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Abstract 
 

Priority-based Functional Reactive Programming (P-FRP) has been recently introduced as a new 

functional programming formalism for real-time systems. P-FRP allows static priority assignment and 

guarantees real-time response by preempting lower priority tasks.  Due to the state-less nature of 

functional programs, preempted tasks in P-FRP are aborted and restarted after the higher priority tasks 

have completed execution. In the classical preemptive model
†
 of real-time systems, it has been 

demonstrated that for fixed priority scheduling, if tasks are schedulable with any priority assignment, they 

are also schedulable by the rate-monotonic (RM) priority assignment, making this priority assignment 

optimal for all task sets in the preemptive model. However, the RM priority assignment is not optimal in 

P-FRP, and it has been unknown if an optimal fixed priority assignment can even exist for such an 

execution model. In this paper, we formally present the priority assignment characteristics of P-FRP and 

show that based on task periods, either a combined utilization and rate-monotonic, or only the rate-

monotonic priority assignments is optimal for a system with two tasks. Using this result, we formally 

prove the limitation of optimal priority assignments in a P-FRP system having more than two tasks where, 

unless arrival periods are integer multiples of each other, no single priority assignment exists which is 

optimal for all task sets. Experimental results using task sets of different sizes are also presented. 
 
 

                                                   
†
 In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority tasks and can resume execution 

from the point they were preempted 
* 
This work is supported in part by U.S. National Science Foundation under Award no. 0720856 
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I. Introduction 

Functional Reactive Programming (FRP) [28] is a declarative programming language for the modeling and 
implementation of reactive systems.  It has been used for a wide range of applications, notably, graphics [9], 

robotics [20], and vision [21].  FRP elegantly captures continuous and discrete aspects of a hybrid system using the 

notions of behavior and event, respectively.  Because this language is developed as an embedded language in 
Haskell [15], it benefits from the wealth of abstractions provided in this language.  Unfortunately, Haskell provides 

no real-time guarantees, and therefore, neither does FRP. 

To address this limitation, resource-bounded variants of FRP were studied [16],[26],[27].  Recently, it was 
shown that a variant called priority-based FRP (P-FRP) [16] combines both the semantic properties for FRP, 

guarantees resource boundedness, and supports the assignment of different priorities to different events.  In P-FRP, 

higher priority events can preempt lower-priority ones.  However, a requirement [24] in the functional 

programming model is that the state of the system cannot be changed, and no function can have side effects. To 
maintain this guarantee of stateless execution, the functional programming paradigm requires the execution of an 

event handler (or task) to be atomic in nature. To comply with this requirement, as well as allow preemption of 

lower priority events, P-FRP implements a transactional model of execution. By using only a copy of the state 
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during event processing and atomically committing these changes at the end of the event handler, a multi-version 

commit model of execution is implemented.  This ensures that handling an event is an “all or nothing” proposition, 
and ensures the atomicity of handling an event.  This is shown to preserve the easily understandable semantics of 

the FRP, and provides a programming model where response times to different events can be tweaked by the 

programmer without ever affecting the semantic soundness of the program.   

Functional programming offers several benefits over the imperative programming style used in C++, Java, Ada 
etc. It allows the programmer to intuitively describe safety critical behaviors of the system, lowering the chance of 

introducing bugs in the design phase, while its stateless nature of execution does not require use of synchronization 

primitives, reducing the complexity of programming. While several variants of functional languages are being used 
in embedded systems, like Erlang [10] for mission critical telecommunication equipment and Atom [13] for 

controlling hybrid vehicles, their use in practical real-time and embedded systems is still quite limited. Apart from a 

steep learning curve, lack of understanding of their space and real-time temporal properties has been cited [12] as 
one of the reasons inhibiting a wider industry adoption of functional languages. 

For fixed-priority scheduling in real-time systems, there are essentially two areas of work; schedulability 

analysis and priority assignment. For a given priority assignment, schedulability analysis determines if tasks in the 

system can complete execution before their respective deadlines. Hence, priority assignment has a direct impact on 
the schedulability of a given task set. A task set which is known to be schedulable, is also guaranteed to be 

schedulable in an optimal priority assignment. Knowledge of an optimal priority assignment for a task set gives 

system designers  valuable insight on schedulable assignments of task priorities in fixed priority systems. An 
optimal priority assignment also serves as a schedulability test, since if a task set is not schedulable in its optimal 

priority assignment it is guaranteed to be not schedulable in any priority assignment.  

In their seminal work, Liu and Layland [18] showed that the rate-monotonic (RM) priority assignment is an 
optimal priority assignment for the classical preemptive model of execution. Furthermore, Leung and Whitehead 

[17] showed that if task deadlines are same as task arrival periods, then the optimality for RM priority assignment is 

valid only when tasks are released at the same time ( synchronously ). However, the optimality of the RM priority 

assignment does not hold true for P-FRP. This is due to the abort nature of preemption, where the actual execution 
time taken by tasks can be higher than their a priori known worst-case execution times. Hence, a relevant question 

that arises for real-time researchers is, can an optimal priority assignment even exist for such an execution model ? 

And under what constraints can such an optimal priority assignment be applicable. 
An answer to this question has benefits to real-time research which extend beyond the functional programming 

model we have studied. Over the past several years, researchers have looked at the abort-restart model as a 

promising method to avoid concurrency control and resource sharing conflicts in the preemptive execution model. 

This has resulted in response-time studies of lock-free semantics [1], preemptable critical sections in Java [19], and 
lately, transactional memory systems [14]. While each of these systems have their unique execution semantics, 

work on priority assignment for P-FRP can be extended to these systems. In future work, we will be using results of 

this work to derive optimal priority assignment in the lock-free execution model.  Previous works on other abort-
restart models [1],[6],[14],[19] and P-FRP [16],[22] have only handled the problem of response time analysis. 

 

A.    Contributions 

This paper presents a formal study on P-FRP, and finds special groups of task sets which have the same optimal 
priority assignment under a synchronous release of tasks. We also analyze those groups of task sets where no single 

priority assignment which is optimal for sets can exist. For such task sets, analyzing all possible combinations of 

task priorities is the only option.    

We first present schedulability (Section 3) and priority assignment (Section 4) characteristics of P-FRP and 
show that between 2 P-FRP tasks, the rate-monotonic priority assignment is optimal only for those task sets where 

one task period is more than or equal to double of the other. When this condition is not met, a single priority 

assignment is optimal only if it has both utilization-monotonic (UM) and rate-monotonic (RM) characteristics. We 
conclude that if a P-FRP task set with 2 tasks is schedulable, it is guaranteed to be also schedulable under a 

utilization or rate-monotonic priority assignment (Section 5). We then look at systems with n tasks (n > 2) and 

show that the RM priority assignment is optimal for only that group of task sets where task periods are integer 
multiples of each other. For other cases, we use the results derived for 2 task systems and prove that no priority 

assignment can exist which is optimal for all task sets (Section 6) . Results generated from simulation of 

experimental task sets validate our theorems, and also show that even though no single priority assignment is 



optimal for n-task sets, several task sets are schedulable under a UM or RM priority assignment (Section 7). We 

conclude by reviewing related work (Section 8) and a reflection on our results (Section 9). 
 

