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Abstract

Freshness is a central security issue for cryptographic protocols and is the security goal violated by replay
attacks. This paper is the first to formally define freshness and its attacks based on role instances and the attacker’s
involvement, and is the first work to investigate the complexity of checking freshness. We discuss and prove a series
of complexity results of checking freshness in several different scenarios, where the attacker’s behavior is restricted
differently, with different bounds on the number of role instances in a run.

Index Terms

Cryptographic protocol, freshness, replay attack, challenge-response, model checker, undecidability, NP-completeness,
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I. INTRODUCTION

SECURITY of communication protocols is critical in this age when computer communication is ubiquitous. An
important research direction in verifying communication protocols is checking attacks while assuming perfect

cryptography and a dominant attacker in the network, commonly referred as the Dolev and Yao attacker model [2].
Many researchers follow Dolev and Yao attacker model. Much research on the complexity of checking security
goals has focused on checking secrecy [3] [4] [5] [6] [7] [8] [9].

Freshness is a central and fundamental issue of communication protocols [10]. The common ways to maintain
freshness of terms of a protocol, without arguing the exact definition of freshness, are by using timestamps or by
challenge-response [11]. Intuitively, in a protocol run a term may be considered as “fresh” in two aspects: how the
term is created, and how the term is received. When a term is created we may say it is fresh, or it is new or not
stale, if it is not created before a certain time, while time can be measured by the timestamps of terms, or time
is implicitly referred, such as the creation time of a term. In [6] freshness means uniqueness, which means when
a fresh term is created it should not have appeared in the run before, and this approach may also be categorized
as emphasizing the freshness of a term on the creation aspect. The freshness of terms on the reception aspect, if
implemented by timestamps, could mean that only terms with timestamps after a certain time point can be received
in a certain situation. When a regular agent A participates in a protocol run, it is guaranteed that the A will create
really fresh terms such as nonces if we assume unbounded creation of fresh terms, but what can cause security
failure are the terms that are received by A, which could be not “fresh” when they are supposed to be “fresh”;
therefore, we think to define the freshness of terms on the reception aspect is what really matters and deserves
more attention. Timestamps have the limitation of relying on a precise global clock. On the contrary, the challenge-
response mechanism indirectly restricts how a term can be received and accepted, i.e., a challenge must be passed
in order to let a term be accepted. Comparing the challenge-response approach and the timestamp approach to
implement and define freshness, we consider the former has wider coverage of cryptographic protocols. Obviously
the former is more complicate to analyze. In this paper we address the freshness that may be implemented by
challenge-response. Further discussions on the challenge-response mechanism are provided in Appendix A.

The contributions of this paper are as follows.
• We define freshness based on role instances, the terms that are supposed to be fresh, and the attacker’s

involvement.
• We address different scenarios where the attacker’s behavior in a run is restricted differently. We define three

kinds of replay attacks that violate freshness, called direct, restricted and general replay attacks.
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• We address three bounds on the number of role instances in a run (NRI), including fixed, individually bounded,
and unbounded. This paper is the first to clarify the difference between the three bounds.

• We address and prove a series of the complexity results of checking freshness for DRA, RRA, and GRA,
when NRI is fixed, individually bounded, or unbounded. These results are non-trivial to prove. For example,
the proof of Theorem 5, which shows the NP-completeness of checking RRA when NRI is fixed, is quite
delicate.

• We analyze the performance of the model checker Athena [12] [13]. We improve the presentation, semantics,
and efficiency of the algorithm of Athena.

To the best of our knowledge, the closest definition of a freshness goal that is independently defined by other
researchers appears in [14], quoted in Appendix B below. Our work is significantly different from [14], and cannot
be covered by [14], for the following reasons. First, in [14] the authors demonstrate a freshness goal can be expressed
using the constraint solving system, but there is no complexity investigation. It is obvious that a freshness goal,
which is defined later in this paper, can be expressed in different systems, since its definition is simple and clear.
Second, the attacker’s involvement is not discussed in [14] for the definition of a freshness goal. Third, the definition
of a freshness goal in [14] is less generally applicable than the one defined in this paper, which is discussed later.
Fourth, the discussion on freshness in [14] is sketchy and is not the focus of [14].

An observation is presented in Appendix B, which is relevant to understand the intuition of the definition of
freshness.

We do not need to follow the detailed behavior of challenge and response in order to investigate the complexity
of checking freshness. Therefore our approach is rather different from, and cannot be covered by other papers that
design rules or logic to address the details of challenges and responses, such as [15] and [16], and they do not
address complexity issues.

In Section III-A we discuss the reductions between checking freshness and other problems, and especially we
explain why we think some complexity results of checking freshness cannot trivially be obtained by reductions
between checking secrecy and freshness.

Section II presents the notations of terms of protocols, and the definitions of freshness, different attacks that
violate freshness, and different bounds on the number of role instances in a run. Section III presents the complexity
results and the proofs. Section IV summarizes this paper.

II. NOTATIONS AND MODELING

A. Notations

Notations are chosen in a style that is commonly used in the literature. More details of notations and modeling
can be found in [17]. A term is either an atomic term or a composite term. An atomic term is a variable (represented
by a symbol with at least one upper case letter), or constant (a symbol without any upper case letter). The special
constant I is the name of the attacker. Asymmetric keys are atomic terms. The established public key and private
key of an agent A are k1

A and k0
A respectively. A composite term is a list, or an asymmetric encryption, or a

symmetric encryption. A list has the form of [X,Y, · · · ], where X and Y are terms and the list contains finite
number of member terms. A list is a simpler representation of a sequence of nested pairs. For example [W,X, Y, Z]
is the same as [W, [X, [Y, Z]]]. When a message is a list, the top level enclosing [ ] is omitted. A term constructed
by encryption algorithms is called an encryption. An asymmetric encryption has the form of {T}→kiA , i ∈ {0, 1},
where T is called the text, and kiA, for i ∈ {0, 1}, is the atomic encryption key, and it can be decrypted using the
key k1−i

A . A symmetric encryption has the form of {T}↔Y , where T is the text, and Y is the encryption key, which
can be any term and could be a composite term. When a list, say [X,Y, Z, · · · ] is the text of an encryption, the
enclosing square brackets are removed within “{ }”. When a message is a list, the enclosing square brackets of the
list are also omitted. The word ground means variable free.

The set of blocks of a term T , denoted as blocks(T ), is defined as follows:
• If T is an encryption or an atomic term, blocks(T ) = {T}.
• If T = [X,Y ], then blocks(T ) = blocks(X) ∪ blocks(Y ).
An action step can have one of the following three forms. A term sent or received in an action step is called a

message.
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• If agent P generates a set of (at least one) fresh terms, and then sends a message Msg to agent B, then the
action step has the form

#P (T1, T2 · · · ) + (P ⇒ B) : Msg.
Here #P (T1, T2 · · · ) is the fresh term generation action of P to generate the fresh terms T1, T2 etc. These
fresh terms should appear as subterms in Msg.

• If agent P sends a message Msg to B without generating any fresh terms, then the action step is denoted as
+(P ⇒ B) : Msg.

• If P receives a message Msg, and by the context of the communication or by analyzing Msg, P considers
the supposed sender of Msg should be B, then the action step has the form −(B ⇒ P ) : Msg.

A communication step can also have three possible forms, which are the same as an action step, except the
+ and − signs are not used. A communication step implies two corresponding action steps, one is the message
sending, maybe with nonce generation, by the sender, and the other is the message receiving by the receiver. A
communication sequence, or simply CS, is a sequence of communication steps numbered sequentially starting from
1. A protocol is commonly described as a CS accompanied with other information including the initial knowledge
patterns of agents.

B. Model of a Protocol Run

Here we present the essential model of protocol run. More details can be found in [17]. We assume the free term
algebra, which means that two different symbolic terms must represent two different bit-strings of the real world.
This assumption is common for the Dolev-Yao model. We assume unbounded fresh nonce generation, which means
that when a nonce is generated, it is always different from other nonces and all the terms that have appeared in
the run before its generation, and is different from all the terms initially known to some agent.

A role is a sequence of action steps executed by the same agent A obtained by parsing the CS of a protocol,
which is called A’s role.

An event is a tuple 〈act, time〉, where act is a ground action step, described earlier; and, the time field of an
event e is referred as e.time, which is a positive real number representing when the event occurs after the start of
the run.

A role instance r of role R is a sequence of events, such that the action steps of the sequence of events in r
instantiate a prefix of the sequence of action steps of R, not necessarily all of the action steps of R, by a ground
substitution. For two events ev and ev′ in r, if their message numbers in the corresponding role R are n and n′

respectively, and n < n′, then ev.time < ev′.time.
In a run the attacker is associated with a set of ground terms that are initially known to I, denoted as I.init.

The attacker can analyze and synthesize terms and create nonces by following a set of standard rules, which are
presented below, and they are similarly discussed in [18] and [5].

Given a certain set E of events that have occurred in a run, knowI(E) represents the (infinite) set of terms that
the attacker can know, and for a term T , T ∈ knowI(E) is defined as follows. The set of terms S0 built on E is
defined as the smallest set of terms that satisfy the following conditions.
• I.init ⊆ S0

• {msg | msg is the message sent in a regular event η, η ∈ E } ⊆ S0

A rule l, of the form LHS 7→ RHS, can be applied to a set of terms S. For a rule l to be applicable to S,
except the creation rule Cre, all of the terms included in LHS must be included in S. After applying l to S, a new
set S ′ of terms is formed by adding terms in RHS to S. The notation #I(X · · · ) means the attacker generates
one or more fresh nonces .
• Creation

– Cre: #I(X · · · ) 7→ X · · ·
• Synthesis

– Syn1: X,Y, Z, . . . 7→ [X,Y, Z, . . .]
– Syn2: X, kiG for i ∈ {0, 1} 7→ {X}→kiG
– Syn3: X,Y 7→ {X}↔Y .

• Analysis
– Ana1: [X, · · ·Y ] 7→ X, · · ·Y
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– Ana2: {X}→kmG , k1−m
G for m ∈ {0, 1} 7→ X

– Ana3: {X}↔Y , Y 7→ X

A derivation with length j, 0 ≤ j, has the form S0 →l1 S1 →l2 · · · Sj−1 →lj Sj , where Sh, 1 ≤ h ≤ j is a set of
terms obtained by applying rule lj to Sj−1. S0 is a derivation from S0 with length 0. A derivation starting from
the S0 built on E is called a derivation on E. T ∈ knowI(E) if and only if there is a derivation on E with length
j such that T ∈ Sj , for some j ≥ 0.

