

Optimal Priority Assignments in

P-FRP
*

Chaitanya Belwal, Albert M.K. Cheng

Computer Science Department

University of Houston

Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-11-03

April 27, 2011

Keywords: Real-time Systems, Priority Assignment, Schedulability Analysis,

Functional Programming

Abstract

Priority-based Functional Reactive Programming (P-FRP) has been recently introduced as a new

functional programming formalism for real-time systems. P-FRP allows static priority assignment and

guarantees real-time response by preempting lower priority tasks. Due to the state-less nature of

functional programs, preempted tasks in P-FRP are aborted and restarted after the higher priority tasks

have completed execution. In the classical preemptive model
†
 of real-time systems, it has been

demonstrated that for fixed priority scheduling, if tasks are schedulable with any priority assignment, they

are also schedulable by the rate-monotonic (RM) priority assignment, making this priority assignment

optimal for all task sets in the preemptive model. However, the RM priority assignment is not optimal in

P-FRP, and it has been unknown if an optimal fixed priority assignment can even exist for such an

execution model. In this paper, we formally present the priority assignment characteristics of P-FRP and

show that based on task periods, either a combined utilization and rate-monotonic, or only the rate-

monotonic priority assignments is optimal for a system with two tasks. Using this result, we formally

prove the limitation of optimal priority assignments in a P-FRP system having more than two tasks where,

unless arrival periods are integer multiples of each other, no single priority assignment exists which is

optimal for all task sets. Experimental results using task sets of different sizes are also presented.

†
 In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority tasks and can resume execution

from the point they were preempted
*
This work is supported in part by U.S. National Science Foundation under Award no. 0720856

Abstract

Priority-based Functional Reactive Programming (P-FRP) has been recently introduced as a new

functional programming formalism for real-time systems. P-FRP allows static priority assignment and

guarantees real-time response by preempting lower priority tasks. Due to the state-less nature of

functional programs, preempted tasks in P-FRP are aborted and restarted after the higher priority tasks

have completed execution. In the classical preemptive model
‡
 of real-time systems, it has been

demonstrated that for fixed priority scheduling, if tasks are schedulable with any priority assignment, they

are also schedulable by the rate-monotonic (RM) priority assignment, making this priority assignment

optimal for all task sets in the preemptive model. However, the RM priority assignment is not optimal in

P-FRP, and it has been unknown if an optimal fixed priority assignment can even exist for such an

execution model. In this paper, we formally present the priority assignment characteristics of P-FRP and

show that based on task periods, either a combined utilization and rate-monotonic, or only the rate-

monotonic priority assignments is optimal for a system with two tasks. Using this result, we formally

prove the limitation of optimal priority assignments in a P-FRP system having more than two tasks where,

unless arrival periods are integer multiples of each other, no single priority assignment exists which is

optimal for all task sets. Experimental results using task sets of different sizes are also presented.

Index Terms

Real-time Systems, Priority Assignment, Schedulability Analysis, Functional Programming

I. Introduction

Functional Reactive Programming (FRP) [28] is a declarative programming language for the modeling and
implementation of reactive systems. It has been used for a wide range of applications, notably, graphics [9],

robotics [20], and vision [21]. FRP elegantly captures continuous and discrete aspects of a hybrid system using the

notions of behavior and event, respectively. Because this language is developed as an embedded language in
Haskell [15], it benefits from the wealth of abstractions provided in this language. Unfortunately, Haskell provides

no real-time guarantees, and therefore, neither does FRP.

To address this limitation, resource-bounded variants of FRP were studied [16],[26],[27]. Recently, it was
shown that a variant called priority-based FRP (P-FRP) [16] combines both the semantic properties for FRP,

guarantees resource boundedness, and supports the assignment of different priorities to different events. In P-FRP,

higher priority events can preempt lower-priority ones. However, a requirement [24] in the functional

programming model is that the state of the system cannot be changed, and no function can have side effects. To
maintain this guarantee of stateless execution, the functional programming paradigm requires the execution of an

event handler (or task) to be atomic in nature. To comply with this requirement, as well as allow preemption of

lower priority events, P-FRP implements a transactional model of execution. By using only a copy of the state

‡
 In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority tasks and can resume execution

from the point they were preempted
*
This work is supported in part by U.S. National Science Foundation under Award no. 0720856

Optimal Priority Assignments in P-FRP*

Chaitanya Belwal and Albert M.K. Cheng

Department of Computer Science,

University of Houston, TX, USA

during event processing and atomically committing these changes at the end of the event handler, a multi-version

commit model of execution is implemented. This ensures that handling an event is an “all or nothing” proposition,
and ensures the atomicity of handling an event. This is shown to preserve the easily understandable semantics of

the FRP, and provides a programming model where response times to different events can be tweaked by the

programmer without ever affecting the semantic soundness of the program.

Functional programming offers several benefits over the imperative programming style used in C++, Java, Ada
etc. It allows the programmer to intuitively describe safety critical behaviors of the system, lowering the chance of

introducing bugs in the design phase, while its stateless nature of execution does not require use of synchronization

primitives, reducing the complexity of programming. While several variants of functional languages are being used
in embedded systems, like Erlang [10] for mission critical telecommunication equipment and Atom [13] for

controlling hybrid vehicles, their use in practical real-time and embedded systems is still quite limited. Apart from a

steep learning curve, lack of understanding of their space and real-time temporal properties has been cited [12] as
one of the reasons inhibiting a wider industry adoption of functional languages.

For fixed-priority scheduling in real-time systems, there are essentially two areas of work; schedulability

analysis and priority assignment. For a given priority assignment, schedulability analysis determines if tasks in the

system can complete execution before their respective deadlines. Hence, priority assignment has a direct impact on
the schedulability of a given task set. A task set which is known to be schedulable, is also guaranteed to be

schedulable in an optimal priority assignment. Knowledge of an optimal priority assignment for a task set gives

system designers valuable insight on schedulable assignments of task priorities in fixed priority systems. An
optimal priority assignment also serves as a schedulability test, since if a task set is not schedulable in its optimal

priority assignment it is guaranteed to be not schedulable in any priority assignment.

In their seminal work, Liu and Layland [18] showed that the rate-monotonic (RM) priority assignment is an
optimal priority assignment for the classical preemptive model of execution. Furthermore, Leung and Whitehead

[17] showed that if task deadlines are same as task arrival periods, then the optimality for RM priority assignment is

valid only when tasks are released at the same time (synchronously). However, the optimality of the RM priority

assignment does not hold true for P-FRP. This is due to the abort nature of preemption, where the actual execution
time taken by tasks can be higher than their a priori known worst-case execution times. Hence, a relevant question

that arises for real-time researchers is, can an optimal priority assignment even exist for such an execution model ?

And under what constraints can such an optimal priority assignment be applicable.
An answer to this question has benefits to real-time research which extend beyond the functional programming

model we have studied. Over the past several years, researchers have looked at the abort-restart model as a

promising method to avoid concurrency control and resource sharing conflicts in the preemptive execution model.

This has resulted in response-time studies of lock-free semantics [1], preemptable critical sections in Java [19], and
lately, transactional memory systems [14]. While each of these systems have their unique execution semantics,

work on priority assignment for P-FRP can be extended to these systems. In future work, we will be using results of

this work to derive optimal priority assignment in the lock-free execution model. Previous works on other abort-
restart models [1],[6],[14],[19] and P-FRP [16],[22] have only handled the problem of response time analysis.

A. Contributions

This paper presents a formal study on P-FRP, and finds special groups of task sets which have the same optimal
priority assignment under a synchronous release of tasks. We also analyze those groups of task sets where no single

priority assignment which is optimal for sets can exist. For such task sets, analyzing all possible combinations of

task priorities is the only option.

We first present schedulability (Section 3) and priority assignment (Section 4) characteristics of P-FRP and
show that between 2 P-FRP tasks, the rate-monotonic priority assignment is optimal only for those task sets where

one task period is more than or equal to double of the other. When this condition is not met, a single priority

assignment is optimal only if it has both utilization-monotonic (UM) and rate-monotonic (RM) characteristics. We
conclude that if a P-FRP task set with 2 tasks is schedulable, it is guaranteed to be also schedulable under a

utilization or rate-monotonic priority assignment (Section 5). We then look at systems with n tasks (n > 2) and

show that the RM priority assignment is optimal for only that group of task sets where task periods are integer
multiples of each other. For other cases, we use the results derived for 2 task systems and prove that no priority

assignment can exist which is optimal for all task sets (Section 6) . Results generated from simulation of

experimental task sets validate our theorems, and also show that even though no single priority assignment is

optimal for n-task sets, several task sets are schedulable under a UM or RM priority assignment (Section 7). We

conclude by reviewing related work (Section 8) and a reflection on our results (Section 9).

II. Basic Concepts and Execution Model

In this section, we introduce the basic concepts and the notation used to denote these concepts in the rest of the

paper. In addition, we review the P-FRP execution model and assumptions made in this study.

A. Basic Concepts

Essential concepts for P-FRP are tasks and their associated priority, their associated time period and the concept

of arrival rate and their processing time. Included also is the concept of a time interval and task jobs therein. The

notation and formal definitions for these concepts as well as a few others used in the paper are as follows:

 Let task set n = {1, 2,…, n} be a set of n periodic tasks. n is also referred to as an n-task set

 The priority of a k  n is the integer prk. If pri > prk then i has a higher priority than k. Each task is
associated with a unique priority number

 Tk is the arrival time period between two successive jobs of k and rk = 1 / Tk is the arrival rate of k

 Ck is the fixed worst-case execution time (WCET) for k

 tcopy(k) is the time taken to make a copy of the state before k starts processing (see section 2.2.1)

 trestore(k) is the time taken to restore the state after k has completed processing (see section 2.2.1)

 Pk is the processing time for k. Processing of a task includes execution as well as copy and restore operations.
Hence, Pk = tcopy(k) + Ck + trestore(k)

 An absolute time t or time t is the time elapsed since, the real-time system was started. The real-time system is

assumed to have started at absolute time 0

 [t1,t2) represents a time interval such that: t [t1,t2), t1  t < t2  t1  t2, t1 and t2 are absolute times

 Rk,m represents the release time of the m
th

 job of k

 k represents the release offset which is the release time of the first job of k. Or, k = Rk,1. Hence, Rk,m = k +

(m–1)·Tk

 Dk is the relative deadline of k. If some job of k is released at time Rk,m ,then k should complete processing

by time Rk,m + Dk, otherwise k will have a deadline miss. For this study, Dk = Tk

 The utilization ratio of a task k (Uk), is the ratio of its processing time to its arrival time period. Uk =
k

k

T

P

 The total utilization factor (U) of a task set is the sum of ratios of processing time to arrival periods of every

task. Hence, U = 


n

i i

i

T

P

1

 A feasibility interval is the time interval [tH, tH + H) such that if all tasks are schedulable in [tH, tH + H) then the

tasks will also be schedulable in the time interval [0, Z): Z. H is the length of the feasibility interval and tH

is its start time

 Interference on k is the action where the processing of k is interrupted by the release of a higher priority task

 A rate-monotonic (RM) priority assignment is one where priorities are assigned to tasks based on their arrival

rates. The task with the highest arrival rate has the highest priority

 A utilization-monotonic (UM) is one where priorities are assigned to tasks based on their utilization ratios.