 

II. Basic Concepts and Execution Model  

In this section, we introduce the basic concepts and the notation used to denote these concepts in the rest of the 

paper.  In addition, we review the P-FRP execution model and assumptions made in this study. 

A.    Basic Concepts 

Essential concepts for P-FRP are tasks and their associated priority, their associated time period and the concept 

of arrival rate and their processing time. Included also is the concept of a time interval and task jobs therein.  The 

notation and formal definitions for these concepts as well as a few others used in the paper are as follows: 
 

 Let task set n = {1, 2,…, n} be a set of n periodic tasks. n is also referred to as an n-task set 

 The priority of a k  n is the integer prk. If pri > prk then i has a higher priority than  k. Each task is 
associated with a unique priority number 

 Tk is the arrival time period between two successive jobs of k and rk  = 1 / Tk is the arrival rate of k 

 Ck is the fixed worst-case execution time (WCET) for k  

 tcopy(k) is the time taken to  make a copy of the state before k starts processing (see section 2.2.1) 

 trestore(k)  is the time taken to restore the state after k has completed processing (see section 2.2.1) 

 Pk is the processing time for k. Processing of a task includes execution as well as copy and restore operations. 
Hence, Pk = tcopy(k) + Ck + trestore(k) 

 An absolute time t or time t is the time elapsed since, the real-time system was started. The real-time system is 

assumed to have started at absolute time 0 

 [t1,t2) represents a time interval such that:  t [t1,t2),  t1  t < t2  t1   t2, t1 and t2 are absolute times 

 Rk,m represents the release time of the m
th

 job of k 

 k represents the release offset which is the release time of the first job of k. Or, k   = Rk,1. Hence, Rk,m = k  + 

(m–1)·Tk 

 Dk is the relative deadline of k. If some job of k is released at time Rk,m ,then k should complete processing 

by time Rk,m + Dk, otherwise k will have a deadline miss. For this study, Dk = Tk 

 The utilization ratio of a task k (Uk), is the ratio of its processing time to its arrival time period. Uk = 
k

k

T

P
 

 The total utilization factor (U) of a task set is the sum of ratios of processing time to arrival periods of every 

task. Hence, U = 


n

i i

i

T

P

1

 

 A feasibility interval is the time interval [tH, tH + H) such that if all tasks are schedulable in [tH, tH + H) then the 

tasks will also be schedulable in the time interval [0, Z): Z. H is the length of the feasibility interval and tH 

is its start time 

 Interference on k is the action where the processing of k is interrupted by the release of a higher priority task  

 A rate-monotonic (RM) priority assignment is one where priorities are assigned to tasks based on their arrival 

rates. The task with the highest arrival rate has the highest priority 

 A utilization-monotonic (UM) is one where priorities are assigned to tasks based on their utilization ratios. 

The task with the highest utilization ratio has the highest priority 

 

B.    Execution Model and Assumptions 

For this study, all tasks are assumed to execute in a uniprocessor system and have no precedence constraints. 
When a job of a higher priority task is released, it can immediately preempt a lower priority task, and changes made 

by the lower priority task are rolled back. The lower priority task will be restarted after the higher priority task has 

completed processing. When some task is released, it enters a processing queue which is arranged by priority order 
such that all arriving higher priority tasks are moved to the head of the queue. The length of the queue is bounded 



and no two instances of the same task can be present in the queue at the same time. This requires a task to complete 

processing before the release of its next job. To maintain this requirement, we assume a hard real-time system with 

task deadline equal to the time period between jobs. Hence,  k  n, Dk = Tk. 

A task set is schedulable in some time interval only if no task in the set has a deadline miss. Every job of task k 

is assumed to execute for its worst-case execution time, hence the processing times for all jobs of k (Pk) is 
considered the same.  

Once a task i enters the processing queue, two situations are possible. If a task of lower priority than i is being 

processed, it will be immediately preempted and i will start processing. If a task of higher priority than i is being 

processed, then i will wait in the queue and start processing only after the higher priority task has completed. An 
exception to the immediate preemption is made during copy and restore operations, which is explained in the 

following section. 
 

1)Copy and Restore Operations 

In P-FRP, when a task starts processing it creates a „scratch‟ state, which is a copy of the current state of the 

system. Changes made during the processing of this task are maintained inside such a state. When the task has 

completed, the „scratch‟ state is restored into the final state in an atomic operation. Therefore, during the restoration 
and copy operations the task being processed cannot be preempted by higher priority tasks.  If the task is preempted 

after copy, but before the restore operation, the scratch state is simply discarded. The time to discard the state of an 

aborted task is minimal and has been ignored in this study. The context-switch between tasks only involves a state 
copy operation for the task that will be commencing processing. The time taken for copy (tcopy(k)) and restore 

(trestore(k)) operations of k is part of the processing time of the task, Pk. 
In this study, the values of tcopy(k) and trestore(k) for all tasks are assumed to be the same and equal to a single time 

unit of execution. Hence,  

j,kn, tcopy(k)=trestore(k) and tcopy(j) = tcopy(k),  
tcopy(k), trestore(k) = 1. 

 

This is a reasonable assumption, since copy and restore operations are only a fraction of total processing time. 

Though most of our results can be extended to cases where  tcopy(k) and trestore(k) can be more than unity, we intend 

to address this problem in a separate paper.  
In this work, we look at priority assignment strategies only for a synchronous release of P-FRP tasks. Therefore, 

the release time of the first job of all tasks is considered as time 0. Hence,  

k  n, k = 0. 
 

III. Schedulability Characteristics in P-FRP 

In this section, we present some important schedulability characteristics of P-FRP tasks, based on which we 
define a necessary schedulability test. 

Lemma 3.1. The total utilization factor of a schedulable P-FRP task set will always be less than or equal to 1. 

Proof. Consider n = {1, 2,…, n}. Let us assume U > 1. Let L = LCM(T1 … Tn). We take a simple case where all 
tasks are released at the same time, and there is no interference (hence, no aborts). In the interval [0,L) the total 

processing time from each of the tasks is:  
1

1

T

P
·L + 

2

2

T

P
·L … + 

n

n

T

P
·L. 

Let Z denotes the total processor idle period (when no task of n is being processed) in [0,L) . If Z=0, then there 

is no idle time and some task in n is always being processed. If Z > 0, then no task of n was processed for  total Z 
time in the interval [0,L). Hence,  

1

1

T

P
·L + 

2

2

T

P
·L … + 

n

n

T

P
·L  + Z = L  U + 

L

Z
 = 1. 

Since U > 1 and Z  0 , U + 
L

Z
 >1 ,Therefore the assumption U > 1 is wrong. Hence, U  1.  



Lemma 3.2. If  n is schedulable, then any task present in n will be able to complete processing between any two 

consecutive jobs of every other task present in the set. 

Proof. Assume 2 = {i, j }. Let  pri > prj . If both tasks are released synchronously then i will complete first. Task 

j will start processing when i has completed which is at time 0+Pi. The next job of i will take place at time Ti. The 

time left for processing j is Ti – Pi. If j is unable to complete processing within this time it will be aborted by 2
nd

 

job of i which is released at time Ti. After the 2
nd

 job of I has completed processing, j will get another time period 

of length Ti–Pi to complete. The abort/restart cycle of j will continue for every job of i. If Pj > Ti – Pi, j will never 

be able to complete and the task set will be unschedulable. Hence to be schedulable, j will be able to complete 

processing between successive jobs of i. 