A run is a tuple: 〈Pro, D, R, AN, E〉, where Pro is the protocol; D is the initial knowledge pattern of
the attacker who is involved in the run; R is a set of role instances that are executed honestly by regular agents;
AN is the set of ground names of the agents who participate in the assumed perfect initial knowledge establishing
stage of the run, including all of the regular agents and sometimes the attacker, and the agents in AN are insiders;
E is a set of events that occur in the run, including, nothing more and nothing less, all of the events of the role
instances in R. The E field of the run is referred as run.E. Other fields of the run are similarly referred. The set
of time points of the run is defined as {t | t = η.time, η ∈ run.E} ∪ {0}. Given a time point t, we define E<t
as the set of events {η | η.time < t, η ∈ run.E}. The following conditions should be satisfied: For any event η
in E, if η receives a message msg then msg ∈ knowI(E<η.time). The set of all possible runs of a protocol Pro
and with some specific initial knowledge pattern D of the attacker, is denoted as RunsD:Pro. Note that we allow
two events to occur at the same time in a run, which is different from the trace based models like [18] and [7], but
agrees with the strand space model [19]. Although the strand space model is equivalent to the trace based models
in terms of checking security failures, we think strand space model seems to be more close to reality and using it
to check protocols does not require extra effort.

C. Definition of Freshness and Its Attacks

Definition 1: Given a certain pattern D of the attacker’s initial knowledge, and a protocol Pro, where a role of
A receives a term X which should be freshly generated by B’s role such as a nonce variable, the freshness of X
to A’s role is that it is impossible to have a run, run ∈ RunsD:Pro, where there are two different role instances
r and r′ of A’s role, such that the following two conditions are satisfied:
• In r and r′, B is not instantiated by I, which is the attacker’s name.
• The same ground term, say c, instantiates X in both r and r′.

The security goal that the freshness of a term to a role in a protocol is called a freshness goal.

Note that in the above definition r and r′ do not need to be executed by the same agent, i.e., A may be instantiated
by different agents in r and r′, which is more generally applicable than the freshness defined in [14]. We require
that B is not instantiated by I, since if the nonce X is supposed to be generated by the attacker, then the attacker
can obviously send the same X to both r1 and r2.

Freshness, as defined above, is a necessary condition of authentication. Lowe provided some well-known def-
initions of authentication goals in [20], and the strongest definition is the follows. The protocol, which is a
communication sequence, implies a set of variables that appear in both A’s role and B’s role, which is called
the set of shared data. The authentication goal of B’s role to A’s role, for any two agent variables A and B, is that
in every run of the protocol, when a role instance r of B finishes execution, there is a one-to-one correspondence
between r and another role instance r′ of A’s role such that in r and r′ the shared variables are instantiated by
the same values. In order to implement the one-to-one correspondence, commonly a nonce NA is created by A
and received by B, and NA is shared by A’s role and B’s role. If the authentication goal of B’s role to A’s role
is satisfied then the freshness goal of NA to B’s role is obviously satisfied. However the freshness goal is not
sufficient for the authentication goal. Even when all of the freshness goals to B’s role of the nonce variables shared
between A and B are satisfied, the authentication goal of B’s role to A’s role may still not be satisfied, since it
is possible that the values of these shared variables in a role instance r of B’s role does not appear together in
a single role instance r′ of A’s role. The idea of authentication goal is to describe a condition that should not be
violated in the normal situation, which is a one-to-one correspondence between two role instances. The freshness
goal defined above extends this idea to describe a one-to-one correspondence between a role instance and a nonce
that normally should be satisfied.

A unique location is assigned to each occurrence of a term in the messages of a communication sequence of a
protocol as follows.
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• The message with message number i, 1 ≤ i, has location i.
• If an encryption {X}→Y or {X}↔Y has the location L, then X is located at L.α, and Y is located at L.β.
• If a term [X,Y, · · · ] has location L, then the members X , Y · · · have the locations, respectively, L.1, L.2,
· · · .

Since roles are parsed from a CS, the location of an occurrence of a term T in a role is the location of the
corresponding term occurrence in the CS.

Definition 2: We consider the following restrictions on the attacker’s behavior in a protocol run.
1) In a run when a regular agent receives a block T in a message, T must have appeared as a block in some

message that has already been sent earlier by some regular agent.
2) In any message Msg received in a regular role instance, if T is the block in Msg with location L, then T

must be a block with the same location L in some message sent earlier by a regular role instance.
For an attack (a run of the protocol) that violates a freshness goal, if the attacker’s behavior is restricted by
• both restrictions 1 and 2, the attack is called a direct replay attack (DRA).
• only restriction 1, the attack is called a restricted replay attack (RRA).
• no restrictions, the attack is called a general replay attack (GRA).

It is not obvious how to formally describe the three replay attacks defined above using the taxonomy discussed
in [21].

D. Bounding the Number of Role Instances in a Run

We consider the number of role instances in a run, call it NRI for short, for different problem settings of
checking freshness. Note that every run has a finite number of role instances. NRI has been used to analyze the
complexity of checking secrecy in the literature [3] [6] [4] [7] [8]. We clarify different notions of bounding NRI,
depending on different settings of the inputs to the algorithm, as follows.
• We say NRI is bounded by an individual number, or simply, is individually bounded if the problem to be

decided is a tuple 〈Pro,D,R, V,N〉 where Pro is the protocol, whose size is measured by the size of its CS,
and the freshness goal of variable V to the role R needs to be checked, and N is a natural number representing
the bound on NRI. Only the runs with the number of role instances no more than N are considered. Note that
for different problem instances N could be different.

• We say NRI is bounded by a fixed number, or simply, is fixed, if the problem to be decided is 〈Pro,D,R, V, n〉,
for some fixed number n and all of the instances of the problem share the same n.

• We say NRI is unbounded, if the problem to be decided is just 〈Pro,D,R, V 〉, where there is neither fixed
nor individual bound considered on NRI, and there could be any finite number of role instances in a run.

The advantage of clarifying these different settings of bounds is to avoid possible confusion in understanding the
terms for bounds including bounded, fixed, unbounded, finite and infinite that appear in the literature. Although
in practice the restriction 1 or 2, which is described in Definition 1, is valid only with some specific D and Pro,
when we check DRA or RRA we have already assumed the restriction 1 or 2 on the attacker’s behavior, without
considering how the restriction is implemented; therefore, the attacker’s initial knowledge pattern D is irrelevant
to check DRA or RRA.

III. COMPLEXITY RESULTS ON CHECKING FRESHNESS

A. Reductions Between Freshness and Other Problems

Based on our works in [8] and [9], which improves the work of [4], of proving undecidability results by direct
reductions from the well-known reachability problem of 2-counter machines, we think this direct approach is
convenient to prove the undecidability results of checking freshness. Comparing to the approach of reductions from
other security goals such as secrecy, we think this direct approach of proving undecidability may be easier for
readers to verify, especially when the ideal proof of checking secrecy for the corresponding setting is not obvious
or not easily available; therefore, the proof of Theorem 1, which is on checking RRA, is by this direct reduction.

One approach of studying the complexity of checking freshness is to reduce the problem of checking secrecy,
which is another problem of checking cryptographic protocols, to the problem of checking freshness, or the other
way, since there are published results of the complexity of checking secrecy (but not much for authentication).
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This approach requires that the convincing proofs of the corresponding complexity results of checking secrecy are
available.

Reduction from checking secrecy to checking freshness can be established, and the idea is demonstrated in the
proof of Theorem 2, which is on checking GRA. Such a reduction may be useful to show that checking freshness
is undecidable when the number of role instances (NRI) is unbounded, and NP-hard when NRI is fixed, since
we believe checking secrecy has the same complexity results correspondingly. We present two different proofs for
Theorem 2, one by a direct reduction from 2-counter machine, and the other by a reduction from secrecy. The
reduction scheme from secrecy to freshness works for proving the undecidability of checking GRA when NRI
is unbounded, but not for RRA, since the attacker have to construct some blocks in the attack, which is another
reason why Theorem 1 is proved by a reduction directly from 2-counter machines. The NP-hardness proof of
checking secrecy we have noticed is provided by [5], which is by a reduction from 3-SAT. However, that proof
assumes protocols as non-matching roles instead of communication sequences, and the secret term is declared in
a non-realistic way, which are unconvincing aspects as discussed in [22] and [9]; hence, this paper we prove the
NP-hardness of checking freshness in Theorem 5 by a direct reduction from 3-SAT while considering realistic
protocols, not by a reduction from secrecy.

Reduction from freshness to secrecy can also be established, as demonstrated below in Section III, although it
may not as obvious as the reduction in the other direction. Such a reduction may show that checking freshness is
NP when NRI is fixed since we believe checking secrecy is NP with fixed NRI. The complexity result that checking
secrecy is in NP has been addressed in [5], where the setting is that the number of sessions are bounded, which is
similar to, but different from bounding the number of role instances. However, besides the significant contributions
made by [5], we think there is an error in the proof of [5] to show checking secrecy is NP. More specifically it
seems the error is due to an assumption in the proof of Theorem 1 in [5] that the DAG size of an instance of a
term is no less than the DAG size of the term, which is incorrect. Study notes of the modeling, proofs, and the
error of [5], and our fix of the error, are presented in details in [23]. It seems that the problem similarly exists in
another related paper [24] written by the authors of [5], which proves a more general NP complexity of checking
secrecy when XOR operators are considered. We consider that the NP result of checking secrecy while bounding
the number of sessions does not imply, or is implied by, the NP result of checking secrecy while bounding the
number of sessions. In [3] there is an NP-complete result of checking secrecy when the number of role instances is
bounded. But that proof in [3] assumes a bound on message size, and encryption keys must be atomic. Bounding
the message size makes the NP proof easier, and less general. We do not want to bound the message size. Our
reduction from freshness to secrecy, presented below in Section III-B, needs composite keys. By the above reasons,
in this chapter, we prove the NP result of checking freshness by directly analyzing a model checker, not by a
reduction from secrecy. By the above reasons, in this paper, we prove the NP result of checking freshness by
directly analyzing a model checker, not by reduction from secrecy.

B. Reduction from Freshness to Secrecy

We demonstrate a reduction scheme for freshness to secrecy. Although we do not use this reduction to obtain
complexity results, such as the results of checking GRA, in this paper, it can be used in subsequent researches to
do so after we are convinced with the corresponding complexity results of checking secrecy.

