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increase the motion variety of a crowd. The central idea of our scheme is to maximize the 
style variety of local neighbors and global style utilization while maintaining the style 
consistency for each agent as natural as possible. Our scheme can serve as a 
complementary layer for most high-level crowd models to increase the variety realism. 
We show the flexibility and superiority of our scheme over traditional random motion 
style distribution through several experiment scenarios and user evaluations. To assist the 
runtime diversity control, an off-line preprocessing algorithm is also proposed to extract 
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Abstract

Traditional crowd simulation models typically focus on the navigational path-finding and local collision avoidance aspects.
Relatively few existing efforts explore how to optimally control individual agents’ detailed motions throughout a crowd. In this
paper we propose a novel scheme for dynamically controlling motion styles of agents to increase the motion variety of a crowd.
The central idea of our scheme is to maximize the style variety of local neighbors and global style utilization while maintaining
the style consistency for each agent as natural as possible. Our scheme can serve as a complementary layer for most high-level
crowd models to increase the variety realism. We show the flexibility and superiority of our scheme over traditional random
motion style distribution through several experiment scenarios and user evaluations. To assist the runtime diversity control, an
off-line preprocessing algorithm is also proposed to extract and stylize primitive motions from a motion capture database.

Index Terms

Crowd Simulation, Motion Diversification, Motion Variety, Variety Realism, Character Animation, User Study.

I. INTRODUCTION
Large-scale crowd simulation has been widely used in computer games, movies, virtual training, and education applications.

As one of the popularized schemes, agent-based crowd simulation considers the properties of each individual (agent) separately

at every time step, hence it can produce highly realistic simulation of path navigation, cognitive reaction, collision avoidance,

cognitive reaction, and animation control.

An agent-based crowd simulation system can be conceptually regarded as a three-layer hierarchy. The highest layer provides

the navigation waypoints by path-finding and decision-making. The intermediate layer computes high-level motion information

for every update (i.e., time step) through perception rules or social forces to achieve collision avoidance and collision response.

The lowest layer can be described as a motion generator driven by parameters from the higher levels that visualizes the detailed

animation of each agent. Within a crowd, these three layers collectively inform each agent the answers of the following three

questions: (a) where is the final target? (b) where is the next step? and (c) how to perform the motion in the next step? While

numerous approaches have been proposed for global navigation and local perception, relatively few research efforts have been

focused on controlling agents’ detailed motions throughout a crowd, for example, how to efficiently control the motion diversity

of a simulated crowd.

In this paper, we propose a novel scheme to control the diversity of motion styles in agent-based crowd simulations, given

a fixed number of motion styles. In this writing we use “motion type” to represent the general category of character motions

such as walking, running and waiting. The term “motion style” refers to the variations within each motion type. In most

crowd simulation models, a large number of agents will perform the same motion type such as walking. The ideal way is to

assign a unique motion style to each agent during a certain time period, since individuals in a real-world crowd have diverse

motion styles based on their distinctive personalities. However, this extremely high diversity appears prohibitive in terms of

both computation and resource costs. Therefore, the problem of improving the motion diversity (or variety) of a crowd is

transformed to how to make the crowd look diversely plausible given a limited number of available motion styles.

Previous crowd simulations usually specify a single motion style for a certain motion type. To increase the motion diversity,

a random distribution of several motion styles is adopted in some applications. However, even the latter solution does not

guarantee the motion diversity of the crowd since most likely it will lead to the local clustering or over-distribution of certain

motion styles. Consequently, the cloned styles can be easily detected by audience. Our proposed motion diversity control

scheme is designed to maximize both local and global diversity of motion style distribution, and special care is taken to ensure

the realism and smoothness of motion transitions between different motion styles. Specifically, we use an offline data-driven

method to extract and stylize primitive motions based on their kinetic energy characteristics. At runtime, the motion style of

each agent at every time step is dynamically computed based on the information of its local neighbors, current style, and the

global style distribution. The generality, robustness, and effectiveness of our approach was demonstrated by applying it to both

cyclic motions such as walking and running, and acyclic motions such as fighting and waiting motions.

The main contribution of this work includes: (1) An efficient scheme to dynamically control the diversity of motion styles

for agent-based crowd simulations, and (2) a data-driven motion stylization scheme from a motion capture dataset.



