SURVIVABLE DISTRIBUTED STORAGE WITH PROGRESSIVE DECODING

Yunghsiang S. Hdn Soji Omiwade, and Rong Zheng

Department of Computer Science
University of Houston
Houston, TX, 77204, USA
http://ww. cs. uh. edu

Technical Report Number UH-CS-09-09

September 9, 2009

Keywords: Network storage, Byzantine failures, Reed-Solomon coderiletection code
Abstract

To harness the ever growing capacity and decreasing costotdge, it is important to provide an
abstraction of survivable storage in presence of Byzanf@ileres due to the prevalence of computer
virus and software bugs. In this paper, we propostoaage-optimal and computation efficient primitive
to spread information from a single data source to a set ghgeéonodes, which allows recovery from
both crash-stop and Byzantine failures. In presence ofhestsp and Byzantine failures, a progressive
data retrieval scheme is employed, which retrieves justghalata from live storage nodes. It adapts the
cost of successful data retrieval to the degree of erroreensistem. The cost of communication in data
retrieval is derived analytically and corroborated by Me@arlo simulation results. Implementation and
evaluation studies demonstrate speed-up of the progesdaia retrieval scheme, which is comparable to
that in a genie-aid decoding process.

*Partial support for this work was provided by the Computer SystemsdRels program of the National Science Foundation (NSF) under
Award No. CNS-0834750 and CNS-0546391. Any opinions, findirgel conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

Graduate Institute of Communication Engineering, National Taipei Usiityer

1

SURVIVABLE DISTRIBUTED STORAGE WITH
PROGRESSIVE DECODING

Yunghsiang S. Han Soji Omiwade, and Rong Zheng

Abstract

To harness the ever growing capacity and decreasing cosbi@ige, it is important to provide an abstraction of
survivable storage in presence of Byzantine failures duthéoprevalence of computer virus and software bugs. In
this paper, we proposesaorage-optimal and computation efficient primitieespread information from a single data
source to a set of storage nodes, which allows recovery froth brash-stop and Byzantine failures. In presence
of crash-stop and Byzantine failures, a progressive dateeval scheme is employed, which retrieves just enough
data from live storage nodes. It adapts the cost of sucdedafa retrieval to the degree of errors in the system.
The cost of communication in data retrieval is derived atiedyly and corroborated by Monte-Carlo simulation
results. Implementation and evaluation studies demaessfeed-up of the progressive data retrieval scheme, which
is comparable to that in a genie-aid decoding process.

Index Terms

Network storage, Byzantine failures, Reed-Solomon codmriletection code

. INTRODUCTION

Cost of storage has decreased drastically over the yearsy Mampanies such as Google, Yahoo, Amazon
offer GB, TB online storage for free or at very low cost. Meaiiehlow-power storage media are widely used
in embedded devices or mobile computers. However, to hartiesever growing capacity and decreasing cost of
distributed storage, a number of challenges need to be sskelie(i) volatility of storage availability due to network
(dis)connectivity, varying administrative restrictiom aser preferences, and nodal mobility (of mobile devices);
(i) (partial) failures of storage devices. For example, lilasedia are known to be engineered to trade-off error
probabilities for cost reduction; (iii) software bugs orlineus attacks, where an adversary manages to compromise
a node and causes it to misbehave.

To ensure availability despite failure or compromise ofrat@ nodes, survivable storage systems spread data
redundantly across a set of distributed storage nodes.eAtdhe of a survivable storage system is a coding scheme
that maps information bits to stored bits, and vice versdhb\it loss of generality, we call the unit of such mapping,
symbols. A(k,n) coding is defined by the following two primitives:

- encode ¢ = (u, k,n), which returns a coded vecter = [cy, c1,...,c,—1] Of lengthn from £ information
symbolsu = [ug, u1,...,ur—1]. The coded symbols can be stored on separate storage nodes.

- decode u = (r,k,n), which accesses a subset of storage nodes, and returnsfoh@ation symbols from
possibly corrupted symbols.

Many existing approaches to survivable storage assumdn-stap behaviors, i.e., a storage device becomes
unavailable if failed (also called “erasure”). Solution€lsuas various RAID configurations [1] and their extensions
are engineered for high read and write data throughput. Tlp&ally low-complexity (replication or XOR-based)
coding mechanisms are employed to recover from limited ekegf erasure. We argue that Byzantine failures,
where devices fail in arbitrary manner and cannot be tryséee becoming more pertinent with the prevalence
of cheap storage devices, software bugs and maliciouskattédficient encode and decode primitives that can
detect data corruption and handle Byzantine failures sasva fundamental building block to support higher level
abstractions such as multi-reader multi-writer atomidgesg [2] and digital fingerprints [3] in distributed systems

*Partial support for this work was provided by the Computer Systemsdrels program of the National Science Foundation (NSF) under
Award No. CNS-0834750 and CNS-0546391. Any opinions, findirgel conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

Graduate Institute of Communication Engineering, National Taipei Usiityer

For fixed error correction capability, the efficiency of encadel decode primitives can be evaluated by three
metrics, i) storage overheadneasured as the ratio between the number of storage symiublstal information
symbols /k); ii) encoding and decoding computation tinend iii) communication overheatheasured in the
number of bits transferred in the network for encode and decGommunication overhead is of much importance in
wide-area and/or low-bandwidth storage systems. In thiepave propose a novel solution to spreading redundant
information efficiently across distributed storage nodesgigncremental Reed-Solomon (RS) decoding. By virtue
of RS codes, our scheme is storage optimal. The key noveltheoptoposed approach lies in a progressive data
retrieval procedure, which retrieves just enough data fliwmstorage nodes, and performs decoding incrementally.
As a result, both communication and computation cost arammimed, and are made adaptive to the degree of
actual errors in the system. We provide a theoretical charaation of the communication cost and success rate of
data retrieval using the proposed scheme in presence dfaagberrors in the system. Our implementation studies
demonstrate up to 20 times speed-up of the progressive dataval scheme in computation time, relative to a
classical scheme. Moreover, the proposed scheme is cobiparathat of a genie-aid decoding process, which
assumes knowledge of failure modes of storage nodes.

