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Abstract

Functional Reactive Programming (FRR)a declarative approach to modeling and builda-
tive systems. Priority-based FRP (P-FRP) hasntbcbeen introduced as a FRP formalism that guar-
antees real-time response. P-FRP guarantees tleat avhigher priority task is released, the systein w
immediately preempt any executing lower-prioritgks. To maintain guarantees of state-less execution
offered by a purely functional model of programmiRgFRP implements a transactional nature of exe-
cution. Each higher priority task in P-FRP can alaolower priority task forcing it to restart. Etrg
work on partitioning tasks in multi-processor systehave been focused on the classical preemptive
model of execution. However, due do its transaction&lireaof execution, the schedulability tests used
in the partitioning algorithms for the classicaé@mptive model, cannot be applied ‘as is’ to thHeR®R
execution model. While multiprocessor response tanalysis of P-FRP has been done in previous
work, partitioning schemes for tasks in multi-preger systems have not been presented yet. Indhis p
per, we present an exact schedulability test f&iRP- and use it in two existing first-fit partitiow
schemes. We also introduce a new first-fit pamitig scheme based on the processing time of tasks,
which yields better results than the other twoesegs in experimental analysis. We also show tleat th
number of processors required to schedule tasksRRP will be more than or equal to the number of
processors required to schedule the same in tieenmtéze model
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" In this paper the classical preemptive model sefera real-time system in which tasks can be ppésanby higher priority
tasks, and can resume execution from the pointweeg preempted
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. Introduction

Reactive programming is a paradigm where progratiabies dependent on external input are autométical
updated with any change in input. Functional ReacRaradigm (FRP) [39], is a declarative prograngnan-
guage for modeling and implementing reactive systethhas been used for a wide range of applinafinotably,
graphics [17], robotics [32], and vision [33]. FR&ptures both the continuous and discrete aspéetshybrid
system using the notions of behavior and evenpeas/ely. FRP is implemented as a domain-spetifiguage
in Haskell [20], and benefits from the wealth dktaactions provided in this language. Howeverskdd pro-
vides no real-time guarantees, and therefore neithes FRP

To address this limitation, resource-bounded vaésiahFRP were studied [24],[37],[38]. It was shothat a

variant called priority-based FRP (P-FRP) [24] camab both the semantic properties for FRP, guagante-
source boundedness, and supports assigning differienities to different events.
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In P-FRP, higher priority events can preempt lopority ones. However, a requirement [36] in tbac-
tional programming model is that the state of th&tesm cannot be changed, and no function can hdeee$
fects. To maintain this guarantee of ‘state-les@cation, the functional programming paradigm reegithe
execution of a function to continue uninterrupt&€d.comply with this requirement, as well as alloregmption
of lower priority events, P-FRP implements a muéirsion commit model of execution. Using only ayopthe
state during event execution and atomically coningtthese changes at the end of the event haratitas)), P-
FRP ensures that handling an event is an “all ¢hing” proposition. This preserves the easily ustardable
semantics of the FRP and provides a programmingematiere response times to different events can be
tweaked by the programmer, without ever affectimggemantic soundness of the program. Thus, asgeara-
tion between the semantics of the program and ésponsiveness of the implementation of each hansller
achieved.

The benefits of using the functional programmin@rothe imperative programming style (C++, Java, Ada
etc.), are several. The functional programming gigra allows the programmer to intuitively describefety
critical behaviors of the system, thus lowering ¢h@nce of introducing bugs in the design phasesttite-less
nature of execution does not require use of symekation primitives, like mutexes and semaphoreducing
the complexity in programming. This makes the fioral programming model ideal for parallel compgtin
since data sharing conflicts [35], an important ssderation in the preemptive execution model, asilg
avoided. Hence, P-FRP presents an alternate anuging approach for parallel programming in multb@essor
and multi-core systems.

With the availability of low-cost multi-core procass and single boards with multiple processorsemeal-
time and embedded systems are being implementediléiscore or multi-processor based. While multiptees
|/ processors increase the throughput of the systemgal-time implementations where tasks havecmmete
within deterministic bounds, the assignment of saskeach individual core/processors has to beudbreleter-
mined. Presence of multiple processors also gizibsdfe redundancy, a vital requirement in sateiycal sys-
tems.

Multi-processor systems can generally be divided two groups, based on the nature of processora. |
homogenousystem, all processors are of the same type amcligx at the same speedhéterogeneoumulti-
processor system can have processors of diffegpastwhich may be running at different speed. Funiore,
symmetricmulti-processor systems share a common memoryvhite in asymmetricmultiprocessor systems
each processor has access to an independent mbosrgcheduling algorithms for multi-processor eyst can
be divided into two distinct categorieRartitioned scheduling assigns a processor to every task lanuba of
that task will run on that specific processdglobal scheduling, on the other hand, allows tasks torateg
among processors during run time, and hence tasffrasent to processors is dynamic in nature, agpaosd to
fixed processor assignment in partitioned schedulBoth these algorithms can be wfftline before the system
is started if all task parameters are knangriori, oron-line while the system is running.

In this work, we study off-line partitioning of tesin symmetric multi-processor system. Our olyecis to
find the minimum number of processors requiredetisibly schedule the tasks in a given P-FRP tasiidea-
sible schedule is one in which task execution fedi@ strict priority order, and no task in the systmisses its
deadline as long as the system is in operation.

Priorities to tasks can be assigned in a staticdgndmic way, and the current implementation offRfonly
allows static priority assignment. Unlike dynamigopity assignment, in fixed priority scheduling;iqrities to
tasks in the system are assignment off-line andarerixed as long as the system is running. Comahgramic
priority assignment policies are the earliest-dieadlirst (EDF) [26] and least-laxity-first (LLF2B]. The most
common fixed priority assignment scheme is the-nad@otonic (RM) priority assignment, which Liu ahdy-
land [26] have shown to be an optimal priority gasient in the preemptive execution model. The cgiitgnof
the RM-priority assignment is derived the fact thit task set is schedulable by any other pyaagsignment
then it is also schedulable by RM priority assignmélowever, Leung and Whitehead [25] showed thatdp-
timality for RM priority assignment is valid onlypf asynchronougrelease offset of all tasks is the same) release
of tasks.