Now, the first job of j is released at time 0 and the second will be released at time Tj. If tasks i and j are 

released synchronously then i will complete first since it has the higher priority. This leaves a maximum of Tj – Pi 

time for j to complete processing. Since j requires a contiguous period of minimum Pj length to complete 
processing, for the task set to be schedulable:  

Pj  Tj – Pi  Pi  Tj - Pj. 

Since Tj – Pj  is the time remaining to execute i between successive jobs of j, i will complete processing between 

successive jobs of j, otherwise j will be aborted by jobs of i and will never be able to complete processing. 

If n = {1, 2 …,n} we can do the above analysis for each unique pair {i, j},i, j  n  to show that if n is 
schedulable, each task in P-FRP task set will be able to complete processing between successive jobs of other tasks 

present in the set.  

 

Definition: Lemmas 3.1 and 3.2 define conditions which will always be satisfied by any schedulable P-FRP task 

set. However, the satisfaction of conditions specified in lemmas 3.1 and 3.2 alone does not guarantee the 
schedulability of the task set, since, the schedulability also depends on the priority assignment and execution 

pattern of tasks. Therefore, these schedulability conditions are necessary but not sufficient. The verification of 

conditions specified in lemmas 3.1 and 3.2 is termed as the P-FRP schedulability test in the rest of this paper.  

 

IV. Characteristics of  Priority Assignment in P-FRP 

In this section, we define characteristics for priority assignment in P-FRP. We show that the rate-monotonic 

priority assignment is not optimal for P-FRP, and prove that a task set schedulable in P-FRP will always be 

schedulable in the preemptive model. We also compute the costs induced due to interference and abort in P-FRP, 
and introduce the concept of intermediate release points (IRPs), which characterize the release time of the higher 

priority tasks. These IRPs are classified into abort and delay types, and we prove that only abort IRP affect the 

schedulability in P-FRP. Two important observations are defined while important results are derived in theorems  
4.11 and 4.13. Relevant definitions and examples are also given at various places in this section. 

 From this section onwards, any general P-FRP task set n is assumed to satisfy the P-FRP schedulability test. 
The variable L represents the least-common-multiple (LCM) of the task periods.  The feasibility interval for a 

synchronous release in P-FRP, as given in [3] is [0,L). 

 
Lemma 4.1. In P-FRP, the rate-monotonic priority assignment is not an optimal priority assignment with 

synchronous release of tasks. 

 

Proof. If we can give a P-FRP task set which is not schedulable using the RM priority assignment, but is 
schedulable by a priority assignment which is not RM, it is sufficient to prove this lemma. Consider the following 

task set: 

Task pr P T U 

1 1 7 15 0.46 

2 2 3 12 0.25 

 

 



 

The priority assignment is RM-based with 2 having the highest arrival rate hence, the highest priority. In this 

scheduling policy, the first job of 1 is unable to complete processing before its second job at time 45 (Figure 1(a)). 
If the priority order is changed, as shown below: 

 

Task pr P T U 

1 2 7 15 0.46 

2 1 3 12 0.25 

 
Then jobs of all tasks will be able to complete processing in the  feasibility interval [0,60) of this task set (Figure 

1(b)).  

 

Lemma 4.2. If a task set is schedulable for some priority assignment in the classical preemptive model, then it is 

not guaranteed to be schedulable for the same priority assignment in P-FRP. 
 

Proof. If we can show that a task set is unschedulable for some priority assignment in P-FRP, but schedulable in 

the classical model it will be sufficient to prove this lemma. 
 

Consider the task set used in lemma 4.1: 

 

Task pr P T 

1 1 7 15 

2 2 3 12 

 

This priority assignment is rate-monotonic and schedulable in the classical model. As we have already shown, this 

priority assignment is not schedulable in P-FRP.  

Lemma 4.3. If a task set is schedulable for some priority assignment in P-FRP, then it will also be schedulable for 

the same priority assignment in the classical preemptive model. 

Proof. The response time of the highest priority task in P-FRP and the classical model will be the same. Higher 

priority tasks can cause interference in the processing of lower priority tasks. In P-FRP, this interference leads to 

abort which puts another cost on the processing time of lower priority tasks. There are two possible situations: 
 

No interference from higher priority tasks: The difference in response time between P-FRP and classical model is 

created by abort of lower priority tasks, which is caused by interference from tasks of higher priority. Hence, if 
there is no interference, there will be no aborts and response time for all tasks in P-FRP and the classical model will 

be same. Hence, if the task set is schedulable in P-FRP, it will also be schedulable in the classical model. 

 

 

 

Figure 1(a): Deadline miss for the 2
nd

 job of 1 under RM priority assignment. T1, T2, T3 represent tasks 1, 2 , 3 respectively 

Figure 1(b): Task set is schedulable in the feasibility interval of [0,60) under a non-RM priority assignment 



Interference from higher priority tasks: Consider, 2 = {i, j } and  pri > prj: 

Let j be released at time ta and execute for h time units: tcopy(j)  h  tcopy(j) + Cj, after which it is aborted by the 

release of a job of i. The selected range of h allows i to be released after the copy, but before the restore 

operations of   j. j will re-start processing after i has completed at time:  ta+h+Pi. j will take another Pj time units 

to complete processing and will finish at time ta+h+Pi+Pj. Since j was released at time ta, its response time is: 
h+Pi+Pj.  

If tasks are processed in the preemptive model, the response time of j will be h+Pi+Pj–h = Pi+Pj. Hence, after 

interference from higher priority tasks, the response time of lower priority tasks in P-FRP will always be more than 
the response time in the preemptive model. Hence, if a task is schedulable in P-FRP, it will also be schedulable in 

the classical model.  
 

Definition. In the preemptive model of execution, if a higher priority task i interferes with the execution of a lower 

priority task j, then i will preempt j. The response time of j will be delayed by time taken to process i, which is 
Pi. This is referred to as the interference cost. In the P-FRP execution model, preempted tasks are also aborted. 

The amount of time spent in  aborted processing is called the abort cost. Hence, in P-FRP, interference induces 

both an interference and abort cost on the response time of a preempted lower priority task.  
 

Lemma 4.4(a). For two tasks i and j, if Ti < Tj, then in the time interval  [0,L) there will be at least one job of i 

that is released strictly between any two successive jobs of j. 
 

Proof. The time difference between the releases of any two jobs of j is Tj.  

Number of jobs of i between any two jobs of j = 








i

j

T

T
. Since, Tj > Ti at least one job of i will be released between 

any two jobs of j.  
 

Example: In Figure 2, T2 < T1. The 2
nd 

job of 2 is released between the 1
st
 and 2

nd
 jobs of 1, 3

rd
 job of 2 is released 

between 2
nd

 and 3
rd

 jobs of 1 and so on. 
 

Lemma 4.4(b). For two tasks i and j, if Ti < Tj . In the time interval [0,L), with the exception of the 1
st
 and last 

jobs, every job of j will be released between two successive jobs of i. 

 

Proof.  Let L = p·Ti = q·Tj, p > q. 
 

Jobs of j will be released at times: 0, Tj, 2·Tj, 3·Tj …, q·Tj. 

Jobs of i will be released at times: 0, Ti, 2·Ti, 3·Ti …, p·Tj. 
 