Main Contributions: In this paper, we make the following contributions:

o Design of a novel progressive data retrieval mechanism ihattorage and communication optimal, and
computationally efficient. It handles Byzantine failurestorage nodes gracefully as the probability of failures
increases.

» Development of an analytical model to evaluate the comnatioic cost of data retrieval.

The rest of the paper is organized as follows. Related workvisngin Section Il. The progressive data retrieval
scheme is presented in Section lll, with the details of theeimental RS decoding algorithm in Section 1V. An
analysis of our coding, communication and success rate lexitypis provided in Section V. Evaluation results are
presented in Section VI and then a discussion of the appitatf the proposed progressive data retrieval scheme
in sensor network storage and peer-to-peer tuple spacnv®lin Section VII. Finally, we conclude the paper in
Section VIII.

II. BACKGROUND AND RELATED WORK

POWER SUMS EA, BMA, WBA CHIEN SEARCH MATRIX-VECTOR SOLUTION

Compute Find error-erasure | !dentify non-error -~ Solve for
syndromes locator polynomial positions information polynomial

Fig. 1. Block diagram of RS decoding. The texts on top of the boxes syworal to existing algorithms.

In storage systems, ensuring reliability requires theomhtiction of redundancy. A file is divided intb pieces,
encoded intar coded pieces and storedatnodes. One important metric of coding efficiency is the redunog-
reliability tradeoff defined as /k. The simplest form of redundancy is replication. As a gernzastibn of replication,
erasure coding offers better storage efficiency. The MaximustaDce Separable (MDS) codes are optimal as it
provides largest separation among code words, anthak) MDS code will be able to recover from anyerrors

if v< L"*T’Hj, wheres is the number of erasures (or unretrievable symbols).

A. Reed-Solomon codes

RS codes are the most well-known class of MDS codes. RS @seoat symbols ofn bits. An (n, k) RS code
is a linear code, with each symbol #&F'(2™), and parametera = 2™ — 1 andn — k = 2t , wheren is the total
number of symbols in a codeworkl,is the total number of information symbols, ahi$ the symbol-error-correcting
capability of the code.

Encoding: Let the sequence df information symbols inGF(2™) bew = (ug, u1, . .., ux—1) andu(z) be the
information polynomial ofu represented as

u(r) =uy+wz+---+ up_q1z* L.

The codeword polynomiak(z), corresponding ta:(x) can be encoded as

c(x) = u(x)g(z) ,
whereg(z) is a generator polynomial of the RS code. It is well-knownt th@) can be obtained as
g(x) = (z—a’)(z—a’).. (z— a2
= go+ g1z + ga® + -+ goyx®t W

wherea is a primitive element inGF(2™), b an arbitrary integer, ang; € GF(2™).
Decoding: The decoding process of RS codes is more complex. Completeigtesn of decoding of RS codes
can be found in [4].

n—1
Let r(x) be the received polynomial antdz) = c(x) + e(z) + v(z) = c¢(x) + A(z), wheree(z) = Zejxj
n—1 n—1 =0
is the error polynomialy(z) = nyjxj the erasure polynomial, anb(z) = Z \jz! = e(x) + v(x) the errata
j=0 J=0
polynomial. Note thay(x) and (hence}(x) havea®, a’+1, ... oa’+2=1 as roots. This property is used to determine
the error locations and recover the information symbols.
The basic procedure of RS decoding is shown in Figure 1. The teptaf the decoding procedure involves
solving a linear set of equations, and can be made efficienhéyse of Vandermonde generator matrices [5].
In GF(2™), addition is equivalent to bitwise exclusive-or (XOR), amdiltiplication is typically implemented
with multiplication tables or discrete logarithm tables feduce the complexity of multiplication, Cauchy Reed-
Solomon (CRS) codes [6] have been proposed to use a differestraotion of the generator matrix, and convert
multiplications to XOR operations for erasure. However,SC8bdes incur the same complexity as RS codes for
error corrections.

B. XOR-based erasure codes for storage

Several XOR-based erasure codes (in a field of GF(2)) [7]-[10¢ teeen used in storage systems. In RAID-6
systems, each disk is partitioned into strips of fixed sizeo Parity strips are computed using one strip from each
data disk, forming a stripe together with the data strips. EMBDD [9], Row Diagonal Parity (RDP) [7], and
Minimal Density RAID-6 codes [8] use XOR operations, and specific to RAID-6. A detailed comparison of the
encoding and decoding performance of several open-souaseire coding libraries for storage is provided [11].

The gain in computation efficiency of XOR-based erasure calashieved by trading off fault tolerance. RAID-6
systems can recover from the loss of exactly two disks buh@thandle Byzantine failures.

