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Abstract

FunctionalReactive Programming (FRP) is a declarative appraacmodeling and building reactive
systems. FRP has been shown to be an expressmali®m for building graphics, robotic, and vision
applications. Recently, priority-based FRP (P-FRB3 introduced as a formalism that guarantees real
time response. Unlike the classical preemptive riaafereal-time systems, preempted events in P-FRP
are aborted and have to restart when higher priexients have completed. The abort and eventual re-
start makes the response time of a lower priokigné completely dependent on the execution patiern
higher priority events. Though methods to deternaipproximate values for the response time of events
in P-FRP have been presented, no convenient méidmeget been established that can determine actual
response time. A common method for computing saspanse time in the preemptive execution model
is not guaranteed to give correct results in P-FRPobvious approach in P-FRP is running a time-
accurate simulation. However, this approach is agatpnally expensive and not feasible in most prac
tical situations. We show that an exhaustive enati@r technique for idle periods, is a more effitie
technique than time accurate simulation, and caealsdy adopted to determine actual response time i
P-FRP and other transaction based execution models.

T This work is supported in part by U.S. Nationaleé®cie Foundation under Award no. 0720856

* In this paper the classical preemptive model sefera real-time system in which tasks can be ppésanby higher priority
tasks, and can resume execution from the pointweeg preempted
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FunctionalReactive Programming (FRP) is a declarative apprdacmodeling and building reactive sys-
tems. FRP has been shown to be an expressivelfemfar building graphics, robotic, and vision &ipations.
Recently, priority-based FRP (P-FRP) was introduag@ formalism that guarantees real-time respdhsike
the classical preemptive modef real-time systems, preempted events in P-FRRaborted and have to restart
when higher priority events have completed. Thertaliod eventual restart makes the response tinael@iver
priority event completely dependent on the exeecugiattern of higher priority events. Though methtmldeter-
mine approximate values for the response time ehevin P-FRP have been presented, no convenighbde
has yet been established that can determine acspbnse time. A common method for computing seeh r
sponse time in the preemptive execution model tsgnaranteed to give correct results in P-FRP. Bviaus
approach in P-FRP is running a time-accurate sitiamaHowever, this approach is computationally engive
and not feasible in most practical situations. \Wevsthat an exhaustive enumeration technique ferpdriods,
is a more efficient technique than time accurateutation, and can be easily adopted to determiteahce-
sponse time in P-FRP and other transaction basszlig®n models.
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I. Introduction

Functional Reactive Programming (FRP) [26] is alaletive programming language for modeling and im-
plementing reactive systems. It has been used f@ide range of applications, notably, graphics {8potics
[19], and vision [20]. FRP elegantly captures coumus and discrete aspects of a hybrid systenyubkia no-
tions ofbehaviorandevent respectively. Because this language is develagesh embedded language in Has-
kell [12], it benefits from the wealth of abstrawts provided in this language. Unfortunately, Héisgrovides
no real-time guarantees, and therefore, neithes B&.

To address this limitation, resource-bounded vésiaf FRP were studied ([16],[24],[25]). Recenitywas
shown that a variant called priority-based FRP RRJ-[16], combines both the semantic propertiesFieP,
guarantees resource boundedness, and supportsieggldferent priorities to different events. MFAFRP, higher
priority events can preempt lower-priority oneddowever, to maintain guarantees of type safety statkbless
execution, the functional programming paradigm nexputhe execution of a function to be atomic itura. To
comply with this requirement, as well as allow pnpéion of lower priority events, P-FRP implementsamsac-
tional model of execution. Using only a copy of #tate during event execution and atomically cotimgjtthese
changes at the end of the event handler, P-FRRanthat handling an event is an “all or nothing3gmsition.
This preserves the easily understandable semaritit®e FRP and provides a programming model where r
sponse times to different events can be tweaketthdoyprogrammer, without ever affecting the semaswiend-
ness of the program. Thus, a clear separationdegtthe semantics of the program and the respoesisef the
implementation of each handler is achieved.

" This work is supported in part by U.S. NationaleBce Foundation under Award no. 0720856
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tion from the point they were preempted



This transactional execution model used in P-FRfotsnew, and several such models have been pegsent

in the past. These are the transactional memotgregs[14], lock-free execution for critical sectsgri] and pre-
emptable atomic regions in Java [18]. The develogéthese systems was primarily motivated byrteéed to
avoid concurrency or precedence constraint issuaigsh have been a problem in the classical preempiiodel
[23]. In spite of its varying uses, the transaciomodel is not well understood. While several cese time
studies for this model are available ([1],[4],[2B]), they only provide basic schedulability aysaé by modify-
ing methods developed for the preemptive modeltullysto find actual response time for this exeautioodel
has not been presented yet.

Several functional programming languages are basggl in the industry, like for mission criticaleéebm-
munication equipment (Erlang [9]) and control obhd vehicles (Atom [13]). However, the temporabperties
of software written in functional programming havat been well studied. With functional programmbegzom-
ing a standard feature in popular software devetgmlatforms like Microsoft’s Visual Studio [11§tudies on
its temporal and space properties are valuablevidu® work ([16],[21]) on P-FRP provided basic riéswn
schedulability and approximate upper bounds onaresptimes. Though approximate upper bounds oolyige
a general idea on the schedulability of eventsnteéhods to compute them are much faster ([3]2Z])[ In this
paper we use the term ‘actual’ to differentiaterfrapproximate or bounded response time. Actualbresptime
gives an exact indication of the temporal propsroéevents in the system. Hence, actual respamgeis more
useful when an accurate model of the system isinedjii such as in the design phase of a real-tyagm, or in
developing exact schedulability tests.

