
 
 

 
 
 

Using Polygon Analysis for Contrast Mining in 
Spatial Data 

 
Chun Sheng Chen1, Vadeerat Rinsurongkawong1,  

Christoph F. Eick1, and Michael D. Twa2 
 

Department of Computer Science 
University of Houston 

Houston, TX, 77204, USA 
http://www.cs.uh.edu 

Technical Report Number UH-CS-09-01 
January 29, 2009 

 
Keywords: Contrast Mining, spatial data mining, region 

discovery, supervised density estimation technique, contour 
clustering algorithm 

 
 

 
Abstract 

 
Detecting changes in spatial datasets is important for many fields. In this paper, we introduce a 
methodology for change analysis in spatial datasets that combines contouring algorithms with supervised 
density estimation techniques. The methodology allows users to define their own criteria for features of 
interest and to identify changes in those features between two datasets. Change analysis is performed by 
comparing interesting regions that have been derived using contour clustering. A novel clustering 
algorithm called DCONTOUR is introduced for this purpose that computes contour polygons that 
describe the boundary of a supervised density function at a given density threshold. Relationships 
between old and new data are analyzed relying on polygon operations. We evaluate our methodology in 
case studies that analyze changes in earthquake patterns.  
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Abstract 

Detecting changes in spatial datasets is important for many fields. In this paper, we introduce a methodology for 
change analysis in spatial datasets that combines contouring algorithms with supervised density estimation 
techniques. The methodology allows users to define their own criteria for features of interest and to identify changes 
in those features between two datasets. Change analysis is performed by comparing interesting regions that have 
been derived using contour clustering. A novel clustering algorithm called DCONTOUR is introduced for this 
purpose that computes contour polygons that describe the boundary of a supervised density function at a given 
density threshold. Relationships between old and new data are analyzed relying on polygon operations. We evaluate 
our methodology in case studies that analyze changes in earthquake patterns.  

I. INTRODUCTION 
Spatial datasets, containing geo-referenced data, are growing at a very high speed. Detecting changes in spatial 

datasets is important for many fields such as early warning systems that monitor environmental conditions or 
sudden disease outbreaks, epidemiology, crime monitoring, and automatic surveillance.  

To address this need, this paper introduces novel methodologies and algorithms that discover patterns of change 
in spatial datasets. We are interested in finding what patterns emerged between two datasets, Oold and Onew, sampled 
at different time frames. Change analysis centers on identifying changes concerning interesting regions with respect 
to Oold and Onew. Moreover, two approaches to define interestingness perspectives are introduced. The first approach 
employs supervised density functions [8] that create density maps from spatial datasets. As we will explain later, 
regions (contiguous areas in the spatial subspace) where density functions take high (or low) values are considered 
interesting by this approach. A novel clustering algorithm DCONTOUR is introduced to identify interesting 
regions. For some applications, it is impossible to capture a user’s interestingness perspective using a supervised 
density function. The second approach is proposed to overcome this limitation. It utilizes a preprocessing step that 
computes interesting regions that have been obtained by maximizing a plug-in reward-based interestingness 
function. DCONTOUR is then applied to the individual regions obtained, and change is analyzed by comparing the 
obtained contour polygons.  

The contributions of this paper include: 
A novel clustering algorithm called DCONTOUR is introduced. To the best of our knowledge, DCONTOUR is 

the first density-based clustering algorithm that uses contour lines to determine cluster boundaries that are described 
as polygons.  Objects that are inside a contour polygon belong to a cluster.  DCONTOUR operates on the top of 
supervised density functions that capture what is considered to be interesting places by a domain expert.  

A framework for change analysis in spatial dataset is presented that compares interesting regions that have been 
derived using contour clustering. It analyzes change in interestingness by comparing contour polygons.   