The task with the highest utilization ratio has the highest priority

B. Execution Model and Assumptions

For this study, all tasks are assumed to execute in a uniprocessor system and have no precedence constraints.
When a job of a higher priority task is released, it can immediately preempt a lower priority task, and changes made

by the lower priority task are rolled back. The lower priority task will be restarted after the higher priority task has

completed processing. When some task is released, it enters a processing queue which is arranged by priority order
such that all arriving higher priority tasks are moved to the head of the queue. The length of the queue is bounded

and no two instances of the same task can be present in the queue at the same time. This requires a task to complete

processing before the release of its next job. To maintain this requirement, we assume a hard real-time system with

task deadline equal to the time period between jobs. Hence, k  n, Dk = Tk.

A task set is schedulable in some time interval only if no task in the set has a deadline miss. Every job of task k

is assumed to execute for its worst-case execution time, hence the processing times for all jobs of k (Pk) is
considered the same.

Once a task i enters the processing queue, two situations are possible. If a task of lower priority than i is being

processed, it will be immediately preempted and i will start processing. If a task of higher priority than i is being

processed, then i will wait in the queue and start processing only after the higher priority task has completed. An
exception to the immediate preemption is made during copy and restore operations, which is explained in the

following section.

1)Copy and Restore Operations

In P-FRP, when a task starts processing it creates a „scratch‟ state, which is a copy of the current state of the

system. Changes made during the processing of this task are maintained inside such a state. When the task has

completed, the „scratch‟ state is restored into the final state in an atomic operation. Therefore, during the restoration
and copy operations the task being processed cannot be preempted by higher priority tasks. If the task is preempted

after copy, but before the restore operation, the scratch state is simply discarded. The time to discard the state of an

aborted task is minimal and has been ignored in this study. The context-switch between tasks only involves a state
copy operation for the task that will be commencing processing. The time taken for copy (tcopy(k)) and restore

(trestore(k)) operations of k is part of the processing time of the task, Pk.
In this study, the values of tcopy(k) and trestore(k) for all tasks are assumed to be the same and equal to a single time

unit of execution. Hence,

j,kn, tcopy(k)=trestore(k) and tcopy(j) = tcopy(k),
tcopy(k), trestore(k) = 1.

This is a reasonable assumption, since copy and restore operations are only a fraction of total processing time.

Though most of our results can be extended to cases where tcopy(k) and trestore(k) can be more than unity, we intend

to address this problem in a separate paper.
In this work, we look at priority assignment strategies only for a synchronous release of P-FRP tasks. Therefore,

the release time of the first job of all tasks is considered as time 0. Hence,

k  n, k = 0.

III. Schedulability Characteristics in P-FRP

In this section, we present some important schedulability characteristics of P-FRP tasks, based on which we
define a necessary schedulability test.

Lemma 3.1. The total utilization factor of a schedulable P-FRP task set will always be less than or equal to 1.

Proof. Consider n = {1, 2,…, n}. Let us assume U > 1. Let L = LCM(T1 … Tn). We take a simple case where all
tasks are released at the same time, and there is no interference (hence, no aborts). In the interval [0,L) the total

processing time from each of the tasks is:
1

1

T

P
·L +

2

2

T

P
·L … +

n

n

T

P
·L.

Let Z denotes the total processor idle period (when no task of n is being processed) in [0,L) . If Z=0, then there

is no idle time and some task in n is always being processed. If Z > 0, then no task of n was processed for total Z
time in the interval [0,L). Hence,

1

1

T

P
·L +

2

2

T

P
·L … +

n

n

T

P
·L + Z = L  U +

L

Z
 = 1.

Since U > 1 and Z  0 , U +
L

Z
 >1 ,Therefore the assumption U > 1 is wrong. Hence, U  1. 

Lemma 3.2. If n is schedulable, then any task present in n will be able to complete processing between any two

consecutive jobs of every other task present in the set.

Proof. Assume 2 = {i, j }. Let pri > prj . If both tasks are released synchronously then i will complete first. Task

j will start processing when i has completed which is at time 0+Pi. The next job of i will take place at time Ti. The

time left for processing j is Ti – Pi. If j is unable to complete processing within this time it will be aborted by 2
nd

job of i which is released at time Ti. After the 2
nd

 job of I has completed processing, j will get another time period

of length Ti–Pi to complete. The abort/restart cycle of j will continue for every job of i. If Pj > Ti – Pi, j will never

be able to complete and the task set will be unschedulable. Hence to be schedulable, j will be able to complete

processing between successive jobs of i.

Now, the first job of j is released at time 0 and the second will be released at time Tj. If tasks i and j are

released synchronously then i will complete first since it has the higher priority. This leaves a maximum of Tj – Pi

time for j to complete processing. Since j requires a contiguous period of minimum Pj length to complete
processing, for the task set to be schedulable:

Pj  Tj – Pi  Pi  Tj - Pj.

Since Tj – Pj is the time remaining to execute i between successive jobs of j, i will complete processing between

successive jobs of j, otherwise j will be aborted by jobs of i and will never be able to complete processing.

If n = {1, 2 …,n} we can do the above analysis for each unique pair {i, j},i, j  n to show that if n is
schedulable, each task in P-FRP task set will be able to complete processing between successive jobs of other tasks

present in the set. 

Definition: Lemmas 3.1 and 3.2 define conditions which will always be satisfied by any schedulable P-FRP task

set. However, the satisfaction of conditions specified in lemmas 3.1 and 3.2 alone does not guarantee the
schedulability of the task set, since, the schedulability also depends on the priority assignment and execution

pattern of tasks. Therefore, these schedulability conditions are necessary but not sufficient. The verification of

conditions specified in lemmas 3.1 and 3.2 is termed as the P-FRP schedulability test in the rest of this paper.

IV. Characteristics of Priority Assignment in P-FRP

In this section, we define characteristics for priority assignment in P-FRP. We show that the rate-monotonic

priority assignment is not optimal for P-FRP, and prove that a task set schedulable in P-FRP will always be

schedulable in the preemptive model. We also compute the costs induced due to interference and abort in P-FRP,
and introduce the concept of intermediate release points (IRPs), which characterize the release time of the higher

priority tasks. These IRPs are classified into abort and delay types, and we prove that only abort IRP affect the

schedulability in P-FRP. Two important observations are defined while important results are derived in theorems
4.11 and 4.13. Relevant definitions and examples are also given at various places in this section.

 From this section onwards, any general P-FRP task set n is assumed to satisfy the P-FRP schedulability test.
The variable L represents the least-common-multiple (LCM) of the task periods. The feasibility interval for a

synchronous release in P-FRP, as given in [3] is [0,L).

Lemma 4.1. In P-FRP, the rate-monotonic priority assignment is not an optimal priority assignment with

synchronous release of tasks.

Proof. If we can give a P-FRP task set which is not schedulable using the RM priority assignment, but is
schedulable by a priority assignment which is not RM, it is sufficient to prove this lemma. Consider the following

task set:

Task pr P T U

1 1 7 15 0.46

2 2 3 12 0.25

The priority assignment is RM-based with 2 having the highest arrival rate hence, the highest priority. In this

scheduling policy, the first job of 1 is unable to complete processing before its second job at time 45 (Figure 1(a)).
If the priority order is changed, as shown below:

Task pr P T U

1 2 7 15 0.46

2 1 3 12 0.25

Then jobs of all tasks will be able to complete processing in the feasibility interval [0,60) of this task set (Figure

1(b)). 

Lemma 4.2. If a task set is schedulable for some priority assignment in the classical preemptive model, then it is

not guaranteed to be schedulable for the same priority assignment in P-FRP.

Proof. If we can show that a task set is unschedulable for some priority assignment in P-FRP, but schedulable in

the classical model it will be sufficient to prove this lemma.

Consider the task set used in lemma 4.1:

Task pr P T

1 1 7 15

2 2 3 12

This priority assignment is rate-monotonic and schedulable in the classical model. As we have already shown, this

priority assignment is not schedulable in P-FRP. 

Lemma 4.3. If a task set is schedulable for some priority assignment in P-FRP, then it will also be schedulable for

the same priority assignment in the classical preemptive model.

Proof. The response time of the highest priority task in P-FRP and the classical model will be the same. Higher

priority tasks can cause interference in the processing of lower priority tasks. In P-FRP, this interference leads to

abort which puts another cost on the processing time of lower priority tasks. There are two possible situations:

No interference from higher priority tasks: The difference in response time between P-FRP and classical model is

created by abort of lower priority tasks, which is caused by interference from tasks of higher priority. Hence, if
there is no interference, there will be no aborts and response time for all tasks in P-FRP and the classical model will

be same. Hence, if the task set is schedulable in P-FRP, it will also be schedulable in the classical model.

Figure 1(a): Deadline miss for the 2
nd

 job of 1 under RM priority assignment. T1, T2, T3 represent tasks 1, 2 , 3 respectively

Figure 1(b): Task set is schedulable in the feasibility interval of [0,60) under a non-RM priority assignment

Interference from higher priority tasks: Consider, 2 = {i, j } and pri > prj:

Let j be released at time ta and execute for h time units: tcopy(j)  h  tcopy(j) + Cj, after which it is aborted by the

release of a job of i. The selected range of h allows i to be released after the copy, but before the restore

operations of j. j will re-start processing after i has completed at time: ta+h+Pi. j will take another Pj time units

to complete processing and will finish at time ta+h+Pi+Pj. Since j was released at time ta, its response time is:
h+Pi+Pj.

If tasks are processed in the preemptive model, the response time of j will be h+Pi+Pj–h = Pi+Pj. Hence, after

interference from higher priority tasks, the response time of lower priority tasks in P-FRP will always be more than
the response time in the preemptive model. Hence, if a task is schedulable in P-FRP, it will also be schedulable in

the classical model. 

Definition. In the preemptive model of execution, if a higher priority task i interferes with the execution of a lower

priority task j, then i will preempt j. The response time of j will be delayed by time taken to process i, which is
Pi. This is referred to as the interference cost. In the P-FRP execution model, preempted tasks are also aborted.

The amount of time spent in aborted processing is called the abort cost. Hence, in P-FRP, interference induces

both an interference and abort cost on the response time of a preempted lower priority task.

Lemma 4.4(a). For two tasks i and j, if Ti < Tj, then in the time interval [0,L) there will be at least one job of i

that is released strictly between any two successive jobs of j.

Proof. The time difference between the releases of any two jobs of j is Tj.

Number of jobs of i between any two jobs of j = 








i

j

T

T
. Since, Tj > Ti at least one job of i will be released between

any two jobs of j. 

Example: In Figure 2, T2 < T1. The 2
nd

job of 2 is released between the 1
st
 and 2

nd
 jobs of 1, 3

rd
 job of 2 is released

between 2
nd

 and 3
rd

 jobs of 1 and so on.

Lemma 4.4(b). For two tasks i and j, if Ti < Tj . In the time interval [0,L), with the exception of the 1
st
 and last

jobs, every job of j will be released between two successive jobs of i.

Proof. Let L = p·Ti = q·Tj, p > q.

Jobs of j will be released at times: 0, Tj, 2·Tj, 3·Tj …, q·Tj.

Jobs of i will be released at times: 0, Ti, 2·Ti, 3·Ti …, p·Tj.