Since, Tj  f·Ti ,  Ti < Tj < 2·Ti 

Similarly, 2·Ti < 2·Tj < 3·Ti or 3·Ti < 2·Tj < 4·Ti 

 
It is easy to see, that for any m

th
 job of Tj: 

 a·Ti < (m–1)·Tj < (a+1)·Ti, 0 < a < p  and 1 < m  q.   
 

Example: In Figure 2, T2 < T1. The 2
nd 

job of 1 is released between the 2
nd

 and 3
rd

 job of 2, 3
rd

 job of 1 is released 

between 3
rd

 and 4
th
 jobs of 2 and so on. 

 

Definition. A relative time instance where the p
th
 job of a higher priority task i, is released (time Ri,p) between job 

m (time Rj,m) and job m+1 (time Rj,m+1) of a lower priority j is termed as an intermediate release point (IRP), 

provided Ri,p-1  Rj,m. The length of the IRP is relative to the release time of the m
th
 job of j. If multiple jobs of 

higher priority task i are released in the interval [Rj,m, Rj,m+1), then only the first job of i that is released in this 

interval will be considered as an IRP. The intermediate release point set IRP(i,j), contains the length of all those 

IRPs where i is released between jobs of j, for the priority assignment pri > prj in the time interval  [0,L). |IRP(i,j)| 

represents the number of elements in the set IRP(i,j). The value of an IRP refers to its length. Since, Ri,p-1  Rj,m an 



IRP will always have non-zero values. Figure 2 shows the IRPs for different priority assignments for our sample 2-

task set. 

 

Lemma 4.5. For two tasks i and j, the maximum value of intermediate release point,  for any priority assignment 
cannot exceed the value of the lowest arrival period. Or: 

if, h IRP(i,j) or h IRP(j,i)  then h < minimum(Ti, Tj). 

 

Proof. Let min(Ti, Tj) = Ti and hIRP(i,j). 

In lemma 4.4(a), we have seen that at least one job of i is released between any two jobs of j.  However only 

the first job is counted in the set IRP (i,j) as per the IRP definition.  

Let the p
th
  job of i be released at time ta between the m

th
 and (m+1)

th
 jobs of j, creating an IRP of length h. 

Therefore, the m
th
 job of  j is released at time ta– h. If h  > Ti, then the (p –1)

th
 job of i will be released after m

th
 job 

and the (p–1)
th
 job will be the IRP, making h < Ti. If h = Ti then it means that both i and j are released at the same 

time in which case the p
th

 job of i is not an IRP as per definition.  

Hence, if hIRP (i,j) then h < Ti. 
 

Now, let hIRP(j,i). In lemma 4.4(b), we have shown that a job of j will always be released between successive 

jobs of i. Assume that the p
th
 job of i is released at time ta, and the m

th
 job of j is released at time ta + h. If  h > Ti, 

then the m
th

 job of j will be an IRP for the (p+1)
th
 job of i. If h=Ti, then the m

th
 job of j is not an IRP as per 

definition. If  h < Ti then the m
th

 job of j will be an IRP for the p
th
 job of i 

 

Hence, if hIRP (i,j) then h < Ti.   

 

Lemma 4.6. For two tasks i and j, if pri > prj ,and an intermediate release point lies in the range, [, tcopy(j)+Cj] 

or [ , Pj – trestore (j)] ,  > 0 , then i will induce an abort cost on the response time of j.  

 

Proof. Assume some job of j be released at time ta, and a job of i is released at time ta+h: h[, tcopy(j)+Cj],  > 0. 

Since h < Pj, hIRP(i,j). Even if i is released at time :  < tcopy(j), it will induce a minimum abort cost of tcopy(j) on 

j. If h > tcopy(j)+Cj  then j will be in the restoration phase and cannot be aborted by i. Hence, every h:hIRP(i,j) 

and h[, tcopy(j)+Cj] will induce an abort cost on the response time of j.  

Since, tcopy(j)+Cj  = Pj – trestore (j),  h[, Pj – trestore (j)] will also induce abort cost on j.   
 

Definition. An IRP is an abort intermediate release point (AIRP) if it adds abort costs to the response time of a 

lower priority task. The abort intermediate release point set AIRP(i,j) of two tasks i and j, contains only those 

IRPs in the time interval  [0,L), with the priority assignment pri > prj, which can induce an abort cost on the 

response time of j. Or, 

hAIRP (i,j) , hIRP (i,j)  h[, tcopy(j)+Cj],  > 0. 

 
Based on the above definition it is clear that, 

AIRP(i,j)  IRP (i,j). 
 

The maximum abort intermediate release point (maxAIRP(i,j)) is the maximum value in the set AIRP(i,j): 

  maxAIRP(i,j) = maximum {AIRP(i,j)}. 
 

 
Figure 2: Intermediate release points in the task set example used in lemma 4.1. In this example  IRP(1,2) = { 3,6,9 } represented by IRP-1, IRP-2 and 

IRP-3.  IRP(2,1) = { 9,6,3 } represented by IRP-4, IRP-5 and IRP-6. When pr2 > pr1,  IRP-5 and IRP-6 can abort 1, hence AIRP(2,1) = {3,6}, and 

maxAIRP(2,1) =6. When pr1 > pr2, IRP-2 and IRP-5 cause delay in the start of 2, hence DIRP(1,2) = {6,9} while AIRP(1,2) =  and maxAIRP(1,2) = 0 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 



From lemma 4.6, the upper bound on maxAIRP(i,j) is easily derived to be:  tcopy(j)+Cj.  

 

Example: In Figure 2, AIRP(2,1) = {3,6} and maxAIRP(i,j) = 6, while AIRP(1,2) = . 

 

Lemma 4.7. For two tasks i and j, if  = Tj  – Pj – Pi, then any intermediate release point in IRP(i,j), that lies in 

the range [Pj++1, Tj] will cause a delay in the start of some job of j. 

 

Proof. Let the m
th
 job of j be released at time ta. Assume |IRP (i,j)| > 0 and pri > prj. 

 

For some hIRP(i,j), let the p
th

 job of i be released at time ta+h and let i start processing at time ta+h+,   0.  

accounts for any blocking i will experience if it is released during the state copy or restoration phase of j.  i will 

complete processing at time ta+h++Pi. 

 

The p
th
 job of i will delay the start of the (m+1)

th
 job of j only if: 

ta+h++Pi  > ta + Tj  h++Pi  > Tj       … (4.7.1) 

 

from the definition of :  Pi + Pj +   = Tj, 
substituting this value of Tj in eq. 4.7.1 : 

 

  h+ > Pj +             … (4.7.2) 

if, h   tcopy(j)+Cj then  = 0 and h+ < Pj +   
 

hence, to satisfy eq. (4.7.2), h > tcopy(j)+Cj. 

 
Let us take a look when: 

 tcopy(j)+Cj < h  tcopy(j)+Cj +trestore(j) 
 

for every, h= tcopy(j)+Cj + , 

 = trestore(j) – ,  > 0 
 

Therefore, h+ = tcopy(j)+Cj + + trestore(j) –  = Pj. 
 

In this case, eq. (4.7.2) will not be satisfied. To satisfy eq. (4.7.2):  

h > tcopy(j)+Cj + trestore(j)   = 0. 

 

Since,  = 0, in eq. (4.7.2): h > Pj + . 
 