Several important algorithms have been proposethmpartitioned allocation of tasks in symmetrigrio-
geneous multiprocessor systems. Dhall and Liu [h&Ye given the Rate-Monotonic-First-Fit-Scheduling
(RMFFS) and Rate-Monotonic-Next-Fit-Scheduling (RW® algorithms which combine bin-packing and rate-



monotonic scheduling to assign tasks to procesdoavari and Dhall [13],[14] have given the First-Fi
Decreasing-Utilization-Factor (FFDUF) and the NEKIT-M algorithms. Oh and Son [30] have given theeRa
Monotonic-First-Fit-Decreasing-Utilization (RMFFDWjhich uses a different rate-monotonic scheduligtiést
and is an improvement over the RMFFS and RMNF &#lyos.

One common aspect of these algorithms is thatuiseya sorting order for the first-fit scheme. Todisg is
performed on the basis of arrival rates or utilatratios [26]. Another common aspect of thesemtlgms is
that the schedulability test for tasks assigned pocessor, is performed based on criterion déffoethe RM
scheduling policy. While this criterion is correstthe preemptive execution model, due to a diffeexecution
model, the RM-priority assignment is not the optimaority assignment for P-FRP (see example intiSac3).
Hence, none of the first-fit algorithms that haeeb presented so far are guaranteed to provideatoasults in
P-FRP. In this paper, we modify existing firstidsed algorithms to use an exact schedulabilitydiesigned for
P-FRP. We also present a new first-fit criteriosdzhon the processing time of tasks, which is wgled for
the P-FRP execution model.

Symmetric multiprocessing for P-FRP was first desad in [12]. The work in [12] only deals with respe
time analysis under a pre-assigned partitioningaeks. However, response time analysis can baldyiper-
formed only when a good partitioning of tasks amondtiple processors is known. This work analyagshspar-
titioning schemes and suggests the most suitabtgigaing for P-FRP. Knowledge of such partitiogischemes
is vital to any multi-processor implementationsFeFRP. Our work also benefits real-time researgiohe the
functional programming model of P-FRP. After mochfiions, methods presented in this work can bdiezpfor
multi-processor partitioning in systems with simiddort-restart execution models as transactiomghaony [21],
lock-free execution [2] and real-time databases [7]

I.I Contributions

We first present basic uniprocessor schedulakglayditions (Section 1ll) and then propose an esabied-
ulability test for P-FRP (Section 1V). For any tifg scheme such an exact test is vital for detemg the sched-
ulability of some task assignment to processors. psent modified forms of the first-fit decreasirsge
(Section V) and first-fit-decreasing utilizatioactor (Section VI) algorithms. Since, every preesdptask is
aborted, additional costs are induced on the resptime of lower priority tasks. The abort costelated to the
processing time of a task, hence a first-fit paniihg scheme based on the processing time of tasidso devel-
oped (Section VII). Lastly, we present a methoddmpute the optimal partition for any given task(§&ection
VIII). These algorithms can be applied for stat&tgioning to any real-time multiprocessor implertaions of
P-FRP.

The relative benefits of each of these algorithmgehdetermined using rigorous experimental anal\zes-
tion IX). We have computed the processor requéresi under each partitioning scheme for unique sas&
having 6,8 and 10 tasks and shown comparisons batwaious parameters. Processor requirements éetie
P-FRP and preemptive execution models have also be@mpared. Apart from proving the correctnesswf o
algorithms, these results provide data to engineerthe relative merits of each partitioning scheriée con-
clude this paper by reviewing related work (Seckgrand a reflection on these results (Section XI).

Il. Basic Conceptsand Execution Model of P-FRP

In this section, we introduce the basic conceptbthe notation used to denote these concepts irettef
the paper. In addition, we review the P-FRP exenunhodel and assumptions made in this study.



1.1 Basic Concepts

Essential concepts for P-FRP are tasks and theiiceged priority, their associated time period #relcon-
cept of arrival rate and their processing time; ¢bacept of a time interval and task jobs theréline notation
and formal definitions for these concepts as wekh dew others used in the paper are as follows:

* Lettask sef, = {14, 1,,..., T} be a set oh periodic tasks

* In a multi-processor system IE{[m] represent the set af tasks that are statically assigned to execute in
processom

* Thepriority of 1, O I, is the integepr.. If, pr; > pr thent; has a higher priority thamn

» Tyis thetimeperiod between two successive jobstpf

e Cyis thewor st-case execution time (WCET) for 1

* teopyK) is the time taken tanake acopy of the state beforg starts execution ( see Section 2.2.1)

*  tesordK) IS the time taken toestore the state after, has completed execution ( see Section 2.2.1)

» Py is theprocessing time for 1,. Processing of a task includes execution as veetiopy and restore opera-
tions. HencePy = teopy(K) + Ck + trestord K)

e [ty o) represents imeinterval such that:[Ot0 [ty t) ty <t <t, Ot; #t,, t; andt, are absolute times

* R¢mrepresents theslease time of them" job of 1,

» @, represents theelease offset, which is the release time of the first jobtpfOr, @, = R(;. HenceR(m=
@y + (M=1)T

* Alevel-k idle period is defined as a point in timejn which no task having a priority opry or higher is
awaiting execution and ready to execute strictfpimeet

» Afinite contiguous interval of non-zero lengtiath) is ak-gap, if everytl[t,,t,) is a level-k+1) idle period

* Thethreshold of the k-gap [y, to) is time t;

* Dyis therelative deadline of 1. After its release a job af should complete execution withiDy time units,
otherwise the task will havedeadline miss. For this studyDy = T,.