IEEE COMPUTER GRAPHICS AND APPLICATIONS 2

II. RELATED WORK

In recent years, increasing attention has been attracted to agent-based models that simulate sophisticated global path-planning

and local collision dynamics of each crowd member separately. Among them, force-based models and its various extensions

such as [1] apply repulsion and tangential social forces to drive interactions between individual agents or sub-groups. Following

the Reynolds’s seminal work [2] for generating steering behaviors for flocks, herds, and schools, rule-based crowd simulation

has been extensively studied to achieve highly realistic human behaviors in complicated environments. In addition, the widely

known “motion graphs” algorithm [3] has also been introduced to retrieve and playback the appropriate motion data in crowd

simulations.

Visual variety is an important factor to affect the overall perception of many crowds simulation scenarios, such as a street

with high density pedestrians. Due to the computation and resource limitations, most real-time simulation systems have to

employ repeated agent appearance or motion patterns for efficient runtime performance while sacrificing the crowd diversity

to a certain extent. A number of approaches have been proposed to enrich the appearance variety among agents such as

re-coloring textures for different body parts at runtime [4], modulating illumination maps [5], manipulating combinations of

personal accessories and scaling body skeletons for different body heights [4]. In addition, Johansson [6] had investigated the

problem of visual perception of biological motions and found that a 10-12 moving dot representation was adequate to evoke

a compelling impression of human motions (e.g., locomotive human motions).

The most related work to our proposed scheme is the perception study of crowd variety by McDonnell and her colleagues [7].

In their study, several design implications and rules of crowd variety were derived such as how appearance clone, motion

clone, and their combinations can affect the perceived variety of a crowd. McDonnell and her colleagues further evaluated the

perceptual influences of different parts of a human body in a crowd [8]. These evaluations prove the effectiveness of adding

appearance variety and illustrate that adding motion styles can also contribute to disguising clone effects. Compared with

diversifying an agent appearance which has to be generated at the beginning and fixed during the simulation, dynamically

changing motion styles of individual agents over time, to a certain extent, is less likely to be visually detected, hence having

more controllability at run-time.

Researchers also investigated how to generate motion variations based on a given character motion dataset. For example,

Lau et al. [9] developed a new dynamic Bayesian Network model to evaluate motion variations with a fast speed in both

temporal and spatial domains. However, it is still impractical to directly apply these single-character animation techniques to

a large-scale crowd with thousands of agents, since it is too computationally costly for real-time applications. To this end, we

focus on a general approach to efficiently and adaptively enhance the motion variety and thus visual realism of a crowd, given

a limited set of available motion styles.

III. PIPELINE OVERVIEW

Fig. 1. The pipeline overview of our approach. The left shows the pipeline of our off-line motion stylization process, and the right shows the pipeline of
the runtime motion diversity control scheme.
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Figure 1 shows the pipelines of two main components of our approach. In the offline preprocessing step, we first segment and

extract different primitive human motions from a motion capture database. These motions include cyclic walking and running

motions, and acyclic waiting and fighting motions. Then, a novel stylization process parameterizes and sorts the obtained

primitive motions based on kinetic energy. Style variation tables and compact consistency tables are generated for the runtime

query. At runtime, the animation layer first retrieves feature vectors from higher perception layers of a crowd simulation system

to decide the motion type and velocity of each agent. Then, our novel motion diversity control scheme selects proper motion

styles for individual agents at each update (time step).

Our motion diversity control scheme is three-fold, based on the following simulation premises: (a) The chosen motion style

of an agent should maximize the variety of local style distribution of its neighbors, so that the same or highly similar motion

styles are not clustered together; (b) the chosen motion style of an agent should maximize the diversity of global motion style

utilization; and (c) for certain motions such as cyclic walking, the chosen motion style of an agent should be consistent as

much as possible with his/her current style to prevent unrealistic sharp changes of motion.

IV. OFFLINE MOTION PREPROCESSING

To assist the runtime motion diversity control, primitive motions with associated style information are generated at the offline

preprocessing step. Although our motion diversity control scheme is independent of motion type, without the loss of generality,

this work only considers walking, running, fighting and waiting motions since they are commonly used character motions in

crowd simulations such as battlefields and urban streets.