[Il. PROGRESSIVEDATA RETRIEVAL IN PRESENCE OFBYZANTINE FAILURES

We use the abstractions of a data node which is a source afnaf@mn that must be stored, and a storage node
which corresponds to a storage device. Nodes are subjecthocbash-stop failures, where data cannot be accessed
and Byzantine failures, where arbitrary data may be retliriidhe communication cost of transferring one unit of
data from the data source to a storage node is assumed to bewebimdependent of the location of the storage
node.

A. Data storage

The data storage scheme consists of two steps. First, for a@grity, a message authentication code (MAC)
is added to each data block generated by a data node befasrernicoded. Many one-way hash functions such as
MD5, SHA-1, SHA-2 can be used. For simplicity, we adopt CRC daderror detection with- redundant bits [4],
[12]. It has been proven that the portion of errors that catmeodetected by a CRC code is dependent only on its
number of redundant bits. That is, a CRC code wittedundant bitzannotdetect(-)100% portion of errors. If
Tp is the size of the original data, then the size of the requltiata isT" = T, + . The overhead can be amortized
by combining multiple data blocks together.

In the second step, we partition a data block into inforrmagmbols of lengthn bits and apply RS codes. The
data-generating node divides its data iffo/m| pieces (symbols) such that each symbol represents an dlémen

GF(2™). Next the[T'/m] symbols are divided intcﬁ%} information groups each df symbols. Letk symbols

of the ith group be the components in information vector= (uo, i1, - - ., uj(x—1)), wherel < i < [Lkmw
The node encodes; into ¢; = (cio, ¢i1, - - -, Ci(n—1)) With n symbols as
ci = u;G,
where
1 1 1 1
«@ a? al a”

G=| @ @7 @F @)] @

Oék71 (a2)k71 (aii)kfl (an)kfl
Recall thatx is a primitive element (generator) 6fF'(2™) which can be determined in advance. The data-generating

node then packs all; ;, 0 < i < [%] and sends them with their indexto (j + 1)th storage node via the
network.

B. Data retrieval

To reconstruct the source data, a collector needs to accéssient number of storage nodes to ensure data
integrity. Amongn storage nodes, let the number of erasures, which inclugesumber of crash-stop nodes and
the number of nodes that have not been accessedl, ldentity of crash-stop nodes can be determined by the use
of keep-alive messages. Additionally, there areodes with Byzantine failures. Neithernor the identity of these
nodes are known to the data collector.

It has been proven th&¥ given in (2) is a generator matrix of a RS code [4] and thus aor-@rasure decoding
algorithm can recover all data if there is no error in at lelastncoded symbols. Without loss of generality, we
assume that the data collector retrieves encoded symlwoisffith, jith, - -, andj;_ith storage nodes. If no error
is present, thé symbols inith group of any data-generating node can be recovered bingdive following system
of linear equations:

[uio, Uily ooy ui(k_l)}G = [Cijm Cz‘jla e 7Cijk_1] s (3)
where
1 1 1
aJo ot k-1
G B (ajo)Q (ah)Q (ajk—l)Q

(a.io)k—l (ajl)k‘—l (ajk—l)k—l

G can be constructed by the primitive element and the indesces®d withe;;,, 0 <d < k — 1.

When the number of erroneous (or compromised) nodes is unkrmt is bounded, the proposed progressive
procedure for data retrieval minimizes communication eagtout anya priori knowledge regarding failure models
of nodes.

From Section Il, we know that RS codes can recover fromwagyrors ifv < L”‘T’HJ. Therefore, if the number
of compromised nodesv) is small, more erasures)(can be tolerated, and less nodes need to be accessed (by
treating them as unavailable). The data retrieval proceguveeeds in stages. At stagiel errors are assumed. If
RS decoding fails or the decoded information symbols faal @RC check, there must exist more erroneous nodes
than RS error-erasure decoding can handle at this stagedém to correctonemore error,two more symbols need
to be collected, since the number of erasures allowed iscestiby two. Therefore, the total number of symbols
retrieved at stageéis k + 2I.

This procedure is clearly optimal in communication costsdditional symbols are retrieved only when necessary.
However, if applied naively, its computation cost can beehigh since RS decoding shall be performed at each

The last information group may have symbols less thain this case, zero symbols will be appended during the encoding qucee

stage. For example, whem = 1023, £ = 401, with 1% error probability (defined as probability that a sipe
node is faulty), our analytical results (Section V) show tbataverage 409.2 storage nodes need to be accessed.
That is, the decoding needs to be done 10 times on average.eQuitir hand, consider an alternative (but naive)
scheme that retrieves coded symbols from each aftorage nodes and decodes only once. The naive scheme
may incur less computation cost but suffers from high comication cost. One may be tempted to think that such
trade-offs between computation and communication areaidale. Instead, in Section 1V, we devise an algorithm
that can utilize intermediate computation results fromvjmes stages and performs RS decoding incrementally.
Combined with the incremental decoding of stored symbbks proposed progressive data retrieval scheme (detailed
in Algorithm 1) is both computation and communication effitieFor simplicity, Algorithm 1 is presented only

for one group of encoded symbols. It is applied to all groupsrcoded symbols to retrieve all data for the
data-generating node.

Algorithm 1: Progressive Data Retrieval
begin
i — k;
The data collector randomly choosksstorage nodes and retrieves encoded datas [cj,, ¢jys-- -, Cjp 1]
T, = Cj
repeat
w=r;G
1 if CRCTest(u) = SUCCESS then
Delete CRC checksum from to obtainwo;
return wo;

else
repeat
i—1+2
Two more encoded data from remaining nodesi», are retrieved
ci —ci—2U{cip,cin}
2 until {(r; = IncrRSDecode(c;)) = SUCCESS || i > n—1};
until 4 > n —1;
return FAIL;

end

In Algorithm 1, for eachi (or accordingly stage = (i — k)/2 where the number of errors > I), the
decoding process declares errors in one of two cases. In Litlee2roposed incremental RS decoding algorithm
(IncrRSDecode()) may fail to produce decoded symbols. Otherwise, in Line &, diecoded symbols fail the
CRC check. Our implementation (Section VI) shows that thenfarhappens frequently. Thus, in most cases, CRC
checking is carried out only once throughout the entire dewp process.