Or, the minimum possible value of h = Pj++1. 
 

If h > Tj, then i will be released after the (m+1)
th
 job of j has started processing. In this case, i will not cause a 

delay in the start of j, but can cause it to abort. Therefore, the maximum possible value of h which can delay the 

start of (m+1)
th
 job of j is Tj. Hence, if h[Pj++1, Tj], the release of a job of i at time ta +  h is  guaranteed to 

delay the execution of j.  

 
Definition. An IRP is a delay intermediate release point (DIRP) if it causes a delay in the start time of the lower 

priority task. The delay intermediate release point set DIRP(i,j) contains only those IRPs of i in the time interval  

[0,L) and the priority assignment pri > prj, which can delay the start time of j. Or, 
 

h DIRP (i,j) : hIRP (i,j)  h[Pj++1, Tj], =Tj –Pj –Pi 
Based on the above definition it is clear that, 

 DIRP(i,j)  IRP(i,j).   
 



Example: In Figure 2, DIRP(1,2) = {6,9}, while DIRP(2,1) = . 

 

Lemma 4.8. The sets  AIRP(i,j) and  DIRP(i,j) are mutually exclusive.  

 

Proof. For, any h1AIRP(i,j), h1 [, tcopy(j)+Cj],  > 0 

For, any h2DIRP(i,j), h2 [Pj++1, Tj], =Tj –Pj –Pi   
 

Since, tcopy(j)+Cj < Pj  

if , h [, tcopy(j)+Cj] then h[Pj++1, Tj].  

 
Or , 

h1AIRP(i,j), h1DIRP(i,j) and, 

h2DIRP(i,j), h2AIRP(i,j). 
 

Therefore,  DIRP(i,j)  AIRP(i,j)= .    

Theorem 4.9. Delay intermediate release points do not affect the schedulability of a task set. Or, if  2={i, j} is 

schedulable when DIRP(i,j)=0, then it is guaranteed to be schedulable when DIRP(i,j)  0.  

Proof. Let h DIRP(i,j)  h[Pj++1, Tj] and the m
th

 job of j is released at absolute time ta. The m
th

 job of j will 

complete processing at time ta + Pj. Let the p
th
 job of i be released at time  ta+h such that is causes a delay of time  

in the start of the (m+1)
th

 job of j. Assume the (m+1)
th

 job of j is unable to complete processing before the release 
of its (m+2)

th
 job. 

The p
th

 job of i will complete processing by time ta+h+Pi. Hence,  = ta+h+Pi – (ta+Tj). Since, h[Pj++1, Tj] 
the maximum possible value of h=Tj, in which case: 

 = ta+Tj+Pi – (ta+Tj) = Pi.  

This is the upper bound of .  
 

After the p
th
 job of i has finished processing, the (m+1)

th
 job of j will start and complete processing at time 

ta+Tj++Pj. The (p+1)
th
 job of i will not be released till time Ri,p+1 = ta+h+Ti.  

 

Since the basic schedulability test is satisfied, we know: 

  Ti – Pi  Pj  (ta+h) – (ta+h) + Ti – Pi  Pj  

 Ri,p+1 – (ta+h+Pi)  Pj.  
 

No job of i will be released in the interval [ta+h+Pi, Ri,p+1) therefore, the (m+1)
th
 job of j will not experience any 

interference from i in this interval. To be unschedulable, the  (m+2)
th

 job of j should be released before the (m+1)
th

 
job has completed processing. Or, 

ta + 2·Tj  < ta+Tj++Pj  

   > Tj – Pj               … (4.9.1) 
 

If eq. (4.9.1) is satisfied then the (m+1)
th

 job of j will be unschedulable. However, from the basic schedulability 

test we know: Pi  Tj – Pj. Since the upper bound on   is Pi, 

    Tj – Pj. 
 

Clearly, eq. (4.9.1) can never be satisfied implying that a value of   that can make j unschedulable does not exist. 
 

Hence, any hDIRP(i,j) will not affect the schedulability of 2.  
 

Lemma 4.10. For two tasks i and j, if an IRP of length h is present in the set IRP(i,j),  then an IRP of the same 

length is also present in the set IRP(j,i). Or,  

If,  hIRP(i,j) then hIRP(j,i). 

 



Proof. Consider 2={i, j}:pri > prj and Ti < Tj and hIRP(i,j). If two jobs of j are released at times 0 and ta,  then 

two jobs of j will also be released at times L – ta and L.  
 

Since, hIRP (i,j),  jobs of i will be released between jobs of j, at times: 
0, ta+h–Ti, ta+h,…, L – (ta+h) , L – (ta+h–Ti), L  

 

From lemma 4.4, h < Ti; therefore, 
L – (ta+ h) <  L – ta  < L – (ta+ h – Ti). 

 

Hence, when prj > pri, the job of j releasing at time L – ta will be an IRP between jobs of i which are released at 
times L – (ta+h) and L – (ta+h–Ti). The length of this IRP will be:  

L –  ta – (L – (ta+h)) = h. 
 

Therefore,  hIRP(j,i). 
 

Similarly for Ti > Tj , if hIRP(j,i): 
L – (ta+h) < L – ta  < L – (ta+h–Tj). 

 

Hence, when pri > prj, the job of i that is released at time L – ta will be an IRP between the jobs of j which are 
released at  times L – (ta+h) and L – (ta+h–Tj). 

 Therefore, hIRP(j,i).   
 

Similarly we can show that for any hIRP(i,j), hIRP(j,i).  
 

Example: In Figure 2, IRP-1 between jobs of 2 is of length 3. IRP-6 between jobs of 1 is also of length 3. It is 

clearly seen that for every IRP present between jobs of 2, IRP‟s of the same length are present between jobs of 1. 
 

Theorem 4.11. For two tasks i and j, the IRP set for priority assignment pri > prj is same as the IRP set for 

priority assignment prj > pri. Or, IRP(i,j) = IRP(j,i).  
 

Proof. From theorem 4.10 we know that if some hIRP (i,j) , then hIRP(j,i). Similarly, it is easy to show that for 

any hIRP(j,i), then hIRP (i,j). Therefore, we have, 
 

h1IRP(i,j), h1IRP(j,i) and, 

h2IRP(i,j), h2IRP(j,i) 

     IRP(i,j)= IRP(j,i).   
 

Example: In Figure 2, IRP(1,2) = {3,6,9} while IRP(2,1) = {9,6,3}. Clearly, IRP(1,2) = IRP(2,1).  
 

Observation 4.12(a). For two tasks i and j, if Ti < Tj < 2·Ti  and gcd(Ti, Tj) =1, then  IRP(i,j) = {1,2…, Ti–1}. 
 

Observation 4.12(b). For two tasks i and j, if Ti < Tj < 2·Ti  and gcd(Ti, Tj) =m: m >1,  then IRP(i,j) = 
{m,2·m…,Ti – m}. 

 
Example: In our sample task set, Ti = 12 and Tj = 15. gcd(12,15) = 3. Based on observation 4.12(b): 

 IRP(i,j) = {3, 2·3,(12 – 3)} = {3,6,9}. These IRP‟s are represented by IRP-1, IRP-2 and IRP-3 in figure 2. 
 