We choose motion capture data due to its accuracy and realism. However, capturing a large motion capture database for

every crowd simulation project is not always practical in reality; hence, we propose a data-driven method to extract and stylize

primitive motions from a publicly available motion capture database, e.g., the well-known CMU motion capture database

(http://mocap.cs.cmu.edu).

Fig. 2. Primitive motion extraction. (Top) A full cycle walking. (Bottom) Kinetic energy segmentation (its refining window size is 7).

A. Primitive Motion Extraction

Retrieving characteristic motions from a large motion database has been extensively studied during the past several years.

Both semantically and numerically based retrieval approaches achieve an impressive accuracy of classifying different types of

motions. Due to the high performance requirement of large-scale crowd simulations, we need an efficient and concise feature

vector to characterize motion styles.

A number of previous efforts have been attempted to analyze, decompose, and quantify human motions [10], [11]. For

example, Troje [10] presented an efficient framework to decompose walking motions to a low dimensional representation

for analysis and synthesis purpose. However, whether this framework can be soundly and robustly applied to other types of

human motions (not limited walking motions) was not established. Ren et al. [11] explored statistical models to quantify the

naturalness of various human motions. But their approach was focused on the qualitative judgment of natural versus unnatural

aspects of human motions. Therefore, their approach is not able to produce a quantitative feature vector for characterizing

each motion style. In this work, inspired by the distance function proposed by Onuma et al. [12], we use the instant kinetic



IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

energy computed from joint angular velocity and joint moment of inertia to retrieve primitive motions and adopt the mean

kinetic energy to stylize each primitive. Compared with original joint angle motion data, instant kinetic energy is invariant to

reciprocal limb motions. For instance, in a walking motion, the raw movement angle of one leg will be neutralized by the

negative movement of the other leg.

Proper segmentation is critical for cyclic walking and running motions. We retrieve primitive motion segments that start from

the single foot contact state and consist of a full cycle of motions (Fig. 2) based on the following observations: (a) The starting

pose and ending pose of a full motion cycle are most similar so as to optimize the runtime blending, (b) the switching-nature

pose among real-world walking, running and standing is always the single foot contact pose, and (c) the single foot contact

pose is more common than any on-the-fly poses regardless motion styles.

Primitive motion segments can be roughly identified by analyzing the kinetic energy trajectory of the entire human body

since a locomotive motion exhibits highly cyclic patterns. Fig. 2 shows the low-pass filtered kinetic energy curve of a walking

motion. We use the method proposed by Onuma et al. [12] to compute the moment of inertia of each joint. Unlike the COM

(Center Of Mass) trajectory, the kinetic energy values fall into a local minimum on both constrained poses (e.g., the single

foot stage) and unconstrained poses (e.g., the double foot stage for walking and the flying stage for running). This helps us to

unify a segmentation solution for both walking and running motions. A full locomotion cycle can be segmented by starting

from a single foot contact stage (a local minimum and foot contact with ground) and keep searching for five consecutive local

valleys. If a bursting spike (sharp turn motion) or a number of continuous near-zero value (static pose) is encountered before

the 5th local valley, the current search is reset.

The above procedure provides us a coarse segmentation for cyclic walking and running motions. To further ensure the

seamless transition between extracted motion segments, the obtained coarse segmentation is refined by applying a small

window-based check around the first and last frame (Fig. 2). We compute the optimal (i.e. the smallest distance) frame pair

as the final segmentation points using the metric proposed by Kovar et al. [3]. In this work, the size of the check window

is experimentally set to 7 and 5 for walking and running motions, respectively. The refining process results in two types of

motion cycles: one starting from the left foot and the other starting from the right foot. In this work, we only use the right

foot cycle, since the left foot cycle can be easily obtained by swapping the halves of the right foot cycle. On the other hand,

most acyclic motions, such as fighting and waiting motions, do not exhibit repeated motion patterns. Thus, acyclic primitives

are retrieved by detecting long foot contact period with a threshold of kinetic energy change. We found this simple solution

is sufficient to extract waiting and fighting motions with comparable style variations.

B. Motion Stylization

In order to control the motion diversity of individual agents, we need to design a metric to quantitatively measure the

difference between a pair of primitive motion styles. Our stylization process first categorizes unlabeled primitive motions into

different types, and then further classifies the motions with the same type into different styles.

