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and color face images from various face datasets including the Yale face Database, as well as the application
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Abstract

In this paper, we propose a novel image-based technique that transfers illumination from a source face image
to a target face image based on the Logarithmic Total Variation (LTV) model. Our method does not require any
prior information regarding the lighting conditions or the 3D geometries of the underlying faces. We first use a
Radial Basis Functions (RBFs)-based deformation technique to align key facial features of the reference 2D face
with those of the target face. Then, we employ the LTV model to factorize each of the two aligned face images
to an illumination-dependent component and an illumination-invariant component. Finally, illumination transferring
is achieved by replacing the illumination-dependent component of the target face by that of the reference face. We
tested our technique on numerous grayscale and color face images from various face datasets including the Yale
face Database, as well as the application of illumination-preserved face coloring.
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I. INTRODUCTION

Image-based illumination transferring (i.e., face relighting) has attracted growing attention in computer graphics
and computer vision community in recent years. The face illumination transferring problem is particularly chal-
lenging when little information about the source or the target face is available, for example, only two face images
(one for the source/reference face and the other for the target face) are provided, and prior lighting/illumination
conditions of the faces and their 3D face geometries are not available.

In this paper, we propose a novel image-based face illumination transferring technique that transfers illumination
between two different 2D faces without requiring prior information of the faces, e.g., lighting conditions or 3D face
geometries. As shown in Figure 1, we first warp the source (reference) face image using a Radial Basis Functions
(RBFs)-based deformation technique to align its key facial features with those of the target face image. Then, we
apply the Logarithmic Total Variation (LTV) model [1], [2] to factorize each of the two aligned face images into
an illumination-dependent component u and an illumination-invariant component v, respectively. Finally, we relight
the target face by replacing its illumination-dependent component u with that of the aligned reference face.

Compared with previous work [3]–[6], our face illumination transferring technique has the following distinctions:
• No prior information requirement. Our technique does not require any prior information regarding the lighting

conditions or the 3D geometries of the underlying faces.
• Robustness and efficiency. By testing our technique on various face datasets, we found that our technique is

robust, and the relighted results are close to ground truths.
• Versatility. Besides transferring illumination from one grayscale (or color) face to another, our approach can

colorize a grayscale 2D face image, based on a reference color face image. In addition, our approach can also
be used to transfer illumination between 2D side-view face images.

The remainder of this paper is organized as follows: Section II reviews related work in image-based face relighting
and illumination transferring, Section III describes how to use Radial Basis Functions (RBFs) based deformation
techniques to align two face images, Section IV describes the reflectance model used in this work, Section V details
the Logarithmic Total Variation (LTV) model, and Section VI describes the illumination transferring algorithm.
Finally, experimental results (Section VII) and conclusions (Section VIII) are presented.

∗It has been accepted to The Visual Computer in May 2009.
†Wotao Yin is with Department of Computational and Applied Mathematics, Rice University, Houston, TX.
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Fig. 1. The schematic overview of our algorithm. First, we employ a geometric deformation technique to align key facial features of input
faces. Then each face is factorized into an illumination-dependent component u and an illumination-free component v. Finally, by switching
the above components, we generate the relighted face.

II. RELATED WORK

Shashua and Raviv [7] introduce the idea of Quotient (ratio) image for face relighting. In their approach, a face
is considered as a Lambertian object, and three face images are needed to generate the quotient image through a
linear combination operation. The requirement of a few example images of the target face limits the use of this
approach in many cases, and their approach can only work on the faces under a fixed viewpoint. Stoschek [3]
further extends the Shashua-Raviv’s work to more general cases including relighting faces under several different
viewpoints or wearing glasses. Liu et al. [8] use the quotient image to transfer fine facial details (e.g., facial creases
and wrinkles) to expressive faces. Peers et al. [5] extend the face relighting from a still image to an image sequence,
where an optical flow algorithm is used to track and warp the quotient images of in-between frames. However, the
basic idea of these approaches is the same: using the quotient image for relighting a still face image.