* Thetotal utilization factor (U) of a task set is the sum of ratios of processimg to arrival periods of every

n
task. It is represented by in this paper. HencéJ = Z%
i=1 |
* A feasibility interval is the time intervaltf;, ty + H) such that if all tasks are schedulabletin t, + H) then
the tasks will also be schedulable in the timeruak[0, Z): Z- . H is the length of the feasibility interval
andty is its start time
* PA represents the processor statically assignedieps task,, by some partitioning algorithm
* An optimal partition is one, which requires the least number of prawassNo other partitioning scheme
can exist which can feasibly schedule a P-FRPdasin lesser number of processors than that redjuiran
optimal partition
* Interference on a tasky is the process where the execution,as interrupted by the release of a higher pri-
ority task.

I1.11' Execution Model and Assumptions

In this study, we assume a symmetric homogenous-processor system with a single time clock. The P
FRP tasks running in these processors do not h@eegence constraints. The current implementatiégheRP
uses fixed priority scheduling, hence all tasksee®igned a static priority before execution.

In the P-FRP execution model, when job of a higiresrity task is released it can immediately prpean
executing lower priority task, and changes mad#byower priority task are rolled back. The loweiority task
will be restarted when the higher priority task kasmpleted execution. When some task is releasedfers an
execution queu® which is arranged by priority order such thataativing higher priority tasks are moved to the
head of the queue. The length of the queue is Eladd no two jobs of the same task can be pras¢he
gueue at the same time. This requires a task tpledenexecution before the release of its next Jabmaintain
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Figure 1(a): t1has a deadline miss at time 80 whenghge> pr, > pri. 11,12 andts are represented by T1, T2 and T3 respectively
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Figure 1(b): All tasks are schedulable in the feasibility intdr{0,240) if the priority order is changed far; > prz > pr2

this requirement, we assume a hard real-time systgimtask processing deadline equal to the mininsades-
sary wait. Hence)y = T,.

Once a task; entersQ, two situations are possible. If a task of lowspity thanT; is executing, it will be
immediately preempted artdwill start execution. If a task of higher prioritiyant; is executing, them will wait
in theQ and start execution only after the higher priotégk has completed. An exception to the immediate
emption is made duringppyandrestoreoperations which is explained in the following qguaph.

[1.11.1  Copy and Restor e Oper ations

In P-FRP, when a task starts execution it createsratch’ state, which is eopyof the current state of the
system. Changes made during the processing otabisare maintained inside such a state. Whenagiehas
completed, the ‘scratch’ staterisstoredinto the final state in an atomic operation. Tleme during the restora-
tion and copy operations, the task being procesaedot be preempted by higher priority tasks. hé task is
preempted between copy and restore operationsscifagch state is simply discarded. The time toadtst¢he
state of an aborted task is minimal has been ighioréhis study. The context-switch between taskg mvolves
a state copy operation for the task that will beme@ncing execution. The time taken for cofy,§ and restore
(tesiord Operations oft is part of the processing time of the taBk, For this study, the values &f,(k) and
trestord K) fOr all tasks are kept same and equal to a simgke winit of execution. Hence,

Ot O, teopy(K) = trestord K)=1.

Such small values df,(K) andt..sordK) are reasonable as copy and restore operatiernsndy a fraction of the
worst-case execution time of the task. Howeverpgiter accuracy of results, in ongoing work we id devel-
oping methods where the values,gfo{k) andt.q,(K) could be variable.

I1.11.11  Critical Instant in P-FRP

In response time analysis for fixed-priority schigay a critical-instant of release is assumedti€ai instant
is the time, at which task releases lead to thestagase response time (WCRT) [26] of the task bamgyzed.
In their seminal work, Liu and Layland [26] show#at in fixed-priority scheduling for the preemgimodel,
the critical-instant for a lower priority tagk occurs when it is released at the same time asigiler priority
tasks. Or, tasks and higher priority tasks are released synchrdgous P-FRP, a synchronous release of tasks
does not lead to the WCRT, for all cases. Thgaven by an example given in [8], where the WCRTaused
by anasynchronougtasks have different release offsets) releasegbfer priority tasks.

To determine the WCRT for a given P-FRP task, afigible combinations of release offsets of higharp
ity tasks have to be generated. Then the actupbnsg time under each of the possible releaset atsebina-



tions have to be computed using the gap-enumeratgmrithm presented in [8]. Finally, the higheatue of the
response time computed for each release offsebwithe WCRT for the task.

In this paper, we have only considered offset-fgstems, therefore all tasks are assumed to besezlesyn-
chronously. Future work will involve analyzing vepicase release scenarios in offset-free systems.

1. P-FRP Scheduling Characteristicsin a Uniprocessor

Partitioning among multiple processors is basetherscheduling requirements in a uniprocessohitgec-
tion, apart from stating a theorem for the feagibihterval, we show that the rate-monotonic ptipassignment
is not optimal in P-FRP, and prove that all necgssaheduling conditions for the preemptive exemutinodel
are also necessary conditions in P-FRP. We alde atachedulability property of P-FRP tasks sedsed on
which we derive a P-FRP exact schedulability.

Theorem 3.1 [9]: If tasks inl", are released synchronously , then the feasibilitgrval forl",is [O,L),where L is
the Least Common Multiple (LCM) of all task perida§ .

Lemma 3.2: In P-FRP the rate-monotonic scheduling policy i$ @o optimal priority assignment with synchro-
nous release of tasks.