Since, Tj  f·Ti , Ti < Tj < 2·Ti

Similarly, 2·Ti < 2·Tj < 3·Ti or 3·Ti < 2·Tj < 4·Ti

It is easy to see, that for any m

th
 job of Tj:

 a·Ti < (m–1)·Tj < (a+1)·Ti, 0 < a < p and 1 < m  q. 

Example: In Figure 2, T2 < T1. The 2
nd

job of 1 is released between the 2
nd

 and 3
rd

 job of 2, 3
rd

 job of 1 is released

between 3
rd

 and 4
th
 jobs of 2 and so on.

Definition. A relative time instance where the p
th
 job of a higher priority task i, is released (time Ri,p) between job

m (time Rj,m) and job m+1 (time Rj,m+1) of a lower priority j is termed as an intermediate release point (IRP),

provided Ri,p-1  Rj,m. The length of the IRP is relative to the release time of the m
th
 job of j. If multiple jobs of

higher priority task i are released in the interval [Rj,m, Rj,m+1), then only the first job of i that is released in this

interval will be considered as an IRP. The intermediate release point set IRP(i,j), contains the length of all those

IRPs where i is released between jobs of j, for the priority assignment pri > prj in the time interval [0,L). |IRP(i,j)|

represents the number of elements in the set IRP(i,j). The value of an IRP refers to its length. Since, Ri,p-1  Rj,m an

IRP will always have non-zero values. Figure 2 shows the IRPs for different priority assignments for our sample 2-

task set.

Lemma 4.5. For two tasks i and j, the maximum value of intermediate release point, for any priority assignment
cannot exceed the value of the lowest arrival period. Or:

if, h IRP(i,j) or h IRP(j,i) then h < minimum(Ti, Tj).

Proof. Let min(Ti, Tj) = Ti and hIRP(i,j).

In lemma 4.4(a), we have seen that at least one job of i is released between any two jobs of j. However only

the first job is counted in the set IRP (i,j) as per the IRP definition.

Let the p
th
 job of i be released at time ta between the m

th
 and (m+1)

th
 jobs of j, creating an IRP of length h.

Therefore, the m
th
 job of j is released at time ta– h. If h > Ti, then the (p –1)

th
 job of i will be released after m

th
 job

and the (p–1)
th
 job will be the IRP, making h < Ti. If h = Ti then it means that both i and j are released at the same

time in which case the p
th

 job of i is not an IRP as per definition.

Hence, if hIRP (i,j) then h < Ti.

Now, let hIRP(j,i). In lemma 4.4(b), we have shown that a job of j will always be released between successive

jobs of i. Assume that the p
th
 job of i is released at time ta, and the m

th
 job of j is released at time ta + h. If h > Ti,

then the m
th

 job of j will be an IRP for the (p+1)
th
 job of i. If h=Ti, then the m

th
 job of j is not an IRP as per

definition. If h < Ti then the m
th

 job of j will be an IRP for the p
th
 job of i

Hence, if hIRP (i,j) then h < Ti. 

Lemma 4.6. For two tasks i and j, if pri > prj ,and an intermediate release point lies in the range, [, tcopy(j)+Cj]

or [ , Pj – trestore (j)] ,  > 0 , then i will induce an abort cost on the response time of j.

Proof. Assume some job of j be released at time ta, and a job of i is released at time ta+h: h[, tcopy(j)+Cj],  > 0.

Since h < Pj, hIRP(i,j). Even if i is released at time :  < tcopy(j), it will induce a minimum abort cost of tcopy(j) on

j. If h > tcopy(j)+Cj then j will be in the restoration phase and cannot be aborted by i. Hence, every h:hIRP(i,j)

and h[, tcopy(j)+Cj] will induce an abort cost on the response time of j.

Since, tcopy(j)+Cj = Pj – trestore (j), h[, Pj – trestore (j)] will also induce abort cost on j. 

Definition. An IRP is an abort intermediate release point (AIRP) if it adds abort costs to the response time of a

lower priority task. The abort intermediate release point set AIRP(i,j) of two tasks i and j, contains only those

IRPs in the time interval [0,L), with the priority assignment pri > prj, which can induce an abort cost on the

response time of j. Or,

hAIRP (i,j) , hIRP (i,j)  h[, tcopy(j)+Cj],  > 0.

Based on the above definition it is clear that,

AIRP(i,j)  IRP (i,j).

The maximum abort intermediate release point (maxAIRP(i,j)) is the maximum value in the set AIRP(i,j):

 maxAIRP(i,j) = maximum {AIRP(i,j)}.

Figure 2: Intermediate release points in the task set example used in lemma 4.1. In this example  IRP(1,2) = { 3,6,9 } represented by IRP-1, IRP-2 and

IRP-3.  IRP(2,1) = { 9,6,3 } represented by IRP-4, IRP-5 and IRP-6. When pr2 > pr1, IRP-5 and IRP-6 can abort 1, hence AIRP(2,1) = {3,6}, and

maxAIRP(2,1) =6. When pr1 > pr2, IRP-2 and IRP-5 cause delay in the start of 2, hence DIRP(1,2) = {6,9} while AIRP(1,2) =  and maxAIRP(1,2) = 0

From lemma 4.6, the upper bound on maxAIRP(i,j) is easily derived to be: tcopy(j)+Cj.

Example: In Figure 2, AIRP(2,1) = {3,6} and maxAIRP(i,j) = 6, while AIRP(1,2) = .

Lemma 4.7. For two tasks i and j, if  = Tj – Pj – Pi, then any intermediate release point in IRP(i,j), that lies in

the range [Pj++1, Tj] will cause a delay in the start of some job of j.

Proof. Let the m
th
 job of j be released at time ta. Assume |IRP (i,j)| > 0 and pri > prj.

For some hIRP(i,j), let the p
th

 job of i be released at time ta+h and let i start processing at time ta+h+,   0. 

accounts for any blocking i will experience if it is released during the state copy or restoration phase of j. i will

complete processing at time ta+h++Pi.

The p
th
 job of i will delay the start of the (m+1)

th
 job of j only if:

ta+h++Pi > ta + Tj  h++Pi > Tj … (4.7.1)

from the definition of : Pi + Pj +  = Tj,
substituting this value of Tj in eq. 4.7.1 :

 h+ > Pj +  … (4.7.2)

if, h  tcopy(j)+Cj then  = 0 and h+ < Pj + 

hence, to satisfy eq. (4.7.2), h > tcopy(j)+Cj.

Let us take a look when:

 tcopy(j)+Cj < h  tcopy(j)+Cj +trestore(j)

for every, h= tcopy(j)+Cj + ,

 = trestore(j) – ,  > 0

Therefore, h+ = tcopy(j)+Cj + + trestore(j) –  = Pj.

In this case, eq. (4.7.2) will not be satisfied. To satisfy eq. (4.7.2):

h > tcopy(j)+Cj + trestore(j)   = 0.

Since,  = 0, in eq. (4.7.2): h > Pj + .

Or, the minimum possible value of h = Pj++1.

If h > Tj, then i will be released after the (m+1)
th
 job of j has started processing. In this case, i will not cause a

delay in the start of j, but can cause it to abort. Therefore, the maximum possible value of h which can delay the

start of (m+1)
th
 job of j is Tj. Hence, if h[Pj++1, Tj], the release of a job of i at time ta + h is guaranteed to

delay the execution of j. 

Definition. An IRP is a delay intermediate release point (DIRP) if it causes a delay in the start time of the lower

priority task. The delay intermediate release point set DIRP(i,j) contains only those IRPs of i in the time interval

[0,L) and the priority assignment pri > prj, which can delay the start time of j. Or,

h DIRP (i,j) : hIRP (i,j)  h[Pj++1, Tj], =Tj –Pj –Pi
Based on the above definition it is clear that,

 DIRP(i,j)  IRP(i,j).

Example: In Figure 2, DIRP(1,2) = {6,9}, while DIRP(2,1) = .

Lemma 4.8. The sets AIRP(i,j) and DIRP(i,j) are mutually exclusive.

Proof. For, any h1AIRP(i,j), h1 [, tcopy(j)+Cj],  > 0

For, any h2DIRP(i,j), h2 [Pj++1, Tj], =Tj –Pj –Pi

Since, tcopy(j)+Cj < Pj

if , h [, tcopy(j)+Cj] then h[Pj++1, Tj].

Or ,

h1AIRP(i,j), h1DIRP(i,j) and,

h2DIRP(i,j), h2AIRP(i,j).

Therefore, DIRP(i,j)  AIRP(i,j)= . 

Theorem 4.9. Delay intermediate release points do not affect the schedulability of a task set. Or, if 2={i, j} is

schedulable when DIRP(i,j)=0, then it is guaranteed to be schedulable when DIRP(i,j)  0.

Proof. Let h DIRP(i,j)  h[Pj++1, Tj] and the m
th

 job of j is released at absolute time ta. The m
th

 job of j will

complete processing at time ta + Pj. Let the p
th
 job of i be released at time ta+h such that is causes a delay of time 

in the start of the (m+1)
th

 job of j. Assume the (m+1)
th

 job of j is unable to complete processing before the release
of its (m+2)

th
 job.

The p
th

 job of i will complete processing by time ta+h+Pi. Hence,  = ta+h+Pi – (ta+Tj). Since, h[Pj++1, Tj]
the maximum possible value of h=Tj, in which case:

 = ta+Tj+Pi – (ta+Tj) = Pi.

This is the upper bound of .

After the p
th
 job of i has finished processing, the (m+1)

th
 job of j will start and complete processing at time

ta+Tj++Pj. The (p+1)
th
 job of i will not be released till time Ri,p+1 = ta+h+Ti.

Since the basic schedulability test is satisfied, we know:

 Ti – Pi  Pj  (ta+h) – (ta+h) + Ti – Pi  Pj

 Ri,p+1 – (ta+h+Pi)  Pj.

No job of i will be released in the interval [ta+h+Pi, Ri,p+1) therefore, the (m+1)
th
 job of j will not experience any

interference from i in this interval. To be unschedulable, the (m+2)
th

 job of j should be released before the (m+1)
th

job has completed processing. Or,

ta + 2·Tj < ta+Tj++Pj

  > Tj – Pj … (4.9.1)

If eq. (4.9.1) is satisfied then the (m+1)
th

 job of j will be unschedulable. However, from the basic schedulability

test we know: Pi  Tj – Pj. Since the upper bound on  is Pi,

   Tj – Pj.

Clearly, eq. (4.9.1) can never be satisfied implying that a value of  that can make j unschedulable does not exist.

Hence, any hDIRP(i,j) will not affect the schedulability of 2. 

Lemma 4.10. For two tasks i and j, if an IRP of length h is present in the set IRP(i,j), then an IRP of the same

length is also present in the set IRP(j,i). Or,

If, hIRP(i,j) then hIRP(j,i).

Proof. Consider 2={i, j}:pri > prj and Ti < Tj and hIRP(i,j). If two jobs of j are released at times 0 and ta, then

two jobs of j will also be released at times L – ta and L.

Since, hIRP (i,j), jobs of i will be released between jobs of j, at times:
0, ta+h–Ti, ta+h,…, L – (ta+h) , L – (ta+h–Ti), L

From lemma 4.4, h < Ti; therefore,
L – (ta+ h) < L – ta < L – (ta+ h – Ti).

Hence, when prj > pri, the job of j releasing at time L – ta will be an IRP between jobs of i which are released at
times L – (ta+h) and L – (ta+h–Ti). The length of this IRP will be:

L – ta – (L – (ta+h)) = h.