An iterative method first presented by Audsley leina[2] (termed Audsley’s method in this papers a
common approach for determining actual response timthe preemptive model. In this method, it isumsed
that the amount of processor time taken by an eleeekecute, is constant and equal to its worst-exgcution
time (WCET). However, since a preempted event estald, the amount of processor time taken by aflqsier-
ity P-FRP event to complete execution, can be fatfgen its WCET, and thus not knowarpriori. Due to this
reason the method in [2] is not guaranteed to wothk P-FRP (see section Il for example), and nesthads for
determining actual response time in P-FRP are redui

[.I Contributions

This paper presents an efficient algorithm that loarused in place of a simulation, to determineattteal
response times of events in P-FRP. This is an #aketep for making this technology practicallyab since it
is not practical to work out these response timeland or simulation methods. To conform to terrfogg used
in referenced real-time system papers, P-FRP ewvelitse referred to as tasks in the rest of trapgr. The util-
ity of this work also extends to determining actieponse time in systems which have similar exacumodels
([11.[4], [9], [18]).

After reviewing basic concepts and the P-FRP exacuhodel (Section Il) we:

* Present Audsley’s iterative method for computintyaktresponse time in the preemptive model (Sedtipn

» Introduce the time-accurate algorithm that simdéke execution model of P-FRP (Section 1V)

* Present an enumeration technique for idle periatisch for the sake of brevity has been termedgap-
enumeratiormethod (Section V)

* Present an algorithm that determines the actugloree time of a task using the gap-enumeration adeth
(Section VI)

* Provide performance analysis between the time ate@nd gap-enumeration algorithms (Section VII)

And conclude by reviewing related work (Sectionl)/éind a reflection on these results (Section IX).

II. Basic Concepts and Execution Model of P-FRP

In this section, we introduce the basic conceptbthe notation used to denote these concepts irettef
the paper. In addition, we review the P-FRP exenunhodel and assumptions made in this study.



II.I Basic Concepts

Essential concepts for P-FRP are tasks and theacaded priority, their associated time period #reldual
concept of arrival rate, and their processing tithe;concept of a time interval and release otfsetein. In our
task model, all these assumed to be knawpriori. The notation and formal definitions for these@epts as
well as a few others used in the paper are aswsllo

* Lettask setl, = {14, T,..., Tn} be a set oh periodic tasks

e Thepriority of 1, 0T, is the positive integet, where a higher number implies higher priority

» Tyis thearrival time period between two successive jobstpindr, = 1/ T; is thearrival rate of 1,

 C,is theworst-case executioriime for 1y

* top(K) is the time taken tanake a copy of the state befarestarts execution (see section 2.2.1)

*  tesordK) IS the time taken to commit the state afiéhas completed execution (see section 2.2.1)

» Py is theprocessing timefor 1,. Processing of a task includes execution as veetiopy and restore opera-
tions. HencePy = teopy(K) + Ck + trestord K)

* R¢mrepresents theelease timeof themthjob of T«

* @, represents theelease offsewhich is the release time of the first jobtfOr, ®, =R;. Hence R¢m= P«
+ (m-1) Tk

* Alevelk idle point is a point in timet in which no task having a priority df or higher is awaiting execu-
tion and ready to execute strictly before

» A finite contiguous interval of non-zero length,t) is ak-gap, if everyt[ty,t,), is a level-k+1) idle point.
The new ternmk-gap, denotes the time interval in which a taskan be processed and is introduced for the
sake of clarity

* Thethreshold of the k-gap [y, to) is time t;

e T |§12 represent théme window for analyzing gaps, such thafitt) T ﬁf , 1<t <t, Oty #t,. This new nota-

tion is used to differentiate frokagap time intervals
* Dyis therelative deadlineof 1,. If some job ofty is released at tim&, ,, thent, should complete processing
by timeR, , + Dy, otherwisery will have adeadline miss.n this paperDy = Ty

* A gapset ok(Tﬁf) contains all the uniquk-gaps present in the time intervalﬁf . Thek-gaps present in
o T |2 ) are also disjoint:
for any two gapstf;,ty1), [tetye) O ol(T |§12 ), if tO[te,ty0) thentd [te,t))
o oT |§f )| represents the numberlefaps present iay( T |{12)
* Thegap-transformation function A(o (T |§12 ), I'n) takes as input the gap skt and task sdi,. The function
returns the gap set of the next lower priority task
O T[2)=Mo(T[2))
* Thegap-search functionu(a(T |{f ), Py) takes as input the gap sg(T |{f ) andPy, and returns the earlidst
gap larger than or equal B present iroy:
[tew,tys) = H(OW(T |§f ), P, such that:
tyr —ta 2 P OB [toty) O o(TR2 Oty —t> Pt <ta
If the gap search function return&-gap with threshold less than 0, thek-gap larger thai, does not exist
in a(T?)
» The computational stepsof an algorithm is a numerical measurement ofrthwber of times major itera-

tions inside the algorithm have been performednduexecution. This value gives us a general idethef
performance of the algorithms considers in thisgpap



» Thestart time of a task is the time when the task starts pracgdsr the first time after the release of its
job. The start time of a job of the highest priptask will always equal to the time of its release

* Theresponse timeof a1, written asRT is the relative time after its release in whigltompletes processing

» Interference on 1y is the action where the processingipfs interrupted by the release of a higher priority
task. In P-FRP, an interference foreg$o abort and re-process later

[I.II Execution Model and Assumptions

In this study all tasks are assumed to executeumigrocessor system with no precedence constraiten
job of a higher priority task; is released, it can immediately preempt an exegutmwer priority task, and
changes made by the lower priority task are ratlack. The lower priority task will be restarted wttae higher
priority task has completed processing. Due to P-BRansactional nature of execution, all taskssmsumed to
run without concurrency constraints. In the aldoms to derive the actual response time of a taske have
considered the release offsetipfo be 0.