Lemma 1: Given a problem of checking freshness a term X to a role R for a protocol Pro, with a certain
attacker’s initial knowledge pattern D, with a bound N on NRI, denoted as 〈Pro,D,X,R,N〉, the freshness
problem can be reduced in polynomial time to a secrecy problem, which is denoted as 〈Pro′, D′, S′, N ′〉, where
S′ is the specification of secret terms (other fields have been similarly explained for the freshness problem), such
that the freshness goal of X to R for Pro is violated by an attack with no more than N role instances, if and only
if, the a secret term X ′ can be known to I by an attack to Pro′ with no more than N ′ role instances.

Proof: We construct the secrecy problem according to the freshness problem as follows. A protocol Pro
defines the initial knowledge patterns of regular agents. In the constructed protocol Pro′, the initial knowledge of
every regular agent is the same as in Pro, except that for every two agents, say P and Q, they share a symmetric
key k′P :Q, which is same as k′Q:P and is only known to P and Q. We require that k′P :Q does not appear in Pro.
Even if Pro also requires that two agents P and Q use some shared symmetric key(s) between P and Q, then
Pro′ will allow P and Q shall one more key, which is k′P :Q.
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D′ is the same as D, and especially D′ does not allow I to know k′P :Q for P 6= I and Q 6= I.
We explain some reduction idea first. One reduction approach is that when the freshness goal is violated, a

special term, say T can be generated and T is used to trigger the secrecy failure. T should describe or imply that
the same X is received in two different role instances of R. One difficulty is how to express two different role
instances. If we require a role to explicitly check the disequality between two nonces, which are used to identify
two different role instances, then the reduction may be less convincing since disequality tests of two nonces are
rare among cryptographic protocols. The idea is to express the disequality of two nonces in a role that generates
them, since it is guaranteed that two nonces generated in a role instance is guaranteed to be mutually different.

The communication sequence of Pro′ includes the one of Pro but with more communication steps as follows.
First, choose two agent names that do not appear in Pro, without generality say A and B, and append the

following two communication steps between A and B to the communication sequence of Pro. Actually as long as
the relative order between the two communication steps are kept, where they appear in the communication sequence
of Pro′ does not matter. By doing so we add two roles, A’s role and B’s role, into Pro.
#A(Secret)(A⇒ B) : {1, A,B, Secret, T}↔k′A:B

(B ⇒ A) : {2, B,A, Secret}↔T
The secrecy declaration S′ states that a secrecy goal is to protect any instance of the term Secret which is

generated by A for B, when B and A are instantiated by some regular agents. Two constants are chosen such that
they do not appear in Pro, and without loss of generality we say they are 1 and 2. The special term T represents
a term which is critical for this reduction and we will reveal what T represents soon. The reduction is designed in
a way such that I knows T if and only if the freshness goal of X to R in Pro is violated, and the attacker I can
know a term Secret if and only if the attacker can know T .

Second, choose two different agents, say F and G, that do not appear in Pro, and add the following communi-
cation sequence between F and G to the one of Pro, where 3, 4, and 5 are three constants that do not appear in
Pro.

#F (N1
F )(F ⇒ G) : F,G, {3, N1

F }↔k′F :G

#G(N1
G, Y )(G⇒ F ) : G,F, {4, N1

F , Y,N
1
G}↔k′F :G

#F (N2
F )(F ⇒ G) : F,G, {3, N2

F }↔k′F :G

#G(N2
G)(G⇒ F ) : G,F, {4, N2

F , Y,N
2
G}↔k′F :G

(F ⇒ G) : F,G, {5, N1
G, N

2
G}↔k′F :G

Note that in F ’s role that is parsed from the above communication sequence, i.e., from F ’s point of view of the
above 5 messages, it is guaranteed that N1

F and N2
F are mutually different since they are two nonces generated

by F in F ’s role, and it is implicit that the two occurrences of Y are instantiated by the same value, but there
is no guarantee that N1

G 6= N2
G, since we do not introduce the disequality check, which is rare in cryptographic

protocols, between two received nonces into the protocol.
Third, for the freshness goal in Pro, which is the freshness of term X to role R, suppose R is executed by Q,

i.e., R is Q’s role. Choose an agent name that does not appear in Pro, say P , and then append the following two
communication steps to the communication sequence of Pro.
#P (NP )(P ⇒ Q) : P,Q, {3, NP }↔k′P :Q

(Q⇒ P ) : Q,P, {4, NP , X, e}→k′P :Q

Now the Q’s role in Pro′ has been extended with two more action steps comparing with Pro. Note that in the
second message a special constant e is included in the encryption. We choose a constant that does not appear in
Pro, call it e, and in Pro′ e is initially known to all regular agents. Note that e is different from any nonce that
is generated in a run of Pro′.

Now we replace T with {5, e, e}↔k′A:B
.

Suppose the freshness goal is violated for Pro by an attack, call it attack, where are two role instances r1 and
r2 of the role R, such that X is instantiated by the same term x in both r1 and r2. Now we construct an attack,
call it attack′, to Pro′ such that a secret term is leaked, as follows.
attack′ is the same as attack, except that in attack′, the two role instances r1 and r2 has two more action steps

to execute, and there are three more role instances in attack′: r3 of A’s role, r4 of B’s role, and r5 of F ’s role.
After executing the events that are in attack, attack′ continues executing the extra events as follows, and the

events are represented by their action steps. Let r1 be executed by a. If the agent who executes r2 is different from
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a, then agent b is chose as the executor of r2, otherwise if r2 and r1 are both executed by a, then we chose b as
any regular agent other than a.
r5 is executed by a, and the action steps of r5 are the follows.

#a(n1
a) + (a⇒ b) : a, b, {3, n1

a}↔k′a:b
−(b⇒ a) : b, a, {4, n1

a, x, e}↔k′F :G

#a(n2
a) + (a⇒ b) : a, b, {3, n2

a}↔k′a:b
−(b⇒ a) : b, a, {4, n2

a, x, e}↔k′a:b
+(a⇒ b) : a, b, {5, e, e}↔k′a:b

The last two action steps of r1, which is executed by a, are the follows.
−(b⇒ a) : b, a, {3, n1

a}↔k′a:b
+(a⇒ b) : a, b, {4, n1

a, x, e}→k′a:b
The last two action steps of r2, if it is executed by a, are the follows.
−(b⇒ a) : b, a, {3, n2

a}↔k′a:b
+(a⇒ b) : a, b, {4, n1

a, x, e}→k′a:b
The last two action steps of r2, if it is executed by b, are the follows.
−(a⇒ b) : a, b, {3, n2

a}↔k′a:b
+(b⇒ a) : b, a, {4, n1

a, x, e}→k′P :Q

Remind that X is instantiated by x in both r1 and r2, and k′a:b is the same as k′b:a. We use msg1
5 to represent

the first message of the role instance r5, where the super-script is the message number and the lower-script is the
ID of the role instance. Especially, msgi1 or msgi2 means the ith extra message of r1 or r2, for i ∈ {1, 2}. After r5
sends msg1

5 , I constructs msg1 and lets r1 receives it. After r1 sends msg2
1 , I constructs msg2

5 and let r5 receives
it. After r5 sends msg3

5 , I constructs msg1
2 and lets r2 receives it. After r2 sends msg2

2 , I constructs msg4
5 and

lets r5 receives it. Then r5 sends msg5
5 and I obtains T = {5, e, e}↔k′a:b .

Then r3 and r4 start to execute, and they are executed by a and b respectively. The action steps of r3 and r4 are
interleaved according to the following communication sequence between them.
#a(secret)(a⇒ b) : {1, a, b, secret, {5, e, e}↔k′a:b}

↔
k′a:b

(b⇒ a) : {2, b, a, secret}↔{5,e,e}↔
k′
a:b

It is obvious that before a message is received by a role instance, the attacker can obtain the message. Since the
attacker knows {5, e, e}↔k′a:b , it is obvious that the attacker knows the term secret after msg2

4 is sent.
We can let N ′ = N + 3, since for the secrecy attack of Pro′ besides the role instances that are related to let

two role instances of R receive the same X , there will be 3 extra role instances, one for A’s role, one for B’s role
and one for F ’s role. Alternatively, if we choose to include the added communication steps into the existing roles
of Pro, and no extra agents are introduced in Pro′, then N ′ = N .

The attacker can know an instance of the term Secret only if T is leaked. The only way that the attacker can
know T is that T is generated by the last message of a role instance, call it rF , of F ’s role. Then in the two
messages received by rF there must be two encryptions T1 and T2, where T1 has the form {4, N1

F , Y, e}↔k′F :G
and

T2 has the form {4, N2
F , Y, e}↔k′F :G

. T1 and T2 must be sent by the second message of two role instances, call them
r1Q and r2Q, of Q’s role. Note that T1 and T2 cannot be sent in a role instance of G’s role, since e cannot be a
nonce freshly generated. r1Q and r2Q are two different role instances since N1

F 6= N2
F . In r1 and r2 the same Y is

received which instantiates X . So the freshness goal is violated, and the same attack can be applied to Pro. A
fully formal reasoning of this direction can be established with more technical details. For this paper we think the
proof of this reduction is sufficient enough, especially because we do not use this reduction to obtain complexity
results.

Note that the above reduction from freshness to secrecy can consider the attacker as an insider and the protocols
as communication sequences. Reductions consider only an outsider attacker and protocols as non-matching roles,
which are unrealistic, have been considered less convincing, as disscussed in [22] and [9].
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C. Undecidability results

We present the definition of 2-counter machine before the undecidability proofs.
Definition 3: A deterministic 2-counter machine [25] with empty input is a pair 〈Q, δ〉, where Q is a set of

states including the starting state q0 and the accepting state qfinal and δ is a set of transition rules. A configuration of
a 2-counter machine is a tuple (q, V1, V2), where q is the current state and V1 and V2 are two non-negative integers
representing the two counters. The 2-counter machine can detect whether a counter is 0 or not. A transition rule,
(call the rule T ∈ δ) is of the form [q, i1, i2] → [q′, j1, j2], where q, q′ ∈ Q; i1, i2 ∈ {0, 1}; j1, j2 ∈ {−1, 0,+1}.
An application of T can be described as (q, V1, V2) −→T (q′, V ′1 , V

′
2), where LHS and RHS are the configuration

before and after the transition respectively. For h ∈ 1, 2, when ih = 0, it means that Vh = 0. When ih = 1, it
means that Vh > 0. When jh = +1 (jh = 0, jh = −1), it means that after the transition, V ′h = Vh + 1 (V ′h = Vh,
V ′h = Vh − 1). Especially, when jh = −1, ih must be 1, since decrementing 0 is not allowed. The reachability
problem of such a 2-counter machine is to decide that, starting from the initial configuration (q0, 0, 0), after applying
some applicable transition rules, whether some final configuration (qfinal, , ) can be reached, where represents
an arbitrary possible value. We assume (for convenience) that q0 6= qfinal and, for nontriviality, that δ is not empty.