IV. INCREMENTAL RS DECODING

In this section, we present the incremental RS decodingrithge. Compared to the classic RS decoding, it
utilizes intermediate computation results and decode®imentally as more symbols become available.

A. The basic algorithm

Given the received coded symbdls, r1,...,r,] with erasures set to be zero, the generalized syndrome poly-
nomial S(x) can be calculated as [13],

n—1 n—1

S(z) = Z rjajbiT(x; — Zj(a]) = Z /\jajbiT(x; — Zj(a]) : (4)

whereT'(z) is an arbitrary polynomial with degre@: — k). Assume that errors occur in unknown locations
1,742, - -, Ju ands erasures in known locationsy, ms, ..., ms of the received polynomial. Then

e(z) = ej, @ + ej,a?* + - + ej, a0

and
’V(x) = ’lexml + ’szme +oo 4+ Vmsxms)

wheree;, is the value of the/-th error,/ = 1,--- v, and~,,, is the value of the/-th erasure/ =1,---,s. The
decoding process is to find all, e;,, my, and~,,,. LetE = {j1,--- ,j,}, M = {my,--- ,ms}, andD = EUM.
Clearly, EN'M = (). It has been shown that a key equation for decoding is

A(z)S(z) = V()T (z) + Q) , (5)

where

Az) = H(x—aj):H(x—aj) H (x—aj)

jeD JjeE JEM
= Ag(z)Am() (6)
U(x) = Z)\jajb H (:r — o/) (7)
e
Qz) = — Z AT (o) H (z— ai) . (8)
jED iep

i#g
If 204+ s < n—k+ 1, then (5) has a unique solutiof\(z), ¥(z),2(x)}. Instead of solving (5) by either the
Euclidean or Berlekamp-Massey algorithm we introduce a cedikey equation [13] that can be solved by the
Welch-Berlekamp (W-B) algorithm [4]. It will be demonsteat that by using W-B algorithm and the reduced key
equation, the complexity of decoding can be reduced dadtid et T = {;j|T(a’) = 0}. Let a set of coordinates
U c {0,1,...,n—1} be defined byU = MNT. A polynomial Ay () is then defined by (z) = [];cy (¢ — /),
which is known for the receiver sincé(x) and M are both known. Sincéy(x) divides bothA(x) and T'(z),
according to (5), it also divideQ(z). Hence, we have the following reduced key equation:

A(2)S(x) = W(2)T(x) + Q(z) (9)
where
A@) = A@)Au(e)
T(@) = T()Au()
Qz) = Qz)Au(x) .
Note thatA(x) is still a multiple of the error location polynomialg(z). The reduced key equation can have a
unique solution if

deg((x)) < deg(A(x) < " TITE

wheredeg(-) is the degree of a polynomial an| is the number of elements in skl
For all j € T\U, by (9), we have

- ‘U| ’ (10)

A(a?)S(a?) = Q(a) (11)

sinceT(o’) = 0. Note thata’ is a sampling point and(a’/) the sampled value for (11). The unique solution
{A(z),Q(x)} can then be found by the W-B algorithm with time complexidyf(n — k — |U|)?) [4]. Once all
coefficients of the errata polynomial are found, the erroatamnsj, can be determined by successive substitution
through Chien search [14]. When the solution of (9) is oladirthe errata values can be calculated. Since there is
no need to recover the errata values in our application we tivaicalculations. In summary, there are three steps
in the decoding of RS codes that must be implemented. Firstséimpled values of(a’) for j € T\U must be
calculated. Second, the W-B algorithm is performed basederpairs(a’, S(a?)) in order to obtain a valid\ (z).

If a valid A(m) is obtained, then error locations are found by Chien seartiterwise, decoding failure is reported.

Since the received values in the erased positions are Zgfo= —cm, for £ =1,--- ,s.
\ is the set difference.

B. Incremental computation & (z), A(z), Q(z)

Let us choose
T(z) = (z — ™) (x — &™) - (x — @™ +1)

wherem, are those corresponding positions of missing data symiftas the data collector has retrieved encoded
symbols fromk storage nodes. In the decoding process, these are erasiidnzsobefore the first iteration of
error-erasure decoding. L&y = {my,...,m,_r_1}. It has been proven that the generator polynomial of the RS
code encoded by (2) has** o® %=1 ... « as roots. The error-erasure decoding algorithm is mainledam
W-B algorithm which is an iterative rational interpolatiomethod.