Proof. If we can give a P-FRP task set which is not solade using the RM priority assignment, but isesth
ulable by a priority assignment which is not RMisisufficient to prove this lemma. Consider thiolwing task
set:

Task pr P T

T 1 30 80
1, 2 10 60
T3 3 10 40

The priority assignment is RM-based withhaving the highest arrival rate hence, the higpestity. In this
scheduling policy, if all tasks are released syoobusly, the first job of; is unable to complete processing be-
fore its second job at time 80 (Figuk@)). If the priority order is changed, as shown below

Task pr P T
T 1 10 60
T3 2 10 40
Ty 3 30 80

Then, jobs of all tasks will be able to completegassing in the feasibility interval [0,240) bf, (Figurel(b)).
g

Lemma 3.3: If a P-FRP task sdf, is schedulable under some priority assignment) fheis guaranteed to be
schedulable for the same priority assignment ingleemptive execution model

Proof. The response time of the highest priority task-iRRP and the classical model is the same. Higher-pr
ity tasks can cause interference in the processirigwer priority tasks. In P-FRP, this interferenieads to
abort, which puts a higher cost on the processfrigweer priority tasks as compared to the preengptivodel.

Two situations are possible:

No interference from higher priority task¥he difference in response time between P-FRP paadmptive
model is due to the abort of lower priority taskhiet is caused by interference from higher priotagks.
Hence, if there is no interference, there will loeatorts and response time for all tasks in bodtetxon models




will be same. Therefore, in this case if the taskis schedulable in P-FRP, it will also be schalid in the pre-
emptive model.

Interference from higher priority taskSonsider| , = {1;, T;} and pr; > pr;:

Let 1; be released at absolute titgeand execute fon time: tepy(j) < h < teopyj) +C, after which it is aborted by
the release of a job af. T; will re-execute after; has completed processing at absolute tigad +P;. T; will take
anotherP; time to complete processing and will finish atabge timet,+h +P; +P;. Hence, its response time is:
h+P;+P,. For processing in the classical model, the respdime oft; will be h+P+P-h = P+P,. Hence, after
interference from higher priority tasks, the resgptime of lower priority tasks in P-FRP will alvgalge more
than the preemptive model. Therefore, in this céighe task is schedulable in P-FRP, it will alsschedulable
in the preemptive model. O

Lemma 3.4: Schedulability conditions which are necessary faemptive model are also necessary conditions
for schedulability in P-FRP.

Proof. As shown in lemma 3.3, a task set schedulableRRP is guaranteed to be schedulable in the préempt
execution model. Every schedulable task set irptkemptive model will satisfy the necessary condgiof this
model. Since schedulability in the preemptive masie requirement for the schedulability in P-FR#ery nec-
essary condition in the preemptive model is alse@ssary condition for P-FRP.

Note, howevethat sufficient schedulability conditions for theepmptive model are not guaranteed to be
sufficient conditions for P-FRP. If a sufficienthedulability condition is satisfied, it guaranteke schedulabil-
ity of a task set. Since, a task set which is saladyde in the preemptive model, can be unschetkiiatP-FRP,
sufficient schedulability conditions for the predmp model cannot be used to determine schedutaliii P-
FRP. O

Theorem 3.5: For task sef ,, a necessary condition for scheduling tasks inFRRs that the combined utiliza-
tion factor (U) of all tasks i, should be less than or equal to unity, Or

n

fu=>2 thenus1.

=l
Proof. This is a necessary condition for fixed prioréigheduling in the preemptive model, as shown if. [26
Since, P-FRP will satisfy all necessary conditiomg for the preemptive model as postulated in len3m, this
condition will be satisfied for any schedulable RFRP task set. This condition is necessary busufficient in
the sense that every schedulable P-FRP task detatigfy this condition, but the satisfiability tfis condition
alone, does not guarantee the schedulability ask $etD

Lemma 3.6: For a task; to be schedulable, one j-gap of length greatentba equal to Pshould exist between
any two successive jobsmf

Proof. In the P-FRP execution model, a tagkan complete processing only in-gap. Assuming a task is
released at, aj-gap should be available before time T; , when the next job oft; is released. If ng-gap is
available in the interval[t + T;), thent; will have a deadline miss and will not be schabld. O

Corollary 3.6.1: For schedulability of task sé&t,, there should be a j-gap larger than or equaltie processing
time oft;, available between successive jobs; dfor Ut L1 .

Proof. For the task set to schedulable, lemma 3.6 shHmikshtisfied for every task that is a membdr of]

Corollary 3.6.2: Let a time duration H and time t exist such that tdsk processing pattern Iof repeats itself in
time intervals [t,t+H), [t+H,t+2-H), [t,t+3-H)... Then an exact condition for the schedulability"gfis that for



everytrl, , there should be a gap larger than the processimg available between all jobs gfin the time
interval [t, t+H).

Proof. For the task set to schedulable, the conditioergivm lemma 3.6 should be satisfied for every tadk,,

as given by corollary 3.6.2. If all the tasks achedulable int[ t+H), they will be schedulable in all the other
time intervals following{, t+H). This is an exact schedulability condition fdP&RP task set. Such a test is suf-
ficient in the sense that if this test is satisfiheb task set is guaranteed to be schedulable.cmdition is also
necessary in the sense that it will be satisfieé\®ry schedulable P-FRP task set. O

IV. An Exact Schedulability Test Algorithm for P-FRP

In the previous section, we have shown that the-mainotonic priority assignment is not guaranteetéd
the optimal priority assignment for P-FRP. Hendes tondition used to check the schedulability sksaas-
signed processors in previous works [16], [13],[[Bf]], cannot be used to check schedulability iRRR. Till
now, a closed form sufficient schedulability teshdition for P-FRP is unknown. Hence, using an allgm
based approach to evaluate the exact schedulatlitglition, presented in corollary 3.6.2, is théyomay to as-
certain schedulability of a P-FRP task set.

We present an algorithm that can determine thedsd&kility of tasks assigned to a processor, basethe
length ofk-gaps left after the execution of higher prioriggks. This algorithm is based on the gap-enumeratio
method [8], which has been previously develope®t&iRP.

