

Determining Actual Response Time in P-FRP †

Chaitanya Belwal, Albert M.K. Cheng

Computer Science Department
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

UH-CS-10-05
June 28, 2010

Keywords: Response Time, Schedulability Analysis, Real-time System, Functional Programming

Abstract

Functional Reactive Programming (FRP) is a declarative approach to modeling and building reactive
systems. FRP has been shown to be an expressive formalism for building graphics, robotic, and vision
applications. Recently, priority-based FRP (P-FRP) was introduced as a formalism that guarantees real-
time response. Unlike the classical preemptive model‡ of real-time systems, preempted events in P-FRP
are aborted and have to restart when higher priority events have completed. The abort and eventual re-
start makes the response time of a lower priority event completely dependent on the execution pattern of
higher priority events. Though methods to determine approximate values for the response time of events
in P-FRP have been presented, no convenient method has yet been established that can determine actual
response time. A common method for computing such response time in the preemptive execution model
is not guaranteed to give correct results in P-FRP. An obvious approach in P-FRP is running a time-
accurate simulation. However, this approach is computationally expensive and not feasible in most prac-
tical situations. We show that an exhaustive enumeration technique for idle periods, is a more efficient
technique than time accurate simulation, and can be easily adopted to determine actual response time in
P-FRP and other transaction based execution models.

† This work is supported in part by U.S. National Science Foundation under Award no. 0720856

‡ In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority
tasks, and can resume execution from the point they were preempted

1

Abstract

Functional*Reactive Programming (FRP) is a declarative approach to modeling and building reactive sys-
tems. FRP has been shown to be an expressive formalism for building graphics, robotic, and vision applications.
Recently, priority-based FRP (P-FRP) was introduced as a formalism that guarantees real-time response. Unlike
the classical preemptive model§ of real-time systems, preempted events in P-FRP are aborted and have to restart
when higher priority events have completed. The abort and eventual restart makes the response time of a lower
priority event completely dependent on the execution pattern of higher priority events. Though methods to deter-
mine approximate values for the response time of events in P-FRP have been presented, no convenient method
has yet been established that can determine actual response time. A common method for computing such re-
sponse time in the preemptive execution model is not guaranteed to give correct results in P-FRP. An obvious
approach in P-FRP is running a time-accurate simulation. However, this approach is computationally expensive
and not feasible in most practical situations. We show that an exhaustive enumeration technique for idle periods,
is a more efficient technique than time accurate simulation, and can be easily adopted to determine actual re-
sponse time in P-FRP and other transaction based execution models.

Index Terms

Response Time, Schedulability Analysis, Real-time System, Functional Programming

I. Introduction

Functional Reactive Programming (FRP) [26] is a declarative programming language for modeling and im-
plementing reactive systems. It has been used for a wide range of applications, notably, graphics [8], robotics
[19], and vision [20]. FRP elegantly captures continuous and discrete aspects of a hybrid system using the no-
tions of behavior and event, respectively. Because this language is developed as an embedded language in Has-
kell [12], it benefits from the wealth of abstractions provided in this language. Unfortunately, Haskell provides
no real-time guarantees, and therefore, neither does FRP.

To address this limitation, resource-bounded variants of FRP were studied ([16],[24],[25]). Recently, it was
shown that a variant called priority-based FRP (P-FRP) [16], combines both the semantic properties for FRP,
guarantees resource boundedness, and supports assigning different priorities to different events. In P-FRP, higher
priority events can preempt lower-priority ones. However, to maintain guarantees of type safety and stateless
execution, the functional programming paradigm requires the execution of a function to be atomic in nature. To
comply with this requirement, as well as allow preemption of lower priority events, P-FRP implements a transac-
tional model of execution. Using only a copy of the state during event execution and atomically committing these
changes at the end of the event handler, P-FRP ensures that handling an event is an “all or nothing” proposition.
This preserves the easily understandable semantics of the FRP and provides a programming model where re-
sponse times to different events can be tweaked by the programmer, without ever affecting the semantic sound-
ness of the program. Thus, a clear separation between the semantics of the program and the responsiveness of the
implementation of each handler is achieved.

* This work is supported in part by U.S. National Science Foundation under Award no. 0720856
§ In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority tasks, and can resume execu-
tion from the point they were preempted

Determining Actual Response Time in P-FRP*

Chaitanya Belwal and Albert M.K. Cheng
Department of Computer Science
University of Houston, TX, USA

2

This transactional execution model used in P-FRP is not new, and several such models have been presented
in the past. These are the transactional memory systems [14], lock-free execution for critical sections [1] and pre-
emptable atomic regions in Java [18]. The development of these systems was primarily motivated by the need to
avoid concurrency or precedence constraint issues, which have been a problem in the classical preemptive model
[23]. In spite of its varying uses, the transactional model is not well understood. While several response time
studies for this model are available ([1],[4],[9],[18]), they only provide basic schedulability analysis by modify-
ing methods developed for the preemptive model. A study to find actual response time for this execution model
has not been presented yet.

Several functional programming languages are being used in the industry, like for mission critical telecom-
munication equipment (Erlang [9]) and control of hybrid vehicles (Atom [13]). However, the temporal properties
of software written in functional programming have not been well studied. With functional programming becom-
ing a standard feature in popular software development platforms like Microsoft’s Visual Studio [11], studies on
its temporal and space properties are valuable. Previous work ([16],[21]) on P-FRP provided basic results on
schedulability and approximate upper bounds on response times. Though approximate upper bounds only provide
a general idea on the schedulability of events, the methods to compute them are much faster ([3],[7],[21]). In this
paper we use the term ‘actual’ to differentiate from approximate or bounded response time. Actual response time
gives an exact indication of the temporal properties of events in the system. Hence, actual response time is more
useful when an accurate model of the system is required , such as in the design phase of a real-time system, or in
developing exact schedulability tests.

An iterative method first presented by Audsley et al in [2] (termed Audsley’s method in this paper), is a
common approach for determining actual response time in the preemptive model. In this method, it is assumed
that the amount of processor time taken by an event to execute, is constant and equal to its worst-case execution
time (WCET). However, since a preempted event is aborted, the amount of processor time taken by a lower prior-
ity P-FRP event to complete execution, can be larger than its WCET, and thus not known a priori . Due to this
reason the method in [2] is not guaranteed to work with P-FRP (see section III for example), and new methods for
determining actual response time in P-FRP are required.

I.I Contributions

This paper presents an efficient algorithm that can be used in place of a simulation, to determine the actual
response times of events in P-FRP. This is an essential step for making this technology practically usable since it
is not practical to work out these response times by hand or simulation methods. To conform to terminology used
in referenced real-time system papers, P-FRP events will be referred to as tasks in the rest of this paper. The util-
ity of this work also extends to determining actual response time in systems which have similar execution models
([1],[4], [9], [18]).