In the /th iteration,? errors are assumed in the data and the number of erasutesis- 2¢. Let (Jf +1)th and
(jy) + 1)th nodes be the two storage nodes just accessed ifthhigeration. LetU, = Ug_l\{jfe),jy)}. Based
on U, the W-B algorithm will find A)(z) and Q) () which satisfy

AD(a7) SO (a7) = QO (7)) for all j € Ug\Uy ,

0

where S (z) is the generalized syndrome wiih = 0 for all ; € Uy. It has been shown thateg(A(®)(z)) >
deg(2)(x)) for any ¢ by a property of W-B algorithm. Thus, ifeg(A()(z)) < "Y1y, = 7+ 1/2,
then the unique solution will exist due to (10). By the defomtiof generalized syndrome polynomial in (4), for
i € Up\Uy, we have

) n-l . iy _ J
§O@) = 3 red T(aa) T(o?)
=0

'L—Oéj

nol - T(a?) P
— A A 2
= ;r]a ajiai—i—nozT(a)
J¢€Uq
n—1 F
= Z 4T () (12)
= ol —
i¢Ug

whereT"(z) is the derivative of['(z) and F; = rja/T(a’). Note thatT”’(a’) = H (o' —a™) . Itis easy to see

j€UQ
WLjséi

that S\ (') is not related to any;, wherej € Uy andj # i. Hence,S“~Y(a?) = S (a?) for all i € Up\Uy_;.
This fact implies that all sampled values in previous itenmagi can be directly used in current iteration of the W-B
algorithm.

Define rankN (z), W (z)] = max[2deg(W(x)),1 + 2deg(N(z))]. The incremental RS decoding algorithm is
described in Algorithm 2. Upon success, the incremental B&ding algorithm returng non-error symbols. The
procedure will report failure either as the result of misoietd degree of the error locator polynomial, or insufficient
number of roots found by Chien search (Line 2). In both case$yrher erasure decoding is required. This reduces
the decoding computation time.

V. COMPLEXITY ANALYSIS
A. Encoding complexity

The communication cost incurred by the encoded data gedebgtea data-generating node 1gn [%W It

is easy to see that the total bits stored in each storage W%W ~ [T/k].
Assuming a software implementation on field operations witHook-up tables is used, the computation com-
plexity of encoding can be estimated as follows. Given tlagutation of one multiplication i/ F'(2™) is of m?

bit exclusive-ORs. At the data-generating noﬂﬁ,[Lkmw multiplications are performed, which is equivalent to

kn [Lkmw m? bit exclusive-ORs.

Algorithm 2: Incremental RS Decodingncr RS Decode
init : CalculateF; given in (12) for allj ¢ U,.
—0;, AO(z) —1;
QO (z) — 0, ®V(z) — 0,00 (z) — 1.
input : stagel, two new symbols at théj{”) + 1)th, and(;{” + 1)th nodes
output: FAIL or non-error symbols:

begin
foreach 7 = 1,2 do
(0)
1 IEa —ao’i and yia — S(a(my))
end

for i=1to2do
pl=b Q(lfl)(x@) — y,@]X(zfl)(m(-e));
if 5”1 = 0 then
| AT(z) — AV (2); QT (2) — QU V(2); ©7 (2) — (z — 2!?)0U V(2); ®T(2) — (z — 2/)@"V(2)
else
al"V — 0"V () — PV (2l)); 07T () — (x — () (2); &7 () — (z — 2{7)A D (2);
Q7 (z) — b\ V0D (2) — al"VQED (2); AT (2) — b VU () — o FTHACD (),
end
if rank Q" (z), A" ()] > rank©” (), ®" (x)] then
| swap[QT(z), A" (2)] < [0"(x), ®" (x)].
end
if i =1 then ~))
d‘ QD (@) — O (x); A7D(2) — O (2); 07D (2) — O (2), 2V (2) — &7 (x);
se
0 z) — ¢ :Jc;~ z) — ¢ x); x) — z), V() — P ().
| Q9 (@) — QT (2); AV (2) — QT (2); 0 (2) — O (2); & (x) ()
end

end
if deg(A®(z)) # ¢ then
| return FAIL;
end
NumErrorLoc = ChienSearch(” (z)).

2 if NumErrorLoc > n — k | NumErrorLoc # deg(A)(z)) then
| return FAIL;

end
return & non-error symbols-;

end

B. Computation complexity of decoding

In the subsequent complexity analysis, the worst case ima$, namely, no failure on decoding is reported in
Algorithm 2 (Line 2), and the algorithm runs to completion.

In CRC checking, one polynomial division is performed. Sitive dividend is of degre& — 1 and the divider
is of degreer, the computation complexity of CRC checking is©@f{7'r).

Let v be the number of errors when the decoding procedure is caeapln thelth iteration,/ errors are assumed
in the data and the number of erasuresiis k — 2¢. We first need to calculate two syndrome values. This can
be obtained by the&’; calculated initially. For instance, in the first iteratiorgcarding to (12), the computation
complexity is ofO(k(n — k)) since there ar& F}’s to be calculated and each is a productwof k terms. In the
next iteration, two more symbols are added to (4). Henceufitated syndrome values can be obtained by an extra
O(k) + O(n — k) computations. To find the error-locator polynomial, the W-Bogithm is performed two steps
in each iteration with complexity)(¢). Since we only consider software implementation, the Chearch can be
replaced by substituting a power afinto the error-locator polynomial. It needs to test for atsto+ ¢ positions to
locatek non-error positions such that it takéeX (k + ¢)¢) computations. Finally, inversion of Vandermonde matrix
G requiresO(klog?(k)) time [15]. In summary, the computation in tiéh iteration for¢ > 1 is

Ly(f) = O(klog*k) +O(n — k) + O(kt + (?) .