Other approaches were also proposed for face relighting. Marschner and Greenberg [9] introduce inverse lighting
to modify the lighting of existing face images. However, the success of their approach mostly relies on the 3D
surface model of the face that is difficult to acquire without considerable efforts in practice. Wen et al. [4] relight
faces by building a radiance environment map approximation. This approach uses a spherical harmonics based
environment map to capture facial variations due to diffuse lightings, and uses a ratio image to remove material
dependency. Recently, Wang et al. [6] proposed a novel method to change the illumination condition of a single
face image without knowing its face geometry and albedo information, by using a Markov Random Field to model
the statistical distribution and the spatial coherence of face texture, especially for harsh lighting conditions. In
addition, Chen et al. [10] demonstrated the success of applying the Logarithmic Total Variation (LTV) model [2]
for face recognition under varying illuminations. Their approach removes illuminations from 2D face images using
the LTV model, which results in a higher face recognition accuracy.

III. FACE ALIGNMENT

Before illumination can be transferred between a source face image Is and a target face image It, we need
to align the source (reference) face with the target face image by deforming Is such that its key facial features
including eyes, chins, nose, etc., in the deformed source face Ids are aligned with those of It. Radial Basis Functions
(RBFs) has been successfully applied to 3D geometric deformation [11]–[14] and image warping [15]. Here we
briefly describe how to use Radial Basis Functions to deform the source (reference) face image.

A radial basis function h̄(x) is a real-valued function whose value depends only on ‖x‖ or ‖x−c‖ for certain center
point c; in other words, a radial basis function h̄ has the representation h̄(x) = h(‖x‖) or h̄(x, c) = h(‖x−c‖), where
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h is some scalar function. Among the most common radial basis functions are the multi-quadrics h(r) =
√
r2 + c2,

the Gaussian functions h(r) = e−( r

c
)2 , and the thin plate spline h(r) = r2 log(r). In our application, we let x ∈ R2

and ci ∈ R2, ∀i, denote an arbitrary point and a set of given feature points, respectively. We use the thin plate
splines to approximate the face wrapping mapping F : R2 → R2:

F (x) =
n∑

i=1

wih(‖x− ci‖), (1)

where the weights w1, . . . , wn ∈ R2 are determined as described below.

Fig. 2. The left face is the source face with desired light condition, the middle face is the target face, the right is the deformation result
of the source face.

First, we select a set of 2n feature points in the source and target faces in pairs. Each pair consists two points
at the same facial feature location, one in each of the two faces. Figure 3 depicts a set of feature points, most of
which lie on the boundaries of facial objects, as well as the entire face. Let the n points in the source face be
denoted {xs

i} and the n points in the target face by {xt
i}. In (1), we let ci ≡ xt

i for all i and use F (x) wrap the
source face to the target face. Therefore, F should satisfy

F (xs
j) = xt

j , ∀ j = 1, . . . , n. (2)

Plugging (1) and the definition of thin plate spline into all of Eq. (2) yields the following linear equation system:

xt
j =

n∑
i=1

wi‖xs
i − xs

j‖2 log(‖xs
i − xs

j‖), ∀ j. (3)

We solve (3) for the unknowns wi to determine the wrapping mapping F . Next, the entire source face Is is
deformed into Ids by applying F ; that is, Ids ← F (Is), point-wise. Figure 2 shows an example of RBFs-based 2D
deformation for face alignment.

Automatically identifying key facial features from images is a non-trivial task. A number of automated algorithms
have been proposed [16], [17]. For example, Zhou et al. [17] proposed a Bayesian Tangent Shape Model (BTSM) for
facial feature identification. Since this work focuses on face illumination transferring, not automated face alignment,
in this step we choose to manually label key facial feature points on the face images due to its higher accuracy.

IV. REFLECTANCE MODEL

The Logarithm Total Variation (LTV) model is based on a general multiplicative light reflectance model:

I(x) = ρ(x)S(x) (4)

where I(x) is the intensity of reflected light at x, ρ(x) is the surface albedo at x, and S(x) is the amount of light
received at x that generates the observed intensity. It generalizes the well-known Lambertian model, I = Aρ cos θ,
where A is the strength of the point light source and θ is the angle between the light source direction and the
surface normal, by letting S = A cos θ. The LTV model does not obtain ρ and S from an input I but factorizes I
into v = ρv and u = ρuS, i.e.,

I(x) = v(x)u(x) = ρv(x)(ρu(x)S(x)), (5)
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Fig. 3. Illustration of how the λ parameter controls level of details preserved in the v component. The first row is two input images. The
other two rows (from top to bottom) are the output results when λ =0.2, 0.5, respectively. The left two column are the u components of
the two input images, and the right two columns are the v components of the input images.

so v represents the intensity variations of facial features, which are precisely the contours and boundaries of facial
features such that eyes, eyebrows, lips, chins, noses, nostrils, etc. These intensity variations are often sufficient to
characterize a face, and they are lighting-invariant. Because two faces may also differ in complexion, relighting a
target face requires us to assume that the target face has complexion similar to that of the source face. Under this
assumption, a target face can be relighted by replacing its u-component by that of the source face.