Some new definitions used in the definition of thigorithm are:

* A gap set o([t,tz)) contains all the uniquk-gaps present in the time intervaéd, ). The gaps present in
o«([ty,to)) are also disjoint:

for any two gapstf;,ty1), [tetye) O Oi([titn)), if th[t,ty) thentO [teo,ty)
o |ok([tut))| represents the numberlefiaps present in the gap sgfft..t2))

* Thegap-transfor mation function A(oy([t,t2)), ') takes as input the gap sgt and task sdi,,. The function
returns the gap set of the next lower priority task

Ok1([tst2)) = A(ow([t1,12)))

* Thegap-search function p(a([ty,t)), P takes as input the gap s®{[t:.t>)) andPy, and returns the earliest
k-gap larger than or equal B present iroy:

[txlytyl) = H(O'k([tl,tz)), Pk), such that
tyl —tq 2 Pk 0A [tx,ty) O Gk([tl,tg))D ty -t > Pk O <t

If the gap search function returns a gap with thols less than 0 thenlagap larger thaP, does not exist in
ad[t1t2)). The basic gap-enumeration algorithm to deteentie response-time of(RT;) as presented in [8] is:

Gap Enumeration Algorithm

input: I, Tj
output: RT;
an([0, Tj)) < {[0,T))}

loop task i < n to j+1
Gi1([0, Tj))<=A (0i([0, Tj)),ln)
if(10:1([0, Tj))| = 0) return -1

NouhwhN =
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Figure 2(b): Compute 2-gaps in whicty can execute after accounting for executiomah the feasibility interval [0,240)

8. end loop

9. [ti,t2)— W(gi([0, T), P))
10. if(ts < 0) return -1

11. RTj=t;+P;

12. return RT;

This algorithm can be modified to determine theesithability of a task set, using corollary 3.6.12.cbrol-
lary 3.6.2, the time duration,i+H) is the feasibility interval oF ,, which for a synchronous release isl, (L
is the LCM of all period iri ).

First, we find all the 1-gaps that will be availalbbr processing multiple jobs of the lowest ptiptaskrt; in
the feasibility interval of the task set. HencelaeingT; by L, in the original gap analysis algorithm will gius
this information. Then, the gap search meth(0, L), P,) will analyze the gaps and insure that theregs of
at least lengthP; between each job ai. If the gap search method retufatse it implies a gap of minimurR;
length does not exist between some joln;ah the time interval [OL), making the task set unschedulable. After
making these madifications to the gap enumeratigorahm, the exact schedulability test algoritrsrderived:

Algorithm 5.1: Exact Schedulability Test Algorithm

input: Iy, [0, L)

output: True/False depending on schedulability
if(n==1) return true

an([0, L)) < {[0, L)}

AN wpN =

loop task i < nto 2
6i-1([0, L))<A (0i([0, L)), n)
if(101.1([0, L))| = 0) return false
end loop
status < p(ai([0, L)), P1)
0. return status

= 0 O ~NOoO U

The algorithm for the modified gap-search functign

Algorithm 5.2: Gap-Search Function

input: oi([0, L)), P
output: True/False depending on schedulability
jobsy — 0
startTime «— &
loop for each gap [t1,t2) in oi([0, Tj))
if(tz2- t1= Py)
if(t1 + Py < startTime + Ty)
jobsy «— jobsq + 1
startTime« startTime + Ty
else if (ty+ Py > startTime + Ty)
return false

_ =2 0O NOUTA WN =

- O



12. end loop
13. if jobsi = jobs([0, L),1) return true
14. else return false

Definition: The functionQ(I,, [0, Tj)), is defined as an exact schedulability test mptesents algorithm 5.1.
Only if, Q(I, [0, Tj)) = true, willl, be schedulable in P-FRP.

IV.I Example

We illustrate this method using the example usedeimma 3.2. We have already shown the task se¢to b
schedulable in the following priority order:

Task pr P T
T 1 10 60
T3 2 10 40
T 3 30 80

We first find the 3-gaps in which jobs of task witte 2° highest priority {s) can execute in the feasibility inter-
val of [0,240). These 3-gaps are determined afteoanting for the execution of all jobs of the heghpriority
task ). There will be 3 jobs of; in the interval [0,240), creating 3-gaps in th&mals [30,80), [110,160) and
[190,240) Figure 2(a). After tasktsis run, 2-gaps in intervals [50,80), [130,160) §2itD,240) are createdFig-
ure 2(b). We then search these 2-gaps to make sure a @fdapgth more than or equal B is present between
the 4 jobs of,that are released in the interval [0,240). As sedfigure 1(a) such 2-gaps exist for all 4 jobs of
T,, hence the task set is schedulable in its fedyilniterval.

IV.Il  Time Complexity

The complexity of the exact schedulability tesgéaithm 5.1) is based on the combined time comp}eir
gap analysis and gap search method. The complefxibe gap analysis method as given in [8], is lmahby:

O((n) "|ai([0, Ty)ljobs(, [0, T)) -log(!2-2-|oi([0, T;)I)).
Where,i: Ti = min(Ty, Tojer ... Tn).