After reviewing basic concepts and the P-FRP execution model (Section II) we:

• Present Audsley’s iterative method for computing actual response time in the preemptive model (Section III)
• Introduce the time-accurate algorithm that simulates the execution model of P-FRP (Section IV)
• Present an enumeration technique for idle periods, which for the sake of brevity has been termed the gap-

enumeration method (Section V)
• Present an algorithm that determines the actual response time of a task using the gap-enumeration method

(Section VI)
• Provide performance analysis between the time accurate and gap-enumeration algorithms (Section VII)

And conclude by reviewing related work (Section VIII) and a reflection on these results (Section IX).

II. Basic Concepts and Execution Model of P-FRP

In this section, we introduce the basic concepts and the notation used to denote these concepts in the rest of
the paper. In addition, we review the P-FRP execution model and assumptions made in this study.

3

II.I Basic Concepts

Essential concepts for P-FRP are tasks and their associated priority, their associated time period and the dual
concept of arrival rate, and their processing time; the concept of a time interval and release offset therein. In our
task model, all these assumed to be known a priori. The notation and formal definitions for these concepts as
well as a few others used in the paper are as follows:

• Let task set Γn = {τ1, τ2,…, τn} be a set of n periodic tasks
• The priority of τk ∈ Γn is the positive integer k, where a higher number implies higher priority
• Tk is the arrival time period between two successive jobs of τk and rk = 1 / Ti is the arrival rate of τk
• Ck is the worst-case execution time for τk
• tcopy(k) is the time taken to make a copy of the state before τk starts execution (see section 2.2.1)
• trestore(k) is the time taken to commit the state after τk has completed execution (see section 2.2.1)
• Pk is the processing time for τk. Processing of a task includes execution as well as copy and restore opera-

tions. Hence, Pk = tcopy(k) + Ck + trestore(k)
• Rk,m represents the release time of the mth job of τk
• Φk represents the release offset which is the release time of the first job of τk. Or, Φk = Rk,1. Hence, Rk,m = Φk

+ (m-1)·Tk
• A level-k idle point is a point in time, t in which no task having a priority of k or higher is awaiting execu-

tion and ready to execute strictly before t
• A finite contiguous interval of non-zero length [t1,t2) is a k-gap, if every t∈[t1,t2), is a level-(k+1) idle point.

The new term k-gap, denotes the time interval in which a task τk can be processed and is introduced for the
sake of clarity

• The threshold of the k-gap [t1, t2) is time t1

• 2

1
|T t
t represent the time window for analyzing gaps, such that: ∀t∈ 2

1
|T t
t , t1 ≤ t < t2 ∧ t1 ≠ t2. This new nota-

tion is used to differentiate from k-gap time intervals
• Dk is the relative deadline of τk. If some job of τk is released at time Rk,m then τk should complete processing

by time Rk,m + Dk, otherwise τk will have a deadline miss. In this paper, Dk = Tk

• A gap set σk(2

1
|T t
t) contains all the unique k-gaps present in the time interval 2

1
|T t
t . The k-gaps present in

σk(2

1
|T t
t) are also disjoint:

for any two gaps [tx1,ty1), [tx2,ty2) ∈ σk(2

1
|T t
t), if t∈[tx1,ty1) then t∉ [tx2,ty2)

• |σk(2

1
|T t
t)| represents the number of k-gaps present in σk(2

1
|T t
t)

• The gap-transformation function λ(σk(2

1
|T t
t), Γn) takes as input the gap set σk, and task set Γn. The function

returns the gap set of the next lower priority task:

 σk-1(2

1
|T t
t) = λ(σk(2

1
|T t
t))

• The gap-search function µ(σk(2

1
|T t
t), Pk) takes as input the gap set σk(2

1
|T t
t) and Pk, and returns the earliest k-

gap larger than or equal to Pk present in σk :

[tx1,ty1) = µ(σk(2

1
|T t
t), Pk), such that:

 ty1 – tx1 ≥ Pk ∧∄ [tx,ty) ∈ σk(2

1
|T t
t)∧ ty – tx > Pk ∧ tx < tx1

If the gap search function returns a k-gap with threshold less than 0, then a k-gap larger than Pk does not exist

in σk(2

1
|T t
t)

• The computational steps of an algorithm is a numerical measurement of the number of times major itera-
tions inside the algorithm have been performed during execution. This value gives us a general idea of the
performance of the algorithms considers in this paper

4

• The start time of a task is the time when the task starts processing for the first time after the release of its
job. The start time of a job of the highest priority task will always equal to the time of its release

• The response time of a τk written as RTk is the relative time after its release in which τk completes processing
• Interference on τk is the action where the processing of τk is interrupted by the release of a higher priority

task. In P-FRP, an interference forces τk to abort and re-process later

II.II Execution Model and Assumptions

In this study all tasks are assumed to execute in a uniprocessor system with no precedence constraints. When
job of a higher priority task τi is released, it can immediately preempt an executing lower priority task, and
changes made by the lower priority task are rolled back. The lower priority task will be restarted when the higher
priority task has completed processing. Due to P-FRP’s transactional nature of execution, all tasks are assumed to
run without concurrency constraints. In the algorithms to derive the actual response time of a task τj, we have
considered the release offset of τj to be 0.

When some task is released, it enters a processing queue Q which is arranged by priority order, such that all
arriving higher priority tasks are moved to the head of the queue. The length of the queue is bounded, and no two
instances of the same task can be present in the queue at the same time. This requires a task to complete process-
ing before the release of its next job. To maintain this requirement we assume a hard real-time system with task
deadline equal to the time period between jobs. Hence,

∀τk∈Γn, Dk = Tk

A task set is schedulable in some time interval, only if no task in the set has a deadline miss.

Once τi enters Q two situations are possible. If a task of lower priority than i is being processed, it will be

immediately preempted and τi will start processing. If a task of higher priority than τi is being processed, then τi
will wait in the Q and start processing only after the higher priority task has completed. An exception to the im-
mediate preemption is made during copy and restore operations which is explained in the following paragraph.

II.II.I Copy and Restore Operations

In P-FRP, when a task starts processing it creates a ‘scratch’ state, which is a copy of the current state of the
system. Changes made during the processing of this task are maintained inside such a state. When the task has
completed, the ‘scratch’ state is restored into the final state in an atomic operation. Therefore, during the restora-
tion and copy operations the task being processed cannot be preempted by higher priority tasks. If the task is
preempted after copy but before the restore operation, the scratch state is simply discarded. The context-switch
between tasks only involves a state copy operation for the task that will be commencing processing. The time
taken for copy (tcopy(k)) and restore (trestore(k)) operations of τk is part of the processing time of the task, Pk.

Our current methods do not yet account for situations where higher priority tasks cannot preempt lower prior-

ity tasks. Hence, for the methods presented in this paper, the values of tcopy(k) and trestore(k) for all tasks are kept
same and equal to a single discrete time unit of processing. Hence,

 ∀k∈Γn, tcopy(k)= trestore(k) =1.