Theorem 4.13. For two tasks i and j, if Ti < Tj < 2·Ti: Tj = Ti + y and Pi < Pj: Pi / Ti > Pj / Tj ,then the difference 
between maximum abort IRPs for  priority assignments pri > prj and prj > pri should be less than or equal to y: Or,  

maxAIRP(i,j) – maxAIRP(j,i)  y.  
 

Proof. Let Pj = Pi + x, x  1.  
Since,  Pi / Ti > (Pi + x) / (Ti + y)  



   x < y·Pi /Ti  x < y. 
 

Let us consider two cases based on the greatest common divisor (gcd) of Ti and Tj: 

 
Case 1: gcd(Ti, Tj) = 1 

From observation 4.12(a), the following IRPs will be present: 1, 2 …. , Ti – 1. 

Since IRPs for this case are in increments of 1, it is guaranteed that there will an IRP of length = Pi – trestore(i). 

As per lemma 4.6, an IRP with this value is the maximum IRP that can abort i. 

 
Therefore,    maxAIRP(j,i) = Pi – trestore(i). 
 

The maximum possible value of maxAIRP(i,j) is: Pj – trestore(j). 
Therefore, 

maxAIRP(i,j) – maxAIRP(j,i)  Pj – trestore(j) – Pi + trestore(i) 
 

since, trestore(j) = trestore(i) 

 maxAIRP(i,j) – maxAIRP(j,i)   Pj – Pi  

 maxAIRP(i,j) – maxAIRP(j,i)  x.  
 

Since, x < y 
 maxAIRP(i,j) – maxAIRP(j,i) < y. 

 

Case 2:  gcd(Ti, Tj)=m: m > 1 

As per observation 4.12(b) the following IRP‟s will be present IRP(i,j) = {m,2·m…,Ti–m}. 

 
Let, Ti =   a·m and Tj = b·m: b > a. We will look at two different cases. 

 

Case 2.1: Pi  m 

Since, the P-FRP schedulability test is satisfied, we know: Ti – Pi  Pj. 
 

Since,  Pi  m  Ti – Pi  Ti – m 

   Pj  Ti – m  (since, Ti – Pi  Pj) 

   Pj   m·(a–1)        … (4.13.1) 
 

length of maximum possible IRP = Ti – m = (a–1)·m. 

 
Even if Pj is at its highest possible value of m·(a–1) (from eq. 4.13.1), the maximum possible IRP will not be able 

to abort j. Hence, the maximum value of IRP which can abort j when Pj = m·(a–1), is the next lower IRP:  
m·(a–1) – m = m·(a–2). 

 

Therefore, maximum possible value of maxAIRP(i,j)=m·(a–2). 
Minimum possible value of maxAIRP(j,i) = 0 (when, Pi = m). 

 

The term maxAIRP(i,j) – maxAIRP(j,i) is maximized when maxAIRP(i, j) has its highest possible value and maxAIRP(j, i) 
its lowest. Or, 

maxAIRP(i, j) – maxAIRP(j, i) = m·(a–2) – 0 =  m·(a–2). 

 
Now, x = Pj – Pi. Using values of Pj =m·(a–1) and Pi = m which maximize the expression maxAIRP(i, j) – maxAIRP(j, 

i), we get: 

            x = m·(a–1) – m = m·(a–2). 

 
Therefore, maxAIRP(i, j) – maxAIRP(j, i) = x. 

 



Since,  x < y 

 maxAIRP(i, j) – maxAIRP(j, i) < y. 
 

Case 2.2: Pi < m 

In this case, i cannot be aborted by any job of j. Hence, 
maxAIRP(j,i) = 0. 

 

Let Pi = , 2 <  < m. 

Since, Pi / Ti > Pj / Tj       / a·m > Pj /b·m 

   Pj < ·b/ a.          … (4.13.2) 
 

Case 2.2.1: b/a  b – a 
We know,  maxAIRP(i,j) < Pj 

 maxAIRP(i,j) < ·b/ a  (from eq. 4.13.2). 

 
Therefore,  

maxAIRP(i,j) – maxAIRP(j,i) < ·b/a (since, maxAIRP(j,i)  = 0) 

since,  < m, 
maxAIRP(i,j) – maxAIRP(j,i) < m·b/a 

since, b/a  b – a  

 m·b/a  m·b – m·a 

 maxAIRP(i,j) – maxAIRP(j,i) <  m·b – m·a 

 maxAIRP(i,j) – maxAIRP(j,i) < y. 

 
Case 2.2.2: b/a > b – a 

Since, Tj < 2·Ti  b < 2·a   b/a < 2. 
 

Being subject to the restriction b/a < 2, the condition, b/a > b – a will never be satisfied for any b > a+1. Hence, 

this condition is only valid when b = a+1. 
 

Since, y = Tj – Ti  

    y = b·m – a·m = (a+1)·m – a·m = m. 

As, Pi =  and  x < y·Pi / Ti 

    x < m·/a·m 

also, Pj = Pi +   and x < /a 

   Pj =  + x  Pj <  + /a. 
 

The value of Pj will be maximized when a = 1. Or, Pj < 2·. Since,  < m     Pj < 2·m. 
 

Hence, the only IRP in IRP(i,j) that can abort j when Pj is maximum, is the IRP of length m. Or, for any value of Pj 

: maxAIRP(i,j)  m. 
 

Therefore, 

maxAIRP(i,j) – maxAIRP(j,i)  m – 0 

   maxAIRP(i,j) – maxAIRP(j,i)  m. 
Since, y = m,  

maxAIRP(i,j) – maxAIRP(j,i)  y.   

 
This theorem identifies an important property when : 

Ti < Tj < 2·Ti and Pi < Pj: Pi / Ti > Pj / Tj, 

and is used in the derivation of optimal priority assignment for 2-task sets in theorem 5.6(a). 

 



V. Priority Assignment in 2-Task Sets 

In this section, we evaluate priority assignment strategies for a P-FRP task set having 2 tasks. We show that the 

RM priority assignment is always optimal when one arrival period is more than double of the other. For task sets 
where arrival periods do not share this relationship, we derive conditions which determine schedulability under 

different priority assignments. Finally, we show that if a general 2-task P-FRP task set is known to be schedulable, 

then it will also be schedulable in either the UM or RM priority assignments.  

Theorem 5.1. For 2={i, j}, if Tj = f·Ti: fZ+; f  2, then 2 is  schedulable under any priority assignment. 

Proof.   Since, the P-FRP schedulability test is satisfied, we know: 

 Pi + Pj  Ti    Pi + Pj  Tj / 2. 
  

In this case, L= f·Ti, therefore in the interval [0,L) jobs of task j will be released at times 0 and L, while jobs of i 

will be released at 0, Ti, 2·Ti… L. Only the 1
st
 job of  j has to be processed in the interval [0,L). Let us take a look 

at two possible cases. 

 
Case 1: pri > prj 

The first job of i will start and complete processing by time Pi, followed by the 1
st
 job of j. Since, as per the P-

FRP schedulability test Pi + Pj  Ti, the 1
st
 job of j will be processed before the release of the 2

nd
 job of i. 

Hence, 2 will be schedulable.  
 

Case 2: prj > pri 

The first job of j will start and complete processing by time Pj, followed by the 1
st
 job of i. Since,  Pi + Pj  

Ti, the 1
st
 job of i will be processed before the release of its 2

nd
 job. Hence, 2 will be schedulable. 