n—k min("’an;ka"l*”*k) (n—uv v .
\ _ n v _ n—uv . i+k71) (7,) k n—v-— (Z+k‘* 1)
Neky = 3 <v>” (1-p) - (k+20) ot) itk Tm- @itk

n—=k

ko min(v, | 25
7)1_ n—uv 1_
o Sa()ran

Jin—v—k) n—uv v .
(i+k—1)(z’)x k Xn*v*(2+kfl)
(4iuh) itk n—(2i+k—1)

v=0 i=0 2i+k—1
DY n(ﬁ)p“(l - (14)
v=n—k+1
iy n v n—uv min(U’Lnng’n_v_k) (7,1}?31) (j) k n—v— (Z + k — 1)
Prouc(n, k) = 2 <v>7’ (1-p) 2 (oisr 1) R R Yy (13)
Counting forv iterations and the complexity of calculatirig we have
L, = O(vklog®k)+ O(k(n — k)) + O(v*k)
+0(v(n —k)) + O(?) . (13)

Note the computation complexity is measured by finite field iplitations, which is equivalent te? bit exclusive-
ORs. Since the correctable number of errois at most(n—k)/2, the decoding complexity is at moSt(k(n—k)?).
For smallv, The second tern®(k(n — k)) dominates, which corresponds to syndrome computation.

C. Average communication cost of decoding

In this section, we provide a probabilistic analysis of tlestoof communication by determining the number of
stages the algorithm needs to take, and the probability ofessful execution. Given storage nodes angh, k)
RS codes, it is easy to see that the fewest number of storatgsro be accessed in the proposed schereaisd
the most isn. We assume that the CRC checking can always detect an eftarcifurs. Without loss of generality,
we assume that all failures are Byzantine failuresrash-stop failures can be easily modeled by replaeivgth
n — s. An important metric of the decoding efficiency is the averagenber of accessed storage nodes when the
probability of compromising each storage node.ig-ailure to recover data correctly may occur in two casestfir
v >n —k, i.e., there are insufficient number of healthy storage n.oSesond,L”T*’“J < v <n-—k, in which the
sequence of accessing determines the outcome (succeslsia)faf the decoding process. For example, if the first
v nodes accessed are all compromised nodes, correct dededimgossible. In both cases, the decoding algorithm
stops aftem accesses and declares a failure. The communication cast is

The main result is summarized in the following theorem.

Theorem 1:With the progressive data retrieval scheme, the averagebaumf access is given in Eq. (14).
Eq. (15) gives the probability of successful decoding.
The proof is omitted due to space limitations. Interestedieemare referred to [16].

0.1p
Il simulation

0.09- — Numerical results
0.08 \

0.071 \

Probability
o
o
@

\
\
\
\
\
\
0.04 \
| \
0.03 | \
0.021 \
0.01f /I I
Ll | I"Im ——_
60 80 100

Number of iterations

120 140

Fig. 2. Distribution of the number of node accesses from simulations malysis.n = 127, £k = 31 andp = 0.2.

10

Numerical results:We verify the correctness of the analytical model using Me@arlo simulations imple-
mented in Matlab. Figure 2 shows the distribution of the nuntdfestorage nodes accessed when the algorithm
terminates. The bar chart gives the histogram from the M@us#de simulations with 5000 runs, and the curve
represents the result from the analytical model. We chaose127, k = 31 andp = 0.2 so that 5000 runs give
sufficient statistics in the simulations. From Figure 2, it canobserved that the analytical results agree well with
the simulation.

Next, we fixn = 1023, and vary the number of data-generating nokléom 101 to 401 and the error probability
p from 0 — 0.3. Figure 3 shows the increasing communication&ete probability of failure increases. The number
of crash-stop failure is set to be zero, and all Byzantintuffas result in incorrect data. Clearly, when the error
probability p is small, the communication cost is closeit@nd monotonically increases gsncreases.

1000¢ k=101 *

k=201
-0~ k=301
-+ -k=401

900

8001
7001
600
Pie 4
500 o _.e

4004+~

Average communication cost

300p0" "

200

100 . .
0 0.05 0.1 0.15

0. 0.25 0.3 0.35
Error probability p

Fig. 3. Number of accesses vs. probability of failures= 1023 nodes,k = 101 — 401.

VI. EVALUATION

We have implemented the proposed and baseline algorithr@s Evaluations are done on a desktop PC with a
2.66GHz Intel Xeon CPU, 4096 KB cache and available RAM of 2GBree algorithms are considered.

« BMAimplements the Berlekamp-Massey (BMA) algorithm [4] for B&oding. Similar to Algorithm 1, BMA
progressivelyretrieves data from each storage node and performs decaouitigthe decoded symbols passes
the CRC checks or failure is declared. However, decodingn@abe performed incrementally.

 BMA-genieknowsa priori how many symbols are needed to successfully decode. BMAegiatodes only
once after retrieving sufficient number of symbols. Note BisltA-genie is impossible to implement in practice,
and is included for comparison purpose only.

« IncrRSDecodeimplements the proposed progressive data retrieval scheitie the incremental decoding
algorithm.

In place of BMA, either the Euclidean or Welch-Berlekamp aigon could have been used. They have the
same asymptotic time complexity. Figures 4-5 show the tintakies to correctly decode a data block. A randomly
generated message is first partitioned ihtsmformation symbols and then encoded inte= 1023 coded symbols
of length 10230 bits. Thus, the field size i8'° = 1024. A stored symbol is corrupted with an error probability
independently. Each point in the figures is an average of 50 runs

Total computation time:Figure 4(a) and (b) illustrate the computation time (in logleg spent in decoding
whenk = 101 andk = 401, respectively. The storage overheadk is 10.13 and 2.55 with the maximum number
of errors correctable being 461 and 311. From Figure 4, we gbgbat the BMA and IncrRSDecode computation
time increases ap increases. But the rate of increment in IncrRSDecode is mimkes Whenk is small or
the redundancy is higher (Figure 4(a)), IncrRSDecode is ifakn the genie-aided BMA. This is because in the
genie-aided BMA, the computations of erasure polynomiaith(O((n — k)?)) dominate the decoding time in the
case of small number of errors. In contrast, in IncrRSDecodegrasure polynomials are computed.