It is obvious that a 2-counter machine allowing q0 = qfinal can be equivalently simulated by a 2-counter machine
defined above, and the reachability problem of 2-counter machines defined above is undecidable.

Theorem 1: Checking RRA for a freshness goal is undecidable when the number of role instances in a run
(NRI) is unbounded.

Proof: We reduce the reachability problem of a deterministic 2-counter machine to a problem of checking RRA
for a freshness goal of a protocol. We have used this approach similarly in [9]. In this reduction the attacker cannot
construct any blocks that can be received by a regular agent since these blocks must be encrypted by a symmetric
key K which is unknown to the attacker. Reachable configurations of a 2-counter machine M are encoded by
special terms called configuration terms in a protocol run. The reduction ensures that a certain freshness goal is
violated in a run if and only if a configuration term T is known to I, such that T encodes a final configuration
reachable to M .

Given a 2-counter machine M = 〈Q, δ〉, let Q = {q0, qfinal, q1, q2, · · · , qm} and δ = {T1, T2, · · · , Tn}.
Encoding is a correspondence between a term and its designed meaning in a reduction. A configuration term

has the form {5, X, q, C1, C2}↔K . C1 and C2 and X could be any terms. q is a constant that could be any state
in Q. The number 5 is used for configuration terms to distinguish them from connection terms (introduced later)
where the number 7 is used. K is a symmetric key that is not known to the attacker but known to all of the regular
agents. Using K makes restriction of the attacker’s behavior defined by RRA obviously valid in the reduction, i.e.,
if the attacker can violate a freshness goal of the constructed protocol then the attack must be a RRA. Note that I
cannot construct a configuration term since I does not know K. A connection term has the form of {7, C1, C2}↔K .
Connection terms are used to build the encoding of a counter value (described later).

A protocol Pro is constructed according to M . Pro requires the initial knowledge pattern of agents as follows.
∀P, P ∈ AN : P.init = AN ∪Q ∪{z, 1, 2, 3, 5, 7,K}

The set of roles of Pro is {S0, R0, S1, R1, · · · , Sn, Rn, Sfinal, Rfinal}. Note that there are n transition rules in δ.
We describe a matching pair of roles Si and Ri, i ∈ {0, 1, · · ·n, final} by the CS between them. The action steps

of two matching roles can be straightforwardly parsed from the CS between them. We choose different variable
names in different matching pairs of roles so there is no confusion when the CSes of these pairs of roles are
concatenated to form the CS of the whole protocol.

Two roles S0 and R0, executed by A and B respectively, are designed to generate the initial configuration term.
The CS between them is the follows.

1. #A(NA) (A⇒ B) : A,B, {5, NA, q0, z, z}↔K
2. #B(NB) (B ⇒ A) : B,A,NB, {qfinal, NA, NB}↔K

The target problem of the reduction is to check the freshness of NB for S0.
The two roles Sfinal and Rfinal are executed by Afinal and Bfinal respectively. The CS between Afinal and

Bfinal is the follows.
1. #Afinal(NX , NY , C1final, C2final) (Afinal ⇒ Bfinal) :

Afinal, Bfinal, NY , {5, NX , qfinal, C1final, C2final}↔K
2. (Bfinal ⇒ Afinal) : Bfinal, Afinal, {qfinal, NX , NY }↔K
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For each Tf ∈ δ, for some f , 1 ≤ f ≤ n, suppose Tf = [q, i1, i2] → [q′, j1, j2]. Tf corresponds to two roles
Sf and Rf (starter and responder), executed by agents Af and Bf respectively. The general template of the CS
between Sf and Rf is the following. The exact CS between Af and Bf will be formed after a set of rewrite rules
(described later) are applied to this general template.

1. #Af (C1f , C2f , C1−1
f , C2−1

f , Nf ) (Af ⇒ Bf ) :
Af , Bf , {5, Nf , q, C1f , C2f}↔K , {7, C1−1

f , C1f}↔K , {7, C2−1
f , C2f}↔K

2. #Bf (C1+1
f , C2+1

f ) (Bf ⇒ Af ) :
Bf , Af , {5, Nf , q

′, C1′f , C2′f}↔K , {7, C1f , C1+1
f }
↔
K , {7, C2f , C2+1

f }
↔
K

In the first message Af will choose Bf as the interlocutor, Bf ∈ AN and Bf 6= Af . Note that Bf will carry
the nonce Nf received in the first message to the second message. The variables Ch′f , h ∈ {1, 2}, will not appear
in the actual CS between Sf and Rf since they will be replaced by Chf or Ch−1

f or Ch+1
f , after applying the

rewrite rules.
For h ∈ {1, 2}, the following rewrite rules, each is described as “condition Z⇒ effects”, will be applied as much

as possible to the general template between Sf and Rf , according to the conditions satisfied by the transition rule
Tf of M , 1 ≤ f ≤ n. W � V means to replace W with V in the above template. W � ε means to remove
W . An implicit rule is that any term that is not removed or changed will still appear in the CS between Sf and
Rf . Especially, if every term in terms of an action of #agentName(terms) is removed, then this whole fresh
term generation action is removed. Note that when a rule is applied, the term removing tasks in RHS are arranged
following the order from left to right, so that the smaller terms are removed later and the bigger terms containing
the smaller terms are removed earlier, to avoid possible confusion.
1. ih = 0 Z⇒ Chf � z; {7, Ch−1

f , Chf}↔K � ε

2. ih = 1 Z⇒ {7, Ch−1
f , Chf}↔K ∈Msg1

3. jh = +1 Z⇒ Ch′f � Ch+1
f

4. jh = 0 Z⇒ Ch′f � Chf ; {7, Chf , Ch+1
f }
↔
K � ε; Ch+1

f � ε

5. jh = −1 Z⇒ Ch′f � Ch−1
f ; {7, Chf , Ch+1

f }
↔
K � ε; Ch+1

f � ε

The counter value 0 must be represented by z. When a counter h should be positive, the term {7, Ch−1
f , Chf}↔K

is needed in Msg1, which shows that Ch−1
f encodes a number one less than the number encoded by Chf .

If M can reach a final configuration (qfinal, , ) starting from (q0, 0, 0) by some finite computation Comp, then
Comp can be represented as a finite sequence of configurations connected by applicable rules in δ, as follows.

(q0, 0, 0) −→t1 (Q1, V 1
1 , V

1
2 ) · · · (Qu−1, V u−1

1 , V u−1
2 ) −→tu (Qu, V u

1 , V
u
2 )

Here u > 0, t1, · · · , tu ∈ δ.
For a certain time t, let E be the set of events that has been executed in the run before t. we say a term X is

the encoding of a positive integer N at t if and only if there is a sequence of terms :
{7, z,X1}↔K , {7, X1, X2}↔K , · · · , {7, XN−2, XN−1}↔K , {7, XN−1, X}↔K

such that the attacker knows each element T of this sequence (T ∈ knowI(E)). Here X and Xj , for some integer
j, 1 ≤ j ≤ N − 1, are different variables that can represent any terms (could be composite terms). We call N the
i value of X (i stands for integer), or X is the encoding of N , or X encodes N , denoted as N = X . The above
term sequence is called the encoding sequence of X . The encoding sequence of z is z.

Here is the idea of the proof. Suppose the freshness goal of NB to S0, where S0 is A’s role, is violated, then
there are two role instances r and r′ of S0 where a term, say nb, is received, which instantiates NB in both r
and r′. In r and r′, NA must be instantiated by some freshly generated nonces. Let NA be instantiated by na in
r, and by n′a in r′, where na and n′a are freshly generated in r and r′ respectively. Then in the second message
of r, a block {qfinal, na, nb}↔K must be received. In order to let the role instance r′ of S0 receive the same nb, I
has to provide a term {qfinal, n′a, nb}↔K , where n′a is the nonce freshly generated by r′. There is only one way the
attacker I can provide this term. I can provide nb as the term NY to a role instance rfinal of Rfinal and then in
the second message of rfinal a term of the form {qfinal, NX , nb}↔K will be produced. However NX must be n′a.
The only way to let NX be n′a is to obtain a final configuration term of the form {5, n′a, qfinal, C1, C2}↔K , which
is a block received in the first message of rfinal. In order to do that, I has to obtain a sequence of configuration
terms that contain n′a, starting from {5, n′a, q0, z, z}↔K , which is obviously provided by the first message of r′. Note
that n′a is carried from configuration term to configuration term. The protocol run corresponds to a computation
of M . I can obtain {5, n′a, qfinal, C1, C2}↔K and then let r′ receive nb, and thus violates the freshness goal of NB
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for S0, if and only if the 2-counter machine M can reach some final configuration in some computation. The two
directional proof (for if and only if) can be done similarly to the proofs in [9] and [8].

Theorem 2: Checking GRA for a freshness goal is undecidable when the number of role instances in a run
(NRI) is unbounded.

Proof: There are two ways to prove this theorem. First, we can do reduction from the reachability problem
of a deterministic 2-counter machine. The protocol used in the reduction is the same as the one used in [9], which
has been specially designed so that the attacker I is an insider and I has to construct blocks in order to commit
an attack. The reduction use the same protocol, which is translated from a 2-counter machine M , as in [17] [9]. In
the protocol, the two roles Sfinal and Rfinal carry out an adjusted version of the public key Needham-Schroeder
protocol, they are executed by agents A and B respectively. The communication sequence between A and B is
follows.

1. #A(NA, C1final, C2final) (A⇒ B) :
{ 1, NA, A, {5, B, e, qfinal, C1final, C2final}→k0

A
}→k1

B

2. #B(NB) (B ⇒ A) : {2, NA, NB}→k1
A

3. (A⇒ B) : {3, NB}→k1
B

The freshness goal chosen for the reduction is the one of the term C1final or C2final to the role Rfinal executed
by agent B. Following the proof in [17], the attacker can know a final configuration term, which has the form {5,
B, e, qfinal, C1final, C2final }→k0

A
, if and only if M can reach a final configuration.