When some task is released, it enters a procegsiegeQ which is arranged by priority order, such that all
arriving higher priority tasks are moved to thedebthe queue. The length of the queue is bouraiedino two
instances of the same task can be present in #eecpt the same time. This requires a task to @improcess-
ing before the release of its next job. To mainthis requirement we assuméard real-time system with task
deadline equal to the time period between jobsciEen

DTkDrn, Dk = Tk

A task set is schedulable in some time intervdly dmo task in the set has a deadline miss.

Oncer; entersQ two situations are possible. If a task of loweopty thani is being processed, it will be
immediately preempted argdwill start processing. If a task of higher prigrthant; is being processed, then
will wait in the Q and start processing only after the higher pyaask has completed. An exception to the im-
mediate preemption is made duricmpyandrestoreoperations which is explained in the following ggnaph.

Il.Il.1 - Copy and Restore Operations

In P-FRP, when a task starts processing it createsratch’ state, which is@pyof the current state of the
system. Changes made during the processing otabisare maintained inside such a state. Whenagielas
completed, the ‘scratch’ staterisstoredinto the final state in an atomic operation. Tleme during the restora-
tion and copy operations the task being procesaadat be preempted by higher priority tasks. ¢ task is
preempted after copy but before the restore omerathe scratch state is simply discarded. Theestswitch
between tasks only involves a state copy operdtiorthe task that will be commencing processinge Time
taken for copyt(.p/(K)) and restoretgsio{K)) operations ofy is part of the processing time of the taBk,

Our current methods do not yet account for situstihere higher priority tasks cannot preempt |lgpvenr-
ity tasks. Hence, for the methods presented ingaper, the values af.,(K) andt.sodK) for all tasks are kept
same and equal to a single discrete time unit@tgssing. Hence,

OKON p, teopy(K)= trestord K) =1.

Such small values df,,(K) andt.siodK) is reasonable as copy and restore operationsrdyea fraction of
the worst-case execution time of the task. Howeeerbetter accuracy of results, in ongoing workave devel-
oping methods where the values,gf.{k) andt.q,(K) could be variable.

[LLILLII - Critical Instant in P-FRP

In response time analysis for fixed-priority schiguy acritical-instantof release is assumed. Critical instant
is the time, at which task releases lead to thestagase response time (WCRT) [17] of the task bamgyzed.
In their seminal work, Liu and Layland [17] show#at in fixed-priority scheduling for the preemgimodel,
the critical-instant for a lower priority task occurs when it is released at the same time akigher priority
tasks. Or, the release offset of tagkand higher priority tasks is the same. This is #smed as aynchronous



release of tasks. In P-FRPsynchronouselease of tasks does not lead to the WCRT, faasgks. Consider the
following task set:

Task P T
11 40 3
1o 12 4
T3 9 3

If all tasks are released synchronously, the respdime oft; is 24 Eigure 1(a). However, ift; is released at
time 2 andrt;is released at time 5, the response time; 6 38 Figure 1(b). The response time af is lower
when higher priority tasks are released synchrdgpslowing that such a release does not lead t&RWGf a
lower priority task.

The methods presented in this paper, determineeg@onse time of a task only for a user specifedease
offset of higher priority tasks. Hence, the releafisets required by the methods presented inghper, are as-
sumed to be know priori. This release offset, may or may not lead to @RV for the task being analyzed. To
determine the WCRT for a given P-FRP task, all issombinations of release offsets of higher fptyaasks
have to be generated. Then the time-accurate cegameration algorithms, presented in this papsedrio be
used for computing the actual release time under ehthe possible release offsets. Finally, tighést value of
the response time computed for each release offilebe the WCRT for the task. In the example adbothe
WCRT of1; is 38, computed by this method of evaluating afigible release scenarios.

lll.  Computing Actual Response Time in the Preemptie Model

In an important paper [2], Audsley et al demonstlathat if all tasks are synchronously releasee,réq
sponse time of; (RT;) can be determined using the following equation:

RE

RT =P +B + Z{
TR

wuﬂ- ...eq. 3.1

B; is the blocking time due to concurrency contratpcols, which is not applicable in our case. SiRdgap-
pears on both sides of the equation, an iterafppeaach using initial approximate valuesR can be used. If

RT" represents the" approximate value d®T;,, and ignoring the blocking time, equation 3.1 banwritten as:

-n
n+l — p, RT,
RT, P, + 2 { j

Oj>i

wuﬂ- ...eq. 3.2

The iteration starts witlRT® = 0 and terminates wheRT"** = RT". Since, in the preemptive model a synchro-
nous release leads to the WCRT, equation 3.1 alsputes the WCRT far.

Let's take a simple application of this equatiosing the following P-FRP task set:

Task P T
11 40 3
T, 12 4
T3 9 3

We have to compute the response timg, afsing equation 3.2, assuming a synchronous retddasks:

lteration 1,n = 0:RT! = 3 + ( mm[?ﬂm) =3
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Figure 1(a): Task execution graph showimgcompleting processing at time 24 in a synchronmelesse. T1, T2 and T2 represent
tasksty, T2 andts respictively. The ‘Abort’ tag shows the time wha; or 1, are aborted by higher priority ta:

T
T2 T2 T2 T2
T3 T3 T3 T3 T3
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~ “ - T1 Completes
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Figure 1(b): Task execution graph showingcompleting processing at its worst-case respaneedf 38 wherty, 13 are released at
times 2 and 5 respectively.

lteration 2n=1: RT? = 3 + (ﬂm{%h) =10
lteration 3n=2: RT? =3 + (7%0%3{%}@) =13
lteration 4n=3: RT* =3 + (%ﬂm%ﬂm) =17
lteration 5,n=4: RT® = 3 + (%ﬂm[gm) =17