Next, we describe the TV-L1 model, from which we obtain the multiplicative decomposition (5).

V. THE TV-L1 MODEL

The TV-L1 model [2] is an additive image model, i.e., given an input image f , it generates the decomposition
f = ũ + ṽ. To obtain the multiplicative LTV decomposition, we substitute f , ũ, and ṽ in the TV-L1 model by
log(I), log(u), and log(v), respectively, and get log(I) = log(u)+log(v), which is equivalent to I = u◦v. Next, we
argue that the TV-L1 model separates f into a large-scale, illumination-dependent component ũ and a small-scale,
illumination-invariant component ṽ.

The TV-L1 model solves the optimization problem

min
ũ

∫
|∇ũ|+ λ‖f − ũ‖L1 , (6)

where f is the input image and ũ is the unknown and output image. The first term
∫
|∇ũ| in (6) is the total variation

(TV) of ũ, and λ is a scalar, which has the function as a threshold on scale. Solving (6) is equivalent to finding
the solution to the following PDE:

∇ ·
(
∇ũ
|∇ũ|

)
+ λ

f − ũ
|f − ũ|

= 0,

where we assume 0/0 = 0. Similar to other TV-based models, the TV-L1 model keeps the sharp object edges in
u because minimizing the TV regularization term penalizes all intensity variations in a uniform way (in contrast
to min

∫
|∇ũ|2, which penalizes larger changes, like sharp edges, more heavily.) This property is very important

in illumination normalization since the sharp boundaries of shadows cast on faces are entirely preserved in ũ and,
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therefore, such boundaries do not affect the recognition process. On the other hand, any image smoothing models
that do not preserve edges well enough will inevitably cause halo artifacts and affect face relighting results.

What also distinguishes the TV-L1 model from other TV-based models is its unique properties: (i) scale dependent,
but intensity-independent, decomposition, and (ii) easy parameter selection. These properties are very important to
face decomposition. Let us first explain this property by example.

Fig. 4. The TV-L1 decompositions of f into ui + vi obtained using (λ1, . . . , λ6) = (0.0515, 0.0746, 0.1256, 0.2188, 0.4263, 0.6000).

The results depicted in Figure 4 (u1-u6,v1-v6) were obtained by applying the TV-L1 model with different λ’s to
the composite input image depicted in Figure 4 (f ). The five components in this composite image are depicted in
Figure 4 (S1− S5) in the descending order of their scales, which are the image features that we shall extract from
f . We chose λi, i = 1, . . . , 6, according to

λ1 < λ̄1 < λ2 < λ̄2 < · · · < λ̄5 < λ6, (7)

where each λ̄i was computed solely based upon the shape of Si (hence, the intensity or location of Si does not
affect λ̄i.) Specifically, we let λ̄i = 1/G(∂|1Si

|), where G(·) stands for the so-called G-value (refer to [2] for its
mathematical and computational detail). Then, we applied the TV-L1 model to f using λ = λ1, . . . , λ6, whose
values are given in the caption of Figure 4. Instead of these values, we could instead use any λi’s satisfying (7)
and still obtain the same results. The numerical results depicted in Figure 4 closely match the analytic results – λ
can accurately control the selection of geometric features with arbitrary intensity values and at arbitrary locations.
Hence, selecting an appropriate λ for the small-scale facial features is straightforward. We shall pick a λ that is
slightly smaller than 1/G(∂|1M |), where M is the facial feature mask set.

In our experiment, we found that setting λ to 0.2 worked well. Figure 3 shows how λ controls the level of details
retained in the v component in the multiplicative model (5). Finally, we note that in practice, one does not need to
compute G-value. A λ-value obtained by trial and error will be good for all faces of a similar size, and this value
should vary inversely proportional to the face size.

VI. FACE ILLUMINATION TRANSFERRING ALGORITHM

Let Ids and It denote the deformed source and the target faces, respectively. The factorizations Ids = uds ◦ vds

and It = ut ◦ vt described in Section V can be obtained by solving Problem (6) for (f, ũ) = (log(Ids), log(uds))
and (log(It), log(ut)), respectively. To transfer the lighting condition of Ids to It, we use uds to replace ut and
obtain the relighted face as Ir = uds ◦ vt. This algorithm is described in Algorithm 1.