Therefore, hIRP(j,i).

Similarly for Ti > Tj , if hIRP(j,i):
L – (ta+h) < L – ta < L – (ta+h–Tj).

Hence, when pri > prj, the job of i that is released at time L – ta will be an IRP between the jobs of j which are
released at times L – (ta+h) and L – (ta+h–Tj).

 Therefore, hIRP(j,i).

Similarly we can show that for any hIRP(i,j), hIRP(j,i). 

Example: In Figure 2, IRP-1 between jobs of 2 is of length 3. IRP-6 between jobs of 1 is also of length 3. It is

clearly seen that for every IRP present between jobs of 2, IRP‟s of the same length are present between jobs of 1.

Theorem 4.11. For two tasks i and j, the IRP set for priority assignment pri > prj is same as the IRP set for

priority assignment prj > pri. Or, IRP(i,j) = IRP(j,i).

Proof. From theorem 4.10 we know that if some hIRP (i,j) , then hIRP(j,i). Similarly, it is easy to show that for

any hIRP(j,i), then hIRP (i,j). Therefore, we have,

h1IRP(i,j), h1IRP(j,i) and,

h2IRP(i,j), h2IRP(j,i)

 IRP(i,j)= IRP(j,i). 

Example: In Figure 2, IRP(1,2) = {3,6,9} while IRP(2,1) = {9,6,3}. Clearly, IRP(1,2) = IRP(2,1).

Observation 4.12(a). For two tasks i and j, if Ti < Tj < 2·Ti and gcd(Ti, Tj) =1, then IRP(i,j) = {1,2…, Ti–1}.

Observation 4.12(b). For two tasks i and j, if Ti < Tj < 2·Ti and gcd(Ti, Tj) =m: m >1, then IRP(i,j) =
{m,2·m…,Ti – m}.

Example: In our sample task set, Ti = 12 and Tj = 15. gcd(12,15) = 3. Based on observation 4.12(b):

 IRP(i,j) = {3, 2·3,(12 – 3)} = {3,6,9}. These IRP‟s are represented by IRP-1, IRP-2 and IRP-3 in figure 2.

Theorem 4.13. For two tasks i and j, if Ti < Tj < 2·Ti: Tj = Ti + y and Pi < Pj: Pi / Ti > Pj / Tj ,then the difference
between maximum abort IRPs for priority assignments pri > prj and prj > pri should be less than or equal to y: Or,

maxAIRP(i,j) – maxAIRP(j,i)  y.

Proof. Let Pj = Pi + x, x  1.
Since, Pi / Ti > (Pi + x) / (Ti + y)

 x < y·Pi /Ti  x < y.

Let us consider two cases based on the greatest common divisor (gcd) of Ti and Tj:

Case 1: gcd(Ti, Tj) = 1

From observation 4.12(a), the following IRPs will be present: 1, 2 …. , Ti – 1.

Since IRPs for this case are in increments of 1, it is guaranteed that there will an IRP of length = Pi – trestore(i).

As per lemma 4.6, an IRP with this value is the maximum IRP that can abort i.

Therefore, maxAIRP(j,i) = Pi – trestore(i).

The maximum possible value of maxAIRP(i,j) is: Pj – trestore(j).
Therefore,

maxAIRP(i,j) – maxAIRP(j,i)  Pj – trestore(j) – Pi + trestore(i)

since, trestore(j) = trestore(i)

 maxAIRP(i,j) – maxAIRP(j,i)  Pj – Pi

 maxAIRP(i,j) – maxAIRP(j,i)  x.

Since, x < y
 maxAIRP(i,j) – maxAIRP(j,i) < y.

Case 2: gcd(Ti, Tj)=m: m > 1

As per observation 4.12(b) the following IRP‟s will be present IRP(i,j) = {m,2·m…,Ti–m}.

Let, Ti = a·m and Tj = b·m: b > a. We will look at two different cases.

Case 2.1: Pi  m

Since, the P-FRP schedulability test is satisfied, we know: Ti – Pi  Pj.

Since, Pi  m  Ti – Pi  Ti – m

 Pj  Ti – m (since, Ti – Pi  Pj)

 Pj  m·(a–1) … (4.13.1)

length of maximum possible IRP = Ti – m = (a–1)·m.

Even if Pj is at its highest possible value of m·(a–1) (from eq. 4.13.1), the maximum possible IRP will not be able

to abort j. Hence, the maximum value of IRP which can abort j when Pj = m·(a–1), is the next lower IRP:
m·(a–1) – m = m·(a–2).

Therefore, maximum possible value of maxAIRP(i,j)=m·(a–2).
Minimum possible value of maxAIRP(j,i) = 0 (when, Pi = m).

The term maxAIRP(i,j) – maxAIRP(j,i) is maximized when maxAIRP(i, j) has its highest possible value and maxAIRP(j, i)
its lowest. Or,

maxAIRP(i, j) – maxAIRP(j, i) = m·(a–2) – 0 = m·(a–2).

Now, x = Pj – Pi. Using values of Pj =m·(a–1) and Pi = m which maximize the expression maxAIRP(i, j) – maxAIRP(j,

i), we get:

 x = m·(a–1) – m = m·(a–2).

Therefore, maxAIRP(i, j) – maxAIRP(j, i) = x.

Since, x < y

 maxAIRP(i, j) – maxAIRP(j, i) < y.

Case 2.2: Pi < m

In this case, i cannot be aborted by any job of j. Hence,
maxAIRP(j,i) = 0.

Let Pi = , 2 <  < m.

Since, Pi / Ti > Pj / Tj   / a·m > Pj /b·m

 Pj < ·b/ a. … (4.13.2)

Case 2.2.1: b/a  b – a
We know, maxAIRP(i,j) < Pj

 maxAIRP(i,j) < ·b/ a (from eq. 4.13.2).

Therefore,

maxAIRP(i,j) – maxAIRP(j,i) < ·b/a (since, maxAIRP(j,i) = 0)

since,  < m,
maxAIRP(i,j) – maxAIRP(j,i) < m·b/a

since, b/a  b – a

 m·b/a  m·b – m·a

 maxAIRP(i,j) – maxAIRP(j,i) < m·b – m·a

 maxAIRP(i,j) – maxAIRP(j,i) < y.

Case 2.2.2: b/a > b – a

Since, Tj < 2·Ti  b < 2·a  b/a < 2.

Being subject to the restriction b/a < 2, the condition, b/a > b – a will never be satisfied for any b > a+1. Hence,

this condition is only valid when b = a+1.

Since, y = Tj – Ti

 y = b·m – a·m = (a+1)·m – a·m = m.

As, Pi =  and x < y·Pi / Ti

 x < m·/a·m

also, Pj = Pi +  and x < /a

 Pj =  + x  Pj <  + /a.

The value of Pj will be maximized when a = 1. Or, Pj < 2·. Since,  < m  Pj < 2·m.

Hence, the only IRP in IRP(i,j) that can abort j when Pj is maximum, is the IRP of length m. Or, for any value of Pj

: maxAIRP(i,j)  m.

Therefore,

maxAIRP(i,j) – maxAIRP(j,i)  m – 0

 maxAIRP(i,j) – maxAIRP(j,i)  m.
Since, y = m,

maxAIRP(i,j) – maxAIRP(j,i)  y. 

This theorem identifies an important property when :

Ti < Tj < 2·Ti and Pi < Pj: Pi / Ti > Pj / Tj,

and is used in the derivation of optimal priority assignment for 2-task sets in theorem 5.6(a).

V. Priority Assignment in 2-Task Sets

In this section, we evaluate priority assignment strategies for a P-FRP task set having 2 tasks. We show that the

RM priority assignment is always optimal when one arrival period is more than double of the other. For task sets
where arrival periods do not share this relationship, we derive conditions which determine schedulability under

different priority assignments. Finally, we show that if a general 2-task P-FRP task set is known to be schedulable,

then it will also be schedulable in either the UM or RM priority assignments.

Theorem 5.1. For 2={i, j}, if Tj = f·Ti: fZ+; f  2, then 2 is schedulable under any priority assignment.

Proof. Since, the P-FRP schedulability test is satisfied, we know:

 Pi + Pj  Ti  Pi + Pj  Tj / 2.

In this case, L= f·Ti, therefore in the interval [0,L) jobs of task j will be released at times 0 and L, while jobs of i

will be released at 0, Ti, 2·Ti… L. Only the 1
st
 job of j has to be processed in the interval [0,L). Let us take a look

at two possible cases.

Case 1: pri > prj

The first job of i will start and complete processing by time Pi, followed by the 1
st
 job of j. Since, as per the P-

FRP schedulability test Pi + Pj  Ti, the 1
st
 job of j will be processed before the release of the 2

nd
 job of i.

Hence, 2 will be schedulable.

Case 2: prj > pri

The first job of j will start and complete processing by time Pj, followed by the 1
st
 job of i. Since, Pi + Pj 

Ti, the 1
st
 job of i will be processed before the release of its 2

nd
 job. Hence, 2 will be schedulable.

Clearly, all task sets 2={i, j} where Tj = f·Ti: fZ+; f  2 will be schedulable under any priority assignment. 

Theorem 5.2(a). For 2={i, j}, if Tj > 2·Ti , and Tj  f·Ti: f
+
; f > 2 then 2 will always be schedulable under the

priority assignment pri > prj.

Proof. Let the m
th
 job of j be released at time ta, when i is not running. At time ta+h: tcopy(j)  h  tcopy(j) +Cj, j is

aborted by the release of the p
th
 job of i. i will finish processing at time ta+h+Pi, after which j will re-start. The

(p+1)
th
 job of i will be released at time ta+h+Ti, while the (m+1)

th
 job of j is released at time ta + Tj.

Since, Pj < Ti and h < Pj

 h < Ti

also, Ti + Ti < Tj, therefore,
 h+Ti < Tj, or ta+h+Ti < ta + Tj.

Hence, the (p+1)
th
 job of i will be released before the (m+1)

th
 job of j. From the P-FRP schedulability test we

know:

 Pi + Pj  Ti.

Both the p
th
 job of i which starts processing at time ta+h, and the m

th
job of j which re-starts processing at time

ta+h+Pi, will complete before the release of the (p+1)
th
 job of i. Hence, even if i induces a maximum abort of

tcopy(j) +Cj on i, j will be schedulable.

If h > tcopy(j) +Cj, then j will complete processing before the start of p
th
 job of i, and both tasks will be

schedulable. Hence, 2 will always be schedulable if Tj > 2·Ti and pri > prj. 

Theorem 5.2(b). For 2={i, j}, if Tj > 2·Ti and Tj  f·Ti: f
+
; f > 2 ,then the task set will be schedulable for the

priority assignment prj > pri only if, Ti  Pi + Pj + maxAIRP(j,i).

Proof. Since, the P-FRP schedulability test is satisfied we know:

 Ti  Pi + Pj.

Assume that the p
th

 job of i is released at time ta, when j is not running. At time ta+h: tcopy(i)  h  maxAIRP(j,i), i

is aborted by the m
th
 job of j. j will finish processing at time ta+h+Pj after which i will re-start processing and

will complete at time ta+h+Pj+Pi.

The (m+1)
th
 job of j is released at time ta+h+Tj and the (p+1)

th
 job of i is released at time ta +Ti. Since, Ti  Tj/2

 ta+h+Tj > ta +Ti.