Since, RT* = RT?, the iteration will terminate giving us the respertime fort, as 17. InFigure 1(a)we show
the processing of tasks in the time windag®, which shows the response timetgfais 24 Figure 1(a)also il-

lustrates the fact that, even though the procedsimg of 1, if 3 and is knowra priori, T, takes a total processor
time of 7 to complete processing.

lll.I' Ras and Cheng’s Modification for P-FRP

An attempt to apply Audsley’s method in P-FRP waslenby Ras and Cheng in [21]. An abort cost to the
original equation has been added. The modifiedtamué given as:

WCRT=P,+B + > F’VCRT} P

' j
0jOhp, j

j-1
+ z FNCRW Dméka ...eq. 3.3

0jOhp, j k=i

hp represents the set of tasks having a higher prittant;. The initial value foWCRT is set toP;. This equa-
tion was proposed to compute the response timerumadgnchronous release. However, it could convésge
only a few cases. Also, the authors’ assertion d¢gat3.3 can compute the WCRT, is not quite corrEais is
because a synchronous release does not alway®l&HERT in P-FRP. Applying equation 3.3 to our epéam

and settingvcry’ =20:

Lt =3+ (o gl [Jrfgls =17

2 vt =3 (3] ) [T ] =31



3:werp =3+ ({%ﬂm%%ﬂm)ﬁiﬂtm[ﬂm =51

12

. — 51 51 51 51 —
4: wery =3 + dg-‘ﬂh[ﬁlm)"{——‘ﬂﬂ[ﬁwm =79
This computation will go on indefinitely and wilemer converge.

Clearly, Audsley’s method, and its modified versame not guaranteed to compute the actual resgonee
in P-FRP, and a different approach is required.

IV. Time-Accurate Simulation

A straightforward way to computing the responseetim P-FRP, is to use a time-accurate simulati@t th
progresses through every time tick and runs tasked on the P-FRP execution model. The pseudofoode
such an algorithm is given in this section. Theoethm takes as input, and task;, whose response time has to
be ascertained. Between lines 4-32 a loop is egdcdenoting every time step frdho T;. In the loop between
lines 4-15 tasks having higher priority thgrandwhich are released at that specific time tick, are addettie
processing queu®. In line 16 the length o is checked. IfQ is empty then the highest priority tagk)(is ex-
tracted (lines 17-20), and the amount of time & baen processed faa,) incremented (line 22). The time for
which other tasks have been processed is resetliitee® 23 -25). This is because these taskshailk to restart
after completion of the highest priority. If T, has completed processing, it is removed f@ighine 28).

If there is no higher priority task i@ it signifies a presence ofjagap. At each consecutive tick for which
there is g-gap the size of variabjegap is incremented (line 30) and wheyap equals the processing timerpf
the time tick value is returned (line 31) denotihg response time af. If some higher priority task is processed
beforej-gap =P, then the size of thiegap is reset (line 21) to denote the restart, it the next availablegap.

input: Iy, T;
output: response time of 1;
-1 if task set is unschedulable
loop time < 0,T;
loop T; < nto j+1

1.
2.
3.
4.
5.
6. X «— @;
7. loop while ( x < time)
8. if(x = time)
9. if(1; present in Queue)
10. return -1
11. else
12. Add T1; to Queue
13. X—Xx+T,
14. end loop
15. end loop
16. if (Queue Count > 0)
17. h — 1% task in Queue
18. loop for every 1; in Queue
19. if(hsi)h—i
20. end loop
21. j-gap — 0
22. ep<— e, + 1
23. IOOP for every 1; in Queue
24. it(il=h)e,<0
25. end loo
26. if(eh= h)
27. ep<— 0
28. Remove 14, from Queue
%8 else ) )
. j-gap < j-gap +
31. ifgj-gap = F?J ﬁeturn time
32. end loop



IV.I Time Complexity

The time loop between lines 4-32 will execute Tptime units in the worst case which is whgmvill com-
plete processing just before its next job. The labfines 5-15 iterates throughH) tasks, hence lines 6-14 will
run for maximumi¢-)-T; times. The loop at lines 7-14 runs for every tagkose first job is released before the
current time. Line 9 performs a search on the qu€he queue can contain maximumj) elements hence each
execution of line 9 will takenH) steps.f 1, identifies the task with the highest arrival ritien line 9 will run
for:

(1+2...4T) «(H) = () T (1 + )2, which is bounded by OtF) -T).

Hence the execution steps of lines 8-13 are boubgled(T; - () 2. Td. The loops at lines 18-20 and 23-
25 execute for the maximum length of the queue.cddhe total number of steps that these loops eaexb-
cuted for is bounded by Of(—P;) -( nH)). The total worst case upper bound for this algoritem

O((T; =Py - () * - T) + O((T; = P)) -()) + O((T; = P)) ().

The dominating value is Of(—Pj) - () 2. T, which is the upper bound of this equationis the task with
the highest arrival rate.

Example: We ran the example given in section 3 throughtithe-accurate simulation algorithm, and computed
the value of computational steps, which comes t 14

V. The Gap-Enumeration Method

The time-accurate simulation method iterates thnoengry time step till the response time of thé tasing
analyzed is found. This approach is computationalignsive, since several iterations have to béopaed. We
present a different method using enumeratiok-@dps, based on the following characteristics efRHFRP exe-
cution model.

Lemma 5.1 A taskt; can be processed only in elements of th@,’Q@ﬂ:j ).
Proof. The elements otr,-(Tﬁf) contain all the possiblpgaps. By its definitiort; can only be processed in

availablej-gaps. Hencef; can be processed in any of the elements of tha;(s"etf ). O

Lemma 5.2: For task 7; to be schedulable, one j-gap of at least lengtwiP exist between any two successive
jobs of 7.

