph spectrum test is meant to reduce the cases for graptolighism test, this result brings into
guestion the need for the graph spectrum test. However,easyththetic graph results show, graph
isomorphism processing time is highly variable and verysga® to numbering of nodes in isomorphic
graphs. It was very expensive for some randomly numberethstia data. Hence we still believe it
is appropriate to have the eigenvalue based test in the 9Dite possibility is a framework based on
concurrent application of graph spectrum and graph isohismptests.

On the fly implementation: Our implementation is based on stored trace files. Howevecgssing

on each trace file is minimal - it simply involves recording tumber of communication calls and data
transfered. Related work [8] emphasizes on-the-fly proegss traces citing very large trace files for
some applications. However, the size of the traces we rasaignificantly smaller than those reported
in this work for the same benchmarks. Trace size is relatede@nd application of profiling and the
difference in this case may be the recording of call chainashihg can also be used to reduce trace
volumes inexpensively. While the bulk of the trace proaegan our method can be done on-the-fly, our
experience and results do not indicate that it is critical.

6.2 Limitations and extensions

We discuss some of the restrictions and extensions of thieimmgntation presented in this paper.

Static and known patterns: The approach assumes that the dominant execution pattemows) and
static. However, it is important to note that the patterrdiig is extensible and entire families of patterns
can be specified succintly, such as all sizes and dimensiogrsds or all trees with a specific degree.
When the procedure fails because a pattern is unknown fgimecihe pattern manually still allows the
construction of the logical trace.

17

Multiple phases: An application can have multiple phases where the commtiarcpattern changes
across phases. Clearly the approach presented in this papée far more effective if the phases
were separated and logicalization was done one phase ataRimase separation based on detection of
change in the communication pattern is possible but we havenplemented it.

Multiple patterns: Communication in some applications consists of multipldl wefined patterns.
One form is where the patterns are spatially separated by.the use of MPI communicators. We can
identify the communicator structure from the trace. It isgible to discover topologies independently
within separate communicators but this is not implementeubther form is where multiple patterns ex-
ist temporally across all processes during execution. Avknpgattern is computation on a grid followed
by a tree reduction. Our current approach is limited to alsipgttern. The approach can be extended to
identify mixed well defined patterns which have been studidd]. However, the computation feasibil-
ity for larger application sizes is yet to be determined. ISaic approach would involve addressing the
subgraph isomorphism problem. This problem is known to becbifiplete and our experiments show
that it is computationally expensive in practice also.

7 Conclusions

Application communication traces are at the core of perforoe analysis and performance model-
ing of communicating parallel programs. This paper presanframework to automatically construct
a single logical trace that is representative of the oveadallel execution. The approach is based on
identifying the communication topology of the applicatiamnd converting all point-to-point communi-
cation calls between physical processes to logical cgtisesenting the global communication pattern.
The methodology is independent of the numbering of prosessthe system. The key contribution
is an algorithmic framework to identify the global commuation topology from distributed message
exchange data that is effective and efficient.

Results are presented that show that the procedure wasstud@nd efficient for the NAS benchmark
suite. Detailed analysis of performance data show thabteewgion time of trace logicalization is likely
to be modest for most, if not all, realistic scenarios. Thsibémitation of the approach is that the
dominant application communication patterns must becst8thme potential weaknesses of the approach
and extension to a wider class of applications and scenaraiscussed. The paper lays the foundation
for a new approach to summarization and reduction of megsaggng traces that is powerful and likely
to be enhanced by future research.

Acknowledgement: This material is based upon work supported by the Nation&nge Foundation
under Grant No. ACI- 0234328 and Grant No. CNS-0410797

References

[1] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Pernfance optimization for large scale computing:
The scalable VAMPIR approach. International Conference on Computational Sciencegapes 751760,
2001.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Perdmce evaluation of the VF graph matching
algorithm. InProc. of the 10th ICIAPvolume 2, pages 1038-1041. IEEE Computer Society Pre98, 19

18

[3] P. Foggia, C. Sansone, and M. Vento. An improved algorifbr matching large graphs. fhe 3rd IAPR-
TC15 Workshop on Graph-based Representatigffl.

[4] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A sunay software for sparse eigen-
value problems. Technical Report STR-6, Universidad Patica de Valencia, 2006. Available at
http://www.grycap.upv.es/slepc.

[5] S. Huband and C. McDonald. Debugging parallel programsiagiincomplete information. Idst IEEE
Computer Society International Workshop on Cluster Comgupages 278-286, 1999.

[6] S. Huband and C. McDonald. A preliminary topological dgher for MPI programs. Idst International
Symposium on Cluster Computing and the Grid (CCGRID 208dge p. 422, 2001.

[7] D. Kerbyson and K. Barker. Automatic identification offdigation communication patterns via templates.
In 18th International Conference on Parallel and Distribu&dmputing Systemkas Vegas, NV, September
2005.

[8] M. Noeth, F. Mueller, M. Schulz, and M. de Supinski. Stdéacompression and replay of communication
traces in massively parallel environments. 2ltth IEEE International Parallel and Distributed Procesgi
Symposium (IPDPS 20QMong Beach, CA, April 2007.