The logarithm of the mean kinetic energy [12] is an effective metric for our purpose since it is independent of the length

of the motion. We empirically choose the following 2D feature vector (Eq. 1), composed of the logarithm of the mean kinetic

energy of upper/lower body parts, for motion clustering and classification.

(log(Eupperbody + 1), log(Elowerbody + 1)) (1)

Within each motion type, this metric is also used to quantify the style variations. In our experiment, this metric generally

resulted in a perceptually sound motion style ranking.

To accelerate runtime motion selection, for each motion type, we also generate a style variation table (Fig. 4) with a size

s × s, where s is the number of styles for certain motion type and the value of each cell is the Euclidean distance between

two motion styles. This data structure will be used as a look-up table in maximization of local motion diversity (described in

Section V-A). Furthermore, a consistency table pre-registers a number of highly similar primitive motions for a specific style

as possible candidates in style selection (discussed in details in Section V-C). To prevent foot-sliding, at runtime we need

to align the original speed of primitive motions with the speed computed from the high level layers of a crowd simulation

system. In this work, the original speed of a primitive motion is calculated by averaging the horizontal speed of its root, and

its runtime resampling factor is computed as the ratio between the two speeds.

V. DYNAMIC MOTION DIVERSITY CONTROL

The diversity or variety of a crowd is often categorized to appearance variety and motion variety. Having the same appearance

or motion on a large number of individual agents in a crowd will make the simulation unrealistic. Appearance variety can be

achieved through generating different 2D textures for the same 3D model. However, synthesizing realistic new motion styles

for each agent is not practical for a large crowd in real-time applications. Previous studies also showed that adding appearance

variety would not help to increase the diversity of motion styles in a crowd [7].

Our motion diversity control scheme explores an intelligent way to dynamically distribute the given limited motion styles

into a large crowd. Given a specific motion type from high-level crowd simulation modules, for an agent p at time t, the
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Fig. 3. Feature vector distribution in 2D lower-body and upper-body kinetic energy space.

Fig. 4. (Left) An example of walking style variation tables, and (right) an example of consistency tables (the row headers are motion style index number,
and the column headers are the consistency ranking).

optimal motion style for next time interval, Sp[t + 1], is computed as the weighted combination of a local diversity function

Dp(S), a global utilization function U(S), and a consistency management function Cp(S):

Sp[t + 1] = arg max
S⊂R

(Dp(S)wd + U(S)wu + Cp(S)wc) (2)

Here S is a motion style candidate from the space R of all available styles of the expected motion type, wd, wu, and wc

are user-defined parameters to weight different control components. The style-updating interval is the length of each primitive

motion described in Section IV-A.

A. Maximization of Local Motion Diversity

The maximization of local motion diversity is inspired by the optimal graph-coloring problem. However, computing an

optimal k-coloring for a set of nodes is NP-hard. In addition, in a high density crowd, the number of neighboring nodes might

be larger than the number of available motion styles. We therefore refine the selection criterion, that is, it should find the

most different motion style compared with neighboring agents within the local field of interest. Fig. 5 shows a side-by-side

illustration of this selection criterion. In this figure, gray-scale levels in the left panel indicate the kinetic energy representations

of motion styles of agents, and the right panel shows the corresponding agent animations.

The local diversity function Dp(S) for an agent p is computed as follows:

Dp(S) =
1

m

m
∑

q=1

StyleTable(Sq[t], S)

NormalizedDistancepq

(3)



IEEE COMPUTER GRAPHICS AND APPLICATIONS 6

Fig. 5. The selected agent (blue) attempts to perform a walking style that is most distinguished from its neighbors (red). (Left) Kinetic energy representation
of motion styles. (Right) The corresponding 3D agent animations.