It is obvious that if the attacker can obtain a final configuration term, the attacker can use the same final
configuration term to construct the first messages that is received in two role instances r1 and r2 of Rfinal, and
the freshness goal is violated. Let NA be instantiated by na in r1, and by n′a in r2. The attacker knows na and n′a,
which are sent from some agent A to I when A executes the role Sfinal and I is an insider initially known to A.
I initially knows 1, A, and k1

B . Therefore, once I knows a final configuration term, I can construct the the first
messages that are received in two role instances r1 and r2, and the same C1final or C2final is received in both
r1 and r2. The attack is very similar to the attack to the one described in [17], which simulates the attack to the
PKNS protocol [26].

In the other direction, if the freshness goal is violated in a run, then two different role instances r1 and r2 of
the role Rfinal will receive a subterm, which is a final configuration term, in their first messages, with the same
term C1final or C2final. One of these two first messages of r1 and r2 must be constructed by the attacker, since
otherwise the values of C1final or C2final will be freshly generated by regular agents and will be different in r1
and r2; therefore, I must know a final configuration term, which implies that M can reach a final configuration.

The second way to prove this theorem is by reduction from secrecy to freshness, as sketched below. Given
a protocol Pro of the secrecy problem, we construct a protocol Pro′ for the freshness problem by adding the
following lines in some proper way into the CS of Pro.
#A(N1) (A⇒ B) : {m,A,B,N1, SECRET}→k1

B

#B(N2) (B ⇒ A) : {m+ 1, B,A,N1, N2}↔SECRET
(A⇒ B) : {m+ 2, A,B,N2}↔SECRET

Here N1 and N2 are fresh nonces created by A and B respectively. SECRET is a term that is supposed to be
shared between A and B. The three numbers (constants) m, m + 1 and m + 2, for some integer m, are used
to distinguish the three messages from other encryptions appearing in the protocol to avoid confusion. Then the
freshness goal to be checked is the one of N1 to B’s role, assuming the attacker initially knows the names and
public keys of all agents and all the constants in the protocol.

D. Athena

We obtain several decidability results based on analyzing the performance of the model checker Athena [12]
[13]. We introduce the notions and algorithm of Athena first, which are adapted for the modeling of this paper. We
arrange the presentation and the proof of Athena differently for simplicity and clarity.

A strand is a sequence of action steps formed by instantiating a role by some substitution. There are two
differences between a strand and a role instance. First in a strand variables can appear, while in a role instance all
terms are ground. Second a role instance includes events, where action steps are associated with time fields, but
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strand includes only action steps. During the reasoning of the model checker a strand represents a role instance of
a run.

Every strand is associated with a unique identifier in the reasoning. A node of a strand is a pair 〈r, L〉 where r
is the unique identifier of the strand, and L is the location of a block in a message of the strand, which has been
introduced in Section II. Each node can be used as a unique identifier of a block occurrence. The term of node nd,
for nd = 〈r, L〉, denoted as term(nd), means the term (the block) appearing at location of L of the strand r. A
node in a message received in a strand is called a negative node, otherwise a node in a message sent in a strand is
called a positive node. A state is a tuple 〈strands, binding, counter〉, where strands is a set of strands, binding
is a binary relationship mapping from one negative node in strands to a positive node in strands, and counter
is a natural number corresponding to the number of strands in a state. The notation 〈r, L〉 � 〈r′, L′〉 means that
the negative node 〈r, L〉, which is called the goal, binds to the positive node 〈r′, L′〉, which is called the binder,
where r, r′ ∈ strands. counter is used to check if the bounds on NRI is satisfied in a state or not. counter can
also be used to name a new strand that is introduced into a state and to name the variables of the new strand.

The causally precedence ., also called causally earlier relationship between two nodes nd = 〈r, L〉 and
nd′ = 〈r′, L′〉 is defined as follows.
• if r == r′, i.e., they refer to the same strand, if nd appears in a message with message number m, and nd′

appears in a message with number m′, and m′ < m, then nd′ . nd.
• if nd� nd′ then nd′ . nd. Note that . is opposite to �.
• if nd′ . nd′′ and nd′′ . nd, for some node nd′′, then nd′ . nd. This condition means that . is transitive.

In [13] . is defined to be reflexive, but not in this paper since it is not necessary. In a state, node nd′ is not causally
earlier than node nd is denoted as nd′ � nd.
. is obviously extended for action steps of the strands in a state. For two action steps stp and stp′ appearing in

a state S, stp′ . stp if one of the following conditions satisfies.
• If stp′ and stp appear in the same strand with message number m′ and m respectively and m′ < m.
• If there is a node nd of stp and a node nd′ of stp′ such that nd′ . nd.
• If stp′ . stp′′ and stp′′ . stp, for some step stp′′ in S.
The strand space model [19] describes a run as a bundle of strands, where each negative node is bound to

a positive node. In [12] the author extended the strand space model of [19] for the model checker Athena by
introducing variables and the unification mechanism and a set of new notions including semi-bundle and goal
binding. A semi-bundle, which may have goals unbound, is expanded and updated during the computation of
Athena and finally forms a bundle. We only use a subset of the notions used in [12] [13] that are enough for
this paper, and in some aspects these notions are presented in a different perspective since we want to clarify the
relationship between the notions of strand space used by Athena and our model of protocol run. The advantage
of our presentation of Athena is that the meaning and the correctness of the algorithm can be understood more
clearly. Based on the improved understanding, the algorithm is also simplified. For example we directly introduce
the goal binding relation � for the model checker without using the → relationship, which is defined and used in
Athena [12] [13], since we consider → is unnecessary or its meaning is unclear.

The semantics of goal binding can be explained more intuitively in our model. When checking RRA, note that
the attacker’s behavior of constructing blocks does not need to be considered due to the restriction, node nd1

binds to node nd2 means the follows: Let ev1 and ev2 be the two events that nd1 and nd2 belong to respectively.
Then term(nd1) is sent by ev2 as a block and term(nd1) cannot be sent at any event with its time point earlier
than ev2.time in the run. This semantics of goal binding can be extended for GRA, when the attacker’s internal
computations need to be described using term derivations.

The model checker has to ensure three properties, call them correctness properties, of a reachable state S during
the reasoning.

1) The . relationship of the action steps and nodes in S is acyclic.
2) All of the negative nodes with the same term in S must bind to the same positive node in S.
3) If a node nd′ is the binder of nd, i.e., nd� nd′ ∈ S.binding, then there is no node nd′′, which is different

from nd′ in S such that the term(nd′′) == term(nd′) == term(nd) and nd′′ . nd′.
The second correctness property is not introduced in [12] and [13], but we consider it can reduce redundant state

exploration significantly in some situation. Even though there could be several nodes that possibly send the same
term T at the earliest time, only one of these possible binders for T needs to be considered in a child state of S,
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and then let other children states of S to consider the other nodes as binders. Property 3 means that a goal should
only bind to the (causally) earliest binder as described in [12] and [13].

In a state the variables are global across different strands, which means that if a variable X will be instantiated
by Y , then all X appearing in all strands in the state will be replaced by Y . The function unifiable(T, T ′) returns
true, if T and T ′ are unifiable, otherwise false. Type information can be introduced for unification. For example if
according to the protocol in a certain role a variable A is required to be some known agent name, then in a run
A can only be unified with an agent name, and A cannot be unified with a nonce generated in the run. For two
terms T and T ′, mgu(T, T ′) represents the most general unifier (MGU) of T and T ′. For a substitution γ, γ(X)
means to apply γ to X , where X could be a term, an action step, a strand, or a state, in the obvious way.

RRA Checker(Pro, R, V, N), to check the freshness goal of a variable V
to role R in a protocol Pro, no more than N role instances in a run, N ≥ 2

1: Let r1 and r2 be two different strands of R formed as follows. r1 and r2 are the same as R except for two
aspects: First, for every variable X in R that is not freshly generated in R, except V whose freshness needs to
be checked, X is renamed as X1 in r1, and as X2 in r2. The variable V remains unchanged and appears in
both r1 and r2. Second, for each variable Y if Y is freshly generated in R, Y is renamed by a unique constant
in r1, and by another unique constant in r2.

2: Let state0 := 〈{r1, r2}, ∅, 2〉; Let STATES := {state0}.
3: while STATES 6= ∅ do
4: let S be an arbitrary state in STATES; STATES := STATES − S.
5: if for every negative node nd in S, there is some positive node nd′ in S such that nd� nd′ ∈ S.binding

then
6: print BAD: an attack found, the freshness goal of V for R is violated.
7: Quit the algorithm.
8: end if
9: Let nd be an arbitrarily chosen negative node in S such that nd � nd′ /∈ S.binding for any positive node

nd′. It means nd has not been bound (to any positive node) yet. Let T := term(nd).
10: for all positive node nd′ in S.strands such that nd � nd′ do
11: if unifiable( T, term(nd′) ) then
12: Let γ := mgu( T, term(nd′) ).
13: Let state S′ be a new state formed as

〈γ(S.strands), S.binding ∪ {nd� nd′}, S.counter〉.
14: if S′ satisfies the three correctness properties as described earlier in this Section then
15: Let STATES := STATES + S′. { /* Insert S′ into STATES. */}
16: end if{ /* S spawns S′ */ }
17: end if
18: end for{/* Finish trying to bind nd to nodes of existing strands*/}
19: if S.counter < N then
20: for all blocks T ′ of the protocol, such that T ′ appears at location L′ in a role R′ in a sent message

numbered with m, and unifiable(T, T ′) do
21: Let n = S.counter + 1; Let rn be a new strand formed as follows. rn is the same as the prefix of the

action steps of R′ up to the message numbered with m, denote this prefix as R′↑m, except that for each
variable X of R′↑m if X is not freshly generated in R′, X is renamed with Xn in rn. Otherwise if X
is freshly generated in R′↑m, then X is replaced in rn by a unique constant that has not appeared in S
yet.

22: Let T ′′ be the block located at L′ in rn; Let γ := mgu(T, T ′′); Let nd′ be the node 〈rn, L′〉
23: let S′ be a new state formed as (note S does not change)

〈γ(S.strands ∪ {rn}), S.binding ∪ {nd� nd′}, n〉
24: if S′ satisfies the second correctness property, described earlier then
25: insert S′ into STATES. {/* S spawns S′ */}
26: end if{/* No need to consider the correctness properties 1 and 3 */}
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27: end for{/* Finish trying to bind nd to nodes of new strands. */}
28: end if{/* Finish handling the state S */}
29: end while
30: print Good: the freshness goal of V for R is satisfied.