Proof. To complete processing should be processed fBy time, without any interference from higher prigrit
tasks. Since no task having a higher priority thenavailable to be processed ifr@ap, 1; will require a j-gap

of sizeP; to complete processing. Thigjap should be available before the arrival ofhigsv job, otherwise;
will have a deadline miss and will be unschedulable O

Lemma 5.3 In the gap setj(T |I+TJ’) one element will be more than for 1; to be schedulable

Proof. The elements of;(T |I+TJ’) are all thg-gaps formed between two successive jobg.dfrom lemma 5.2

we know that one of thegayaps, or the elements o T |§+Ti ) will be larger tharP,; for 1; to be schedulablé&l

The mechanism of this method works as follows: L&tk sef , = {14, To,...,T,}. We have to determine the re-
sponse time of the first job af (RT) ( < n). Without loss of generality we assume all tasksraleased at the
same time ag; (time 0). From lemma 5.1, we know thigican only be processed inside the elements ofdhe s
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Figure 2(a): 3-gapavailable for processing @f, a( T |é'0) = {[0,40)}
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Figure 2(b): 2-gaps available for processingmf ox( T |30) ={[3,9), [12,18) ,[21,27),[30,36),[39,40)}
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10 15 20 25 30 35 10

Figure 2(c): 1-gaps available for processingmf o1( T |SO) ={[7,9), [16,18), [21,24), [34,36)}

c,—(T|(T)j ). These elements are all thgaps available after the processing of task® t.;. From lemma 5.2 we
know that one of thggaps in the time interval |gi , has to be larger thd#for 1; to be schedulable. We will first

find the setc,—(T|(T)j ), and then search through this set, to find th&t jfigap which is larger thaR;. t; will be
processed in thisgap making the response timetpéqual tat; + P;, wheret; is the threshold of thisgap.
To findoy(T |(T)j ) we progressively analyze gap sets of all highmiripy tasks. Then-gap that is available

for 1, to run, is the entire length of the time interT/%I . Hence,on(T|(T)j ) ={[0, T))}. The first job oft, will be

released at time 0, and the second at fimé&hem™ job of T, will be released ang-1)-T,. The (n~1)-gap left
between the SLand 2° job is [P, Ty). Similarly the(n-1)-gap left between the"2and & job is [T+P,, 2-T,).

Therefore,on_l(Tgj ) ={[Pn, To), [ThtPn,2:Ty)... ,[(M=2)T,, (m-1)T,) }: (M-1)-T,<T,.

We see that the gap sgty(T |gi ) is created after accounting for the processingllgbbs oft,, in the gap set
crn(T|(T)i ). Hence, the gap sep(ThT)i ) has beerransformedby the processing of all jobs of to result ing,,

T |(T)i ). We use the gap transformatifumction to account for the processing of the aurtask and get the gap
set for the next lower priority task. Or,
Ona(Tlo' )= A (O Tl )T ).

From lemma 5.1, we know thgt; can only be processed in the gaps preseoi i(iT |gi ). When we process all
jobs of task 1) in T|gj , some of ther-1) gaps present itmq_l(T|gj ) will be used or reduce in size, leading to
the formation of It~2)-gaps. Hence, after accounting for the procgssirall jobs oft,;in T |(T)i , the gap set.

ATy ) is created. The gap-transformation function @n be used to get the sgb(T [ ). Hence,
OnaTly' )= A (@na(Tle' ). r)



Similarly,
Ona(Tly )= A @na Tl )uT0)

Gi(Tlo' )= (G Tl ).Tw)
Oncegy(T |(T)i ) is available we use the gap search functionye gs the firsf-gap in whichrt; can complete proc-

essing. Hence,

[t, t2) = (g (T), Py).
Therefore,
RT, = t+P,

Let us illustrate this method by a simple case.diter the example given in Section 3. Hére7{14, Ty, T3}
andT,T,Ts; are 40,12,9 respectively. The processing tigB,,P; are 3,4,3 respectively and all tasks are re-
leased at time 0. We have to determine the actsalonse time for;.

In the time intervalT |3°, the 3-gap available to process is the entire length of the time interval period.
Therefore,o3( T [3°) = {[0,40)} (Figure 2(a). T will be processed at times 0,9,18,27 and 36 |lepfigaps in
between each job. Therefory( T [2°) = {[3,9), [12,18) ,[21,27),[30,36), [39,40)Figure 2(b). The F, 2™ and
3 jobs oft, are processed in the 2-gaps [3,9), [12,18) an@[3Trespectively, while the"4will start process-
ing the 2-gap [39,40). Hencey(T[3°) = {[7,9), [16,18), [21,24), [34,36)}Rigure 2(c). Since the length of the

1-gap [21,24) is more or equalRg, T; will complete processing in this gap. Therefore,
RT,=21+4=24.

VI. Algorithm to Determine Actual Response Time

We now present an algorithm that can determineatiteal response time of using the gap-enumeration
method. The pseudo-code of the algorithm is givelov. The algorithm takes, andt; as input and returns the

actual response time of In line 3, we assign an initial value ¢e( T |(T)i ). Between lines 4 to 7, we successively
compute the gap setg4(T |(T)i ) to crj(T|gj ). Once the gap set fayis known, we retrieve the earligsgap larger

thanP;, using the gap search functip(iT |(T)i , ) (line 8), and then compute the response ting @dihe 10).

If k-gaps to process lower priority tasks are not prgdben the task set is not schedulable. In linevé
check if gaps to process the lower priority task resent. If an-gap to process a taskis not present —1 is re-
turned, signifying that the task set is not schablig. A similar check in line 9 returns -1, if pgap is found to
runt;.