Here m is the number of neighbors around the agent p, the numerator denotes the style difference between the candidate style

S and current style of a neighbor agent q at time t, and it can be retrieved by looking up the style variation table constructed

in Section IV-B. The NormalizedDistancepq between two agents p and q gives a closer neighbor with a higher weight

(importance) and a more distant neighbor with a lower weight on style selection. Note the Euclidean distance between two

agents in the world coordinate space cannot be directly used since the value StyleTable(Sq[t], S) is computed in a stylization

metric space. To avoid too large or too small value of Dp(S), the distance in the world coordinate space is hence normalized

by the average distance between the agent p and its m neighbors as follows:

NormalizedDistancepq =
distance(pq)

1
m

∑m

i=1 distance(pqi)
(4)

Finding m nearest neighbors is a bottleneck for both high-level perception simulation layers and our local diversity

maximization part due to its Θ(n2) complexity, where n is the total number of agents in simulation environments. In this

work, we address this issue by registering each agent into a discretized 2D grid at the beginning of every update and then only

looking for nearest neighbors within the current agent’s grid and 8 adjacent grids (Fig. 5). Note in the high-level perception

level simulation, the neighbors are typically restricted to the area in front of the agent to mimic the vision angle restriction

of humans (i.e. agents). In our local diversity control part, however, we consider the neighbors from all directions since our

purpose is to disguise style clones from audience instead of agents. Moreover, only neighbors with the same motion type are

taken into account since the style variation tables of different motion types are generated separately in Section IV-B.

B. Global Utilization Control

The selected motion style is expected to contribute to the optimization of global utilization distribution of all available styles.

For a motion style S, its corresponding global utilization function U(S) is computed as follows:

U(S) = targetNum(S) − currentNum(S) (5)

Here targetNum(S) is the expected occurrence number of the style S, and currentNum(S) is the current occurrence

number of the style S. U(S) can be either positive or negative. A larger value of U(S) means the crowd has none or only few

replications of style S, while a smaller value of U(S) indicates that the style S has already been “over-cloned” and thus will

be repulsed by our diversity control model. currentNum(S) can be simply obtained by keeping a style counter over time.

targetNum(S) is an empirical parameter derived from the distribution of global style utilization as follows.

targetNum(S) = PS ×
agentNum(T )

styleNum(T )
(6)

Here
agentNum(T )
styleNum(T ) is the ratio between the number of agents with a motion type T and the number of available styles in

the motion type T (assuming S is one of motion styles of the motion type T ), and it represents the average number of style

distribution on agents; PS denotes the priority of the style S. By default, PS is 1 for any style S. The strategy of our global

utilization control is to maximize the utilization of every available motion style so that an approximately uniform distribution

can be achieved. Fig. 6 compares the results of a 200-agents crowd with and without global utilization maximization. A

crowd simulation with a random distribution of motion styles often leads to an unbalanced style distribution whereas our

proposed scheme produces a near-uniform style utilization. In some special scenarios, certain styles are preferred than others.

The preference can be achieved by increasing their priority values in Eq. 6.

C. Consistency Management

We also assume that an agent in a crowd likes to keep its motion style as much as possible. This is intuitive since if agents

frequently switch very different motion styles, the entire crowd will appear unrealistic and unsmooth. Through the constructed
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Fig. 6. (Left panel) Random distribution of motion styles, and (Right panel) our global utilization maximization.

style variation tables (Section IV-B), the consistency management function Cp(S) for an agent p is computed as follows:

Cp(S) = αp × (maxDistance − StyleTable(Sp[t], S)) (7)

Here StyleTable(Sp[t], S) represents the difference between current style of the agent p and a candidate style S, maxDistance

is the maximum distance/value in the style variation table of the specific motion type that S belongs to, and α represents

whether the expected motion type is the same as current motion type (Eq. 8). We only consider the consistency between two

styles in the same motion type since the change of motion type is much more obvious and normally controlled by high-level

perception simulation layers.

In order to maintain the motion smoothness while maximizing the crowd variety, we adopt the widely-used Level of Detail

(LOD) concept into our crowd diversity control scheme, that is, agents that are closer to the viewing camera are assumed to

attract more attention from audience. Specifically, the consistency management function Cp(S) is only applied to the agents

in the visible range of the viewing camera; and if an agent is in the visible range, the influence/weight of the consistency

management function is inversely proportional to the distance between the agent and the viewing camera (Eq. 8).

αp =



















0 if Tp[t + 1] 6= Tp[t]

or Agent p is out of view

threshold

dist(p)
otherwise

(8)

Here threshold is a scaling parameter.

Note that Dp(S), U(S), and Cp(S) in Eq. 2 are functions of a style parameter S, which means in order to find the optimal

style, we need to traverse the entire stylization space R of the same motion type. As such, we build an additional consistency

table to reduce the size of the search space R based on the following key observations (Fig. 4):

• When a rich number of styles are used, traversing the entire style space at every update step is not efficient for a large-scale

crowd simulation.