Such small values of tcopy(k) and trestore(k) is reasonable as copy and restore operations are only a fraction of

the worst-case execution time of the task. However, for better accuracy of results, in ongoing work we are devel-
oping methods where the values of trestore(k) and tcopy(k) could be variable.

II.II.II Critical Instant in P-FRP

In response time analysis for fixed-priority scheduling, a critical-instant of release is assumed. Critical instant
is the time, at which task releases lead to the worst-case response time (WCRT) [17] of the task being analyzed.
In their seminal work, Liu and Layland [17] showed that in fixed-priority scheduling for the preemptive model,
the critical-instant for a lower priority task τi occurs when it is released at the same time as the higher priority
tasks. Or, the release offset of task τi and higher priority tasks is the same. This is also termed as a synchronous

5

release of tasks. In P-FRP, a synchronous release of tasks does not lead to the WCRT, for all cases. Consider the
following task set:

Task P T
τ1 40 3
τ2 12 4
τ3 9 3

 If all tasks are released synchronously, the response time of τ1 is 24 (Figure 1(a)). However, if τ2 is released at

time 2 and τ3 is released at time 5, the response time of τ1 is 38 (Figure 1(b)). The response time of τ1 is lower
when higher priority tasks are released synchronously, showing that such a release does not lead to WCRT of a
lower priority task.

The methods presented in this paper, determine the response time of a task only for a user specified release

offset of higher priority tasks. Hence, the release offsets required by the methods presented in this paper, are as-
sumed to be know a priori. This release offset, may or may not lead to the WCRT for the task being analyzed. To
determine the WCRT for a given P-FRP task, all possible combinations of release offsets of higher priority tasks
have to be generated. Then the time-accurate or gap-enumeration algorithms, presented in this paper, need to be
used for computing the actual release time under each of the possible release offsets. Finally, the highest value of
the response time computed for each release offset will be the WCRT for the task. In the example above, the
WCRT of τ1 is 38, computed by this method of evaluating all possible release scenarios.

III. Computing Actual Response Time in the Preemptive Model

In an important paper [2], Audsley et al demonstrated that if all tasks are synchronously released, the re-
sponse time of τi (RTi) can be determined using the following equation:

RTi = Pi + Bi + j
ij j

i P
T

RT ⋅











∑

>∀

 … eq. 3.1

Bi is the blocking time due to concurrency control protocols, which is not applicable in our case. Since RTi ap-
pears on both sides of the equation, an iterative approach using initial approximate values of RTi can be used. If

n
iRT represents the nth approximate value of RTi, and ignoring the blocking time, equation 3.1 can be written as:

1+n
iRT = Pi + j

ij j

n
i

P
T

RT
⋅














∑
>∀

 … eq. 3.2

The iteration starts with 0

iRT = 0 and terminates when 1+n
iRT = n

iRT . Since, in the preemptive model a synchro-

nous release leads to the WCRT, equation 3.1 also computes the WCRT for τi.

Let’s take a simple application of this equation, using the following P-FRP task set:

Task P T
τ1 40 3
τ2 12 4
τ3 9 3

We have to compute the response time of τ1 using equation 3.2, assuming a synchronous release of tasks:

Iteration 1, n = 0: 1
1RT = 3 + (4

12

0
3

9

0 ⋅







+⋅







) = 3

6

Iteration 2, n = 1: 2
1RT = 3 + (4

12

3
3

9

3 ⋅







+⋅







) = 10

Iteration 3, n = 2: 3
1RT = 3 + (4

12

10
3

9

10 ⋅







+⋅







) = 13

Iteration 4, n = 3: 4
1RT = 3 + (4

12

13
3

9

13 ⋅







+⋅







) = 17

Iteration 5, n = 4: 5
1RT = 3 + (4

12

17
3

9

17 ⋅







+⋅







) = 17

Since, 4

1RT = 5
1RT , the iteration will terminate giving us the response time for τ1 as 17. In Figure 1(a) we show

the processing of tasks in the time window 40
0|T , which shows the response time of τ1 as 24. Figure 1(a) also il-

lustrates the fact that, even though the processing time of τ1 if 3 and is known a priori, τ1 takes a total processor
time of 7 to complete processing.

III.I Ras and Cheng’s Modification for P-FRP

An attempt to apply Audsley’s method in P-FRP was made by Ras and Cheng in [21]. An abort cost to the
original equation has been added. The modified equation is given as:

WCRTi = Pi + Bi + j
hpj j

i P
T

WCRT

i

⋅











∑
∈∀

+
1

max
−

=∈∀

⋅











∑

j

ik
k

hpj j

i P
T

WCRT

i

 … eq. 3.3

hpi represents the set of tasks having a higher priority than τ1. The initial value for WCRTi is set to Pi. This equa-
tion was proposed to compute the response time under a synchronous release. However, it could converge for
only a few cases. Also, the authors’ assertion that eq. 3.3 can compute the WCRT, is not quite correct. This is
because a synchronous release does not always lead to WCRT in P-FRP. Applying equation 3.3 to our example,
and setting 0

1WCRT =20:

1: 1
1WCRT = 3 + (4

12

3
3

9

3 ⋅







+⋅







) + 4
12

3
3

9

3 ⋅







+⋅







 = 17

2: 2
1WCRT = 3 + (4

12

17
3

9

17 ⋅







+⋅







) + 4
12

17
3

9

17 ⋅







+⋅







 = 31

Figure 1(a): Task execution graph showing τ1 completing processing at time 24 in a synchronous release. T1, T2 and T2 represent
tasks τ1, τ2 and τ3 respectively. The ‘Abort’ tag shows the time when τ1 or τ2 are aborted by higher priority tasks

 Figure 1(b): Task execution graph showing τ1 completing processing at its worst-case response time of 38 when τ2, τ3 are released at
times 2 and 5 respectively.

7

3: 3
1WCRT = 3 + (4

12

31
3

9

31 ⋅







+⋅







)+ 4
12

31
3

9

31 ⋅







+⋅







 = 51

4: 4
1WCRT = 3 + (4

12

51
3

9

51 ⋅







+⋅







)+ 4
12

51
3

9

51 ⋅







+⋅







 = 79

 ….
This computation will go on indefinitely and will never converge.

Clearly, Audsley’s method, and its modified version are not guaranteed to compute the actual response time
in P-FRP, and a different approach is required.

IV. Time-Accurate Simulation

A straightforward way to computing the response time in P-FRP, is to use a time-accurate simulation that
progresses through every time tick and runs tasks based on the P-FRP execution model. The pseudo-code for
such an algorithm is given in this section. The algorithm takes as input Γn and task τj, whose response time has to
be ascertained. Between lines 4-32 a loop is executed, denoting every time step from 0 to Tj. In the loop between
lines 4-15 tasks having higher priority than τj and which are released at that specific time tick, are added to the
processing queue Q. In line 16 the length of Q is checked. If Q is empty then the highest priority task (τh) is ex-
tracted (lines 17-20), and the amount of time it has been processed for (eh) incremented (line 22). The time for
which other tasks have been processed is reset to 0 (lines 23 -25). This is because these tasks will have to restart
after completion of the highest priority τh. If τh has completed processing, it is removed from Q (line 28).