[9] R. M. Shuyi Shao, Alex K. Jones. A compiler-based comratidon analysis approach for multiprocessor
systems. Ir20th IEEE International Parallel and Distributed ProcesgiSymposium (IPDPS 20QRhodes
Island, Greece., April 2006.

[10] J. Singler. Graph isomorphism implementation in LEDALS5 http://www.algorithmic-
solutions.de/bilder/grapfso.pdf.

[11] S. Sodhi and J. Subhlok. Automatic construction anduateon of performance skeletons. 19th IEEE
International Parallel and Distributed Processing Symipas (IPDPS 2005)Denver, CO, April 2005.

[12] S. Sodhi, Q. Xu, and J. Subhlok. Performance prediotith skeletons.Cluster Computing: The Journal
of Networks, Software Tools and Applicatip808. Available Online through Springerlink.

[13] D. P. Spooner and D. J. Kerbyson. Performance featwmification by comparative trace analysiuture
Generation Comp. SysR2(3):369-380, 2006.

[14] T. Tabe and Q. Stout. The use of the MPI communicatioratipin the NAS Parallel Benchmark. Technical
Report CSE-TR-386-99, Department of Computer Scienceyddsity of Michigan, Nov 1999.

[15] A. Toomula and J. Subhlok. Replication memory behaf@omperformance prediction. IhCR 2004: The
7th Workshop on Languages, Compilers, and Run-time Sufggdstalable Systemblouston, TX, October
2004.

[16] J. S. Vetter and M. O. McCracken. Statistical scalggpdinalysis of communication operations in distributed
applications. In2001 ACM SIGPLAN Symposium on Principles and Practice oalRdrProgramming
(PPOPP’01) pages 123-132, 2001.

[17] J. S. Vetter and F. Mueller. Communication charactiessof large-scale scientific applications for contem-
porary cluster architectured. Parallel Distrib. Comput.63(9):853—865, 2003.

19

[18] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, 8han, E. Lusk, and W. Gropp. From trace
generation to visualization: A performance framework fistributed parallel systems. Froc. of SC2000:
High Performance Networking and Computimgpvember 2000.

[19] Q. Xu. Automatic Construction of Coordinated Performance SkeketPhD thesis, University of Houston,
August 2007.

[20] B. Yorgey. Generating multiset partition§he Monad.Reade(8):5-20, Sept 2007.

20

Table 7. Identification of communication topologies of NAS b
listed in boldface. Topologies listed not in boldface are is

them.

Benchmark| Processes Simple Tests Graph Spectrum Test Isomorphism Test
9 3x3 6-p stencil 3x3 6-p stencil 3x3 6-p stencil
16 4x4 6-p stencil 4x4 6-p stencil 4x4 6-p stencil

BT/SP 36 6x6 6-p stencil 6x6 6-p stencil 6x6 6-p stencil
4x3x3 torus
2x2x3x3 torus
64 8x8 6-p stencil 8x8 6-p stencil 8x8 6-p stencil
2x2x2x2x2x2 grid
4x2x2x2x2 torus
4x4x2x2 torus
4x4x4 torus
121 11«11 6-p stencil | 11x11 6-p stencil 11x11 6-p stencil
8 4x2 grid 4x2 grid 4x2 grid
CG stencil CG stencil CG stencil
LU 16 4x4 grid 4x4 grid 4x4 grid
32 8x4 grid 8x4 grid 8x4 grid
64 8x8 grid 8x8 grid 8x8 grid
128 16x8 grid 16x8 grid 16x8 grid
8 4x2 grid 4x2 grid 4x2 grid
CG stencil CG stencil CG stencil
CG 16 CG stencill CG stencil CG stencill
8x2 grid
32 CG stencill CG stencil CG stencill
8x2x2 grid
64 CG stencill CG stencil CG stencill
16<2x2 grid
128 CG stencill CG stencil CG stencill
16<2x2x2 grid
8 2x2x2 grid 2x2x2 grid 2x2x2 grid
4x2 torus 4x2 torus 4x2 torus
MG 16 2x2x2x2 grid 2x2x2x2 grid 2x2x2x2 grid
4x2x2 torus 4x2x2 torus 4x2x2 torus
4x4 torus 4x4 torus 4x4 torus
32 2x2x2x2x2 grid 2x2x2x2x2 grid 2x2x2x2x2 grid
4x2x2x2 torus 4x2x2x2 torus 4x2x2x2 torus
4x4x2 torus 4x4x2 torus 4x4x2 torus
64 2x2x2x2x2x2 grid | 2x2x2x2x2x2 grid 2x2x2x2x2x2 grid
4x2x2x2x2 torus | 4x2x2x2x2 torus 4x2x2x2x2 torus
4x4x2x2 torus 4x4x2x2 torus 4x4x2x2 torus
4x4x4 torus 4x4x4 torus 4x4x4 torus
8x8 6-p stencil
128 8x2x2x2x2 torus | 8x2x2x2x2 torus 8x2x2x2x2 torus

8x4x2x2 torus
8x4x4 torus

8x4x2x2 torus
8x4x4 torus

8x4x2x2 torus
8x4x4 torus

21

omorphic to the

enchmarks.

Unique topologies are
boldface topology above