• Under the consistency constraint, candidate styles with a large difference from current style are rarely selected.

For each motion style in the style variation tables (Section IV-B), we first sort other styles within the same motion type by

kinetic energy distance in an ascending order. Only the indices of the first r styles are stored in the consistency table. For any

specific motion style, the stored candidates are therefore the r most similar styles (with a little higher or lower kinetic energy)

starting from itself (zero variation). The right panel of Fig. 4 shows an example of the constructed consistency tables.

At runtime, an agent only traverses its closest r candidates (stored in the consistency table) at each update step to search for

potential style transition targets. On the other hand, if users want to have more different styles on an agent, the agent should

choose the rth closest candidate style at current update step and then gradually move towards more distant style in next update

step. For example, considering the consistency table with r = 5 in Fig. 4, in order to switch current #1 motion style to the

target #7 style, our scheme will first transit #1 style to a middle #5 style and then reach #7 style at next update. We also
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require motion styles have a roughly even distribution in the stylization space (Fig. 3) to ensure that each style has at least

one path to any other style in the consistency table. Thus, we remove redundant primitive motions (too close to or too distant

from other primitive motions) before the style variation table is generated. Also, with the consistency table, maxDistance in

Eq. 7 can be empirically set to the rth closest candidate distance.

VI. RESULTS AND EVALUATION

To test and evaluate our diversity control scheme, we applied it to a number of crowd scenarios generated by high-level crowd

simulation models [1], [2]. We also extracted 15 walking, 10 running, 10 fighting, and 10 waiting primitives from 11,138-frame

motion sequences of the publicly available CMU motion capture database. Runtime performance and a perceptual user study

are also reported in this section.

A. Experiment Scenarios

Fig. 7. Flocking Boids using our diversity control. Agents’ motion styles converge to a stable stage after several update steps.

1) Flocking is a typical crowd behavior. Similar locomotion patterns and targets are observed among flock mates. We adopt

the Boids model [2] where each agent is driven by three steering behaviors: separation, alignment and cohesion (Fig. 7).

Switching walking styles frequently will be easily detected in this model as the unnatural effect since relative speeds

and orientations among agents are consistent. Motion style consistency in this case is given a higher weight/priority over

local diversity and global utilization control. Its style distribution will converge to a stable stage after several update

steps.

2) Crowded Town scenario is used to test various types of cyclic motions using the HiDAC model proposed by Pelechano

et al. [1] for both low density and high density crowds (Fig. 8). The walking crowd found the balance among the three

control terms in Eq. 2. Meanwhile, switching running styles frequently in a panic situation does not produce obvious

annoying effects. Based on these observations, we assume that motion style consistency has a lower influence on high

frequency cyclic motions, and the local diversity maximization and global utilization control should be applied with

higher weights.

3) Frozen Land scenario shows how our diversity control scheme can be applied to acyclic fighting, waiting and watching

motions (Fig. 8 c, d). In contrast with cyclic locomotions, acyclic motions usually benefit from a higher weight on local

diversity, a higher weight on global utilization, and a lower weight on consistency management to achieve non-repetitive

motion patterns.

4) Military March shows the flexibility of our method through locally manipulating the global utilization control. While the

default global utilization control tends to unify the style distribution, specific motion styles can be clustered by increasing

their priority values PS in Eq. 6 for certain selected agents. This is particularly useful in simulating formation crowds.

Please refer to the accompanying demo video for its animation results.

The above four scenarios showcase the influence of weight tuning in our motion diversity control scheme. The weight

parameters (Eq. 2) used in these experiment scenarios are shown in Table I.

B. Complexity and Performance

Performance is a critical issue for an agent-based crowd simulation system since the system has to update every agent

individually at each time step. An unoptimized version of our motion diversity control has a computational complexity of
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Fig. 8. Our motion diversity control is applied to different scenarios simulated by the HiDAC crowd model [1] (from top to bottom): (a) urban street, (b)
panic evacuation, (c) fighting training, (d) street entertainment.