If there is no higher priority task in Q it signifies a presence of a j-gap. At each consecutive tick for which
there is a j-gap the size of variable j-gap is incremented (line 30) and when j-gap equals the processing time of τj,
the time tick value is returned (line 31) denoting the response time of τj. If some higher priority task is processed
before j-gap = Pj then the size of the j-gap is reset (line 21) to denote the restart of τj, at the next available j-gap.

1. input: Γn, τj
2. output: response time of τj
3. -1 if task set is unschedulable
4. loop time ← 0,Tj
5. loop τi ← n to j+1
6. x ← Φi
7. loop while (x ≤ time)
8. if(x = time)
9. if(τi present in Queue)
10. return -1
11. else
12. Add τi to Queue
13. x ← x + Ti
14. end loop
15. end loop
16. if (Queue Count > 0)
17. h ← 1st task in Queue
18. loop for every τi in Queue
19. if (h ≤ i) h ← i
20. end loop
21. j-gap ← 0
22. eh ← eh + 1
23. loop for every τi in Queue
24. if (i != h) eh ← 0
25. end loop
26. if(eh = Ph)
27. eh ← 0
28. Remove τh from Queue
29. else
30. j-gap ← j-gap + 1
31. if j-gap = Pj return time
32. end loop

8

IV.I Time Complexity

The time loop between lines 4-32 will execute for Tj time units in the worst case which is when τj will com-
plete processing just before its next job. The loop at lines 5-15 iterates through (n–j) tasks, hence lines 6-14 will
run for maximum (n–j)·Tj times. The loop at lines 7-14 runs for every task, whose first job is released before the
current time. Line 9 performs a search on the queue. The queue can contain maximum (n-j) elements hence each
execution of line 9 will take (n–j) steps. If τk identifies the task with the highest arrival rate then line 9 will run
for:

(1 + 2 ….+ Tk) ·(n–j) = (n–j) ·Tk · (1 + Tk)/2, which is bounded by O((n–j) ·Tk

2).

Hence the execution steps of lines 8-13 are bounded by O(Tj · (n–j) 2 · Tk

2). The loops at lines 18-20 and 23-
25 execute for the maximum length of the queue. Hence the total number of steps that these loops can be exe-
cuted for is bounded by O((Tj – Pj) ·(n–j)). The total worst case upper bound for this algorithm is:

O((Tj – Pj) · (n–j) 2 · Tk

2) + O((Tj – Pj) ·(n–j)) + O((Tj – Pj) ·(n–j)).

The dominating value is O((Tj – Pj) · (n–j) 2 · Tk
2), which is the upper bound of this equation. τk is the task with

the highest arrival rate.

Example: We ran the example given in section 3 through the time-accurate simulation algorithm, and computed
the value of computational steps, which comes to 145.

V. The Gap-Enumeration Method

The time-accurate simulation method iterates through every time step till the response time of the task being
analyzed is found. This approach is computationally intensive, since several iterations have to be performed. We
present a different method using enumeration of k-gaps, based on the following characteristics of the P-FRP exe-
cution model.

Lemma 5.1: A task τj can be processed only in elements of the set σj(2

1
|T t
t).

Proof. The elements of σj(2

1
|T t
t) contain all the possible j-gaps. By its definition τj can only be processed in

available j-gaps. Hence, τj can be processed in any of the elements of the set σj(2

1
|T t
t). 

Lemma 5.2: For task τj to be schedulable, one j-gap of at least length Pj will exist between any two successive
jobs of τj.
Proof. To complete processing, τj should be processed for Pj time, without any interference from higher priority
tasks. Since no task having a higher priority than j is available to be processed in a j-gap, τj will require a j-gap
of size Pj to complete processing. This j-gap should be available before the arrival of its new job, otherwise τj
will have a deadline miss and will be unschedulable. 

Lemma 5.3: In the gap set σj(j|T
Tt

t
+) one element will be more than Pj for τj to be schedulable.

Proof. The elements of σj(j|T
Tt

t
+) are all the j-gaps formed between two successive jobs of τj. From lemma 5.2

we know that one of these j-gaps, or the elements of σj(j|T
Tt

t
+) will be larger than Pj for τj to be schedulable. 

The mechanism of this method works as follows: Let, task set Γn = {τ1, τ2,…,τn}. We have to determine the re-
sponse time of the first job of τj (RTj) (j < n). Without loss of generality we assume all tasks are released at the
same time as τj (time 0). From lemma 5.1, we know that τj can only be processed inside the elements of the set

9

σj(jT
0|T). These elements are all the j-gaps available after the processing of tasks τn to τj+1. From lemma 5.2 we

know that one of the j-gaps in the time interval jT
0|T , has to be larger than Pj for τj to be schedulable. We will first

find the set σj(jT
0|T), and then search through this set, to find the first j-gap which is larger than Pj. τj will be

processed in this j-gap making the response time of τj equal to t1 + Pj, where t1 is the threshold of this j-gap.

 To find σj(jT
0|T) we progressively analyze gap sets of all higher priority tasks. The n-gap that is available

for τn to run, is the entire length of the time intervaljT
0|T . Hence, σn(jT

0|T) = {[0, Tj)}. The first job of τn will be

released at time 0, and the second at time Tn. The mth job of τn will be released at (m–1)�Tn. The (n–1)-gap left
between the 1st and 2nd job is [Pn, Tn). Similarly the (n–1)-gap left between the 2nd and 3rd job is [Tn+Pn, 2�Tn).

Therefore, σn-1(jT
0|T) = {[Pn, Tn), [Tn+Pn,2�Tn)… ,[(m–2)�Tn , (m–1)�Tn) }: (m–1)�Tn ≤ Tj.

We see that the gap set σn-1(jT
0|T) is created after accounting for the processing of all jobs of τn, in the gap set

σn(jT
0|T). Hence, the gap set σn(jT

0|T) has been transformed by the processing of all jobs of τn to result in σn-

1(jT
0|T). We use the gap transformation function to account for the processing of the current task and get the gap

set for the next lower priority task. Or,

σn-1(jT
0|T) = λ (σn(jT

0|T),Γn).