Since, in algorithm 5.1T; = L, andj =1, the complexity for gap analysis is:
O((n-1) -pi([0, L))ljobs(i, [0, L)) -log(!2-245([O, L))I))

Here,T; is the task with the highest arrival rate amorghhbr priority tasks, angbs represent the number of
jobs oft; in [0,L). In the worst-case, the gap search function ivgtate for all gaps present ([0, L)), hence,
its complexity is bounded by @¢[[O, L))|). The total complexity is the sum of the worate time for gap-
analysis and gap-search. Since the complexitydpranalysis is the dominating term, the time comipleof the
sufficient schedulability test represented by2Q({,, L)), is:

O((n-1) -pi([0, L))|jobs -log('2-24i([0, L))I)).
The sufficient schedulability test is now usedha partitioning algorithms described from the reedtion.
V. P-FRP First-Fit-Decreasing Rate

Static partitioning of tasks between multiple @esors represents the classical bin-packing probfetin-
packing, items of different sizes have to be packefinite number of bins. For our partitionipgoblem, items
represent the tasks while the bins are the procesSmce the bin-packing algorithm is proven tocbenputa-



tionally NP-hard, several heuristics are availaiolederive an approximate solution. Due to its sinify, the

First-Fit (FF) method is a popular greedy approxioraheuristic for the bin-packing problem, and lasght

bound of 1.7 [23]. In the FF algorithms for paditing tasks in multi-processors, a task is assidoehe first
processor in which is can be feasibly scheduledhEsd the processors which already have tasks rassitp

them, are searched in sequential order and chetiesl previous tasks can be feasibly scheduledglith the
new task. In previous works, it has been proventtimaorder in which tasks are sorted before basgigned to
processors, affect the efficiency of the algorithte have presented three different FF based ahgositn this
paper based on different sorting criterion.

The first criterion is decreasing rate, and a F&ebaalgorithm for RM-scheduling using this criteriwas
presented in [16]. In the algorithm given in théxgon, we use the FF heuristic with the decreasategcriterion,
along with the P-FRP exact schedulability test. &lgorithm returns the minimum number of processers
quired to partition the tasks in such a way thatasks are schedulable. Since the exact schetltyateist is
computationally intensive, we check the combinelization factor of tasks in processoras a necessary sched-
ulability condition (line 7). If the combined utzition factor is greater than 1, then the task g¢f is guaran-
teed to be unschedulable and the exact schedtyateist (line 8) does not need to be executedeQthcessary
schedulability tests for the preemptive model dao &e used (as per lemma 3.4), to minimize theipiisy of
executing the P-FRP exact schedulability test fachedulable tasks.

Once all tasks have been assigned, the numbeooégsors required to schedule all tasks is reduinee
11).L(I[j]) represents the LCM of all tasks periods presetask setl [j].

P-FRP FFE-Decreasing-Rate Algorithm (PFEDR)

input: My
output: m
Sort tasks in [, in order of decreasing rate such that 11 becomes the task with the highest rate and 1, the lowest
me1:i<1
j1
Add 1 to Mn[j]

U WN =

P
7. If z —'>1:jej+1:gotostep6

0ior, [l T
8. If Q(Falj1, [0, L(TnLj1))) is true: PA; « j
9. else: j < j+1: goto step 6

10. if(j>m):m«j
11. if (i==n): return m
12. else: i« i+1: gotostep 5

V.l  Time Complexity

We present an analysis of the time-complexity & BPPFDR algorithm. The complexity of sorting ak th
items will take Of log n) time. If every task takes one processor to raentthe algorithm will check if a task
can be assigned to one of the processors whichdireave tasks assigned to them. To assign thask, the
algorithm will run for 1 step, for the"2task, 2 steps and so on. Hence, the total nunfbeteps the algorithm
will run in the worst-case is:

142+...+n = 2(n+1).

This term is bounded by 6%). Since O?) is the dominant term, the complexity of the FRuftic is
bounded by Qf). Since there is only one task, the gap-enunweratill return true without going through any
computation steps.

However, in P-FRP’s case the worst-case for thelDP-&lgorithm will be when all tasks are assignetht®
same processor, due to higher costs of the P-FR&Igtability test. If all tasks are assigned toshee proces-
sor then the FF heuristic will compute inrp¢ime, but the time to ru@(l,, L(I'[1])) during each search of
processor for a task is bounded by:



Oo(Q(r'y, [0, L)) (sinceL(I,[1] =L)).

Since, the P-FRP schedulability test will be ruiimes, the worst-case complexity for the PFFDRatgm is:
Oo(n-O(Q(y, [0, L)).

VI. P-FRP First-Fit-Decreasing Utilization Factor

The P-FRP first fit decreasing utilization factdgaithm (PFFDUF), sorts tasks based on theirzatlon
factors. A similar sorting criterion has been uged14], [30]. This algorithm is same as PFFDR,hine 3
modified to:

Change in PFFDR for PEFDUF

3. Sort tasks i, in order of decreasing utilization factor suchtthabecomes the task with the highest utiliza-
tion factor and, the lowest.

The time complexity of this algorithm is the sanselzat of PFFDR.

VII. P-FRP First-Fit-Decreasing Processing Time

Due to abort, additional delay classified as ‘alsost’ is induced on the response time of a preedijower
priority task. This abort cost is dependent onpghmcessing time of the aborted task. The followgrgmas de-
fine some properties of abort cost.

Lemma 7.1: The upper bound of abort cost induced on a lowéurjty task equals the processing time of the
lower priority task plus the time to copy the statehe task. The lower bound is the time to cbeystate of the
task.

Proof. Consider["; = {1;, 1;} and pr; > pr;. LetT; be released at tinteand is processed ftrtime, after which a
job of 1; is releasedt; will restart processing after has completed, and its response time wilt.beh +P; +P;.
The only variable in the response timetpis h. If, h > t,(j) + C; thent; has completed processing, and is com-
mitting its results. As per the P-FRP execution etog cannot be preempted at this stage, swdll start only
whenTt; has completed it processing. lif< tcop(j), thent; is copying its state and cannot be preempted. Meryve
as soon as the copy is overwill be preempted and will commence processing. Henagwill have to be
processed fot,(j) time, before it can be preempted, and can begssed for maximur,(j)+C; time, after
which preemption is not possible. Therefore, toun®l an abort cost on, h will lie in the range tfop(j),
teopy)+Ci]. The limits of this range are the lower and upipennds of the abort cost gf d

Lemma 7.2: If time to copy and restore is the same then tk& taith lower processing time will have a lower
maximum abort cost.