 

Clearly, all task sets 2={i, j} where Tj = f·Ti: fZ+; f  2 will be schedulable under any priority assignment.   

 

Theorem 5.2(a). For 2={i, j}, if Tj > 2·Ti , and Tj  f·Ti: f
+
; f > 2 then 2 will always be schedulable under the 

priority assignment pri > prj. 

 

Proof. Let the m
th
 job of  j be released at time ta, when i is not running.  At time ta+h:  tcopy(j)  h  tcopy(j) +Cj, j is 

aborted by the release of the  p
th
 job of i. i will finish processing at time ta+h+Pi, after which j will re-start. The 

(p+1)
th
 job of i will be released at time ta+h+Ti, while the (m+1)

th
 job of j is released at time ta + Tj. 

Since, Pj < Ti and h < Pj 

   h < Ti 

also, Ti + Ti < Tj, therefore,  
 h+Ti < Tj, or ta+h+Ti < ta + Tj. 

 

Hence, the (p+1)
th
 job of i will be released before the (m+1)

th
 job of j. From the P-FRP schedulability test we 

know: 

 Pi + Pj  Ti. 
 

Both the p
th
  job of i which starts processing at time ta+h, and the m

th 
job of j which re-starts processing at time 

ta+h+Pi, will complete before the release of the (p+1)
th
 job of i. Hence, even if i induces a maximum abort of 

tcopy(j) +Cj on i, j will be schedulable. 

If h > tcopy(j) +Cj, then j will complete processing before the start of p
th
 job of i, and both tasks will be 

schedulable. Hence, 2 will always be schedulable if Tj > 2·Ti and pri > prj.    

 

Theorem 5.2(b). For 2={i, j}, if Tj > 2·Ti and Tj  f·Ti: f
+
; f > 2 ,then the task set will be schedulable for the 

priority assignment prj > pri only if, Ti  Pi + Pj + maxAIRP(j,i). 

 

Proof. Since, the P-FRP schedulability test is satisfied we know: 

    Ti  Pi + Pj. 



 

Assume that the p
th

 job of  i is released at time ta, when j is not running.  At time ta+h:  tcopy(i)  h  maxAIRP(j,i), i 

is aborted by the m
th
 job of j. j will finish processing at time  ta+h+Pj after which i will re-start processing and 

will complete at time ta+h+Pj+Pi.  

The (m+1)
th
 job of j is released at time ta+h+Tj and the (p+1)

th
 job of i is released at time ta +Ti. Since, Ti  Tj/2  

    ta+h+Tj > ta +Ti.  
 

Therefore, the (p+1)
th
 job of i will be released before the (m+1)

th
 job of j. To be schedulable the p

th
 job of i will 

have to complete processing before the release of its (p+1)
th
 job. Or  

ta+h+Pi+Pj  ta+ Ti.  
 
The maximum value of h in this case is: h = maxAIRP(j,i).  

 

Hence, 

 ta+ maxAIRP(j,i) +Pj+Pi  ta+Ti  

   Ti  Pi + Pj + maxAIRP(j,i).  
 

If the above inequality is satisfied then 2 is guaranteed to be schedulable.  

 

Corollary 5.2.1. For 2={i, j}, if Tj > 2·Ti, then the task set is guaranteed to be schedulable for the priority 

assignment prj > pri  ,only if,  Ti  Pi + Pj + tcopy(i)+Ci. 
 

Proof. From theorem 5.2 we know that for 2 to be schedulable:  

Ti  Pi + Pj + maxAIRP(j,i). 
The maximum possible value of maxAIRP(j,i) is tcopy(i)+Cj. 
Hence, if 

  Ti  Pi + Pj + tcopy(i) + Ci, 

then 2 is guaranteed to be always schedulable.  

 

Theorem 5.3. For 2={i, j}, if Tj > 2·Ti ,then the rate-monotonic priority assignment is optimal.  

 

Proof. The rate-monotonic priority assignment is pri > prj. As shown in theorem 5.2(a), 2 will always be 

schedulable in this priority assignment. Corollary 5.2.1 shows that 2 is schedulable in the non-RM priority 
assignment prj > pri, only if certain conditions are met. 

Since 2 is schedulable in the RM priority assignment pri > prj without pre-conditions, RM is the optimal 

priority assignment.   

 

Theorem 5.4. For 2={i, j}, if Ti < Tj < 2·Ti, then the task set will only be schedulable in the priority assignment 

pri > prj  if, Tj  Pi + Pj + maxAIRP(i,j). 

Proof. Since, the P-FRP schedulability test is satisfied we know: 

  Ti – Pi  Pj and Tj – Pj  Pi. 
 

Let the m
th

 job of  j be released at time ta when i is not running.  At time ta+h:  tcopy(j)  h  maxAIRP(i,j), j is 

aborted by the p
th

 job of i. i will finish at time ta+h+Pi after which j will re-start processing and will complete at 

time ta+h+Pi+Pj. The (p+1)
th
 job of i will be released at time ta+h+Ti.  

 
Since, 

       Ti – Pi  Pj  

      ta+h+Ti  ta+h+Pi+Pj. 
 



Hence, the p
th
 job of i and the m

th
 job of j will complete before the (p+1)

th
 job of i is released. Now the (m+1)

th
 

job of  j is released at time ta+Tj. If this (m+1)
th
 job is released before the m

th
 job has completed processing, j will 

have a deadline miss. Or, 

 

if, ta + Tj <  ta+h+Pi+Pj , then j is unschedulable. 
 

Therefore, for j to be schedulable: ta + Tj   ta+h+Pi+Pj. 

   Tj   h+Pi+Pj. 
 

The upper bound of h is the maximum possible abort cost that can be induced on j. Hence,  
h =  maxAIRP(i,j). 

 

Therefore, Tj  Pi + Pj + maxAIRP(i,j).   

 

Corollary 5.4.1. For 2={i, j}, if Ti < Tj < 2·Ti then the task set is guaranteed to be schedulable in the priority assignment pri 

> prj, only if: Tj  Pi + Pj + tcopy(j)+Cj. 

Proof. From theorem 5.3 we know that for 2 to be schedulable: 

  Ti  Pi + Pj + maxAIRP(i,j). 
The maximum possible value of maxAIRP(j,i) is tcopy(j)+Cj. 
 

Hence, if, 

  Ti  Pi + Pj + tcopy(j) + Cj, 

then 2 is guaranteed to be always schedulable under pri > prj.   
 

Theorem 5.5. For 2={i, j}, if Ti < Tj < 2·Ti, then the task set will be schedulable in the priority assignment prj > 

pri, only if: Ti  Pi + Pj + maxAIRP(j,i). 

 

Proof. Since, the P-FRP schedulability test is satisfied we know: 

  Ti – Pi  Pj and Tj – Pj  Pi. 
 

Assume that the p
th

 job of  i is released at time ta, when j is not running.  At time ta+h:  tcopy(i)  h  maxAIRP(j,i), i 

is aborted by the m
th
 job of j. j will finish processing at time ta+h+Pj after which i will re-start and complete at 

time ta+h+Pj+Pi. The (m+1)
th
 job of j will be released at time ta+h+Tj. Since, Tj – Pj  Pi: 

 

ta+h+Tj  ta+h+Pj+Pi. 
 