Simulation Scenario Local Diversity (wd) Global Utilization (wu) Consistency (wc) Style Priority (PS )

Flocking 1.0 1.0 5.0 1.0

Urban Street 1.0 1.0 1.0 1.0

Panic Evacuation 5.0 5.0 1.0 1.0

Fighting training 10.0 5.0 1.0 1.0

Street entertainment 10.0 5.0 3.0 1.0

Military March 1.0 10.0 5.0 10.0

TABLE I
WEIGHT PARAMETERS FOR LOCAL DIVERSITY MAXIMIZATION, GLOBAL UTILIZATION AND CONSISTENCY MANAGEMENT IN EQ. 2. IN THE MILITARY

MARCH CASE, PS IS 10.0 ONLY FOR MARCHING WALKING STYLES.
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n2 × s, where n2 is the cost of finding neighbors shared by higher-level perception layers and our diversity control, and s is

the total number of motion styles. In our optimized implementation, n2 is reduced to n by registering agents into a discretized

2D grid system at each frame. The s value is decreased to a small constant r through the introduced consistency table, as

described in Section V-C.

An off-the-shelf PC with 2.4 GHz CPU, 2GB memory and NVidia GeForce 260 was used in our experiment. Using articulated

3D human models (800 to 1000 polygons) driven by high quality motion capture data with 30 joints (62 DOF), we are able to

simulate up to 500 agents with 30 frames per second. To test the computation overhead, we compared the average Frames-Per-

Second (FPS) when the random motion style distribution scheme (complexity is Θ(1)) and our scheme are used, respectively

(Table II). The high-level simulation used in the experiment is the HiDAC model [1] with discrete grid resolution of 50× 50.

Table II shows that our motion diversity control scheme only added a small overhead on top of the high level crowd simulation

system.

crowd size original fps (random distr.) new fps (our scheme) computation overhead

100 agents 123.5 122.9 0.7%

200 agents 97.7 97.2 0.5%

300 agents 60.1 59.8 0.5%

400 agents 39.4 39.0 1.0%

TABLE II
PERFORMANCE STATISTICS: THE OVERHEAD IS EVALUATED BY COMPARING THE UNLIMITED FRAME RATES BETWEEN THE ORIGINAL HIDAC MODEL

AND THE HIDAC MODEL AUGMENTED WITH OUR MOTION DIVERSITY CONTROL SCHEME.

C. Perceptual Evaluation

Evaluating a simulated crowd numerically is a rather complicated problem since it highly depends on users’ subjective

perception. McDonnell et al. [7] provide an in-depth study on multiple factors that may affect the detection time of cloned

motions from a crowd, including appearance, gait style, and the number of clones. In their work, the cloned motions are

randomly distributed among the crowd without a control scheme. Therefore, our experiment goal is to answer the following

usability question: compared with the random style distribution, does our diversity control scheme make motion clones harder

to detect when the same number of motion styles is used?

Fig. 9. Perceptual user study: (Left) Experimental interface, (Middle) cyclic walking motion, and (Right) acyclic fighting motion. The positions of 16 agents
are uniformly generated plus a small random offset for each trial.

To minimize the influence from other simulation layers (e.g., navigation and perception levels), we fixed the positions and

orientations of 16 testing agents with the same appearance. Cyclic walking and acyclic fighting primitive motions shown in

section VI-A were used in the experiment. All agents are facing the same direction and not colliding with each others (Fig. 9).

Different from the work of [7] that uses single clone style repeatedly, we attempted to simulate more specific crowd situations

to allow multiple style clones multiple times, that is, given a limited number of motion styles, we let the random or our

diversity control scheme to determine which and where a motion style should be applied. The upper-limits of available styles

for each trial are set to 2, 4, 6, 8, and 10. These motion styles were chosen from the collected 15 walking and 10 fighting

primitive motions at a random order, respectively.

In this study, the total trial number for each participant is 5 pools * 2 diversity schemes * 2 motion types = 20. 14 naive

participants (12 Males, 2 Females) took part in the study. It should be noted that most of the participants had little crowd

simulation background. Since it was difficult to find all clone pairs within a reasonable time frame, we asked each participant

to pick one clone pair as quickly as possible. In order to eliminate the influences of different motion styles (some styles

appear harder to identify than others) and fatigue issue as much as possible, the order of trials for all the participants was

counter-balanced.
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Fig. 10. Average response time and standard deviation of detecting the first pair of motion style clones: (left) cyclic walking motion, (right) acyclic fighting
motion.