II. CHANGE ANALYSIS USING SUPERVISED DENSITY ESTIMATION APPROACH 

A. Supervised Density Estimation  
We assume that objects o∈O have the form ((x, y), z) where (x, y) is the location of object o and z—denoted as 
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z(o) is the value of the variable of interest of object o. In the following, we will introduce supervised density 
estimation techniques. Density estimation is called supervised because in addition to the density based on the 
locations of objects, we take the variable of interest z(o) into consideration when measuring density. The density 
estimation techniques employ influence functions that measure the influence of a point o∈O with respect to another 
point v∈F; in general, a point o’s influence on another point v’s density decreases as the distance between o and v, 
denoted by d(o,v), increases. In contrast to past work in density estimation, our approach employs weighted 
influence functions to measure the density in datasets O: the influence of o on v is weighted by z(o) and measured 
as a product of z(o) and a Gaussian kernel function. In particular, the influence of object o∈O on a point v∈F is 
defined as:  

      (2-1) 
If ∀o∈O z(o)=1 holds, the above influence function becomes a Gaussian kernel function, commonly used for 

density estimation and by the density-based clustering algorithm DENCLUE [7]. The parameter σ determines how 
quickly the influence of o on v decreases as the distance between o and v increases. The overall influence of all data 
objects oi∈O for 1≤ i ≤ n on a point v∈F is measured by the density function ψO(v), which is defined as follows:  

      (2-2) 

 

 
Fig. 2-1.  Change analysis approaches investigated in this paper. 

 
In summary, supervised density estimation does not only consider the frequency with which spatial events occur 

but also takes the value of the variable of interest into consideration—in general, density increases as frequency and 
z(o) increase. 

For instance, we might be interested in finding hotspot areas where the risk of earthquake is high; in this case z is 
defined as the severity of an earthquake. Using formula 2-2, a severity density map of earthquakes can be created 
and the hotspot locations of earthquakes can be directly identified as high density areas in the map. In section 5, 
more examples of supervised density functions will be given. 

B.   Change Analysis through Contour Clustering 
We have developed a contour clustering algorithm named DCONTOUR that combines contouring algorithms 

and density estimation techniques. Fig. 2-2 gives the pseudo-code of the algorithm. 



 
 

 
Input: Density function ψο, density threshold d. 
Output: Density polygons for density threshold d. 
1. Subdivide the space into D grid cells. 
2. Compute densities at grid intersection points by using density function ψο.  
3. Compute contour intersection points b on grid cell edges where ψο (b) =d using binary 
search and interpolation. 
4. Compute contour polygons from contour intersection points b. 

Fig. 2-2.  Pseudo-code of the DCONTOUR algorithm. 

Step 1 creates a grid structure for the space and step 2 computes the density for each grid intersection point.  Step 
2 will call the density function O(D) times where D is the number of grid cells. In general, objects that are far away 
from a point contribute very little to the density of the point. Therefore, in order to speed up step 2, we 
implemented an “approximate” density function that only considers the influence of objects belonging to 
neighboring grid cells rather than all the objects in the dataset. Step 3 computes contour intersection points on grid 
edges. Since the density function is defined in the whole space and is nonlinear, binary serach on cell-edges is used 
in step 3 to limit the interpolation error. Fig. 2-3 gives an illustration of how contour intersection points for d=4.5 
are constructed. As far as the right edge of the lower left cell is concerned, because 4.5 is between 4.4 and 5.5, a 
contour intersection point exists on this edge; interpolating between 4.1 and 5.5, a point on this edge is sampled and 
its density is computed which turns out to be 4.8. Because 4.8 is larger than d, we continue the binary search by 
sampling a point south of this point. The binary search terminates if the density difference between a sampled point 
and d is less than a threshold ε. Finally, in step 4, we connect contour intersection points b found on cell edges and 
continue this process on its neighboring cells until a closed polygon is formed or both ends of the polyline reach the 
grid boundary. Step 4 uses an algorithm that was proposed by Snyder [3] to compute contour polygons. 

 
Fig. 2-3.  Contour construction for d=4.5 

Traditional contouring algorithms operate on datasets of the form ((x,y),u) where u is a measurement of an 
attribute of interest at the location (x,y), and use interpolation to infer values of u in locations that were not sampled. 
DCONTOUR, on the other hand, creates contour polygons for a given density intensity using supervised density 
maps as its input. A contour polygon acts as a boundary of interesting regions that are above (or below) a specific 
density threshold; objects surrounded by each individual polygon are defined as a cluster. 

The proposed change analysis approach that is depicted in Fig. 2.1, applies DCONTOUR to Oold and Onew, and 
analyzes change with respect to the obtained contour polygons. How this is exactly done will be discussed in 
Sections 4 and 5. 