Breakdown of the decoding computatiowwe break down the decoding computation time to understaad th
dominant operations in the algorithms as well as how the ment in each stage of the algorithms changes as
the error probability increases. The break down includestitne to find the error-locator polynomiaklp-time,

11

10t

——BMA ——BMA
¢ BMA-genie ¢ BMA-genie
=0~ IncrRSDecode =0 IncrRSDecode
10° E
— —~ 10°
L L -©
o) /,/
g 107" g
1 L
i g
e) 2 ol
107
¢
10 3 Il Il Il Il Il Il 10 2 Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Error probability p Error probability p
(a) k = 101 (b) k = 401

Fig. 4. Average computation time for decoding one group of encodetbsls

find the error locationschien-tim@ and solve for the information polynomiaing-mat-timé@. In Figure 1, the 1st
and 2nd block shows the elp-time, and the 3rd and 4th blockes dien-time and inv-mat-time, respectively.

When the error probability is low (Figure 5(a)), computatiainerror location polynomials appears to dominate
for small k, while the matrix inversion time becomes significant whiers large. In our implementation, the cost
of matrix inversion is quadratic in the number of symbols atdexd. Chien search though asymptotically is the
most time consuming procedure, it can be performed quite Y&ben the error probability is high, computation
of error location polynomials appear to dominate excephicrRSDecode. Comparing Figure 5(a), (b) and (c), we
observe that the computation time in matrix inversion is @imegligible (on the order of tens of milliseconds)
in BMA and IncrRSDecode, and is comparable to that in BMA-ggnécall that BMA-genie knows the number
of errors in advance and thus performs matrix inversion amige). This is because even though there are more
errors with largerp (and thus more iterations), the decoding algorithm is Jikiel fail in or before Chien search
(e.g., Algorithm 2 (Line 2)). Thus, in most cases, BMA and In8Bcode perform matrix inversion once.

0.07 0.7 16
|:elp—time |:elp—time jelp—nme @
0.06|| [chien-time 0.6/| X chien-time — 1.47| %] chien-time
Ilinv-mat time Ilinv-mat time Ilinv-mat time
0.05 05 12
1
+0.04 504 -
H s oo08
= 0.08 1 =03 =
0.6
0.02 1 0.2 04
X
0 o1 pr— — 0 ,@
G101 B101 1101 G401 B401 1401 G101 B101 1101 G401 B401 1401 G101 B101 1101 G401 B401 1401
@p=1% (b) p = 10% (c) p=20%

Fig. 5. Average computational time breakdown for decoding one coakw

A couple of observations can be made from the evaluationtsestirst, IncrRSDecode is very efficient since it
utilizes intermediate results from the previous iteratioip to 20 times speed up can be attained, relative to classic
RS decoding. Second, the computation complexity in SectiomM provides the worst-case order analysis. In
practice, the computation time in the average case carr difmificantly in part due to hidden constant factors.

VIl. APPLICATIONS
In this section, we discuss the applications of the propgsedressive data retrieval scheme.

TABLE |

12

THE PERFORMANCE COMPARISON BETWEEN DECENTRALIZED ERASUREODES [17] AND OUR PROPOSED SCHEMES

Decentralized erasure code

>sOur schemes

Storage complexity

n

n

Communication complexity in storage 5nin(k) n
Communication complexity in retrieving one unit of data k 1
Communication complexity in retrieving all data k k
Computation complexity for encoding 5In(k)Tgn kTmn
Computation complexity for decoding (worst case) T3 O(K%) flo,n, k)
Can detect error? no yes
Can correct error? no yes
Type of guarantee? probabilistic deterministic

2Ty is the packet size generated by each data nodeGaR@®@™) is the finite field the proposed scheme operates. UsuBjlycan be100 or even1000
times larger thann.

bThere arev errors occurred in the decoding procedurevl= 0, then f(v,n, k) = m2O(klog? k); otherwise, f(v,n, k) =
O(k(n — k)) + O(v?k) + O(v(n — k)) + O(v?)).

m2(0(vklog? k) +

A. Storage in sensor networks with multiple data sources

Recently, decentralized erasure codes have been appligileless sensor networks. Givéndata nodes, and
storage nodes, the objective is to retri@ledata when a data collector accessasy k out of n storage nodes. In
[17], randomized linear codes are used, where each datamaties its packet ta(k) = 32 In(k) storage nodes.
Each storage node selects random and independent coefffciana finite field[F,, and stores a linear combination
of the received data (modulg). In [10], a distributed implementation of fountain codssproposed. Instead of
pulling the data from candidate source nodes, a deterndrastd probabilistic scheme are devised to push data
from the source nodes to storage nodes. Both schemes skatertimon approach of coding at the storage nodes.
As a result, sparsity of the coding matrix is necessary taicedcommunication cost. This is the main argument
made by the authors of [17] for not using RS codes. If RS codesised and coding is done at the storage nodes,
every data node needs to send its data to almost atbrage nodes, resulting in a communication complexity of
©(nk). However, such a high complexity can be avoided if i) the sewfata is divisible into smaller coding units,
and ii) encoding is performed at the data-generating nodes.