Two-way ANOVAs were used to analyze the reaction time of picking the first clone style in each trial. We found both the

number of style upper-limit (cyclic motion: F = 26.25, p-value < 0.0039; acyclic motion: F = 38.40, p-value < 0.0019) and

the diversity control scheme (cyclic motion: F = 29.94, p-value < 0.0054; acyclic motion: F = 48.75, p-value < 0.0016) are

the main effects and there is no evident interaction between them. The first result (the number of the style upper-limit is one of

the main effects) was consistent with the user study results reported by other researchers [7]. The other result (diversity control

scheme is another main effect), combined with the average reaction time in both motion type conditions (Fig. 10), shows that

our motion diversity control is more effective than the random distribution to disguise motion clones given the same number

of available motion styles.

Although we did not evaluate the impact of agent orientation on motion clone detection, and allowed the participants to

freely rotate the view during the study, we found most of the participants preferred to use a side view (Fig. 9), instead of a

front view, to identify motion clones. This interesting observation is opposite to the case of detecting appearance clone reported

in previous work [7]. One possible explanation is that most of the participants tried to identify different styles through the

swing magnitude of limb motions that is more observable at the side view.

VII. DISCUSSION AND CONCLUSIONS

This paper proposes a novel scheme for dynamically controlling motion styles to increase the motion variety/diversity of

agent-based crowds. The central idea of our scheme is to maximize the style variety of local neighbors and global style

utilization while keeping the style consistency for each agent as natural as possible. The proposed scheme only requires

high-level motion information (e.g., speed and motion type) computed from the navigation and perception layers of a crowd

simulation system. As such, it can serve as a complementary layer for high-level crowd simulation models. Finally, we show the

flexibility and superiority of our scheme over the traditional random motion style distribution through a number of experiment

scenarios and a perceptual user study.

Although our motion diversity control scheme is independent of specific motion types, the off-line stylization process directly

affects the final simulation results. Inappropriate stylization may cause jaggy effects in terms of consistency management, e.g.,

two styles have similar stylization value but not visually close. The proposed segmentation and stylization process generated

sound results for the selected motions in this work. However, stylizing more complex human motions using compact feature

vectors is still a challenging problem that remains to be further explored.

The proposed scheme has several limitations. In the current work, we do not use the transitions enclosed in the original

motion capture data due to the following main considerations: (1) many inter-style transitions are not available in the original

motion data, and (2) pre-generating all the possible motion transitions among all styles demands nontrivial extra overhead

for a large crowd. For performance concern, we apply a spherical linear interpolation on agents’ joint rotations and a linear

interpolation on agents’ translations to dynamically generate transitions at runtime. Since the consistency management described

in Section V-C restricts the style to change in a “mild” way, we found the dynamically generated transition results are visually

acceptable. However, if the motion continuity is strictly required for a certain agent, such as the main character in a computer

game, a more sophisticated motion synthesis method would be necessary instead of replaying and interpolating existing motion

styles.

Also, we use the average speed computed from original primitive motions as the reference for computing the runtime

animation re-sampling rate. This may still result in minor foot-slidings for certain locomotive motions, since the speed of
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real-world humans is a periodical acceleration and deceleration procedure along the foot steps while the speed from high-level

crowd simulation layers is typically a constant. In addition, the current algorithm considers every agent as the same type of

person without variations in genders, personalities, heights, weights, or ages. Several recent efforts [4], [8] indicate the body

shapes and even the motions of particular body parts will significantly influence the overall visual variety of a simulated crowd.

We hence plan to explore more sophisticated motion style selection rules to take these factors into consideration in order to

further enhance the visual realism of diversified crowds.

As a common limitation of data-driven methods, the simulation result of our scheme is limited to the capacity and variety

of the given motion database. For example, if the number of available motion styles in our scheme is extremely low, motion

clones will be easily detected. As a part of our future work, we plan to develop algorithms to synthesize new motion style

variations on-the-fly based on the current optimal motion selection outcome, balancing visual realism and runtime performance.

In the current user study, we focus on how to effectively disguise motion style clones to increase the visual variety. An

interesting future direction would be to investigate the user perception aspect resulted from the change of motion styles in a

crowd. This visual perception may vary with particular motion styles, agent distance, and the number of crowd agents. The

finding would give additional insights to crowd motion diversity control.
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