 
 

III   CHANGE ANALYSIS BY CONTOURING INTERESTING REGIONS 
The supervised density estimation approach assesses interestingness by assigning an interesting value z(o) to the 

objects in a dataset. Unfortunately, for some applications it is impossible to capture a user’s interestingness 
perspective using a supervised density function. We will give an example to illustrate this point. Let us assume we 
perform change analysis with respect to two earthquake datasets, and we are only interested in comparing regions 
for which the variance of earthquake depth regions is high—basically we are interested in changes in places were 
deep earthquakes are next to shallow earthquakes. In this case, interestingness of a region depends on the variance 
with respect to the depth of the earthquakes that belong to this region; that is, the squared difference of the depth of 
an earthquake and the mean-depth of a region can be viewed as a proxy for interestingness. Unfortunately, the 
mean value itself depends on the scope of the region and is therefore not known in advance. Consequently, it is 
impossible to capture this notion of interestingness using a supervised density function, because z(o) cannot be 
measured prior to knowing which region an object o belongs to. Basically, we need an approach that computes 
interesting regions first prior to computing z(o). Such an approach will be introduced in the following.  

The approach (see also Fig. 2-1) relies on contouring individual interesting regions that have been determined in 
a preprocessing step. First, we run a region discovery algorithm to identify interesting regions. Next, we run 
DCONTOUR on the clustering results of the region discovery algorithm to determine contour clusters. Finally, the 
derived contour polygons are compared. 

A region discovery framework, that has been introduced in [4], to find scientifically interesting places in spatial 
datasets, is used for the preprocessing step. The goal of region discovery is to find a set of regions that maximize an 
externally given interestingness function. To illustrate this approach, we introduce an interestingness function for 
the earthquake depth variance example discussed earlier. The interestingness of a region r, i(r), is defined as 
follows: 

  (3-1) 

where                 (3-2) 

In the formula depth(o) denotes depth of an earthquake o. The interestingness function computes the ratio of the 
region’s variance with respect to depth and the dataset’s variance. Regions whose ratio is above a given threshold th 
receive rewards. |r| is the number of objects in a region r. β is a parameter that determines a premium associated 
with the number of objects in a cluster—choosing higher values for β usually leads to the discovery of larger 
regions. µdepth(r) is an average earthquake depth in a region r. The interestingness function parameters β and th are 
determined in close collaboration with a domain expert. Region discovery algorithm identifies interesting regions 
by maximizing i(r). After interesting regions have been identified, a supervised density function is created for each 
region. Finally, contour polygons are created for each region using DCONTOUR and compared. 

IV   CHANGE ANALYSIS PREDICATES 
This section introduces basic predicates that capture different relationships for change analysis. Given two 

clusterings X and X’ for Onew and Oold, respectively, relationships between the regions that belong to X and X’ can 
be analyzed. Let r be a region in X and r’ be a region in X’. In this case, agreement between r and r’ can be 
computed as follows:  
• Agreement(r,r’)= |r ∩ r’|/|r ∪ r’| 

In general, the most similar region r’ in X’ with respect to r in X is the region r’ for which Agreement(r,r’) has the 
highest value. In addition to agreement, we also define predicates novelty, relative-novelty, disappearance and 
relative-disappearance below.  

Let r, r1, r2,..., rk be regions discovered at time t, and r’, r1’, r2’,…, rk’ be regions that have been obtained for time 
t+1.  
• Novelty (r’) = (r’—(r1 ∪…∪ rk)) 



 
 

• Relative-Novelty(r’) = |r’—(r1 ∪…∪ rk)|/|r’| 
• Disappearance(r) = (r—(r’1 ∪…∪ r’k)) 
• Relative-Disappearance(r) = |r—(r’1 ∪…∪ r’k)|/|r| 

Novelty measure captures regions that have not been interesting in the past. On the other hand, disappearance is 
used to discover regions where those characteristics are disappearing. Relative-novelty and relative-disappearance 
measure percentages of novelty and disappearance. We claim that the above and similar measurements are useful to 
identify what is new in a changing environment. Moreover, the predicates we introduced so far can be used as 
building blocks to define more complex predicates. 

It is also important to note that the above predicates are generic in the sense that they can be used to analyze 
changes between the old and new data based on different types of clustering.  The change analysis approach that we 
introduced in sections 2 and 3 uses polygons as cluster models. Consequently, in our particular approach the 
operators ‘∩’, ‘∪’, and ‘—’ denote polygon intersection, union and difference and |r| computes the size of a 
polygon r. For example, agreement between two polygons r and r’ is computed as the ratio of the size of the 
intersection between r and r’ over the size the union of r and r’. 