More discussion of the algorithm is presented in Appendix C.
Lemma 2: When NRI is individually bounded, RRA Checker terminates in 2-EXPTIME, and when NRI is

fixed, RRA Checker terminates in EXPTIME.
Proof: Terms appear as bit-strings to the actual algorithm. Note that a bit-string here does not mean the

data in physical network. The length of a bit-string Str is the number of bits and is denoted as |Str|bit. The
input of RRA Checker, which is 〈Pro,R, V,N〉, can be considered as a bit-string and its size is measured as
ζ = |〈Pro,R, V,N〉|bit. We want to prove that when NRI is individually bounded by N , or NRI is fixed to n (N
is replaced by n), RRA Checker terminates with time cost O(2(2P(ζ)

), or O(2P(ζ)), respectively, where P(ζ) is a
polynomial function of ζ. Time is measured by the number of instructions executed.

First we consider the case that NRI is individually bounded by N . The states that can be reached in a computation
of RRA Checker can be viewed as a tree. The top state is s0. If a state S′ is created from a state S (by the
line 15 or 25) then S′ is a child state of S. Let ψ = |Pro|bit ×N . It is obvious that N < 2|N+1|bit = 2O(|N |bit).
The number of occurrences of subterms of a term T is no more than |T |bit. Since each state can have at most N
strands, and each strand can have no more than |Pro|bit nodes, the total number of nodes in a state is at most
|Pro|bit × N = ψ. Each state has at most O(ψ) children states, since for the single arbitrarily chosen negative
node nd of S (see line 9), there are at most ψ positive nodes in the existing strands or new strands that can be
the possible binders for nd. The depth from the top state s0 to the bottom of the tree is at most ψ, since each
child state has one more negative node bound (to some positive node) than its parent state, and there are at most ψ
negative nodes in a state. So the tree of states is at most O(ψ) branching and at most O(ψ) deep. So the number
reachable states is at most O(ψψ).

For efficiency purpose of unification, all terms are represented as DAGs [5] in the reasoning of RRA Checker.
A DAG of a term T is a tree where each subterm of T appears as a node of the tree exactly once. The subterms of
T is defined in the common way as in [5]. Note that encryption key is considered as a subterm of an encryption.
The DAG size of a term T is the number of subterms of T , denoted as |T |DAG. Obviously |T |DAG ≤ |T |bit.
All messages sent or received in the protocol Pro is translated into DAG representation, which can be done in
O(|Pro|bit) time. |Pro|DAG is defined accordingly. Let M be the number of all distinct subterms appearing in all
messages sent or received in all strands in a state. Since for RRA a regular agent can only receive and accept a block
that is sent in a message by a regular agent, obviously only the messages sent in the strands contributes toM. It is
obvious to prove that for a strand r of role R, r can contribute at most |R|DAG to M, and |R|DAG ≤ |Pro|DAG.
Since there are at most N strands, for any reachable state M≤ |Pro|DAG ×N < ψ. So for any message Msg in
a strand of a state, |Msg|DAG < ψ.

The time cost to generate a new state is O(ψ3) for the following reasons: First, for two terms T1 and T2,
mgu(T1, T2) and unifiable(T1, T2) (Line 12 and 21) have time cost O(|T1|DAG+|T2|DAG), and since |T1|DAG < ψ
and |T2|DAG < ψ, the time cost is O(ψ). Second, the cost of applying a substitution to the strands in a state is
O(ψ3) (line 23), since there are at most ψ action steps in a state, and there are at most ψ variables in an action
step, and for the instantiation T of each variable |T |DAG = O(ψ). Note that it is possible to reduce the cost of
applying a substitution to the strands in a state to O(ψ) if we arrange the computation using pointers and links.
But O(ψ3) is enough to prove our complexity results. Third, with proper organization of the data structure for the
. relationship, the cost to check the correctness properties for a state is also O(ψ), which is the maximum number
of nodes in a state.
RRA Checker will terminate after

O(ψψ × ψ3) = O({2log2ψ}ψ × ψ3) = O(2log2ψ×ψ+log2ψ3
) = O(2ψ

2
)

instructions. Since |Pro|bit is at most ζ and N is at most 2ζ ,
ψ = |Pro|bit ×N < ζ × 2ζ = 2log2ζ+ζ < 22ζ .

The algorithm terminates in no more than
O(2ψ

2
) = O(2(22ζ)2) = O(224ζ

)
instructions, which is in 2-EXPTIME, since 4ζ is a polynomial function of ζ.
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Now we analyze the other case. When NRI is a fixed number n, the input size of RRA Checker is ζ, and
|Pro|bit = O(ζ). Then ψ = |Pro|bit × n < nζ. The time complexity is no more than O(2ψ

2
) < O(2(nζ)2) =

O(2n
2ζ2), which is in EXPTIME, since n2ζ2 is a polynomial of ζ where n is a constant.

The following lemma shows the completeness of RRA Checker. There is a proof of the complete-inclusive
property of Athena in [13]. We believe our approach provides more details from a different perspective.

Lemma 3: For every possible attack atk such that the freshness goal of V to R is violated, the following is
true. During the computation of RRA Checker for the freshness goal, before every iteration of the while loop,
i.e, whenever line 3 is reached, atk is associated to a state s in the set STATES by a map θ and a substitution
η, and θ and η must satisfy the following conditions.

1) There is a non-empty subset of the role instances of atk, call it ris, and a one-to-one map θ between the
strands of s (s.strands) and the role instances in ris. θ can be obviously extended to associate the nodes of
s to the blocks of ris, and the steps of s to the events of ris.

2) There is a substitution η from the atomic terms appearing in s.strands and the ground terms appearing in ris,
such that if θ(st) = ev.step, where st is a step (of a strand) of s, and ev.step is the step of the corresponding
event ev in ris, then η(st) = ev.

3) If nd � nd′ ∈ s.binding, let stp and stp′ be the two steps in s where the two nodes nd and nd′ belong
respectively, and let T be the term of two nodes, then θ(stp′) is the earliest event in atk such that the block
η(T ) is sent, i.e., for every event ev in atk such that a block η(T ) is sent by ev, then ev.time ≥ θ(stp′).time.

4) For two steps stp and stp′ of s, if stp′ . stp, then θ(stp′).time < θ(stp).time.
Proof: The proof is by induction on the iterations of the while loop. The base case is obvious for state0.

Since the algorithm consider all possible ways that a block can be generated the first time in a run, if an attack
is associated with a state s by some map θ and substitution η, then the attack must be associated with a state s′,
which is a child of s, by some θ′ and η′, which can be easily obtained by adjusting and extending θ and η of s.

The soundness and completeness of Athena to check secrecy and authentication when NRI is bounded have been
addressed in [13], and the soundness and completeness of RRA Checker can be proved similarly. The soundness
of the RRA Checker is obvious: when RRA Checker reports an attack, then there is an attack that violates the
freshness goal. The completeness of RRA Checker can be proved by induction on the iterations of the RRA Checker
to show that for any run of the protocol that violates the freshness goal, a subset of the role instances in the run
can always be mapped to the strands of a reachable state during the computation of RRA Checker. In [27] further
details of the correctness of RRA Checker are provided; therefore, we can prove the following theorem.

E. Decidability Results

Theorem 3: Checking RRA for a freshness goal is 2-EXPTIME when NRI is individually bounded, and is
EXPTIME when NRI is fixed.
When NRI is individually bounded or fixed, the complexity of checking DRA is no more than checking RRA, and
we have the following corollary.

Corollary 1: Checking DRA for a freshness goal is 2-EXPTIME when NRI is individually bounded, and is
EXPTIME when NRI is fixed.

Since DRA can be considered a special case of RRA, RRA Checker can be adapted to check DRA. Then the
goal binding mechanism is further restricted, so that a node nd received at location L can only bind to a node nd′

sent at location L, according to the protocol. Suppose r′ is the new strand introduced to a state by the binding
from nd to nd′, where nd′ appears in r′, and nd appears in a strand r already included in the state. Let m and
m′ be the largest message number of a receiving action step in r and r′ respectively. Then it is true that m′ < m.
By this observation, it is not difficult to design a measure which is strictly decreasing in any branch of the state
tree of RRA Checker. Since RRA Checker is finitely branching, its termination of checking DRA is obvious, even
when NRI is unbounded. The soundness and completeness of the algorithm still hold for checking DRA. So we
have the following theorem.

Theorem 4: Checking DRA for a freshness goal is decidable when the number of role instances in a run (NRI)
is unbounded.

Theorem 5: Checking RRA for a freshness goal is NP-complete when NRI is fixed by a number n.
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Proof: A non-deterministic algorithm can just guess a branch of the tree of states of RRA Checker, which
has at most ψ = |Pro|bit × n states. Since the cost to generate a state is O(ψ3), and ψ < nζ, the total cost of a
branch of RRA Checker is O(ψ)×O(ψ3) = O(ψ4) = O(n4ζ4) = O(ζ4). Since ζ4 is a polynomial function of ζ,
checking RRA for a freshness goal is NP when NRI is fixed.

Second, we show that the problem is NP-hard, by a reduction from a well-known NP-hard problem, 3-SAT. Given
an instance of 3-SAT problem, we translate it into a problem 〈Pro,R, V, n〉. Here n is the fixed number, n ≥ 2,
such that no run with the number of role instances (NRI) more than n is considered. We prove the NP-hardness for
n = 2, since the same proof can be applied to show the NP-hardness of deciding other languages of 〈Pro,R, V, n〉
for n > 2.

A 3-SAT problem is a tuple 〈V ar, formula〉, where V ar is a set of variables, formula is a conjunction of
a sequence of clauses, with the form C1

∧
C2 · · ·

∧
Cu, where Ci is a clause, for 1 ≤ i ≤ u and 1 ≤ j. Ci is a

disjunction of three literals of form L1
i ∨ L2

i ∨ L3
i . Each literal is a variable X or a negation of a variable ¬X ,

X ∈ V ar. The problem is to decide if there is an assignment of > (truth) or ⊥ (false) to the variables in V ar
such that formula can be evaluated to >.