The proposed progressive data retrieval scheme can beldiggmtlied when there are multiple data sources.
Information from each data generating nodes is stored imdi@gntly (rather than mixed at the storage nodes).
Therefore, in addition to its ability to correct errors andetate Byzantine failures, the progressive data retrieval
scheme also has the added benefit that partial retrieval obseswf data sources is allowed. In contrast, due
to the mixing at the storage node, decentralized erasurescathndate “all-or-none”, namely, either all storage
nodes need to be accessed or none of the individual dataesocan be retrieved. Table | provides a quantitative
comparison between the cost of decentralized erasure @uksur proposed scheme. From Table |, we see that
the proposed scheme outperforms decentralized erasues ¢godlmost all metrics.

B. Peer-to-peer tuple space

A tuple space is an implementation of the associative merparsdigm for parallel/distributed computing [18].
It provides a repository of tuples that can be accessed cmrdly, and may be thought as a form of distributed
shared memory. Implementations of tuple spaces have atsodeveloped for Smalltalk, Java (JavaSpaces), Python,
Ruby, TCL, Lua, Lisp, Prolog and the .NET framework. Typicallye ttuple space is stored at a reliable central
server. Processors produce pieces of data and use the daggetvand put operations, respectively, based on
unique identifiers of the data. In presence of a large numberafessors (nodes), the tuple space server becomes
a single point of failure and performance bottleneck. Oneg W alleviate this problem is to use peer-to-peer
storage systems to host the tuple space. However, volatititl failure of storage nodes need to be considered. The
distributed progressive retrieval scheme provides fal#irance to erasures (unavailability of nodes) and Bynanti
failures (corrupted data), and thus can be used to consirueliable tuple space from an unreliable peer-to-peer
storage system.

13

VIIl. CONCLUSIONS

In this paper, we developed a solution using RS codes to dpréarmation distributedly and redundantly for
the handling of Byzantine failures. The data retrieval pchge is carried out in a progressive manner such that
the communication cost is minimized while intermediate patation results can be utilized to greatly reduce
computation cost. The efficient encode and decode primitigegesas a fundamental building block for survivable
distribution storage systems. As future work, we will exglthe applications of the proposed algorithms in practical
systems.

REFERENCES

[1] “RAID, Redundant Array of Independent Disks,” http://en.wikile org/wiki/Redundanarray of_independentlisks.

[2] G.R. Goodson, J.J. Wylie, G. R. Ganger, and M. K. Reiter, “ifitbyzantine-tolerant erasure-coded storagel) 8N '04: Proceedings
of the 2004 International Conference on Dependable Systems and iketwiVashington, DC, USA: IEEE Computer Society, 2004,
p. 135.

[3] H. Krawczyk, “Distributed fingerprints and secure information disgal,” in PODC '93: Proceedings of the twelfth annual ACM
symposium on Principles of distributed computindNew York, NY, USA: ACM, 1993, pp. 207-218.

[4] T. Moon, Error Correction Coding: Mathematical Methods and Algorithmddoboken, NJ: John Wiley & Sons, Inc., 2005.

[5] H. William, S. Teukolsky, W. Vetterling, and B. Flannerfumerical Recipes in C: The art of scientific computingCambridge
university press New York, NY, USA, 1988.

[6] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. ékerman, “An xor-based erasure-resilient coding scheme,” ICSI
Technical Report TR-95-048, 1995.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leang] S. Sankar, “Row-diagonal parity for double disk failure
correction,” in Proceedings of the 3rd USENIX Symposium on File and Storage Tedig®Id-AST,) 2004, pp. 1-14.

[8] M. Blaum, R. Roth, I. Div, A. Center, and C. San Jose, “On lowdsstsity MDS codes IEEE Trans. Inform. Theorwol. 45, no. 1,
pp. 46-59, 1999.

[9] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardhe EVENODD code and its generalizationlEEE and Wiley Press, New
York, 2001, pp. 187-208.

[10] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale semstworks with decentralized fountain codes,’Rnoceedings of the
26th IEEE INFOCOM 2007, pp. 6-12.

[11] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’HhedA performance evaluation and examination of open-sourcaigzas
coding libraries for storage,” iiFAST '09: Proccedings of the 7th conference on File and storage témfies Berkeley, CA, USA:
USENIX Association, 2009, pp. 253-265.

[12] I. S. Reed and X. Cherkrror-Control coding for Data Networks Boston, MA: Kluwer Academic, 1999.

[13] K. Araki, M. Takada, and M. Morii, “On the efficient decoding oe&dJ-Solomon codes based on GMD criterion,”Aroc. of the
International Symposium on Multiple-Valued Lag®endai, Japan, May 1992, pp. 138-145.

[14] S. Lin and D. J. Costello, Jrkrror Control Coding: Fundamentals and Applicatigrzgnd ed. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 2004.

[15] I. Gohberg and V. Olshevsky, “Fast algorithms with preproces$or matrix-vector multiplication problem,J. Complexity vol. 10,
pp. 411-427, December 1994,

[16] Y. S. Han, S. Omiwade, and R. Zheng, “Survivable distributedagi® with progressive decoding,” Technical Report UH-CS-09-17
Department of Computer Science, University of Houston, 2009.

[17] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Deeéined erasure codes for distributed networked storalf&2E Trans.
Inform. Theory vol. 52, no. 6, pp. 2809-2816, June 2006.

[18] D. Gelernter and N. Carriero, “Coordination languages and thgmificance,”Commun. ACMvol. 35, no. 2, pp. 97-107, 1992.