Therefore, the (p+1)
th
 job of i will be released before the (m+1)

th
 job of j. To be schedulable the p

th
 job of i will

have to complete processing before the release of its (p+1)
th
 job. Or

ta+h+Pi+Pj  ta+ Ti.

The maximum value of h in this case is: h = maxAIRP(j,i).

Hence,

 ta+ maxAIRP(j,i) +Pj+Pi  ta+Ti

 Ti  Pi + Pj + maxAIRP(j,i).

If the above inequality is satisfied then 2 is guaranteed to be schedulable. 

Corollary 5.2.1. For 2={i, j}, if Tj > 2·Ti, then the task set is guaranteed to be schedulable for the priority

assignment prj > pri ,only if, Ti  Pi + Pj + tcopy(i)+Ci.

Proof. From theorem 5.2 we know that for 2 to be schedulable:

Ti  Pi + Pj + maxAIRP(j,i).
The maximum possible value of maxAIRP(j,i) is tcopy(i)+Cj.
Hence, if

 Ti  Pi + Pj + tcopy(i) + Ci,

then 2 is guaranteed to be always schedulable. 

Theorem 5.3. For 2={i, j}, if Tj > 2·Ti ,then the rate-monotonic priority assignment is optimal.

Proof. The rate-monotonic priority assignment is pri > prj. As shown in theorem 5.2(a), 2 will always be

schedulable in this priority assignment. Corollary 5.2.1 shows that 2 is schedulable in the non-RM priority
assignment prj > pri, only if certain conditions are met.

Since 2 is schedulable in the RM priority assignment pri > prj without pre-conditions, RM is the optimal

priority assignment. 

Theorem 5.4. For 2={i, j}, if Ti < Tj < 2·Ti, then the task set will only be schedulable in the priority assignment

pri > prj if, Tj  Pi + Pj + maxAIRP(i,j).

Proof. Since, the P-FRP schedulability test is satisfied we know:

 Ti – Pi  Pj and Tj – Pj  Pi.

Let the m
th

 job of j be released at time ta when i is not running. At time ta+h: tcopy(j)  h  maxAIRP(i,j), j is

aborted by the p
th

 job of i. i will finish at time ta+h+Pi after which j will re-start processing and will complete at

time ta+h+Pi+Pj. The (p+1)
th
 job of i will be released at time ta+h+Ti.

Since,

 Ti – Pi  Pj

  ta+h+Ti  ta+h+Pi+Pj.

Hence, the p
th
 job of i and the m

th
 job of j will complete before the (p+1)

th
 job of i is released. Now the (m+1)

th

job of j is released at time ta+Tj. If this (m+1)
th
 job is released before the m

th
 job has completed processing, j will

have a deadline miss. Or,

if, ta + Tj < ta+h+Pi+Pj , then j is unschedulable.

Therefore, for j to be schedulable: ta + Tj  ta+h+Pi+Pj.

 Tj  h+Pi+Pj.

The upper bound of h is the maximum possible abort cost that can be induced on j. Hence,
h = maxAIRP(i,j).

Therefore, Tj  Pi + Pj + maxAIRP(i,j). 

Corollary 5.4.1. For 2={i, j}, if Ti < Tj < 2·Ti then the task set is guaranteed to be schedulable in the priority assignment pri

> prj, only if: Tj  Pi + Pj + tcopy(j)+Cj.

Proof. From theorem 5.3 we know that for 2 to be schedulable:

 Ti  Pi + Pj + maxAIRP(i,j).
The maximum possible value of maxAIRP(j,i) is tcopy(j)+Cj.

Hence, if,

 Ti  Pi + Pj + tcopy(j) + Cj,

then 2 is guaranteed to be always schedulable under pri > prj. 

Theorem 5.5. For 2={i, j}, if Ti < Tj < 2·Ti, then the task set will be schedulable in the priority assignment prj >

pri, only if: Ti  Pi + Pj + maxAIRP(j,i).

Proof. Since, the P-FRP schedulability test is satisfied we know:

 Ti – Pi  Pj and Tj – Pj  Pi.

Assume that the p
th

 job of i is released at time ta, when j is not running. At time ta+h: tcopy(i)  h  maxAIRP(j,i), i

is aborted by the m
th
 job of j. j will finish processing at time ta+h+Pj after which i will re-start and complete at

time ta+h+Pj+Pi. The (m+1)
th
 job of j will be released at time ta+h+Tj. Since, Tj – Pj  Pi:

ta+h+Tj  ta+h+Pj+Pi.

Hence, the m
th
 job of j and the p

th
 job of i will complete before the (m+1)

th
 job of j is released. Now the (p+1)

th

job of i is released at time ta+Ti. If this (p+1)
th
 job is released before the p

th
 job has completed processing i will

have a deadline miss. Or,

If, ta + Ti < ta+h+Pj+Pi , i is unschedulable.

Therefore, to be schedulable: ta + Ti  ta+h+Pj+Pi

The maximum value of h is the maximum abort cost on i. Hence, h = maxAIRP(j,i). Therefore, for guaranteed

schedulability of 2 in prj > pri:

Ti  Pi + Pj + maxAIRP(j,i). 

Corollary 5.5.1. For 2={i, j}, if Ti < Tj < 2·Ti then the task set is guaranteed to be always schedulable in the

priority assignment prj > pri, only if: Ti  Pi + Pj + tcopy(i)+Cj.

Proof. From theorem 5.5, we know that for 2 to be schedulable:

Ti  Pi + Pj + maxAIRP(i,j).

The maximum possible value of maxAIRP(j,i) is tcopy(j)+Cj.

Hence, if,

Ti  Pi + Pj + tcopy(j)+Cj,

then 2 is guaranteed to be always schedulable. 

Theorem 5.6(a). Let 2={i, j}, Ti < Tj < 2·Ti and Pi and Pj have values such that Pi / Ti > Pj / Tj. If 2 is

schedulable in the priority assignment prj > pri, it is guaranteed to be schedulable in the priority assignment pri >
prj.

Proof. Let us look at all possible cases based on the relation between processing times of tasks i and j:

Case 1: Pi  Pj

Since, Ti < Tj  Pi / Ti > Pj / Tj.

Let 2 be schedulable under: prj > pri.

From theorem 5.5 this implies:

 Ti  Pi + Pj + maxAIRP(j,i) … (5.6.1)

Since, Pi  Pj and trestore(j) = trestore (i) and tcopy(i) = tcopy(j)

 maxAIRP(i,j)  tcopy(j)+Cj < tcopy(i)+Ci.

From theorem 4.11 we know,

 IRP(i,j)= IRP(j,i)

 maxAIRP(i,j) AIRP(j,i)

 maxAIRP(i,j)  maxAIRP(j,i).

Therefore, in eq. 5.6.1,

 Ti  Pi + Pj + maxAIRP(i,j)
Since, Tj > Ti,

 Tj > Pi + Pj + maxAIRP(i,j) …(5.6.2)

If eq. (5.6.2) is satisfied, then as per theorem 5.4, 2 will be schedulable under pri > prj .

Hence, if 2 is schedulable in prj > pri, it is guaranteed to be schedulable in pri > prj.

Case 2: Pi < Pj: Pi / Ti > Pj / Tj

Let 2 be schedulable under: prj > pri.
From theorem 5.4 this implies:

 Ti  Pi + Pj + maxAIRP(j,i) … (5.6.3)

Let Tj = Ti + y: y  1

In eq. (5.6.3):

Ti + y  Pi + Pj + maxAIRP(j,i) + y

 Tj  Pi + Pj + maxAIRP(j,i) + y … (5.6.4)

From theorem 4.13 we know:

 maxAIRP(i,j) – maxAIRP(j,i)  y.

Therefore, in eq. (5.6.4),

 Tj  Pi + Pj + maxAIRP(j,i) + maxAIRP(i,j) – maxAIRP(j,i)

 Tj  Pi + Pj + maxAIRP(i,j) … (5.6.5)

As per theorem 5.4, if eq. (5.6.5) is satisfied then 2 will be schedulable under pri > prj .

Hence, if 2 is schedulable in prj > pri, it is guaranteed to be schedulable in pri > prj. 

Theorem 5.6(b). Let 2={i, j}, if Ti < Tj < 2·Ti and Pi and Pj have values such that Pi / Ti > Pj / Tj. If, 2 is
schedulable in the priority assignment pri > prj, it can be unschedulable in the priority assignment prj > pri.

Proof. If we can show one example which satisfies the conditions Ti < Tj < 2·Ti , Pi / Ti > Pj / Tj and is schedulable

only under the priority assignment pri > prj, it is sufficient to prove this theorem.

Consider the following task set:

Task pr P T U

1 1 3 12 0.25

2 2 6 10 0.60

Here, P2 / T2 > P1 / T1. If we analyze the execution of this task set in its feasibility interval of [0,60), it is schedulable

in the priority assignment pr2 > pr1. However in pr1 > pr2, the 2
nd

 job of 2 has a deadline miss at time 20. An

execution table for tasks 1 and 2 is available in appendix 1-A. 

Theorem 5.7. For 2={i, j}, and Ti < Tj < 2·Ti, if a priority assignment exists which is both utilization and rate-

monotonic then this priority assignment is optimal for 2.

Proof. The RM-priority assignment is pri > prj. If Pi / Ti > Pj / Tj ,then the UM priority assignment is also pri > prj.

In theorem 5.6(a) we have seen that if these conditions are satisfied and 2 is schedulable in prj > pri, it is
guaranteed to be schedulable in pri > prj.

In theorem 5.6(b) we have seen that if 2 is schedulable in pri > prj , it can be unschedulable in prj > pri. Hence,

pri > prj is the optimal priority assignment when this priority assignment is both UM and RM. 

Definition. A priority assignment which is both utilization and rate monotonic is henceforth referred to as the U-

RM priority assignment.

Theorem 5.8. For a 2-task set 2={i, j}, let Ti < Tj < 2·Ti. If a U-RM priority assignment does not exist for 2,

then there is no single priority assignment which is optimal for all 2-task sets 2={i, j} where Ti < Tj < 2·Ti.

Proof. A U-RM priority assignment will not exist for 2 only when Pi < Pj and Pi / Ti < Pj / Tj.
In this case the UM priority assignment is prj > pri and the RM priority assignment is pri > prj. If we can show

one example which is schedulable only in prj > pri, and a second example which is schedulable only in pri > prj it
is sufficient to prove this theorem.

Consider the task set used in lemma 4.1:

Task pr P T U

1 1 7 15 0.46

2 2 3 12 0.25

The RM-priority assignment is pr2 > pr1, while the UM-assignment is pr1 > pr2. As shown in lemma 4.1, this task

set is schedulable only in pr1 > pr2.

 Now, consider the following task set:

Task pr P T U

1 1 6 15 0.40

2 2 4 12 0.33

The RM-priority assignment is pr2 > pr1, while the UM-assignment is pr1 > pr2. If we analyze the execution of this

task set in its feasibility interval of [0,60), it is schedulable in the priority assignment pr2 > pr1, but the 2
nd

 job of 2

has a deadline miss at time 24, in pr1 > pr2. An execution table for 1 and 2 is available in appendix 1-B. 

Theorem 5.9. If a 2-task set 2={i, j} is known to be schedulable, then 2 is guaranteed to be also schedulable in

a rate-monotonic or utilization-monotonic priority assignments.