Proof. Consider[, = {T1;, T} and P; > P;. Sincetcopi) = teopyi) and tresiordi) = trestord)), = Ci > Cj. The maximum
abort cost that can be induced®is t.,(i)+C; while ont; istey(j)+C;. Clearly,
tcop)(j) + Cj < tcop)(i)+Cj- O

From lemmas 7.1 and 7.2, we can deduce that theegsing time of tasks assigned to a processor iim-an
portant factor in determining the response timdowfer priority tasks, and thereby, the scheduigbdf the
tasks assigned to that processor. If we sort thiestbased on their processing times, there isteehigrobability
of tasks being assigned in such a way, that thatelarger processing times (hence, higher abast)owill be



placed in a processor which has lesser numbersékialhis reduce the chance of preemption of tasits
higher processing times.

We present an algorithm where the FF heuristiqdied to tasks sorted in order of their processing.
This algorithm is same as PFFDR, with line 3 medifio:

Change in PFFDR for PFFEDPT

3. Sort tasks i, in order of decreasing processing time suchthhecomes the task with the highest process-
ing time andt, the lowest

The time complexity of this algorithm is the sanse@r the PFFDR algorithm.

VIII. P-FRP Optimal Partitioning

An optimal partitioning scheme in one which giveguires the minimum number of processors to scleeslul
P-FRP task set. For a P-FRP task set it is guzedrthat, there is no other partitioning schemedéa result in
a lesser number of processors than that givehdyptimal partition. We use the optimal partition perform-
ance comparison with the other three partitionicitesnes presented in this paper.

To derive an optimum partition for P-FRP tasks waleate every possible combination of task assignme
to see which one will result in the least numbepmicessors. For a given number of processppossible com-
binations of task partitions can be derived by twsing a B-tree, with every node havingchildren. Each
node in the B-tree represents a processor ancetet ¢f the node represents the task that is asdigmrun on
that processor. To find out the minimum numberrocpssors required to schedule task getve start from set-
ting m=1, and incremenm till some partitioning scheme is available in whig, is schedulable.

Deriving an optimal partitioning for a task setngsihis method requires evaluation of exponentahlzina-
tions of task partitions, and therefore, this mdttsonot suitable for practical scenarios.

IX. Experimental Results

We have evaluated the efficiency of the partitignsthemes presented in this paper, using synttetic
sets. We generated 3 groups of 500 tasks sets, tagtk sets in each group having 6, 8 and 10 t&slkeyy task
set in a group is unique in the sense that, at teastask is different between two task sets. groeessing times
of the tasks were selected from the range [5,28]lentheir arrival rates were selected from [10,448) tasks
were released synchronously, and no single task haisization factor greater than 0.3. By boundihg utiliza-
tion factors of tasks, we make sure that more trantask can be scheduled in a single processor.

For each of the 3 groups we computed the nhumbgrafessors required to schedule the task sets under
PFFDF, PFFDUF and PFFDPT partitioning schemes.ntimber of processors required under an optimal-part
tioning scheme is also derived. We also computentieber of processors required by the PFFDR, PAEDU
PFFDPT and optimal partitioning schemes under teemptive execution model.

Figures3(a), 4(a)and5(a) show the number of processors required under R, PFFDUF and PFFDPT
partitioning schemes respectively, for 6 tasksufeg3(b), 4(b) and5(b) show the difference between number of
processors required by PFFDR, PFFDUF and PFFDRAFitigns, respectively as compared to the optiméeti-pa
tioning. With the P-FRP execution model, the numiiietask sets whose processor requirements are timane
that given by the optimal partitioning for PFFDREFDUF and PFFDPT is 61, 51 and 29 respectivelygures
3(c), 4(c) and5(c) show the difference in number of processors requry FFDR, FFDUF and FFDPT patrtition-
ing under the preemptive execution model. Fig®(l, 4(d) and5(d) show the difference in processor require-
ments under optimal partitioning with FFDR, FFDURdaFFDPT in the preemptive execution model. With 6
tasks under the preemptive execution model, alptrétioning schemes required the same numberaufgssors
as optimal partitioning.
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Figures6(a)-6(d),7(a)-7(d),8(a)-8(d) contain the same set of data for 8 task-sets. WehP-FRP execution
model, the number of task sets whose processoireagents are more than that given by an optimaitfaring
for PFFDR, PFFDUF and PFFDPT is 99, 84 and 58 wtqedy. Under the preemptive execution model, the
number of task sets whose processor requiremeatsiare than that given by an optimal partitioniogFFDR,
FFDUF and FFDPT is 30, 86 and 36 respectively. féig(a)9(d),10(a)}10(d)11(a)11(d) contain the same set
of data for 10 task-sets. With the P-FRP executimdel, the number of task sets whose processoiresgents
are more than that given by an optimal partitioniogPFFDR, PFFDUF and PFFDPT is 177, 168 and 07 r
spectively. Under the preemptive execution moded, number of task sets whose processor requireraeats
more than that given by an optimal partitioning /DR, FFDUF and FFDPT is 7, 5 and 6 respectivEelgarly,
for P-FRP, the FFDPT algorithm performs closesh®optimal partition for maximum number of tasksseela-
tive to the FFDR and FFDUF partitioning algorithrirsthe preemptive execution model, the FFDR anD
have better performance than FFDPT. From fig@(e$11(c) we can deduce that the number of processors re-
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quired by P-FRP is always greater than or equeiéamumber of processors required by the samesttsk the
preemptive model. This result agrees with lemma 8ii8ce every schedulable P-FRP task set has fogbe
schedulable in the preemptive model. At best, tmabver of processors required in P-FRP and the e
would be the same.