From lemma 5.1, we know that τn-1 can only be processed in the gaps present in σn-1(jT
0|T). When we process all

jobs of task (n–1) in jT
0|T , some of the (n–1) gaps present in σn-1(jT

0|T) will be used or reduce in size, leading to

the formation of (n–2)-gaps. Hence, after accounting for the processing of all jobs of τn-1 in jT
0|T , the gap set σn-

2(jT
0|T) is created. The gap-transformation function can also be used to get the set σn-2(jT

0|T). Hence,

 σn-2(jT
0|T) = λ (σn-1(jT

0|T),Γn)

Figure 2(a): 3-gap available for processing of τ3, σ3(
40
0|T) = {[0,40)}

Figure 2(b): 2-gaps available for processing of τ2, σ2(

40
0|T) = {[3,9), [12,18) ,[21,27),[30,36),[39,40)}

Figure 2(c): 1-gaps available for processing of τ1, σ1(

40
0|T) = {[7,9), [16,18), [21,24), [34,36)}

10

Similarly,

 σn-3(jT
0|T) = λ (σn-2(jT

0|T),Γn)
 …

 σj(jT
0|T) = λ (σj+1(jT

0|T),Γn)

Once σj(jT
0|T) is available we use the gap search function to give us the first j-gap in which τj can complete proc-

essing. Hence,
[t1, t2) = µ(σj(T), Pj).

Therefore,
RTj = t1+Pj

Let us illustrate this method by a simple case. Consider the example given in Section 3. Here, Γ3 ={τ1, τ2, τ3}

and T1,T2,T3 are 40,12,9 respectively. The processing times P1,P2,P3 are 3,4,3 respectively and all tasks are re-
leased at time 0. We have to determine the actual response time for τ1.

In the time interval 40
0|T , the 3-gap available to process τ3 is the entire length of the time interval period.

Therefore, σ3(40
0|T) = {[0,40)} (Figure 2(a)). τ3 will be processed at times 0,9,18,27 and 36 leaving 2-gaps in

between each job. Therefore, σ2(40
0|T) = {[3,9), [12,18) ,[21,27),[30,36), [39,40)} (Figure 2(b)). The 1st, 2nd and

3rd jobs of τ2 are processed in the 2-gaps [3,9), [12,18) and [21,27) respectively, while the 4th will start process-
ing the 2-gap [39,40). Hence, σ1(40

0|T) = {[7,9), [16,18), [21,24), [34,36)} (Figure 2(c)). Since the length of the

1-gap [21,24) is more or equal to P1 , τ1 will complete processing in this gap. Therefore,
 RT1 = 21 + 4 = 24.

VI. Algorithm to Determine Actual Response Time

We now present an algorithm that can determine the actual response time of τj, using the gap-enumeration
method. The pseudo-code of the algorithm is given below. The algorithm takes Γn and τj as input and returns the

actual response time of τj. In line 3, we assign an initial value to σn(jT
0|T). Between lines 4 to 7, we successively

compute the gap sets σn-1(jT
0|T) to σj(jT

0|T). Once the gap set for τj is known, we retrieve the earliest j-gap larger

than Pj, using the gap search function µ(jT
0|T , Pj) (line 8), and then compute the response time of τj (line 10).

If k-gaps to process lower priority tasks are not present, then the task set is not schedulable. In line 6, we
check if gaps to process the lower priority task are present. If an i-gap to process a task τi is not present –1 is re-
turned, signifying that the task set is not schedulable. A similar check in line 9 returns –1, if no j-gap is found to
run τj.

Algorithm 5.1

1. input: Γn, τj

2. output: RTj or -1

3. σn(
jT

0|T) ← {[0,Tj)}

4. loop τi ← n to j+1

5. σi-1(
jT

0|T)←λ (σi(
jT

0|T),Γn)

6. if(|σi-1(jT
0|T)| = 0) return -1

7. end loop

8. [t1,t2)← µ(σj(
jT

0|T), Pj)

9. if(t1 < 0) return -1
10. RTj = t1 + Pj

11

11. return RTj

VI.I Gap-Enumeration with Dynamic Window Size

Algorithm 5.1 enumerates all the gaps present in the time window jT
0|T . In certain cases, the time window

jT
0|T could be large, and a much higher number of gaps than required could be enumerated. If jT

0|T is divided into

smaller slices, the gap-enumeration algorithm can be made more efficient. We divide the time window jT
0|T into

m windows (1 ≤ m ≤ Tj), of size 








m

Tj and enumerate the gaps starting from window 











m

T j

0|T . If no j-gap to run τj

is found, then the length of the window can be progressively expanded by 








m

Tj . A modified form of algorithm

5.1, which uses dynamic size windows is given below. A new loop between lines 4 and 14 has been added, and

the j-gap is searched in the time window L0|T where L has an initial value of 








m

Tj (line 3). If a j-gap is found in

L
0|T , the response time is returned (line 13), else L is incremented (line 13) and the j-gaps in the new time win-

dow are analyzed. If the j-gap is not found in the maximum possible time window L
0|T , –1 is returned signifying

the unschedulability of the task τj.

Algorithm 5.2

1. input: Γn, τj, m

2. output: RTj or -1

3. L ← 








m

Tj

4. loop while (L < Tj + 








m

Tj
)

5. σn(
L
0|T) ← {[0,Tj)}

6. loop τi ← n to j+1

7. σi-1(
L
0|T)←λ (σi(

L
0|T),Γn)

8. if(|σi-1(
L
0|T)| = 0) return -1

9. end loop
10. [t1,t2)← µ(σj(

L
0|T), Pj)

11. if(t1 > 0) RTj = t1 + Pj

12. if RTj < Tj return RTj

13. L ← L + 








m

Tj

14. end loop
15. return -1

One obvious inefficiency of this approach is that, if a j-gap is not found in the time window L0|T , the gaps have to

be enumerated again in the time window of the next iteration L⋅2
0|T . Developing ways to enumerate and search j-

gaps only in the expanded section of the window (LL
⋅2|T), rather than the whole window (L⋅2

0|T) is a scope for
future work.

12

VI.II Gap-Transformation Function

The gap transformation function λ(σi(L
0|T),Γn), for a task τi, is an important component in determining the

response time of tasks in P-FRP. It analyzes the gap-set σi(L
0|T) for gaps in which τi could be processed, changes

those gaps and returns the transformed gap-set. The pseudo-code for the implementation of this function is given
below. The loop defined in lines 4-22 iterates for the number of jobs of τi in L

0|T . The loop inside lines 5-21 it-

erates for the number of gaps. We check for the i-gap in which job q of τi will process (line 8) and accordingly
modify the gap. If the job q is after the threshold of this gap, then the i-gap will reduce in size (condition in lines
11 and 18) or split in two (condition in line 14). If the size of the i-gap is equal to or less than Pi, the i-gap will
cease to exist since it will be consumed by the processing of τi. If job q completes processing in one of the gaps
the inner loop exits (lines 13,17), and the search for i-gap to process the next job is started. If an i-gap to run job
q is not found before the arrival of the next job, then τi is not schedulable and an empty gap set is returned by the
function (line 6). The add operation will add the k-gap [t1, t2) only if t1 ≠ t2.