A 3-SAT problem 〈V ar, formula〉 is translated to a protocol Pro. Suppose V ar = {X1, X2, · · ·Xg}, 1 ≤ g,
these g variables correspond to g different constants x1, x2, · · ·xg. The other constants that appear in the protocol
are {1, 2, · · ·u, true, final}. Note that there u clauses in formula.

The communication sequence of the protocol starts with the following 4 message exchanges between A and B.
1. #A(N0

A)(A⇒ B) : A, B, ⊥, >, {x1,⊥, N0
A}↔k , {x1,>, N0

A}↔k ,
· · · {xg,⊥, N0

A}↔k , {xg,>, N0
A}↔k ,

{0, true,N0
A}↔k , · · · {u, true,N0

A}↔k
2. #B(X1, X2, · · ·Xg)(B ⇒ A) : B,A,X1, X2, · · ·Xg

3. #A(NA, N
′
A)(A⇒ B) : A, B, {x1, X1, NA}↔k , · · · {xg, Xg, NA}↔k ,

{final,NA, N
′
A}↔k , {0, true,NA}↔k , N ′A

4. #B(NB)(B ⇒ A) : B, A, {final,NA, NB}↔k
Here we explain some of the above message exchanges. In the first message, call it Msg1, the terms of the form

{xi,>/⊥, N0
A}↔k , which means {xi,>, N0

A}↔k or {xi,⊥, N0
A}↔k , for 1 ≤ i ≤ g, are designed as “dummy terms” to

simply fill some needed parts in a message, and they will be used to finish some role instances since in the attack
two role instances need to finish execution. For example we will see that in the proof in a role instance of of A,
A will need to receive some term of the form {xi,>/⊥, N j

i }↔k , then the attacker can use a term {xi,>/⊥, N0
A}↔k

generated in Msg1 instead. The dummy terms will not actually be used to simulate an evaluation of a formula.
The terms of the form {f, true,N0

A}↔k , 0 ≤ f ≤ u, are also dummy terms, which will be used to fill the places
of {i, true,N j

i }↔k (introduced later in the role of A). In Msg2, A is supposed receive g nonces, and the attacker
need to provide either > or ⊥ for each of the g nonces in order to possibly make an attack. In Msg3, A send
out the terms of the form {xi,>/⊥, NA}↔k . These terms are used to indicate the value of the variable Xi in an
assignment. The nonce NA can ensure that Xi is associated with a unique value, since it is impossible that both
{xi,>, NA}↔k and {xi,⊥, NA}↔k can appear in a run, for a unique NA; therefore, Xi can only be assigned with
one value. N ′A is generated as a block in Msg3 so that N ′A can be used in the attack to replace NY which will
appear in the last two messages (introduced later) of the protocol.

For each clause Ci, 1 ≤ i ≤ u, starting from C1, do the following. For each literal of Ci, say the jth literal,
1 ≤ j ≤ 3, if a positive literal of a variable Xh appears in C1, Xh ∈ V ar which means 1 ≤ h ≤ g, then the
following message exchanges are appended to Pro, which is considered as a communication sequence. Note that
we do not indicate the message numbers of the message exchanges to be appended, since the proper message
numbers should be obviously assigned sequentially starting from 5. Each message includes the sender’s name and
the receiver’s name to make the meaning more obvious.

. #B(N j
i )(B ⇒ A) : B,A, {i− 1, true,N j

i }↔k , {xh,>, N
j
i }↔k

. (A⇒ B) : A,B, {i, true,N j
i }↔k

Otherwise if a negative literal of Xh, which is ¬Xh, appears in the jth literal of Ci, then the following message
exchanges are appended Pro.

. #B(N j
i )(B ⇒ A) : B, A, {i− 1, true,N j

i }↔k , {xh,⊥, N
j
i }↔k

. (A⇒ B) : A, B, {i, true,N j
i }↔k

Finally the following two messages are appended to Pro.CS.
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. #B(NX , NY )(B ⇒ A) : B, A, {u, true,NX}↔k , NY

. (A⇒ B) : A, B, {final,NX , NY }↔k
The protocol implies two roles executed by A and B respectively, call the two roles RA and RB . The freshness

goal to be checked is NB to RA. The target problem is 〈Pro,D,RA, NB, 2〉. The translation time is in linear to
the size of the source problem 〈V ar, formula〉.

Now we show the correctness of the reduction in two directions. When we describe a role instance we only
show the steps of its events, not the time fields. The time fields are not shown since they can be arranged easily
by assign some sequential number following the order that the events are introduced in the attack.

Direction 1: we show that if there is an assignment to the variables of the 3-SAT problem to evaluate the formula
to >, there is an attack with 2 role instances of RA such that the freshness goal of NB to RA can be violated. The
attack includes two different role instance r1 and r2 of RA, both are executed by an agent a while a considers the
interlocutor is b, while the attacker impersonates b and construct all messages that are supposed to be sent by b.
The first 4 messages sent or received by a in r1 are as follows.

1. #(n
0
a) + (a⇒ b) : a, b, ⊥, >, {x1,⊥, n0

a}↔k , {x1,>, n0
a}↔k ,

· · · {xg,⊥, n0
a}↔k , {xg,>, n0

a}↔k ,
{0, true, n0

a}↔k , · · · {u, true, n0
a}↔k

2. −(b⇒ a) : b, a, >/⊥, >/⊥, · · · >/⊥
3. #A(na, n′a) + (a⇒ b) : a, b, {x1,>/⊥, na}↔k , · · · {xg,>/⊥, na}↔k ,

{final, na, n′a}↔k , {0, true, na}↔k , n′a
4. −(b⇒ a) : b, a, {final, na, n′a}↔k

All of the messages that are received by a and are supposed to be sent by b are constructed by the attacker using
the blocks already sent by a. In message 2, the attacker choose the assignment, by which the formula of the 3-SAT
problem is evaluated to >, to replace X1 to Xj . >/⊥ means the term is either > or ⊥.

Now r1 has executed four messages. Before r1 finishes the remaining messages, another role instance of A′s
role starts, call it r2. We choose a to execute r2, but r2 can be executed by any agent and the proof still works.
The first 3 messages sent or received by r2 are as follows.

1. #(m
0
a) + (a⇒ b) : a, b, ⊥, >, {x1,⊥,m0

a}↔k , {x1,>,m0
a}↔k ,

· · · {xg,⊥,m0
a}↔k , {xg,>,m0

a}↔k ,
{0, true,m0

a}↔k , · · · {u, true,m0
a}↔k

2. −(b⇒ a) : b, a,>/⊥,>/⊥, · · · >/⊥
3. #A(ma,m

′
a) + (a⇒ b) : a, b, {x1,>/⊥,ma}↔k , · · · {xg,>/⊥,ma}↔k ,

{final,ma,m
′
a}↔k , {0, true,ma}↔k , m′a

Note that in Msg2 of r2 the attacker choose the same assignment of variables by which the formula evaluates
to >. We want to let a receive n′a again in r2 which instantiates NB the same as in r1, which means that Msg4
of r2 should be

4. −(b⇒ a) : {final,ma, n
′
a}↔k .

However the term {final,ma, n
′
a}↔k has not been generated yet.

Before r2 finishes its Msg4, r1 continues to execute the rest of its messages. According to the design of the
protocol, for each literal in the formula there are two messages in A’s role, listed sequentially. Since the assignment
makes the formula true, for each clause there is at least one literal in it that is evaluated to be >. For the the jth

literal 1 ≤ j ≤ 3, of the ith clause Ci, 1 ≤ i ≤ u, call it Lji . If Lji is evaluated to > by the assignment, and variable
Xh appears in Lji , 1 ≤ h ≤ g, then the corresponding twos messages to handle Lji in r1 are as follows.

. −(b⇒ a) : b, a, {i− 1, true,ma}↔k , {xh,>/⊥,ma}↔k

. +(a⇒ b) : a, b, {i, true,ma}↔k
where >/⊥ means > (or ⊥) if according to the assignment the value of Xh should be > (or ⊥ respectively), so
that Lji is evaluated >. It can be proved by induction that the term {i− 1, true,ma}↔k can always be generated in
an earlier message sent by r1. Note that the first one {0, true,ma}↔k has been generated in r2 in Msg3.

Otherwise if Lji is evaluated to ⊥ by the assignment, by which the whole formula is evaluated to >, then the
corresponding twos messages to handle Lji in r1 are as follows.

. −(b⇒ a) : b, a, {i− 1, true, n0
a}↔k , {xh,>/⊥, n0

a}↔k
. +(a⇒ b) : a, b, {i, true, n0

a}↔k
Again the choice of > or ⊥ depends on the design of the Pro described earlier. The two blocks {i−1, true, n0

a}↔k
and {xh,>/⊥, n0

a}↔k have been generated in Msg1 of r1. Note that we can also use the dummy terms of {i −
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1, true,m0
a}↔k and {xh,>/⊥,m0

a}↔k generated by r2, since the purpose here is just to let r2 continue its execution.
It is guaranteed that for each clause Ci, 1 ≤ i ≤ u, a block of {i, true,ma}↔k is generated; therefore, a term

{u, true,ma}↔k should be generated following the steps described above. Then the last two messages of r1 are the
follows.

. −(b⇒ a) : b, a, {u, true,ma}↔k , n′a

. +(a⇒ b) : a, b, {final,ma, n
′
a}↔k

Note that the attacker can provide n′a since it was sent by Msg3 of r1.
Now the r2 resumes to execute its Msg4, where {final,ma, n

′
a}↔k is received, and n′a instantiates NB , the

same as in r1. The attacker can provide the messages to be received by the rest of r2 by using the dummy terms
generated by the first 3 messages of either r1 or r2. So there is an attack with only two role instances that violates
the freshness goal of NB to A’s role. Note that by the definition of GRA the two role instances need to be fully
executed.