Algorithm 5.1

1. input: [, Tj

2. output: RT; or -1

3. 0u(Tly') < {[0,T)}

4. loop 1; < n to j+1

5 0i(Tly )= (0( Tl ),Tn)
6. if(1oi4(Tly )| = 0) return -1
7. end loop

8. [tit)— WO(T), P)

9. if(t; < 0) return -1

10. RTJ =t + Pj

10



11. return RT;

VI.I  Gap-Enumeration with Dynamic Window Size

Algorithm 5.1 enumerates all the gaps present éntitme windowT|gj . In certain cases, the time window
T |(T)i could be large, and a much higher number of gagus tequired could be enumeratedr |§i is divided into

smaller slices, the gap-enumeration algorithm cambde more efficient. We divide the time Windfﬁ\&j into

T

m

mwindows (1< m<T;), of size [ﬁﬂ and enumerate the gaps starting from wmdb{Lv . If noj-gap to runr;

is found, then the length of the window can be peegively expanded bﬁ%ﬂ A modified form of algorithm

5.1, which uses dynamic size windows is given belawew loop between lines 4 and 14 has been aduet],

T
thej-gap is searched in the time windaw; whereL has an initial value ofﬁ'w (line 3). If aj-gap is found in

T|5, the response time is returned (line 13), &lse incremented (line 13) and thgaps in the new time win-

dow are analyzed. If thiegap is not found in the maximum possible time woindT |5, —1 is returned signifying
the unschedulability of the task

Algorithm 5.2

1. input: Iy, Tj, m
2. output: RT; or -1

3. L e PW
m

4. loop while (L<T; + P—rﬂ)

on(Tls) < {[0,T))}

loop T; « n to j+1
0i1(T 5 )=A (0(T5), )
if(10i4(T5)| = 0) return -1

9. end loop

10. [ty t))— W(oi(Ts), P))

1. if(t4>0)RT;=t, + P;

12.  if RT; < T; return RT;

13. L<—L+[1—‘
m

© No wu

14. end loop
15. return -1

One obvious inefficiency of this approach is tlifaé, j-gap is not found in the time windoW|;, the gaps have to
be enumerated again in the time window of the itexation T 3. Developing ways to enumerate and segrch

gaps only in the expanded section of the windawft), rather than the whole windowr ¢*) is a scope for
future work.
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VLIl Gap-Transformation Function

The gap transformation functiof(ci( T |5).I",), for a taskr;, is an important component in determining the

response time of tasks in P-FRP. It analyzes thesgtoi( T |5) for gaps in which; could be processed, changes
those gaps and returns the transformed gap-setpSéedo-code for the implementation of this funti®given
below. The loop defined in lines 4-22 iteratestfor number of jobs aof; in T|5. The loop inside lines 5-21 it-
erates for the number of gaps. We check foritfp@p in which jobg of 1; will process (line 8) and accordingly
modify the gap. If the jolg is after the threshold of this gap, then itflgap will reduce in size (condition in lines
11 and 18) or split in two (condition in line 14f)the size of thaé-gap is equal to or less th& thei-gap will
cease to exist since it will be consumed by thegssing ofi;. If job g completes processing in one of the gaps
the inner loop exits (lines 13,17), and the se#ocli-gap to process the next job is started. If-gap to run job

g is not found before the arrival of the next jdienT; is not schedulable and an empty gap set is redurpehe
function (line 6). The add operation will add thgap [, t,) only if t; # t..

Algorithm 5.3

1. input: 6i(T5), My

2. output: 0;4(TI5)

L-Ticﬂ ‘1

4. loop job g 1, jobs;

5. loop k-gap [t,t2) < 1,10i(T5)]I

6. if t; > t+ T;return (10i4(T[5)| = 0)

3. jobs;= [

7. ]f(t < t1) t=1t

8. if(t;<st<ty

9. {

10. remove[ty,t,) from o;(T|5)
11. if(t + P; = t5)

12. add [t,t) to oi(T5)
13. exit loop gap

14. if (t+P;<ty)

15. add [t,t) to o;(T5)
16. add [t+P;, t;) to (T |5)
17. exit loop gap

18. if(E+P; > t,)

19. add [t,t) to o;(T5)
20. }

21. end loop

22. end loop

23. 0',’.1(T|I6) = O-i(Tll(S)
24. return o;.4(T|5)

VLIl Gap-Search Function

The gap search functiqu(o(T |5 ), P) does a simple search oy T|5) and retrieves the firdtgap whose
size is larger thaR,. The algorithm for the search depends on the tfmiata structure used to store the gaps.

12



Figure 3: RB-tree for sample gap set. The shaded nodegalartdack node while the non-shaded are red nathesnull nodes do not
contain any data

Due to its guaranteed bounds for search and insdiithe, we use a red-black tree (RB-tree) [6]ttmesgaps. A
red-black tree, is a self balancing binary tree teach node has a color attribute of red or bl@tker proper-
ties of a RB-tree are:

* The root node is black

» All leave nodes are black

e Children of every red node are black

» Path from leaf to root contain same number of blzmttes

The gaps are stored in a RB-tree with thresholthasndex.Figure 3 shows the RB-tree for a sample gap
set: o T [£?°)={[10,40), [50,80), [90,100), [120,140), [170,190R30,260), [300,320)}. The search function

M(ow(T), Py is reduced to transversing the RB-tree from #ferhost leaf node (earliest gap), to the righstmo
leaf node. The search order for the sample set@saode index is 10, 50, 90, 120, 170, 230, 360,

VLIV Time Complexity

We present an analysis of the time complexitylgbdthm 5.2. The guaranteed worst case compldgity
search, insertion and deletion operation in a RB-ts O(log m) (log, is represented bgg in the rest of the pa-
per), wheranis the number of elements of the tree. The trassv®f the tree can take @) time, hence, the

complexity ofu(ci(T ), P;) is bounded by Og|( T |5)]).