Algorithm 5.3

1. input: σi(
L
0|T),Γn

2. output: σi-1(
L
0|T)

3. jobsi = 






 Φ

i

i

T

L -
 + 1

4. loop job q ← 1, jobsi

5. loop k-gap [t1,t2) ← 1,|σi(
L
0|T)|

6. if t1 > t + Ti return (|σi-1(
L
0|T)| = 0)

7. if(t < t1) t = t1

8. if(t1 ≤ t < t2)

9. {
10. remove[t1,t2) from σi(

L
0|T)

11. if(t + Pi = t2)

12. add [t1,t) to σi(
L
0|T)

13. exit loop gap

14. if (t + Pi < t2)

15. add [t1,t) to σi(
L
0|T)

16. add [t+Pj, t2) to σi(
L
0|T)

17. exit loop gap
18. if(t+Pj > t2)

19. add [t1,t) to σi(
L
0|T)

20. }
21. end loop
22. end loop
23. σi-1(

L
0|T) = σi(

L
0|T)

24. return σi-1(
L
0|T)

VI.III Gap-Search Function

The gap search function µ(σk(L
0|T), Pk) does a simple search on σk(L

0|T) and retrieves the first k-gap whose
size is larger than Pk. The algorithm for the search depends on the type of data structure used to store the gaps.

13

Due to its guaranteed bounds for search and insertion time, we use a red-black tree (RB-tree) [6] to store gaps. A
red-black tree, is a self balancing binary tree where each node has a color attribute of red or black. Other proper-
ties of a RB-tree are:

• The root node is black
• All leave nodes are black
• Children of every red node are black
• Path from leaf to root contain same number of black nodes

The gaps are stored in a RB-tree with threshold as the index. Figure 3 shows the RB-tree for a sample gap

set: σk(320
0|T)={[10,40), [50,80), [90,100), [120,140), [170,190), [230,260), [300,320)}. The search function

µ(σk(T), Pk) is reduced to transversing the RB-tree from the left most leaf node (earliest gap), to the right most
leaf node. The search order for the sample set based on node index is 10, 50, 90, 120, 170, 230, 260, 300.

VI.IV Time Complexity

We present an analysis of the time complexity of algorithm 5.2. The guaranteed worst case complexity for
search, insertion and deletion operation in a RB-tree is O(log2 m) (log2 is represented by log in the rest of the pa-
per), where m is the number of elements of the tree. The transversal of the tree can take O(m) time, hence, the
complexity of µ(σj(L

0|T), Pj) is bounded by O(|σj(L
0|T)|).

Algorithm 5.2 uses algorithm 5.3 for gap-transformation. In algorithm 5.3 the loop in line 4 transverses for
every gap, while the loop in line 3 transverses for every job of higher priority task τi in L

0|T . In the worst case, i-

gap to run the job will be found at the end, hence, the total number of such transversals is |σi(L
0|T)|·(jobsi + 1).

When the i-gap to process the job is found, the existing i-gap is removed from σi(
L
0|T). Each removal operation

is bounded by O(log m), where m is the number of gaps stored in the RB-tree. Then the modified i-gap is added
back to the tree. One of the conditions, splits an available i-gap into two, in which case two additions will have to
be done. Assuming that for every job two gaps are added, the worst case total time taken to add gaps for each job
is:

1 + log(2) + …. + log(2·m) = 1 + log(2·3·…2·m)

which is bounded by O(log(!2·m)). The total time for deletion and 2 additions is:

O(log(!2·m)) + O(log m)

O(log(!2·m)) is the dominating term, hence, the total time for deletion and worst-case addition is: O(log(!2·m)).

Since, for the worst case every available i-gap is divided into 2, the number of gaps in σi-1(L
0|T) will be dou-

ble that of σi(L
0|T). Hence, m = 2�|σi(L

0|T)|. If the maximum number of additions is done for every i-gap and
every job, then the complexity of the gap search function is bounded by:

O(|σi(L
0|T)|·jobsi ·log(!2�2�|σi(L

0|T)|))

Figure 3: RB-tree for sample gap set. The shaded nodes denote a black node while the non-shaded are red nodes. The null nodes do not
contain any data

14

In algorithm 5.2, the gap transformation function is called for τn to τj+1, and is executed for n–j steps. Therefore,
the total complexity for algorithm 5.2, is bounded by the time complexity for gap transformation and gap search
functions and is given by the equation:

O((n-j) ·|σi(L
0|T)|·jobsi ·log(!2�2�|σi(L

0|T)|)) + O(|σj(L
0|T)|)

The gap transformation function is the dominant factor in the computation, therefore, the bound is:

O((n-j) ·|σi(L
0|T)|·jobsi ·log(!2�2�|σi(L

0|T)|))

The values of jobsi and |σi(L

0|T)| is maximized when Ti = min(Tn-j, Tn-j+1 … Tn). Hence, τi represents the task with
lowest arrival period among tasks having higher priority than j. The maximum possible value of L can be Tj +










m

Tj , in which case the gaps will have to be enumerated m times, where each enumeration is bounded by:

O((n-j) ·|σi(L
0|T)|·jobsi ·log(!2�2�|σi(L

0|T)|))

The maximum possible value of m is Tj (








m

Tj =1). Accounting for each enumeration and putting the maximum

value of L and m, the bound for the gap enumeration algorithm is:

O(Tj· (n-j) �|σi(
1

0|T
+jT)|�jobsi �log(!2�2�|σi(

1
0|T

+jT)|))

It should be noted that the gap transformation function exits the loop (which iterates through the gaps), when

the k-gap to run a job is found. For the upper bound, we have assumed that the loop continues till the last gap.
Hence, the costs of additions and deletion are assumed much higher. The condition assumed for the worst-case
will rarely be reached, hence, the general performance of the algorithm will always be better than what is defined
by this bound.

Example: We ran the example given in section 3 through the time-accurate simulation algorithm, and computed
the value of computational steps, which comes to 33.

VII. Analysis

Since the Time-accurate simulation (TAS) method is the only other known method for computing actual re-
sponse time in P-FRP ,we present an experimental analysis of the performance of the Gap-enumeration (GE) al-
gorithm, relative to TAS. For every addition and deletion operation into the RB-tree, the computational step is
incremented by log(m), where m is the dynamically changing size of the RB-tree. Using computational steps for
performance measurement is sufficient for this analysis, as it gives us a distinct idea of time that each algorithm
will take to give the desired results.

We randomly generated 3 groups (group A, group B and group C) of 500 schedulable task sets. Group A has
3 tasks, group B had 5 and group C, 7 tasks. Each of the task sets in each group is unique in the sense, that at
least 1 task is different between any two task sets in a group. The arrival period for each of the tasks in all the 3
groups were in the range [40,60), while the processing times were in the range [4,10). All tasks were assumed to
be released simultaneously and the response time of the lowest priority task (τ1) in each group was determined
using the TAS and GE algorithms. In the GE algorithm, m was set to 1 for this analysis.