In the optimal partition for the preemptive mod#l, ntasks required less number of processors thémbe
feasibly scheduled. In optimal partitioning for R, task sets requiring same number of processotasks in
6-task and 8-task sets is 28 and 3, respectivélylAtask sets required less than 10 processascé] in P-FRP
processor requirement could be as high as the nuofihasks, even though we have bounded the uitizdac-
tors of individual tasks by 0.3.

X. Related Work

Previous work on P-FRP by Kaiabachev et al [24] Rad and Cheng [34] have provided basic schedulabil
ity conditions in a uniprocessor system. Respoimse analysis under symmetric multiprocessing féfAR has
been studied by Cheng and Ras [12].

Partitioning of tasks in multiprocessor systemstha preemptive model was first studied by Dhat &iu
[16], and then improved upon by Davari and Dhal][f14] and Oh and Son [30]. Methods for onlineesdiing
of tasks on multi-processor scheduling have beesgmted by Dertouzos and Mok [15]. Oh and Bakef 28
Lopez et al [27] provide utilization bounds thahdae used to determine the schedulability of a tetkfor a
given number of processors. Baruah and Goossersdd]present a sufficient multiprocessor schedlitiabest
under RM-scheduling. However, this sufficient salledility test cannot be used in P-FRP becauseakpmma
4.4, only necessary conditions of the preemptivelehare applicable for P-FRP. Andersson et al fbyide al-
gorithms for global scheduling under fixed priordgsignment.

Baruah et al [5] have studied scheduling on mudtiiglsources using proportionally falRféir) [6] strategy.
In Pfair scheduling, execution of a task is dividetb small blocks, and blocks of different taske axecuted
consecutively. This is found to give a feasibleestile for multi-processor systems with low compateal
overhead [5]. However Pfair scheduling cannot k@ieg to the P-FRP execution model since the exacwif a
function is an ‘all or nothing’ proposition, andnzet be divided into computational blocks. Anderso al [3]
have presented a way to implement hard-real tigrestictions on multi-processors. This work doesaddtess
partitioning of tasks but changes the mechanisimpfementing transactions.



Response-time analysis under multi-processing sdimgdfor similar execution models have been dope b
several authors. Holman and Anderson [21] use the fechnique for scheduling lock-free [3] transaes on
multiple processor. Lock-free [2] is a way to acceBared resources among tasks, such that noherofitave to
halt and wait for the resource to become availalbles a mechanism to avoid priority inversion [3&dtween
tasks sharing resources. Comparisons betweeratt@ms memory based systems and lock-free proagssid
benefits of the former have been shown in Herlihgt ®Moss [21]. Fahmy et al [19] have presented nespdime
analysis for transactional memory [21] under dyrastheduling policies. Static partitioning of taskshese
execution models, as determined in our paper, havbeen presented yet.

XI. Conclusion and Future Work

We have presented a new exact schedulability tgstithm for P-FRP and have used in three firsbéised
partitioning algorithms. A computational methodderive an optimal partitioning scheme has also hen
sented. Experimental results using synthetic task af different sizes show that by applying thaat>schedula-
bility test presented in this paper, the existingtffit partitioning schemes can be used for sciied P-FRP
tasks in multi-processor systems. Results also shatfor P-FRP, the new first-fit partitioning sche arranged
by processing time introduced by us, performs db&ethe optimal partition. The number of processequired
to schedule P-FRP tasks are also higher, thanuimber of processors required to schedule the sasis tn a
preemptive execution model.

Unlike previous work in [16],[13],[14],[30], whertaeoretical proofs to validate the performanceheffirst-
fit algorithms are derived, we have used experialgiasks sets for the same. A theoretical validatis P-FRP
is difficult to derive due to its dynamic nature efecution, where the actual processor time takea task to
complete processing can me more than its definedegsing time, which is knowanpriori. As part of ongoing
work, we are continuing our attempts to derive te@oal proofs regarding the performance of thstdiit algo-
rithms presented in this paper.

The first-fit partitioning algorithm presented ihig paper runs in polynomial time. However, the otxa
schedulability test for P-FRP takes significant pomation time, relative to schedulability tests tbe preemp-
tive model. Unfortunately, till the time of submims of this paper, no faster method has been dpedito com-
pute schedulability of a P-FRP task set in an ieaspre way. Development of such a method will befulsn
speeding up the computation time of the firstdigosithms and is scope for future work.

Static partitioning of tasks has a low overheadgesithe partitioning algorithm has to be run onge The
use of global partitioning algorithms and asceitayrtheir effectiveness in the P-FRP execution ehodill be
an important contribution. Study under global geming is also important since Leung and Whitehgzk)
have shown that the partitioned and global appreadébr fixed priority scheduling in the preemptivedel are
incomparable, and there can be task sets whickdredulable by only one of these approaches. Hamdbe
preemptive model, there is no single scheduling@ggh that is guaranteed to feasibly schedule s$ask in
multi-processor systems using fixed priority scHedu Future research can determine if this staténaso
holds true for P-FRP. Deriving the partitioningem tasks are not offset-free, is also an impotantribution
towards application of P-FRP in multi-processorieanments.

XIl. Hardware Implementation

In ongoing work we will be testing the partitionimdgorithms for P-FRP in a P8X32 Propeller [31]dxhs
multi-core platform. A similar platform has beeredsfor analysis in [12]. The P8X32 Propeller hasoges
(termed cogs ) sharing common resources througmtaad hub, and the developer has full control dkerusage
of each cog. A shared system clock keeps all psacesn the same time reference. Hence, the P8X&2eRer
has all features required by a SMP platform, isgiesl for use in embedded systems and is commigraiséd
in robots and process control devices. A USB iatsfallows programming the chip through a PC, adgu
assembly instructions, an abort-restart model efcetion can be implemented, to validate the effeatss of
static partitioning algorithms presented in thipgra
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