Algorithm 5.2 uses algorithm 5.3 for gap-transfotima In algorithm 5.3 the loop in line 4 transwessor
every gap, while the loop in line 3 transversesefiegry job of higher priority task in T|;. In the worst case;
gap to run the job will be found at the end, herte,total number of such transversalssj6T||5)|-(obs + 1).

When thei-gap to process the job is found, the existiggp is removed frora;( T |5 ). Each removal operation

is bounded by O(logn), wherem is the number of gaps stored in the RB-tree. Tthemmodifiedi-gap is added
back to the tree. One of the conditions, splitaeailablei-gap into two, in which case two additions will leato
be done. Assuming that for every job two gaps dded, the worst case total time taken to add gapsech job
is:

1+log(2) +.... +log(2n) = 1 + log(23-..2-m)

which is bounded by O(log(!®)). The total time for deletion and 2 additions is:
O(log('2m)) + O(logm)

O(log('2-m) is the dominating term, hence, the total timedeletion and worst-case addition is: O(logffp.
Since, for the worst case every availabtmp is divided into 2, the number of gapin(T [;) will be dou-

ble that ofgi(T ;). Hence,m = 2-|oi(T|5)|. If the maximum number of additions is done éweryi-gap and
every job, then the complexity of the gap searcitfion is bounded by:
O(foi( T 5 ) -jobs -log('2-2:|oi( T I5)1))
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In algorithm 5.2, the gap transformatifumction is called for, to 1.1, and is executed for steps. Therefore,
the total complexity for algorithm 5.2, is boundagdthe time complexity for gap transformatiand gap search
functions and is given by the equation:

O((n-) 1oi( T Is )I-jobs log(12-2:[oi( T15)) + OWi(T I5)1)

The gap transformation function is the dominantdam the computation, therefore, the bound is:
O((n+j) 1oi( T Is )I-jobs log(!2-2-[ai( T I)1))

The values ofobs and ¢i( T [5)] is maximized wheil; = min(Tyj, Tnjs1 ... Tn). Hence; represents the task with
lowest arrival period among tasks having higheonly thanj. The maximum possible value bfcan beT; +

[_ﬂ , In which case the gaps will have to be enumenat&thes, where each enumeration is bounded by:
m

O((r+j) 1oi(T Is )| jobs log(!2-2-|ai( T I )1))

The maximum possible value ofis T; ([Eﬂ =1). Accounting for each enumeration and puttimg taximum
value ofL andm, the bound for the gap enumeration algorithm is:

O(T; () “loi( Tly' ™)I-jobs “log(t2-2-|oi( T 15 *)I))

It should be noted that the gap transformaftigrction exits the loop (which iterates through faps), when
thek-gap to run a job is found. For the upper boundhaee assumed that the loop continues till thedagt
Hence, the costs of additions and deletion arenasdunuch higher. The condition assumed for the tagase
will rarely be reached, hence, the general perfageaf the algorithm will always be better than wisadefined
by this bound.

Example: We ran the example given in section 3 throughtithe-accurate simulation algorithm, and computed
the value of computational steps, which comes to 33

VII.  Analysis

Since the Time-accurate simulation (TAS) methoth&sonly other known method for computing actual re
sponse time in P-FRP ,we present an experimenéysis of the performance of the Gap-enumeratios) (&8-
gorithm, relative to TAS. For every addition andedien operation into the RB-tree, the computaticstap is
incremented by logg), wherem is the dynamically changing size of the RB-tresingd computational steps for
performance measurement is sufficient for this ysigl as it gives us a distinct idea of time thattealgorithm
will take to give the desired results.

We randomly generated 3 groups (group A, group @group C) of 500 schedulable task sets. GroupsA ha
3 tasks, group B had 5 and group C, 7 tasks. Badfe task sets in each group is unique in theesethat at
least 1 task is different between any two task sessgroup. The arrival period for each of theksas all the 3
groups were in the range [40,60), while the praogssmes were in the range [4,10). All tasks wassumed to
be released simultaneously and the response tirtleedbwest priority taskt() in each group was determined
using the TAS and GE algorithms. In the GE algaonitin was set to 1 for this analysis.
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Figures 4(a)b) and(c) shows the computational steps taken by the TASGHdlgorithms to compute the
response time of task 1 in groups A, B and C raspdy. It can be seen clearly that GE takes lagsilver of
computation steps as compared to the TAS algorifforget a precise idea on the difference betweerdmpu-
tational steps taken by the TAS and GE algorithmes show the difference in computational steps betw@e
TAS and GE algorithms ifigures 5(a)b) and(c). TheA in they-axis is given as:

A = Computational Steps in TAS - Computational siegSE

The delta values tend to increase as the numbiisk$ present in the set increase. This couldtbbuted to a
generally larger response time when the numbeasifstare high. Ifigures 6(a) (b) and(c) we show the relation
between response time aAd It is clear, that as the response time increéisesGE algorithm becomes much
more efficient relative to TAS.

In Figure 7(a),(b) and (cyve show the change in computational steps withbaurof 1-gaps present before
the actual response time is found. The computdtisteps show a trend to increase with the numbéotaf 1-
gaps. A higher number of 1-gaps will increase th& of search, insertion and deletion operatiormsvéver, for
the same number of computational gaps, the compo#ttime also varies. This is because even thdabgh
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number of 1-gaps are the same, the response dimeifh the task sets could vary, affecting the numieroon-
putation steps required.