15

Figures 4(a),(b) and (c) shows the computational steps taken by the TAS and GE algorithms to compute the

response time of task 1 in groups A, B and C respectively. It can be seen clearly that GE takes less number of
computation steps as compared to the TAS algorithm. To get a precise idea on the difference between the compu-
tational steps taken by the TAS and GE algorithms, we show the difference in computational steps between the
TAS and GE algorithms in figures 5(a),(b) and (c). The ∆ in the y-axis is given as:

∆ = Computational Steps in TAS - Computational steps in GE

The delta values tend to increase as the number of tasks present in the set increase. This could be attributed to a
generally larger response time when the number of tasks are high. In figures 6(a), (b) and (c) we show the relation
between response time and ∆. It is clear, that as the response time increases the GE algorithm becomes much
more efficient relative to TAS.

In Figure 7(a),(b) and (c) we show the change in computational steps with number of 1-gaps present before
the actual response time is found. The computational steps show a trend to increase with the number of total 1-
gaps. A higher number of 1-gaps will increase the cost of search, insertion and deletion operations. However, for
the same number of computational gaps, the computational time also varies. This is because even though the

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500

Task Set Number

C
om

pu
ta

tio
n

S
te

ps

Steps-TAS # Steps-GA

Figure 4(a): Computation steps for GA and TAS

algorithm for task sets with 3 tasks

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

Task Set Number

C
om

pu
ta

tio
n

S
te

ps

Steps-TAS # Steps-GA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500

Task Set Number

C
om

pu
ta

tio
n

S
te

ps

Steps-TAS # Steps-GA

0

20

40

60

80

100

120

140

0 100 200 300 400 500
Task Set Number

D
el

ta

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500
Task Set Number

D
el

ta

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500
Task Set Number

D
el

ta

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

0 5 10 15 2 0 2 5 3 0
A c tual Response Time

D
el

ta

Figure 5(a): Delta (Steps TAS – Steps GA) for
tasks sets with 3 tasks

0

50

10 0

150

2 0 0

2 50

3 0 0

3 50

4 0 0

0 10 2 0 3 0 4 0 50
A ctual Res ponse Time

D
el

ta

0

10 0 0

2 0 0 0

3 0 0 0

4 0 0 0

50 0 0

6 0 0 0

70 0 0

8 0 0 0

9 0 0 0

0 10 0 2 0 0 3 0 0 4 0 0
A ctual Res ponse Time

D
el

ta

0

5

10

15

20

25

30

35

0 2 4 6

Number of 1-gaps

C
om

pu
ta

tio
n

S
te

ps

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

0 5 10

Number of 1-gaps

C
om

pu
ta

tio
n

S
te

ps

0

2 0 0

4 0 0

6 0 0

8 0 0

10 0 0

12 0 0

14 0 0

16 0 0

18 0 0

2 0 0 0

0 10 2 0 3 0

Number of 1-gaps

C
om

pu
ta

tio
n

S
te

ps

Figure 4(b): Computation steps for GA and TAS
algorithm for task sets with 5 tasks

Figure 4(b): Computation steps for GA and TAS
algorithm for task sets with 7 tasks

Figure 5(b): Delta (Steps TAS – Steps GA) for
tasks sets with 5 tasks

Figure 5(c): Delta (Steps TAS – Steps GA) for tasks
sets with 7 tasks

Figure 6(a): Delta (Steps TAS – Steps GA) vs.
response time for tasks sets with 3 tasks

Figure 6(b): Delta (Steps TAS – Steps GA) vs.
response time for tasks sets with 5 tasks

Figure 6(c): Delta (Steps TAS – Steps GA) vs.
response time for tasks sets with 7 tasks

Figure 7(a): Number of total 1-gaps Vs. computa-
tional steps for GA method with 3 tasks

Figure 7(b): Number of total 1-gaps Vs. computa-
tional steps for GA method with 5 tasks

Figure 7(c): Number of total 1-gaps Vs. computa-
tional steps for GA method with 7 tasks

16

number of 1-gaps are the same, the response time for τ1 in the task sets could vary, affecting the number of com-
putation steps required.

VIII. Related Work

Response time analysis was first studied by Joseph and Pandya [15] and fixed priority scheduling was inde-
pendently studied by Audsley et al [2]. In [2], an iterative method to compute actual response time of a preemp-
tive system has been given. Kaibachev et al [16] present a basic response time analysis for P-FRP by placing
restrictions on execution times of higher priority tasks. The authors have derived the response time bound of a
task as equal to its arrival period. Ras and Cheng [21] have presented response time analysis , and have compared
the performance of P-FRP execution with priority inversion strategies. The authors present a method to derive
upper bound on response time by extending the iterative method developed by Audsley et al [2]. However, as
shown in this paper, this method is unusable for most task sets. The flaw is that the authors make explicit as-
sumptions on the abort pattern of higher priority tasks. The abort pattern is different for individual task sets and
cannot be generally applied. Both [16], [21] do not define any method to compute actual response times for P-
FRP.

Transactional memory systems have been described by Herlihy and Moss [14]. Response time analysis for
transaction memory using dynamic scheduling for multiprocessor systems has been done by Fahmy et al [9]. In
Manson et al [18] an atomic processing of the critical section has been implemented in Java. In Manson et al’s
paper response time analysis using fixed priority scheduling has been done, however the response time so derived
does not account for complete re-processing of critical sections. Davis and Burns [7] derive upper bounds on re-
sponse time for fixed priority scheduling building upon the work done by Bini and Baruah [3]. Anderson et al [1]
do response time analysis of the lock-free mechanism. Lock-free is a mechanism to avoid priority inversion [23]
the implementation of which is via an unconditional loop that terminates when the necessary updates to the
shared resource are complete. The schedulability conditions given for fixed-priority scheduling in [1] assume a
constant ‘extra computation time’ in case of a failed update. If we consider this equivalent to an abort cost in P-
FRP it cannot be a constant as the abort cost varies for every task. Comparisons between transaction memory
based systems and lock-free processing and benefits of the former have been shown in Herlihy and Moss [14].

Chen et al [5] have investigated the presence of feasible intervals in which a job can process. A task can start
processing and if the interval is less than its processing time then it will restart at the next available interval. This
model is similar to P-FRP if intervals are considered as k-gaps. The authors show that scheduling such a task set
is an NP-hard problem, and give approximation algorithms for scheduling the tasks. Algorithms for preemptive
and non-preemptive task sets are given, where the non-preemptive tasks have to complete processing in one time
interval. Byun et al [4] adopt the critical section approach for CPU tasks, into a Database model. A high priority
transaction can abort a low priority transaction if they share a lock and the low priority task is restarted. The au-
thors have bounded the response time for a task and have considered the cost of re-execution.