It should be noted that if input is a color face, Algorithm 1 needs to be executed three times, one time for each
color channel (red, green, or blue).

There are various numerical algorithms for solving (6). In this work, we used the algorithm proposed by Goldfarb
and Yin [18] that is based on decomposing (6) into multiple subproblems and solving all of these subproblems by
a single call to a parametric max-flow algorithm. We found that this approach performed well in terms of both
computational efficiency and solution accuracy. Applied to a pair of 10×5 face images, the entire process took only
3.24 seconds on a PC with 3.20GHz CPU and 1GB of memory.
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Algorithm 1 The Face Illumination Transferring Algorithm
Input: a source face Is, a target face It

Output: the relighted target face Irt

1: Ids ← deform Is to match It (using RBF)
2: uds ← exp(ũ), where ũ solves (6) for f = log(Ids)
3: vt ← exp(f − ũ), where ũ solves (6) for f = log(It)
4: return the relighted face Irt ← uds ◦ vt

VII. EXPERIMENT RESULTS AND DISCUSSION

We conducted various experiments to test and validate our algorithm. Most of the face images used in our
experiments were acquired from the Yale Face Database B [19], the CVL Face Database [20], and the AR Face
Database [21].

First, ground-truth comparison experiments were conducted to validate our algorithm. We chose face images of
four different subjects under various lighting conditions from the Yale Face Database B [19]. The Yale Face Database
is the only database that we found containing the ground truths of every subject under various lighting conditions.
We transferred the face illumination between every two subjects and compared our synthesized (relighted) results
with the ground truths. Statistically, the average MAE (Mean Absolute Error) between our results and the ground
truths is 8.69%. Visually, compared with the ground truths, the shapes and locations of the shadow on the faces (the
relighted and the ground-truths) are very close even though nuance differences still exist. Figure 5 and Figure 6
show two examples of these comparison experiments.

(a) (b) (c)

Fig. 5. The first ground truth comparison and validation example: (a) The top left is the target face, the top middle shows the source
(reference) face with the desired lighting condition, the top right shows the relighted result when we exchange the roles of the target and
the source face, the bottom left is the relighted face, the bottom middle shows the ground truth, and the bottom right shows the difference
between the relighted face and the ground truth. The MAE in this case is 6.63%. Both the source and the target images were taken from
the Yale Face Database B. (b) The histogram of the pixel-intensity difference between the relighted face and the ground truth. (c) The
accumulated percentage of (b).

Besides the above grayscale face images, we also tested illumination transferring between color face images. Due
to the lack of ground truths, we can not perform ground-truth comparison and statistical analysis. Figures 7 and
8 show some relighted results between color face images from both front and side views. As shown in Figures 7
and 8, although the appearances (face shape, skin reflectance, etc.) and lightings of the two human faces are very
different, the relighted faces are visually plausible and perceptually realistic.

We also applied our approach in a novel application (termed illumination-preserved face coloring) that automat-
ically transfers illumination from existing color face images to grayscale ones. In this experiment, we replace the
u-components of the target (grayscale) faces with those of the reference (color) faces. Figure 9 depicts two such
examples.

It is noteworthy that although our algorithm works well for most of test face images, certain visual artifacts can
not be completely avoided in certain illumination transferring cases. However, our approach provides a user-control
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(a) (b) (c)

Fig. 6. The second ground truth comparison and validation example: (a) The top left is the target face, the top middle shows the source
(reference) face with the desired lighting condition, the top right shows the relighted result when we exchange the roles of the target and
the source face, the bottom left is the relighted face, the bottom middle shows the ground truth, and the bottom right shows the difference
between the relighted face and the ground truth. The MAE in this case is 7.54%. Both the source and the target images were taken from Yale
Face Database B. (b) The histogram of the pixel-intensity difference between the relighted face and the ground truth. (c) The accumulated
percentage of (b).