Proof. Let‟s assume, Ti < Tj. There can be two possible cases.

Case 1: 2·Ti  Tj

With this condition, 2 is guaranteed to be always schedulable under the priority assignment pri > prj as shown
in theorems 5.1 and 5.3. pri > prj is a rate-monotonic priority assignment.

Case 2: Ti < Tj < 2·Ti

With this condition there are two possible cases.

Case 2.1: Pi / Ti > Pj / Tj

The priority assignment pri > prj is both a utilization and rate-monotonic priority assignment, and if 2 is
schedulable, it is guaranteed to be schedulable under this priority assignment, as shown in theorem 5.7.

Case 2.2: Pi / Ti < Pj / Tj

 The utilization-monotonic priority assignment is prj > pri and the rate-monotonic priority assignment is pri >

prj. These are the only two priority assignments possible for this task set. Hence, if 2 is schedulable, it is either

under a utilization or rate-monotonic, or both, priority assignments. 

VI. Priority Assignment in n-Task Sets

In this section, we prove that for P-FRP task sets having n tasks (n > 2), a single priority assignment which is

optimal exists only when task periods are integer multiples of each other. We also show that for other n-task sets,
no priority assignment exists which is optimal for all task sets.

Theorem 6.1. For, n={1, 2 … ,n }: n > 2, and task periods have the following relationships: Ti = f·Ti+1 , i=1,n–

1: f  2; f +
, then the rate-monotonic priority assignment is optimal.

Proof. Consider 3 = {i, j, k}. Let ,

Tj = f·Ti, Tk = g·f·Ti, g  2, f  2; f,g +
.

The rate-monotonic priority assignment is pri > prj > prj.

L = g·f·Ti, and there will be only one job of k that has to be processed in [0,L). Since the P-FRP schedulability test
is satisfied we know:

Pi + Pj  Ti and Pi + Pk  Ti.

The 1
st
 job of i will finish at time Pi and the 1

st
 job of j will be processed next as per the RM priority assignment.

The 1
st
 job of j will finish at time Pi + Pj, after which the 2

nd
 job of i is released at time Ti. The second job of j

will not be released at least till time 2·Ti, hence after the 2
nd

 job of i has completed, the single job of k will

complete processing. Jobs of two tasks i and j that will be released in the interval [2·Ti, L) will be able to complete
processing as per theorem 5.1.

 This same analysis can be easily extended (by considering each pair of tasks) to any general task set, n which
has tasks whose periods are integer multiples of each other. Since, such task sets will always be schedulable in the

rate-monotonic priority assignment, this priority assignment is optimal. 

Lemma 6.2. For, n={1, 2 … ,n}: n > 2, if task periods have the following relationships: Ti > 2·Ti+1 and Ti 

f·Ti+1 , i=1,n–1: f  2; f +
 ,then the rate monotonic priority assignment is not optimal.

Proof. If we can show one schedulable task set with this condition, which is not schedulable under the rate-

monotonic priority assignment, it is sufficient to prove this lemma. Consider the task set 3:

Task pr P T U

1 1 8 60 0.13

2 2 6 25 0.24

3 3 3 12 0.25

The priority assignment pr3 > pr2 > pr1 is RM. If we analyze the execution of this task set in its feasibility interval

of [0, 300) with the RM priority assignment, the 4
th

 job of 1 has a deadline miss at time 240. If the priority
assignment is changed to pr2 > pr3 > pr1, jobs of all tasks are able to complete in the feasibility interval. An

execution table for this task set is available in appendix 2-A. 

Lemma 6.3. For, n={1, 2 … ,n}: n > 2, let task periods have the following relationships: i , j n, Tj < 2·Ti.

If a U-RM priority assignment exists for n, then it is not guaranteed to be the optimal priority assignment.

Proof. If we can show one schedulable task set which is not schedulable in the U-RM priority assignment, it is

sufficient to prove this lemma. Consider the task set 3:

Task pr P T U

1 1 3 16 0.18

2 2 4 14 0.28

3 3 4 12 0.33

The priority assignment pr3 > pr2 > pr1 is both UM and RM. If we analyze the execution of this task set in its

feasibility interval of [0,336), the 19
th
 job of 1 has a deadline miss at time 304. If the priority assignment is

changed to pr1 > pr3 > pr2, jobs of all tasks are able to complete in the feasibility interval. An execution table for

this task set is available in appendix 2-B. 

Lemma 6.4. Two tasks when executed independently will be schedulable in the same priority assignment, in which

they were schedulable when part of a larger task set. Or, if n={1,.., i,.. j,… ,n} is schedulable in the priority
assignment :

 pr1 > pr2 > … > prj … > pri > …> prn

then 2 = {i,j} will also be schedulable in the priority assignment prj > pri.

Proof. Consider n={1, 2 … ,n }: n > 2.

Let n be schedulable under some priority assignment. Let this priority assignment be:

 pr1 > … > prj > … > pri > .. > prk-1 > prk, where i, j  n.

Let us remove the highest priority task k: k  i, j from n and, n-1 = n – k.

As the priority assignment is same, the removal of the highest priority task can only lead to lesser chances of

interference and hence, lower abort costs on all lower priority tasks. Therefore, if n is schedulable, n-1 will also be
schedulable.

Similarly, if we remove the highest priority task k in n-1 ( i, j), we get n-2 which will also be schedulable in
the same priority assignment. This way we can remove all higher priority tasks without affecting the schedulability

of the task set. Once all tasks having higher priority than i and j are removed, let us remove all tasks having lower

priority than i and j. Since lower priority tasks do not have any impact on the response time of higher priority
tasks, their removal will not affect the schedulability of the task set. After removal of these lower and higher

priority tasks we get the task set 2={i, j}, which clearly is schedulable in the same priority assignment as was in

n , prj > pri.

Similarly, we can see that any two tasks taken from n , will be schedulable in the same priority assignment as

was in the n. 

Theorem 6.5. For a task set n={1, 2 … ,n}: n > 2, where task periods have the following relationships: Ti >

f·Ti+1, i=1,n–1: f  2; f +
 , then no priority assignment exists which is optimal for every n.

Proof. Let us assume n is schedulable and an optimal priority assignment exists for this case. Let this priority
assignment be:

 pr1 > pr2 > … > prj … > pri > …> prn.

Let 2 ={i, j}: i, j  n. From lemma 6.4 we know that if n is guaranteed to be schedulable in its optimal

priority assignment, 2 is also guaranteed to be schedulable in the priority assignment:
 prj > pri.

This implies that prj > pri is an optimal priority assignment for 2. From lemma 6.2 we know the optimal priority

assignment for n cannot be rate-monotonic, therefore prj > pri is a non-RM priority assignment.

However, from theorem 5.3 we know that 2 is guaranteed to be schedulable only under the RM priority
assignment.

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to be always

schedulable under a non-RM priority assignment, we have a contradiction.

 Hence, no priority assignment exists which is optimal for all n. 

Theorem 6.6. For, n={1, 2 … ,n }: n > 2, where task periods have the following relationships: i , j n, Tj <

2·Ti, no priority assignment exists which is optimal for all n.

Proof. Let us assume n is schedulable, and an optimal priority assignment exists for this case. Let this priority
assignment be:

 pr1 > pr2 > … > prj … > pri > …> prn.

Let 2 ={i, j}: i, j  n. From lemma 6.4 we know that if n is guaranteed to be schedulable in its optimal

priority assignment, 2 is also guaranteed to be schedulable in the same priority assignment:
 prj > pri.

This implies that prj > pri is an optimal priority assignment for 2. There can be two possible cases.

Case 1: A U-RM priority assignment exists for n

From lemma 6.3 we know that the optimal priority assignment n cannot be U-RM, therefore prj > pri is a
priority assignment which is non-U-RM.

However, from theorem 5.7 we know that 2 is guaranteed to be schedulable only under the U-RM priority
assignment.

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to be always
schedulable under a non-U-RM priority assignment, we have a contradiction. Hence, no optimal priority

assignment can exist for n in this case.

Case 2: A U-RM priority assignment does not exist for n

From theorem 5.7 we know that no optimal priority assignment can exist for 2 in this case.

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to also have an

optimal priority assignment, we have a contradiction. Hence, no optimal priority assignment can exist for n in this

case. 

VII. Experimental Validation

We present an experimental validation of the results derived for tasks sets with 2 and more than 2 tasks, using

randomly generated task sets in groups having 2,3,4 and 5 tasks. For task sets with 2 and 3 tasks we have further
divided them into 2 categories, based on their utilization factors. Each group has 500 tasks, and task sets in each

group are unique in the sense that at least 1 task is different between any two task sets present in a group.

The arrival periods and processing times of tasks are selected from sample ranges of [12, 32] and [3, 10],
respectively. The values of these ranges were arbitrarily selected and kept low to reduce the time taken to perform

the evaluation. As per our initial assumptions, tcopy(k) and trestore(k) are set to 1. The task periods in every task set are

selected such that no two tasks in a set have the same period.

 For task sets with 2 tasks we simulated the execution of every task set in its feasibility interval using the pri >
prj and prj > pri priority assignments. For task sets having 3,4, and 5 tasks we simulated the execution in each of the

possible 3!, 4! and 5! priority assignments. If any task set was unschedulable in all the priority assignments, the task

set was regenerated. Hence, each of the tasks sets we have simulated are schedulable in at least one priority
assignment.

In Table 1 we show the schedulability of task sets with different sizes and utilization factors in the UM or RM

priority assignments. The number of task sets which are schedulable only by the UM priority assignment are
classified under „only-UM‟, while those schedulable only under RM are given under „non-RM‟. Task sets not

schedulable under both the UM and RM priority assignments are given under „non-RM/UM‟, while those

schedulable by both UM and RM is given under „Both UM/RM‟. „U-RM Exists‟ shows the number of tasks sets for

which a U-RM priority assignment exists and the number of tasks schedulable in the U-RM priority assignment is
given under „U-RM Schedulable‟. Clearly, every task set in „U-RM Exists‟ will also be in „Both UM/RM‟.

When n=2, all task sets for which a U-RM priority assignment exists are schedulable under U-RM, which

validates theorem 5.7. Also all the task sets are schedulable by a priority assignment which is either RM or UM,
validating theorem 5.9. In cases where the U-RM priority assignment does not exist, some task sets are schedulable

by only the RM or UM priority assignments, showing that no single optimal priority assignment exists in this case,

as proved in theorem 5.8.

For n=3, while several task sets are schedulable by both UM and RM priority assignment, some are schedulable
by a priority assignment which is non-UM/RM. Also for the higher utilization group, the 175 task sets for which a

U-RM priority assignment exists, only 165 are schedulable in this priority assignment. Clearly, no single priority

assignment is optimal for all 3-task sets which agrees with theorems 6.5 and 6.6. However, it is interesting that in
the lower utilization group all task sets are schedulable by UM/RM and all 191 task sets for which a U-RM priority

assignment exists, are also schedulable in this priority assignment.