V   DEMONSTRATION  
We demonstrate our methods on an earthquake dataset which is available on website of the U.S. Geological 

Survey Earthquake Hazards Program http://earthquake.usgs.gov/. Information recorded includes the location 
(longitude, latitude), the time, the severity (Richter magnitude) and the depth (kilometers) of earthquakes. We 
uniformly sampled earthquakes dated from January 1986 to November 1991 as dataset Oold and earthquakes 
between December 1991 and January 1996 as dataset Onew. Each dataset contains 4132 earthquakes. 

The change analysis framework is tested in two case studies: 1) analyzes changes in strong positive or negative 
correlations between the depth of the earthquake and the severity of the earthquake 5.1; 2) detecting changes of 
regions in which deep and shallow earthquakes are in close proximity in section 5.2.  

A. Changes in Earthquake Severity/Depth Correlation 
In this section, we discuss a case study that analyzes changes in strong positive or negative correlations between 

the depth of the earthquake and the severity of the earthquake. Accordingly, the variable of interest, z(o) is defined 
as follows: 

   (5-1) 

where µseverity and µdepth are the mean values of the severity and depth of the dataset and σseverity and σdepth are the 
standard deviation of the earthquake severity and depth, respectively. It should be noted that that z(o) takes positive 
and negative values, and that the constructed density function now contains hotspots (areas high positive density) 
and cool spots (areas of high negative density) which identify regions of positive and negative correlation, 
respectively. Figures 5-1.a shows the results of running DCONTOUR once with a negative density threshold and 
once with a positive threshold.  

In Fig. 5-1.b shows the intersection regions of the two datasets (filled by orange are positive-correlated areas and 
filled by green are negative-correlated areas). Using the agreement predicate, we compute that polygon red 0 in Oold 

has overlap with red 0 in Onew of 84%..Fig. 5-1.c shows the novel polygons in dataset Onew with respect to dataset 
Oold. For example, we only observe small changes between the red polygon 1 in Oold and Onew; the additional scope 
of the Onew polygon is the union of polygon 1 and 2 in Fig 5-1.c. The relative-novelty and the size of the novelty 
polygons are listed in Table 5-1.. We can see that polygon red#4, blue#1 and blue#2 in Onew have the relative-
novelty of 100% indicating that these regions are new clusters that only exist in dataset Onew. This can be verified 
by comparing the contour polygons for dataset Onew and Oold in Fig. 5-1.a. Furthermore, we observe novel negative 
correlation regions of significant size (62.66 and 54.74, repetitively) in South America (blue polygon 1) and New 
Zealand (blue polygon 2). In summary, as we have shown in this demonstration, the relationships between two 
datasets can be analyzed quantitatively with the help of change predicates that operate on polygons. 
 

 



 
 

 

 
Fig. 5-1.a.  Contour polygons generated by DCONTOUR for Oold (left figure) and Onew (right figure). Blue 
polygons indicate areas with significant negative correlations (deep earthquakes are always less severe and shallow 
earthquakes tend to be strong). Red polygons are areas having positive correlations between the two variables. Blue 
and red polygons are numbered from 0 to n. 

 
Fig. 5-1.b. Overlap of contour polygons of Oold and Onew dataset 



 
 

 
Fig. 5-1.c.  Novelty polygons of dataset Onew  with respect to dataset Oold 

TABLE 5-1.  

 NOVELTY AND RELATIVE-NOVELTY FOR POLYGONS IN FIG. 5-1.C. 

Red area# 0 1 2 3 4 
Novelty 3.6 3.06 53.3 9.00 2.43 
Relative-novelty 0.04 0.01 0.25 0.31 1 
Blue area# 0 1 2    
Novelty 10.3 62.66 54.74    
Relative-novelty 0.13 1 1    

 