VIIl. Related Work

Response time analysis was first studied by JoaephPandya [15] and fixed priority scheduling wacer
pendently studied by Audsley et al [2]. In [2], iterative method to compute actual response time mfeemp-
tive system has been given. Kaibachev et al [165gmt a basic response time analysis for P-FRHaayng
restrictions on execution times of higher priotiggks. The authors have derived the response ttmedbof a
task as equal to its arrival period. Ras and Chighphave presented response time analysis , aveld@mpared
the performance of P-FRP execution with priorityarsion strategies. The authors present a methaerige
upper bound on response time by extending thetiteranethod developed by Audsley et al [2]. Howess
shown in this paper, this method is unusable fostnask sets. The flaw is that the authors makdiciixps-
sumptions on the abort pattern of higher prioritgks. The abort pattern is different for individtedk sets and
cannot be generally applied. Both [16], [21] dd define any method to compute actual responsestimeP-
FRP.

Transactional memory systems have been describédeldiny and Moss [14]. Response time analysis for
transaction memory using dynamic scheduling fortiprdcessor systems has been done by Fahmy e}. ah[9
Manson et al [18] an atomic processing of the aaltsection has been implemented in Java. In Magsaiis
paper response time analysis using fixed priogtyesluling has been done, however the responsestirderived
does not account for complete re-processing atatisections. Davis and Burns [7] derive upperruzuon re-
sponse time for fixed priority scheduling buildingon the work done by Bini and Baruah [3]. Andersbal [1]
do response time analysis of the lock-free mechani®ck-free is a mechanism to avoid priority irsien [23]
the implementation of which is via an unconditioh@p that terminates when the necessary updatéiseto
shared resource are complete. The schedulabilitditons given for fixed-priority scheduling in [Hssume a
constant ‘extra computation time’ in case of agailpdate. If we consider this equivalent to arrtatast in P-
FRP it cannot be a constant as the abort costsvéoieevery task. Comparisons between transactiemory
based systems and lock-free processing and beoéthe former have been shown in Herlihy and Ma<$.

Chen et al [5] have investigated the presenceasiliée intervals in which a job can process. A ek start
processing and if the interval is less than itxpssing time then it will restart at the next aaalié interval. This
model is similar to P-FRP if intervals are consetkask-gaps. The authors show that scheduling such asttsk
is an NP-hard problem, and give approximation algors for scheduling the tasks. Algorithms for pnggive
and non-preemptive task sets are given, wheredhepreemptive tasks have to complete processingéntime
interval. Byun et al [4] adopt the critical sectiapproach for CPU tasks, into a Database modelgi friority
transaction can abort a low priority transactioth#y share a lock and the low priority task igaged. The au-
thors have bounded the response time for a taskavel considered the cost of re-execution.

IX. Conclusions and Future Work

A common method for determining actual response timthe preemptive model cannot be applied to the
execution model of P-FRP, due to the abort of ppechtasks. A straightforward method way to computeal
response time, is to run a time accurate simulatiotmne P-FRP execution model. The time complefotythis
method is defined by the length of time for whible simulation has to be run. In several practitahsons, the
length of time to analyze the system could be Varge. Also during the design phase of a real-taystem, as
well as for determining the worst-case release,timany scenarios need to be analyzed for theioresptime.
Using a time-accurate simulation will take sigraint amount of computation time, making its use awfical in
these situations.

The gap-enumeration method is a different appré@achomputing actual response time in the P-FRR@xe
tion model. Comparisons with the time-accuratehmetshow that the gap-enumeration method is muate mo
efficient than the former. For P-FRP systems witimarically higher response times, the gap-enunwerati
method offers engineers a fast alternative forcibraputation of actual response times. The perfocearh this
method is directly proportional to the numbertkajaps present in the system. The numbéegdps has no im-
pact on the time accurate simulation method, wltoseputational complexity is primarily governed e ttime
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steps that have to be covered. While the gap-eratiorralgorithm is faster than the time-accurateusation, it

is clearly not as efficient as Audsley’s methodwdwer, we feel that due to the abort nature ofsas&mputing
response time using fixed iterations on a matheakéxpression, as developed by Audsley et al, imghbe

feasible for P-FRP. Hence, algorithm based appremcsuch as the gap-enumeration method, are [serthap
only way to compute actual response time in P-FRP.

We have presented the gap-enumeration algorithits simple form. Several changes could be madento i
prove the efficiency of this method. The main comagonal cost incurred by the gap-enumeration nettbalur-
ing insertion, deletion and search of the datacsire used to stork-gaps. A hash table could be used in
conjunction with the RB-tree to index the locatimik-gaps thereby making the search, insertion andidele
operation more efficient. In ongoing work, we algoaexploring a method where 2-dimensional arraysed to
keep track of gaps created for each task. In tloikwhe values of.,,(K) andtesioidK) for a taskry, have been
considered as 1. This makes our execution modgilsisince we do not have to account for situatwhen a
lower priority task cannot be preempted. This waiik be enhanced by considering more probable \salofe
teop(K) @andtesiordK). Computing actual response time in P-FRP, whek &arivals are sporadic is also an open
area of research. This gap-enumeration algorithmatso be modified to determine actual response tmthe
preemptive model. This can be achieved by chantiegap-transformation and gap-search functions that,
rather than waiting for &-gap larger than or equal By being availableT, can complete processing as soon as
the combined length of all gaps (starting fromfir&t gap) equal®,. Of course, the usefulness and relative per-
formance of this modified gap-enumeration algoritfisaa-vis Audsley’s method will have to be ascerd.

While the classical preemptive model of execut®nvell understood and several mature studies hega b
done over several years, the abort-restart modeke€ution has not been deeply investigated. Therethis
study is valuable in response time studies foresgsthaving similar execution models such as intresd data-
bases [4], transactional memory systems [14], foe&-execution [1] and Java [18].
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