Direction 2: we want to prove that if there is a run with 2 role instances, r1 and r2, such that the freshness
goal of NB to A’s role is violated, then the corresponding 3− SAT formula can be evaluated to > with an value
assignment to its variables. r1 and r2 must both belong to A′s role in order to make the attack possible (by the
definition of a freshness goal, and we are considering only two role instances). In this run in Msg4 of r1 the term
T1 = {final, na, v}↔k is received, for some term v, while in Msg4 of r2 a term T2 = {final,ma, v}↔k is received,
with the same v that instantiates NB , and na and ma are freshly generated in r1 and r2 respectively to instantiate
Na. Note that T1 6= T2 since na 6= ma. There are four terms of the form {final,X, Y }↔k that can be generated
(sent, not received) by r1 and r2: {final, na, n′a}↔k generated by Msg3 of r1, or {final,ma,m

′
a}↔k generated by

Msg3 of r1, or the last message of r1 {final,G,H}↔k , or the last message of r2 {final, U, V }↔k .
There are several impossible cases to consider where T1 and T2 are generated.
• T1 and T2 are generated in the same place in the same role instance. It is impossible since T1 6= T2.
• T1 and T2 are both generated by the last message of A’s role, one in r1 and the other in r2. It is impossible

since it means the attacker can provide one of T1 and T2 before it is generated. We can see the conflict by
reasoning about which message is generated earlier.

• T1 and T2 are both generated by the Msg3 of A’s role, one in r1 and the other in r2. It is impossible since
the two terms generated in r1 and r2 at Msg3 are {final, na, n′a}↔k and {final,ma,m

′
a}↔k where n′a 6= m′a.

The only possible case is that T1 is generated in Msg3 of A’s role and T2 is generated in the last message of
A’s role, either in a single role instance or in two different role instances of A’s role. Without loss of generality,
we consider T1 is generated in Msg3. Then T1 must be generated in Msg3 of r1 since the term NA is uniquely
generated in A’s role. So T1 = {final, na, n′a}↔k . Then it must be true that T2 = {final,ma, n

′
a}↔k . Since T2 is

received by Msg4 of r2, T2 cannot be generated by the last message of r2, which occurs later. So T2 must be
generated by the last message of r1. Then in the second to the last message of r1 a term {u, true,ma}↔k must be
received by r1. The attacker can always provide the other terms for this message, including the agent names A and
B and n′a, which is a block generated by Msg3 of r1. The question is that how {u, true,ma}↔k is generated. Note
that {0, true,ma}↔k is available since it is generated by the Msg3 of r2. Then it can be proved by induction that
for each term of the form {i, true,ma}↔k can be generated in the run, for 1 ≤ i ≤ u, there is a value assignment to
the variables in V ar such that all of the clause Cf , 1 ≤ f ≤ i, are evaluated to >; therefore, since {u, true,ma}↔k
is generated, all of the clauses are evaluated to > by some assignment.

The above proof works for n = 2. And the same proof can apply to other languages of 〈Pro,D,R, V, n〉, where
n > 3, to show the NP-completeness.

We have attempted to check DRA by a set of efficient reasoning rules that take advantage of the restrictions for the
attacker. It seems that checking DRA is P (decidable in polynomial time) even NRI is unbounded. Adapting Athena
to check DRA cannot get a polynomial time result since we have found some protocols that require exponential
time for Athena to check DRA.

To show the NP-completeness of checking GRA following the approach of this paper will need to incorporate
the attacker’s internal computation (the attacker strands of Athena) into the model checker. Furthermore we have to
prove that in a non-deterministic branch of the computation of the model checker, the DAG size of the substitution
is polynomial to the DAG size of the protocol, as discussed in [5]. Since we have some doubts on the existing
proofs of NP-completeness for checking secrecy [5] as mentioned earlier, and we discuss the NP proof in details
in [23], we are trying to have a better approach to show the NP-completeness of secrecy and authentication while
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a bound on role instances is considered, which we believe should cover the NP-completeness of checking GRA
when NRI is fixed.

We summarize the complexity results of checking freshness in Table III-E. The results surrounded by two question
marks are by postulation and have not been proved by this paper and are under investigation.

attack \ NRI unbounded individually bounded fixed
DRA Decidable, ?P? 2-EXPTIME, ?P? EXPTIME, ?P?
RRA Undecidable 2-EXPTIME NP-complete
GRA Undecidable ?2-EXPTIME? ?NP-complete?

TABLE I
COMPLEXITY OF CHECKING FRESHNESS. THE RESULTS MARKED WITH DOUBLE QUESTION MARKS ARE BY POSTULATION AND HAVE

NOT BEEN PROVED BY THIS PAPER. OTHER RESULTS ARE PROVED.

The following remark shows that the difference between the considerations of fixed or individually bounded NRI
may not affect the complexity results if we do not measure NRI as length of bits.

Remark 1: The decidability complexity results depends on the measure of the of the input size of the checker.
If we measure the number of role instances separately by a natural number, not by length of bits, which is similar
to the way that the number of elements of a sequence is measured as the input size of a sorting algorithms, and
the input size of checking GRA or RRA is measured as |〈Pro,D,R, V |bit+N or |〈Pro,D,R, V |bit×N , then for
checking RRA, the complexity is the NP-complete for both cases of fixed or individually bounded NRI. And we
believe that with the adjusted input size measure, the complexity results of checking GRA with fixed or individually
bounded NRI are the same.

IV. SUMMARY

In this paper we define freshness goal and its attacks and investigate the complexity of checking freshness, which
is the first research on this topic. The techniques of modeling, reduction, and model checking have novel features
and can be applied generally in this area. Currently we are investigating the polynomial time algorithm to check
DRA, and we use an approach that achieves efficiency by tracing the mechanism of challenge-response, which
is rather different from the approach of using a model checker in this paper. We are also studying an improved
approach to prove NP-completeness of checking secrecy, which can also be applied to authentication and checking
GRA. We expect to extend the NP-complete proof of this paper and to handle several demanding issues discussed
at the end of Section III. These substantial works are proper to be addressed in subsequent researches beyond the
scope of this paper.
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APPENDIX

A. The PKNS Protocol and Challenge-Response

1. #A(NA) (A⇒ B) : {NA, A}→k1
B

2. #B(NB) (B ⇒ A) : {NA, NB}→k1
A

3. (A⇒ B) : {NB}→k1
B

RoleA RoleB
1. #A(NA) +(A⇒ B) : {NA, A}→k1

B
1. −(A⇒ B) : {NA, A}→k1

B

2. −(B ⇒ A) : {NA, NB}→k1
A

2. #B(NB) +(B ⇒ A) : {NA, NB}→k1
A

3. +(A⇒ B) : {NB}→k1
B

3. −(A⇒ B) : {NB}→k1
B

Fig. 1. The communication sequence of the PKNS protocol and its two roles.

Challenge-response is a mechanism in a protocol that an agent A freshly creates a term NA and send it out (in
A’s role) and then later NA appears in some message received by A (in A’s role). The challenge-response of the
simplest form can be found in the public key Needham-Schroeder protocol with three messages (the core part),
we call it the PKNS protocol [28], showed in Figure 1. In the PKNS protocol, A and B mutually challenge each
other. A performs a freshness challenge to B by creating and sending a nonce NA to B in Msg1 and receiving
NA back in Msg2. Similarly B challenges A by creating and sending a nonce NB to A in Msg2 and receiving it
back in Msg3.

citeseer.ist.psu.edu/gong93variations.html
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Freshness-challenge can guarantee some security properties. For example, for the PKNS protocol, when A receives
Msg2, A can make sure that the if the sender (or creator), call it P , of Msg2 is honest, it is guaranteed that NB

is generated by P after P receives NA. By this way A can make sure P has actively responded A’s message.
This observation is true despite there is a famous attack to the PKNS protocol found by Lowe [26]. For the PKNS
protocol, the problem is that A cannot ensure that the creator of Msg2 is B, whom A intended to talk with.

B. On Defining Freshness

The definition of freshness of [14] is quoted as follows.
Data D is fresh whenever a principal A never completes a run with another principal agreeing on D, if
once in the past A has already completed a protocol run with another principal agreeing on the same data
D.

The following observation describes a protocol with the simplest challenge-response, and assumes an ideal
situation where the attacker’s behavior is restricted enough so that obviously the attacker does not interfere with the
challenge-response mechanism, although the attacker can replay messages. This observation is relevant to understand
the freshness goal and the attacker’s involvement, which will be discussed soon.

Observation 1: Consider a protocol with the communication sequence between A and B as follows.
1. #A(NA) (A⇒ B) : {A,NA}↔K
2. #B(NB) (B ⇒ A) : {B,NA, NB}↔K

Assume the message received by each role instance of A’s role (or B’s role) must be sent by some role instance
of B’s role (or A’s role respectively). It is impossible to have a run of the protocol with two role instances of A’s
role where in the variable NB is instantiated by the same ground term in the two role instances.

Proof: Suppose the contrary of the observation, in a run of the protocol there are two role instances of
A’s role, r1 and r2, where NB is instantiated by the same term nb. Let r1 and r2 be executed by A1 and A2

respectively, where A1 and A2 could be different agents. There must be two different nonces n1
a and n2

a that are
freshly generated in r1 and r2 respectively to instantiate NA. The second message of r1 must be {B1, n

1
a, nb}↔K ,

call it msg1, and the second message of r2 must be {B2, n
2
a, nb}↔K , call it msg2. Note that B1 and B2 could be

different. By the condition assumed by the observation, msg1 and msg2 must be sent by some role instances of
B’s role. Since in B’s role only one message is sent, and msg1 6= msg2, msg1 and msg2 must be sent by two
different role instances of B’s role, which implies that nb is freshly generated in two different role instances to
instantiate NB , impossible due to our assumption of unbounded nonce generation.

It can be complex to check the property described by the above observation, that no two role instances of A’s
role can receive the same NB , when the challenge-response mechanism is more complex or the attacker has more
complex involvement in a protocol run.

C. Discussion of RRA Checker

For RRA Checker, the set of strands strands in a state can be implemented in two other ways.
1) strands is a queue. Then the state chosen to be checked is popped (line 4) and new states are appended to

the queue (Line 14 and 26). In this way, the algorithm is doing breadth-first exploration of the possible states.
2) strands is a stack. Then the state chosen to be checked is popped and the new states are pushed to the stack.

In this way the algorithm is doing depth-first exploration of the possible states.
Generally the options of implementing strands be a stack, queue or set are equivalent in terms of decidability and
performance, when the number of role instances (NRI) in a run is fixed or individually bounded. But when NRI
is unbounded, choosing strands to be a queue and doing breadth-first exploration is better since it will guarantee
that if there is an attack the algorithm will find it, but if there is no attack the algorithm is not guaranteed to
terminate. In contrast choosing strands to be a stack and doing depth-first exploration when NRI is unbounded
will guarantee neither finding an attack nor proving the security goal is satisfied.

We have considered several implementation features to improve the performance of the model checker, and to
avoid the redundant computations in some special cases, but they will not change the general complexity results of
this paper.
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