 The results for 4 and 5 task sets also agree with results derived for n-task sets in section 6. It is noteworthy that,
even though no single optimal priority assignment exists, several n-task sets (n > 2) are still schedulable by UM or

RM priority assignments, with UM clearly outperforming RM. As a general recommendation to engineers, for

determining priority assignments under which an n-task set will be schedulable, first the schedulability in UM and

RM priority assignments should be evaluated followed by rest of the (n! – 2) priority assignments.

n Umin Umax only

UM

only

RM

Non

UM/R

M

Both

UM/R

M

U-RM

Exists

U-RM

Schedulable

2 0.10 0.50 0 0 0 500 314 314

2 0.51 1.0 2 20 0 478 364 364

3 0.10 0.50 1 0 0 499 191 191

3 0.51 1.0 84 21 26 369 175 165

4 0.10 1.0 150 16 74 260 107 94

5 0.10 1.0 120 32 244 104 82 40

Table 1: Task sets schedulable under different priority assignments

VIII. Related Work

Response time analysis of P-FRP was first studied by Kaibachev et al [16], who derive response time bounds by

placing restrictions on execution times of higher priority tasks. Ras and Cheng [22], have presented response time
analysis and have compared the performance of P-FRP execution with priority inversion strategies. Both [16], [22]

do not discuss priority assignment strategies for P-FRP. Response time analysis of transactional memory systems

[14] has been done by Fahmy et al [11] while Manson et al [19] study response time of atomic processing of critical

sections in Java. Anderson et al [1] have presented response time analysis of the lock-free execution. Lock-free is a
mechanism to avoid priority inversion [23], the implementation of which is via an unconditional loop that

terminates when the necessary updates to the shared resource are complete. Sivasankaran et al [25], have discussed

priority assignment in real-time active databases. They have defined polices for parent, immediate and deferred
transactions. The focus in this paper has been on dynamic priority assignment, which makes this unsuitable for our

need as we are concerned with fixed assignment policies.

Notable work on fixed priority assignment strategies for the preemptive model have been done by Audsley [2]
and Davis and Burns [7],[8]. In [2], an offline polynomial time algorithm that uses a transformation function to

change the priorities of tasks, is presented. This paper also identifies minimum number of priority levels required

for each task. This work has been extended in [5] to derive priority assignment in the presence of blocking. In [7],

the concept of a „robust‟ priority ordering for is introduced.

IX. Conclusion and Future Work

We have studied priority assignments in P-FRP and shown that unlike the classical model, a single priority

assignment is not universally optimal, even for 2-task sets. However, for 2-task sets we have proven that if a single
priority assignment is both UM and RM, then it is guaranteed to be the optimal priority assignment. It has also been

proven that every schedulable 2-task will also be schedulable by a UM or RM priority assignments.

In [18], Liu and Layland also present their initial results using 2-task sets and then scale these methods for n-
task sets in a fairly straight-forward way. Unfortunately, the execution model of P-FRP does not have this

simplicity, and the optimality of UM or RM priority assignment do not hold true when there are more than 2 tasks.

However, for n-task sets where task periods are double, or more than double or each other the RM priority

assignment is optimal. For n-task sets where task periods do not share this relationship we prove that no single
optimal priority assignment can exist. An algorithm based approach which evaluates all the possible n! priority

assignments is the only way to determine priority assignments under which such an n-task set is schedulable. It

should however be noted, that a high percentage of P-FRP tasks sets having more than two tasks are schedulable by
the UM/RM priority assignment, hence, in several situations analyzing all the n! possible priority assignments

might not be required.

While the classical preemptive model is well understood and several mature studies have been done over the

past several years, the abort-restart model has not been thoroughly researched. Our work has characterized the
execution of P-FRP, hence, the abort-restart model, using the concept of intermediate release points (IRP), abort-

IRP and delay-IRP. Introducing such concepts is important because of the additional cost of abort which is

dependent solely on the release time of jobs of higher priority tasks. The abort cost introduces a dynamic nature to
the execution of tasks in P-FRP, analysis of which cannot be done by the variety of existing methods.

Our work gives system designers/engineers an important insight on the schedulability characteristics of a system

implemented using P-FRP. This work will guide system designers on tweaking task parameters which enhance the
schedulability of the task sets, as well as help them identify priority assignments where the task set will be

unschedulable. In future work, we will enhance this study by considering more practical values of tcopy(k) and

trestore(k) for a task k, and by determining if the optimal priority assignments derived in this paper, also hold true
when tasks are released asynchronously.

References

[1] J. H. Anderson, S. Ramamurthy, K. Jeffay. “Real-time computing with Lock free Shared Objects”. ACM Transactions on

Comp.Sys. 5(6), pp. 388-395, 1997

[2] N. Audsley. “On priority-assignment in fixed priority scheduling”. Information Processing Letters Volume 79, pp. 39-44,

2001

[3] C. Belwal, A.M.K. Cheng. “On the Feasibility Interval for P-FRP”. Manuscript under review,

http://www2.cs.uh.edu/~cbelwal/FeasibilityInterval_PFRP.pdf, 2011

[4] C. Belwal, A.M.K. Cheng. “On Priority Assignment in P-FRP ”. RTAS’10 Work-In-Progress Session, 2010

[5] K. Bletsas, N. Audsley. “Optimal priority assignment in the presence of blocking”. Inf. Process. Lett. 99, 3 (Aug. 2006),

83-86, 2006

[6] J. Byun, A. Burns, A. Wellings. “A Worst-Case Behavior Analysis for Hard Real-time transactions”. Workshop on Real-

time Databases, 1996

[7] R.I. Davis, A.Burns. “Robust Priority Assignment for Fixed Priority Real-Time Systems”. RTSS’07, pp. 3-14, 2007

[8] R.I. Davis, A. Burns. “Priority Assignment for Global Fixed Priority Pre-Emptive Scheduling in Multiprocessor Real-

Time Systems”. RTSS’09, pp. 398-409, 2009

[9] C. Elliott, P. Hudak. “Functional reactive animation”. ICFP’97,pp. 263-273, 1997

[10] Erlang, http://www.erlang.org

[11] S.F. Fahmy, B. Ravindran, E.D. Jensen. “Response time analysis of software transactional memory-based distributed real-

time systems”. ACM SAC Operating Systems, 2009

[12] K. Hammond. “Chapter 1 – Is it Time for Real-Time Functional Programming”. Trends in Functional Programming

Volume 4 – Editor Stephen Gilmore, Intellect Ltd., 2005

[13] T. Hawkins. “Controlling Hybrid Vehicles with Haskell”. Commerical Uses of Functional Languages (CUSP)’08, 2008

[14] M. Herlihy, J.E.B. Moss. “Transactional memory: architectural support for lock-free data structures”. ACM SIGARCH

Computer Architecture New (Col. 21, Issue 2),pp. 289-300, 1993

[15] Haskell, http://www.haskell.org

[16] R. Kaiabachev, W. Taha, A. Zhu. “E-FRP with Priorities”.

EMSOFT’07, pp. 221-230 , 2007

[17] J.Y.T. Leung, J. Whitehead. “On the complexity of fixed-priority scheduling of periodic, real-time tasks”. Performance

Evaluation (Netherlands) 2(4), pp. 237-250, 1982

[18] C. L. Liu, L. W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”. Journal of

the ACM (Volume 20 Issue 1), pp. 46 - 61 , 1973

[19] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin, J. Vitek. “Preemptible Atomic Regions for Real-

Time Java”. RTSS’05, pp.62-71, 2005

[20] J. Peterson, G. D. Hager, P. Hudak. “A Language for Declarative Robotic Programming”. ICRA’99, IEEE, 1999

http://www2.cs.uh.edu/~cbelwal/FeasibilityInterval_PFRP.pdf
http://www.haskell.org/

[21] J. Peterson, P.Hudak, A.Reid, G. D. Hager. “FVision: A Declarative Language for Visual Tracking”. Symposium on

Practical Aspects of Declarative Languages (PADL’01), 2001

[22] J. Ras, A. Cheng. “Response Time Analysis for the Abort-and-Restart Task Handlers of the Priority-Based Functional

Reactive Programming (P-FRP) Paradigm”. RTCSA’09, 2009

[23] L. Sha, R. Rajkumar, J. P. Lehoczky. “Priority Inheritance Protocols: An approach to Real Time Synchronization”.

Transactions on Computers Volume 39, Issue 9, pp.1175 – 1185, 1990

[24] M. Swaine. “It's Time to Get Good at Functional Programming”. Dr. Dobbs Journal, http://www.drdobbs.com, Dec‘ 2008,

2008

[25] R. Sivasankaran, J. Stankovic, D. Towsley, B. Purimetla, K. Ramamritham. “Priority assignment in real-time active

databases”. The VLDB Journal 5, 1, 019-034. 1996.

[26] Z. Wan, W. Taha, P. Hudak. “Real-time FRP”. ICFP’01, pp. 146-156, ACM Press ,2001

[27] Z. Wan, W. Taha, P. Hudak. “Task driven FRP”. PADL’02. 2002

[28] Z. Wan, P. Hudak. “Functional reactive programming from first principles”. ACM SIGPLAN Conference on Programming

Language Design and Implementation,pp.242-252,2000

Appendix: 1-A

Task Set:

Task Pr P T U

  1 3 12 0.25

 2 6 10 0.6

U_RM Priority Assignment: pr2 > pr1 ; non-U_RM is pr1 > pr2

Time Release U_RM Non-U_RM Time Release U_RM Non-U_RM

0 T1, T2 T2 T1 31 T2

1 T2 T1 32 T2

2 T2 T1 33 T2

3 T2 T2 34 T2

4 T2 T2 35 T2

5 T2 T2 36 T1 T1

6 T1 T2 37 T1

7 T1 T2 38 T1

8 T1 T2 39 *

9 * * 40 T2 T2

10 T2 T2 T2 41 T2

11 T2 T2 42 T2

12 T1 T2 T1 43 T2

13 T2 T1 44 T2

14 T2 T1 45 T2

15 T2 T2 46 *

16 T1 T2 47 *

17 T1 T2 48 T1 T1

18 T1 T2 49 T1

19 * T2 50 T2 T2

20 T2 T2 Deadline Miss 51 T2

21 T2 52 T2

22 T2 53 T2

23 T2 54 T2

24 T1 T2 55 T2

25 T2 56 T1

26 T1 57 T1

27 T1 58 T1

28 T1 59 *

29 *

30 T2 T2

Appendix: 1-B

Task Set:

Task Pr P T U

 1 6 15 0.4

 2 4 12 0.33

RM Priority Assignment: pr2 > pr1 ; UM is pr1 > pr2

Time Release RM UM Time Release RM UM

0 T1, T2 T2 T1 31 T1

1 T2 T1 32 T1

2 T2 T1 33 T1

3 T2 T1 34 T1

4 T1 T1 35 T1

5 T1 T1 36 T2 T2

6 T1 T2 37 T2

7 T1 T2 38 T2

8 T1 T2 39 T2

9 T1 T2 40 T1

10 41

11 42

12 T2 T2 T2 43

13 T2 T2 44

14 T2 T2 45 T1

15 T1 T2 T1 46 T1

16 T1 T1 47 T1

17 T1 T1 48 T2 T2

18 T1 T1 49 T2

19 T1 T1 50 T1 T2

20 T1 T1 51 T2

21 T1 T2 52 T1

22 T2 53 T1

23 T2 54 T1

24 T2 T2 Deadline Miss 55 T1

25 T2 56 T1

26 T2 57 T1

27 T2 58

28 59

29

30 T1 T1

Appendix: 2-A

Task Set:

Task Pr P T U

1 1 8 60 0.13

2 2 6 25 0.24

3 3 3 12 0.25

RM Priority Assignment: pr3 > pr2 > pr1; non-RM is pr2 > pr3 > pr1

Time Release Non-RM RM Time Release Non-RM RM Time Release Non-RM RM

0 T1,T2,T3 T2 T3 56 T3 T2 111
1 T2 T3 57 T3 112
2 T2 T3 58 T3 113
3 T2 T2 59 114
4 T2 T2 60 T1,T3 T3 T3 115
5 T2 T2 61 T3 T3 116
6 T3 T2 62 T3 T3 117
7 T3 T2 63 T1 T1 118
8 T3 T2 64 T1 T1 119
9 T1 T1 65 T1 T1 120 T1,T3 T3 T3

10 T1 T1 66 T1 T1 121 T3 T3
11 T1 T1 67 T1 T1 122 T3 T3
12 T3 T3 T3 68 T1 T1 123 T1 T1
13 T3 T3 69 T1 T1 124 T1 T1
14 T3 T3 70 T1 T1 125 T2 T2 T2
15 T1 T1 71 126 T2 T2
16 T1 T1 72 T3 T3 T3 127 T2 T2
17 T1 T1 73 T3 T3 128 T2 T2
18 T1 T1 74 T3 T3 129 T2 T2
19 T1 T1 75 T2 T2 T2 130 T2 T2
20 T1 T1 76 T2 T2 131 T1 T1
21 T1 T1 77 T2 T2 132 T3 T3 T3
22 T1 T1 78 T2 T2 133 T3 T3

23 79 T2 T2 134 T3 T3
24 T3 T3 T3 80 T2 T2 135 T1 T1
25 T2 T2 T3 81 136 T1 T1
26 T2 T3 82 137 T1 T1
27 T2 T2 83 138 T1 T1
28 T2 T2 84 T3 T3 T3 139 T1 T1
29 T2 T2 85 T3 T3 140 T1 T1
30 T2 T2 86 T3 T3 141 T1 T1
31 T3 T2 87 142 T1 T1
32 T3 T2 88 143
33 T3 89 144 T3 T3 T3
34 90 145 T3 T3
35 91 146 T3 T3
36 T3 T3 T3 92 147
37 T3 T3 93 148
38 T3 T3 94 149
39 95 150 T2 T2 T2
40 96 T3 T3 T3 151 T2 T2
41 97 T3 T3 152 T2 T2
42 98 T3 T3 153 T2 T2
43 99 154 T2 T2
44 100 T2 T2 T2 155 T2 T2
45 101 T2 T2 156 T3 T3 T3
46 102 T2 T2 157 T3 T3
47 103 T2 T2 158 T3 T3

48 T3 T3 T3 104 T2 T2 159
49 T3 T3 105 T2 T2 160
50 T2 T2 T3 106 161
51 T2 T2 107 162
52 T2 T2 108 T3 T3 T3 163
53 T2 T2 109 T3 T3 164
54 T2 T2 110 T3 T3 165
55 T2 T2

Time Release RM non-RM Time Release RM non-RM Time Release RM non-RM

166 221 T1 276 T3 T2

167 222 T1 277 T2

168 T3 T3 T3 223 T1 278 T2

169 T3 T3 224 T1 279 T2

170 T3 T3 225 T2 T2 T2 280 T2

171 226 T2 T2 281 T3

172 227 T2 T2 282 T3

173 228 T3 T2 T3 283 T3

174 229 T2 T3 284

175 T2 T2 T2 230 T2 T3 285

176 T2 T2 231 T3 T2 286

177 T2 T2 232 T3 T2 287

178 T2 T2 233 T3 T2 288 T3 T3

179 T2 T2 234 T2 289 T3

180 T1,T3 T2 T3 235 T2 290 T3
181 T3 T3 236 T2 291

182 T3 T3 237 T1 292

183 T3 T2 238 T1 293

184 T1 T2 239 T1 294

185 T1 T2 240 T1,T3 T3

Deadline

Miss 295

186 T1 T2 241 T3 296

187 T1 T2 242 T3 297

188 T1 T2 243 T1 298

189 T1 T1 244 T1 299

190 T1 T1 245 T1

191 T1 T1 246 T1

192 T3 T3 T3 247 T1

193 T3 T3 248 T1

194 T3 T3 249 T1

195 T1 250 T2 T2

196 T1 251 T2

197 T1 252 T3 T2

198 T1 253 T2

199 T1 254 T2

200 T2 T2 T2 255 T2

201 T2 T2 256 T3

202 T2 T2 257 T3

203 T2 T2 258 T3

204 T3 T2 T3 259 T1

205 T2 T3 260 T1

206 T3 T3 261 T1

207 T3 T2 262 T1

208 T3 T2 263 T1

209 T2 264 T3 T3

210 T2 265 T3

211 T2 266 T3

212 T2 267 T1

213 T1 268 T1

214 T1 269 T1

215 T1 270 T1

216 T3 T3 T3 271 T1

217 T3 T3 272 T1

218 T3 T3 273 T1

219 T1 274 T1

220 T1 275 T2 T2

Appendix: 2-B

Task Set:

Task Pr P T U

1 1 3 16 0.18

2 2 4 14 0.28

3 3 4 12 0.33

U_RM Priority assignment: pr3 > pr2 > pr1; non-U_RM is pr1> pr3 > pr2

Time Release non-U_RM U_RM Time Release non-U_RM U_RM Time Release non-U_RM U_RM

0 T1,T2,T3 T1 T3 55 111 T3 T3

1 T1 T3 56 T2 T2 T2 112 T1,T2 T1 T2

2 T1 T3 57 T2 T2 113 T1 T2

3 T3 T3 58 T2 T2 114 T1 T2

4 T3 T2 59 T2 T2 115 T2 T2

5 T3 T2 60 T3 T3 T3 116 T2 T1

6 T3 T2 61 T3 T3 117 T2 T1

7 T2 T2 62 T3 T3 118 T2 T1

8 T2 T1 63 T3 T3 119

9 T2 T1 64 T1 T1 T1 120 T3 T3 T3

10 T2 T1 65 T1 T1 121 T3 T3

11 66 T1 T1 122 T3 T3

12 T3 T3 T3 67 123 T3 T3

13 T3 T3 68 124

14 T2 T3 T3 69 125

15 T3 T3 70 T2 T2 T2 126 T2 T2 T2

16 T1 T1 T2 71 T2 T2 127 T2 T2

17 T1 T2 72 T3 T3 T3 128 T1 T1 T2

18 T1 T2 73 T3 T3 129 T1 T2

19 T2 T2 74 T3 T3 130 T1 T1

20 T2 T1 75 T3 T3 131 T2 T1

21 T2 T1 76 T2 T2 132 T3 T3 T3

22 T2 T1 77 T2 T2 133 T3 T3

23 78 T2 T2 134 T3 T3

24 T3 T3 T3 79 T2 T2 135 T3 T3

25 T3 T3 80 T1 T1 T1 136 T2 T1

26 T3 T3 81 T1 T1 137 T2 T1

27 T3 T3 82 T1 T1 138 T2 T1

28 T2 T2 T2 83 139 T2

29 T2 T2 84 T2,T3 T3 T3 140 T2 T2 T2

30 T2 T2 85 T3 T3 141 T2 T2

31 T2 T2 86 T3 T3 142 T2 T2

32 T1 T1 T1 87 T3 T3 143 T2 T2

33 T1 T1 88 T2 T2 144 T1,T3 T1 T3

34 T1 T1 89 T2 T2 145 T1 T3

35 90 T2 T2 146 T1 T3

36 T3 T3 T3 91 T2 T2 147 T3 T3

37 T3 T3 92 148 T3 T1

38 T3 T3 93 149 T3 T1

39 T3 T3 94 150 T3 T1

40 95 151

41 96 T1,T3 T1 T3 152

42 T2 T2 T2 97 T1 T3 153

43 T2 T2 98 T2 T1 T3 154 T2 T2 T2

44 T2 T2 99 T3 T3 155 T2 T2

45 T2 T2 100 T3 T2 156 T3 T3 T3

46 101 T3 T2 157 T3 T3

47 102 T3 T2 158 T3 T3

48 T1,T3 T1 T3 103 T2 T2 159 T3 T3

49 T1 T3 104 T2 T1 160 T1 T1 T2

50 T1 T3 105 T2 T1 161 T1 T2

51 T3 T3 106 T2 T1 162 T1 T2

52 T3 T1 107 163 T2 T2

53 T3 T1 108 T3 T3 T3 164 T2 T1

54 T3 T1 109 T3 T3 165 T2 T1

Time

Time

Time

Release U_RM non-

U_RM

Time Release U_RM non-U_RM Time Release U_RM non-U_RM

166 T2 T1 223 280 T2 T2 T2

167 224 T1,T2 T1 T2 281 T2 T2

168 T2, T3 T3 T3 225 T1 T2 282 T2 T2

169 T3 T3 226 T1 T2 283 T2 T2

170 T3 T3 227 T2 T2 284

176 T1 T1 T1 233 T2 T1 290 T1 T3

177 T1 T1 234 T2 T1 291 T3 T3

178 T1 T1 235 T2 292 T3 T1

179 236 293 T3 T1

180 T3 T3 T3 237 294 T2 T3 T2

181 T3 T3 238 T2 T2 T2 295 T2 T2

182 T2 T3 T3 239 T2 T2 296 T2 T2

183 T3 T3 240 T1,T3 T1 T3 297 T2 T2

184 T2 T2 241 T1 T3 298 T2 T1

185 T2 T2 242 T1 T3 299 T1

186 T2 T2 243 T3 T3 300 T3 T3 T3

187 T2 T2 244 T3 T2 301 T3 T3

188 245 T3 T2 302 T3 T3

189 246 T3 T2 303 T3 T3

190 247 T2 T2 304 T1 T1

Deadline

Miss

191 248 T2 T1 305 T1

192 T1,T3 T1 T3 249 T2 T1 306 T1

193 T1 T3 250 T2 T1 307

194 T1 T3 251 308 T2 T2

195 T3 T3 252 T2,T3 T3 T3 309 T2

196 T2 T3 T2 253 T3 T3 310 T2

197 T3 T2 254 T3 T3 311 T2

198 T3 T2 255 T3 T3 312 T3 T3

199 T2 T2 256 T1 T1 T2 313 T3

200 T2 T1 257 T1 T2 314 T3

201 T2 T1 258 T1 T2 315 T3

202 T2 T1 259 T2 T2 316

203 260 T2 T1 317

204 T3 T3 T3 261 T2 T1 318

205 T3 T3 262 T2 T1 319

206 T3 T3 263 320 T1 T1

207 T3 T3 264 T3 T3 T3 321 T1

208 T1 T1 T1 265 T3 T3 322 T2 T1

209 T1 T1 266 T2 T3 T3 323 T2

210 T2 T1 T2 267 T3 T3 324 T3 T3

211 T2 T2 268 T2 T2 325 T3

212 T2 T2 269 T2 T2 326 T3

213 T2 T2 270 T2 T2 327 T3

214 T2 T1 271 T2 T2 328 T2

215 T1 272 T1 T1 T1 329 T2

216 T3 T3 T3 273 T1 T1 330 T2

217 T3 T3 274 T1 T1 331 T2

218 T3 T3 275 332

219 T3 T3 276 T3 T3 T3 333

220 T1 277 T3 T3 334

221 T1 278 T3 T3 335

222 T1 279 T3 T3