B.   Changes in High Variance of Earthquake Depth 
In this section, we analyze changes in high variance regions with respect to earthquake depth. As discussed 

earlier only the second change analysis approach is suitable for this problem. We ran the region discovery 
framework using CLEVER clustering algorithm [5] with the interestingness function that was introduced in Section 
3. The CLEVER output characterizes regions by the set of earthquakes that belong to the region. Next, supervised 
density functions were created for each clusters separately, defining the variable of interest z(o) as follows: 

z(o)=|depth(o)− µdepth(r)|     (5-2) 

where r is the region to which object o belongs to. Earthquakes belonging to a region are weighted by the 
absolute difference between earthquake depth and the regions average earthquake depth. Basically, earthquakes 
whose depth deviates significantly from the average depth contribute more to density. Next, DCONTOUR is 
applied to each region’s supervised density function, and contour polygons are derived, as shown in Fig. 5-2.a. and 
Fig. 5-2.b. The polygon areas indicated by red lines show the boundary of the regions that received rewards. From 
Table 5-2.a, the high value of agreement of 0.74 of region 3 in Oold and region 5 in Onew indicates that the variance 
of earthquake depth did not change significantly; what changed can be observed in Fig. 5-2.a and Fig. 5-2.b. The 
novelty of regions in Onew and the disappearance of regions in Oold are illustrated in Fig. 5-2.c and Fig. 5-2d. In 
Table 5-2b, the relative disappearance value of region 7 is 100% indicate that the high variance in this region 
completely disappeared in the new data. 



 
 

 
Fig. 5-2.a.  Results showing regions where variance of earthquake depth is high in Oold data 

 
Fig. 5-2.b.  Results showing regions where variance of earthquake depth is high in Onew data. 

TABLE 5-2.A.   
AGREEMENT OF CONTOUR POLYGONS IN FIG. 5-2.A AND FIG. 5-2.B. 

Agreement 
Region Old # 

Region New # 0 2 3 7 
5 0 0 0.74 0 

11 0.25 0.08 0 0 

 



 
 

Fig. 5-2.c.  Disappearance areas of regions in Oold data 

 
Fig. 5-2.d.  Novelty areas of regions in Onew data 

TABLE 5-2.B. 

 NOVELTY AND RELATIVE-NOVELTY FOR REGIONS IN Onew AND DISAPPEARANCE AND RELATIVE-
DISAPPEARANCE FOR REGIONS IN Oold IN FIG. 5-2.C AND FIG. 5-2.D. 

 Region 
New # Novelty 

Relative-
Novelty 

Region 
Old # Disappearance 

Relative- 
Disappearance 

5 16.98 0.06 0 356.29 0.59 
11 297.20 0.47 2 13.77 0.14 

   3 73.31 0.23 
   7 51.29 1 

VI   RELATED WORK 
Our change analysis is closely related to clustering analysis. Recently, scan statistic algorithms [10, 9] were 

introduced to detect significant clusters newly emerged in geographical space. This differs from our approach since 
the algorithms are limited to hotspot discovery, and are not capable of detecting other types of change. 

In 2006, a framework for change description that perceived changes of clusters as changes of states in a state 
space was proposed by Fleder et al. [6]. A framework for tracking external and internal cluster transitions in a data 
stream was introduced by Spiliopoulou et al [11] in the same year. In 2007, a technique for mining evolutionary 
behavior of interaction graphs was proposed by Asur et al. [1]. In general, these methods [1, 6, 11] can detect many 
types of change patterns but they require that the identity of objects must be known or objects must be characterized 
by nominal attributes. The advantage of our approaches is that we can detect various types of changes in data with 
continuous attributes and unknown object identity. 

Existing contour plotting algorithms can be seen as variations of two basic approaches: level curve tracing [12] 
and recursive subdivision [2]. Level curve tracing algorithms scan a grid and mark grid-cell boundaries that are 
passed by the level curve. Contour polygons are created by connecting the marked edges. Recursive subdivision 
algorithms start with a coarse initial grid and recursively divide grid cells that are passed by the level curve. Our 
algorithm, DCONTOUR, uses level curve tracing. 

VII   SUMMARY 
Developing techniques for discovering change in spatial datasets is important and providing methods to detect 

change for continuous attributes and for objects that are not identified apriori are advantages of the techniques we 
describe here. In this paper, change analysis techniques that rely on comparing clusters for the old and new data 
based on a set of predicates are proposed. A contour clustering algorithm named DCONTOUR that combines 
supervised density functions with contouring algorithms is introduced to automate this task.  

In general, our work is a first step towards analyzing complex change patterns. The novel contributions of this 



 
 

paper includes: 1) using density functions in contouring algorithm; 2) change analysis is conducted by 
interestingness comparison; 3) degrees of change are computed relying on polygon operations; 4) two novel change 
analysis approaches were introduced: one directly uses supervised density functions; the second approach derives 
density functions from interesting regions that have been obtained using a region discovery algorithm that relies on 
reward-based interestingness functions. 
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