IX. Conclusions and Future Work

A common method for determining actual response time in the preemptive model cannot be applied to the
execution model of P-FRP, due to the abort of preempted tasks. A straightforward method way to compute actual
response time, is to run a time accurate simulation of the P-FRP execution model. The time complexity for this
method is defined by the length of time for which the simulation has to be run. In several practical situations, the
length of time to analyze the system could be very large. Also during the design phase of a real-time system, as
well as for determining the worst-case release time, many scenarios need to be analyzed for their response time.
Using a time-accurate simulation will take significant amount of computation time, making its use impractical in
these situations.

The gap-enumeration method is a different approach for computing actual response time in the P-FRP execu-
tion model. Comparisons with the time-accurate method show that the gap-enumeration method is much more
efficient than the former. For P-FRP systems with numerically higher response times, the gap-enumeration
method offers engineers a fast alternative for the computation of actual response times. The performance of this
method is directly proportional to the number of k-gaps present in the system. The number of k-gaps has no im-
pact on the time accurate simulation method, whose computational complexity is primarily governed by the time

17

steps that have to be covered. While the gap-enumeration algorithm is faster than the time-accurate simulation, it
is clearly not as efficient as Audsley’s method. However, we feel that due to the abort nature of tasks, computing
response time using fixed iterations on a mathematical expression, as developed by Audsley et al, might not be
feasible for P-FRP. Hence, algorithm based approaches, such as the gap-enumeration method, are perhaps, the
only way to compute actual response time in P-FRP.

We have presented the gap-enumeration algorithm in its simple form. Several changes could be made to im-
prove the efficiency of this method. The main computational cost incurred by the gap-enumeration method is dur-
ing insertion, deletion and search of the data structure used to store k-gaps. A hash table could be used in
conjunction with the RB-tree to index the locations of k-gaps thereby making the search, insertion and deletion
operation more efficient. In ongoing work, we are also exploring a method where 2-dimensional array is used to
keep track of gaps created for each task. In this work the values of tcopy(k) and trestore(k) for a task τk, have been
considered as 1. This makes our execution model simple since we do not have to account for situations when a
lower priority task cannot be preempted. This work will be enhanced by considering more probable values of
tcopy(k) and trestore(k). Computing actual response time in P-FRP, when task arrivals are sporadic is also an open
area of research. This gap-enumeration algorithm can also be modified to determine actual response time in the
preemptive model. This can be achieved by changing the gap-transformation and gap-search functions such that,
rather than waiting for a k-gap larger than or equal to Pk being available, τk can complete processing as soon as
the combined length of all gaps (starting from the first gap) equals Pk. Of course, the usefulness and relative per-
formance of this modified gap-enumeration algorithm vis-à-vis Audsley’s method will have to be ascertained.

While the classical preemptive model of execution is well understood and several mature studies have been
done over several years, the abort-restart model of execution has not been deeply investigated. Therefore, this
study is valuable in response time studies for systems having similar execution models such as in real-time data-
bases [4], transactional memory systems [14], lock-free execution [1] and Java [18].

References

[1] J. H. Anderson, S. Ramamurthy, K. Jeffay. “Real-time computing with Lock-free Shared Objects”. ACM Transactions on

Comp.Sys. 5(6), pp.388-395, 1997

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings. “Applying new scheduling theory to static priority pre-

emptive scheduling”. Software Engineering Journal 8(5), pp: 284-292, 1993

[3] E. Bini, S.K. Baruah. “Efficient Computation of Response Time Bounds under Fixed-priority Scheduling”. Proc. Of the

15th conference on Real-Time and Network Systems, pp. 95-104,2007

[4] J. Byun, A. Burns, A. Wellings. “A Worst-Case Behavior Analysis for Hard Real-time transactions”. Workshop on Real-

time Databases, 1996

[5] J. J. Chen, J. Wu, C. S. Shih, T.W. Kuo. “Approximation algorithms for Scheduling Multiple Feasible Interval Jobs”.

RTCSA'05 , pp.: 11 - 16 ,2005

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms, Second Edition.

MIT Press and McGraw-Hill, Chapter 13: Red-Black Trees, pp.273–301, 2001

[7] R.I. Davis, A.Burns. “Response Time Upper Bounds for Fixed Priority Real-Time Systems”.RTSS’08, pp.407-418, 2008

[8] C. Elliott, P. Hudak. “Functional reactive animation”. ICFP’97,pp/ 263-273, 1997

[9] Erlang, http://www.erlang.org

[10] S.F. Fahmy, B. Ravindran, E.D. Jensen. “Response time analysis of software transactional memory-based distributed

real-time systems”, ACM SAC Operating Systems, 2009

18

[11] F#, http://research.microsoft.com/en-us/um/cambridge/projects/fsharp

[12] Haskell, http://www.haskell.org

[13] T. Hawkins. “Controlling Hybrid Vehicles with Haskell ”, Commerical Uses of Functional Languages (CUSP)’08, 2008

[14] M. Herlihy, J.E.B. Moss. “Transactional memory: architectural support for lock-free data structures”. ACM SIGARCH

Computer Architecture New (Col. 21, Issue 2),pp. 289-300, 1993

[15] M. Joseph, P. Pandya. “Finding Response Times in a Real-Time System”. BCS Computer Journal (Vol. 29, No. 5), pp:

390-395, 1986

[16] R. Kaiabachev, W. Taha, A. Zhu. E-FRP with Priorities. EMSOFT’07 , pp: 221-230 , 2007

[17] C. L. Liu, L. W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”. Journal of

the ACM (Volume 20 Issue 1), pp: 46 - 61 , 1973

[18] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin, J. Vitek. “Preemptible Atomic Regions for Real-

Time Java”. RTSS’05, pp.62-71, 2005

[19] J. Peterson, G. D. Hager and P. Hudak. “A Language for Declarative Robotic Programming”. ICRA’99, IEEE, 1999

[20] J. Peterson, P.Hudak, A.Reid, G. D. Hager. “FVision: A Declarative Language for Visual Tracking”. In Symposium on

Practical Aspects of Declarative Languages, 2001

[21] J. Ras, A. Cheng. “Response Time Analysis for the Abort-and-Restart Task Handlers of the Priority-Based Functional

Reactive Programming (P-FRP) Paradigm”. RTCSA’09, 2009

[22] M. F. Ringenburg, D. Grossman. “AtomCaml: first-class atomicity via rollback”. ACM ICFP’05, pp. 92-104, 2005

[23] L. Sha, R. Rajkumar, J. P. Lehoczky. “Priority Inheritance Protocols: An approach to Real Time Synchronization”.

Transactions on Computers Volume 39, Issue 9, pp:1175 – 1185, 1990

[24] Z. Wan, W. Taha, and P. Hudak. “Real - time FRP”. ICFP’01, pp: 146-156, ACM Press ,2001

[25] Z. Wan, W. Taha, and P. Hudak. “Task driven FRP”. PADL’02, 2002

[26] Z. Wan and P. Hudak. “Functional reactive programming from first principles”. ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation,pp.242-252,2000