mechanism through adjusting the λ parameter to reduce or even diminish some of these artifacts.
Using our approach, a face image can be decomposed into an illumination-dependent component and an illumination-

invariant component. Ideally, the illumination-dependent component should not contain any individual-dependent
information. However, certain individual-dependent information, such as individualized complexion information
and certain shading effects caused by the wrinkles or any tiny movement of the subject, is hard to be completely
separated from the illumination-dependent component. As we mentioned in Section V, the parameter λ controls
the level of details preserved in the illumination-invariant component v. We need to exploit and tune this control
parameter in order to separate the individual dependent information out of the illumination-dependent component.
Figure 10 shows an example where adjusting the λ parameter substantially affects the relighting results. In this
example, the complexions of the target face and the source face are very different, and certain shading effect
caused by the wrinkle appears around the corners of the mouth in the source face. As we can see in Figure 10, by
decreasing λ, more individualized details are retained in the illumination-invariant component v of the target face,
and the illumination-dependent information (preserved in the u component of the source face) becomes more and
more generalized. Therefore, when λ is decreased, the complexion in the relighted result is more closer to that of
the target face, and the shading artifact is gradually reduced.

Another potential cause of relighting artifacts is the uneven illumination on the target face. Typically, a dark
shade can be observed on the face under such illumination condition. During the face decomposition, the edge of
the shadow in the target face may be preserved in the v component as the illumination-invariant information; and
eventually, this will cause artifacts on the relighted face. Tuning the parameter λ would be able to reduce this type
of visual artifacts as well. Fig 11 illustrates such an example. The more λ is increased, the less the edge of the
shade is preserved in its v component. Therefore, less artifacts can be observed on the relighted face. However, we
need to be cautious that a larger λ may lead to the visual loss of some other face details such as those around the
eyebrows.

We also tested our algorithm in color spaces other than the RGB space. Basically, we first converted pixel colors
from the RGB space to the new color space such as the HSV and YCbCr spaces, and then performed illumination
transferring in the new space, and finally, an inverse color space transformation was performed. We found that if
illuminations were transferred in all three color channels in the HSV or YCbCr case, the resultant faces were almost
identical to the RGB-space results. If illumination was transferred only in the primary channel of the new color
space (e.g., the H channel in the HSV space or the Y channel in the YCbCr space), the speed of our algorithm can
be improved three times. However, the relighting results are not visually close to the expected. Figure 12 shows
such an example.
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Fig. 7. Results of illumination transferring between two color faces: the first column contains the target faces, the second column contains
the source (reference) faces with the desired lighting conditions, the third column contains the relighted faces, and the fourth columns
contains the relighted results when the roles of the target and the source face are switched.

Fig. 8. Results of illumination transferring between two side-view color faces. Left column: the target faces; middle column: the source
(reference) faces with desired lighting conditions; and right column: the relighted faces.
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Fig. 9. Results of illumination-preserved face coloring. Left column: the target grayscale faces; middle column: the source (reference) faces
with desired lighting conditions; and right column: the relighted faces.

Fig. 10. An example of how to reduce visual artifacts in the relighted faces by tuning λ. The top left is the target face, the top right is the
source face, the bottom row displays the relighted results when λ = 0.01, 0.1, and 0.5, respectively.

VIII. CONCLUSIONS

We propose a novel technique for image-based face illumination transferring. Without knowing any prior lighting
conditions or 3D face geometries of two 2D face images (as input), our technique is capable of automatically
transferring illumination between them. Compared with the previous techniques [3]–[5], [7]–[9], our approach has
the following advantages: (i) our approach does not require any pre-recorded reflectance database. In our approach,
two 2D images (one is a 2D source face image with a desired lighting condition, and a target 2D face image) are
the sole input. (ii) Our approach is robust and versatile. As shown in the Section VII, our approach can be used for
transferring illumination across different human faces (front-view and side-view) and whether or not any of them
is in grayscale or color.

The major limitations of current work include: (1) the success of this approach largely relies on the assumption
that both the target and the source (reference) faces should have similar complexions, which is not always valid in
some face illumination transferring applications. (2) The 2D image-based warping is required as a pre-processing
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Fig. 11. The second example of how to reduce visual artifacts in the relighted faces. The first row shows two input face images (source
and target). The other three rows (from top to bottom) are u component, v component, and the relighted faces when λ = 0.2, 0.5, and 0.8,
respectively.

step, and no 3D face geometry information has been exploited in this approach. Therefore, if there exist significant
3D face geometry differences between the source and the target face, the visual realism of the relighted face could
be affected. In the future, we plan to combine automatic facial feature tracking algorithms [16], [17] to automate
the face illumination transferring without the loss of perceivable visual quality.
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