Hence, the m
th
 job of j and the p

th
 job of i will complete before the (m+1)

th
 job of j is released. Now the (p+1)

th
 

job of  i is released at time ta+Ti. If this (p+1)
th
 job is released before the p

th
 job has completed processing i will 

have a deadline miss. Or, 
 

If, ta + Ti <  ta+h+Pj+Pi , i is unschedulable. 
 

Therefore, to be schedulable:   ta + Ti   ta+h+Pj+Pi 
 

The maximum value of h is the maximum abort cost on i. Hence,  h =  maxAIRP(j,i). Therefore, for guaranteed 

schedulability of 2 in prj > pri: 

Ti  Pi + Pj + maxAIRP(j,i).   

 

Corollary 5.5.1. For 2={i, j}, if Ti < Tj < 2·Ti then the task set is guaranteed to be always schedulable in the 

priority assignment prj > pri, only if: Ti  Pi + Pj + tcopy(i)+Cj. 
 



Proof. From theorem 5.5, we know that for 2 to be schedulable:  

Ti  Pi + Pj + maxAIRP(i,j). 
 

The maximum possible value of maxAIRP(j,i) is tcopy(j)+Cj. 

Hence, if, 

Ti  Pi + Pj + tcopy(j)+Cj, 

then 2 is guaranteed to be always schedulable.   
 

Theorem 5.6(a). Let 2={i, j}, Ti < Tj < 2·Ti and Pi and Pj have values such that Pi / Ti > Pj / Tj. If 2 is 

schedulable in the priority assignment prj > pri, it is guaranteed to be schedulable in the priority assignment pri > 
prj.  

 

Proof. Let us look at all possible cases based on the relation between processing times of tasks i and j: 
 

Case 1: Pi  Pj 

Since, Ti < Tj  Pi / Ti > Pj / Tj. 

Let  2 be schedulable under: prj > pri. 
 

From theorem 5.5 this implies: 

 Ti  Pi + Pj + maxAIRP(j,i)                … (5.6.1) 

 

Since, Pi  Pj and trestore(j) = trestore (i) and tcopy(i) = tcopy(j) 

  maxAIRP(i,j)   tcopy(j)+Cj  <  tcopy(i)+Ci. 

 
From theorem 4.11 we know, 

 IRP(i,j)= IRP(j,i)  

  maxAIRP(i,j) AIRP(j,i) 

   maxAIRP(i,j)   maxAIRP(j,i).   
 

Therefore, in eq. 5.6.1, 

 Ti  Pi + Pj + maxAIRP(i,j) 
Since, Tj > Ti, 

 Tj > Pi + Pj + maxAIRP(i,j)       …(5.6.2) 
 

If eq. (5.6.2) is satisfied, then as per theorem 5.4, 2 will be schedulable under pri > prj . 

Hence, if 2 is schedulable in prj > pri, it is guaranteed to be schedulable in pri > prj.  
 

Case 2: Pi < Pj: Pi / Ti > Pj / Tj 

Let  2 be schedulable under: prj > pri. 
From theorem 5.4 this implies: 

 Ti  Pi + Pj + maxAIRP(j,i)        … (5.6.3) 

Let Tj = Ti + y:  y  1 
 

In eq. (5.6.3): 

Ti + y  Pi + Pj + maxAIRP(j,i) + y   

  Tj   Pi + Pj + maxAIRP(j,i) + y      … (5.6.4) 
 

From theorem 4.13 we know: 

 maxAIRP(i,j) – maxAIRP(j,i)  y. 

 
Therefore, in eq. (5.6.4), 

 Tj   Pi + Pj + maxAIRP(j,i) + maxAIRP(i,j) – maxAIRP(j,i) 



 Tj   Pi + Pj + maxAIRP(i,j)     … (5.6.5) 
 

As per theorem 5.4, if eq. (5.6.5) is satisfied then 2 will be schedulable under pri > prj . 

Hence, if 2 is schedulable in prj > pri, it is guaranteed to be schedulable in pri > prj.  
 

Theorem 5.6(b). Let 2={i, j}, if Ti < Tj < 2·Ti and Pi and Pj have values such that Pi / Ti > Pj / Tj. If,  2 is 
schedulable in the priority assignment pri > prj, it can be unschedulable in the priority assignment prj > pri. 

 
Proof. If we can show one example which satisfies the conditions Ti < Tj < 2·Ti , Pi / Ti > Pj / Tj and is schedulable 

only under the priority assignment pri > prj, it is sufficient to prove this theorem.  

 

Consider the following task set: 

Task pr P T U 

1 1 3 12 0.25 

2 2 6 10 0.60 

 
Here, P2 / T2 > P1 / T1. If we analyze the execution of this task set in its feasibility interval of [0,60), it is schedulable 

in the priority assignment pr2 > pr1. However in pr1 > pr2, the 2
nd

 job of 2 has a deadline miss at time 20. An 

execution table for tasks 1 and 2 is available in appendix 1-A.  

 

Theorem 5.7. For 2={i, j}, and Ti < Tj < 2·Ti, if a priority assignment exists which is both utilization and rate- 

monotonic then this priority assignment is optimal for 2. 
 

Proof. The RM-priority assignment is pri > prj. If Pi / Ti > Pj / Tj ,then the UM priority assignment is also pri > prj.  

In theorem 5.6(a) we have seen that if these conditions are satisfied and 2 is schedulable in prj > pri,  it is 
guaranteed to be schedulable in pri > prj.  

In theorem 5.6(b) we have seen that if 2 is schedulable in pri > prj , it can be unschedulable in prj > pri. Hence, 

pri > prj is the optimal priority assignment when this priority assignment is both UM and RM.   
 

Definition. A priority assignment which is both utilization and rate monotonic is henceforth referred to as the U-

RM priority assignment. 

 

Theorem 5.8. For a 2-task set 2={i, j}, let Ti < Tj < 2·Ti. If a U-RM priority assignment does not exist for 2, 

then there is no single priority assignment which is optimal for all  2-task sets 2={i, j} where Ti < Tj < 2·Ti. 

 

Proof. A U-RM priority assignment will not exist for 2 only when Pi < Pj and Pi / Ti < Pj / Tj.  
In this case the UM priority assignment is prj > pri and the RM priority assignment is pri > prj. If we can show 

one example which is schedulable only in prj > pri, and a second example which is schedulable only in pri > prj it 
is sufficient to prove this theorem. 

 

Consider the task set used in lemma 4.1: 

Task pr P T U 

1 1 7 15 0.46 

2 2 3 12 0.25 

 
The RM-priority assignment is pr2 > pr1, while the UM-assignment is pr1 > pr2. As shown in lemma 4.1, this task 

set is schedulable only in pr1 > pr2. 

 Now, consider the following task set: 
 

Task pr P T U 

1 1 6 15 0.40 

2 2 4 12 0.33 



 

The RM-priority assignment is pr2 > pr1, while the UM-assignment is pr1 > pr2. If we analyze the execution of this 

task set in its feasibility interval of [0,60), it is schedulable in the priority assignment pr2 > pr1, but the 2
nd

  job of 2 

has a deadline miss at time 24, in pr1 > pr2. An execution table for 1 and 2 is available in appendix 1-B.   
 

Theorem 5.9. If a 2-task set 2={i, j} is known to be schedulable, then 2 is guaranteed to be also schedulable in 

a rate-monotonic or utilization-monotonic  priority assignments.  
 

Proof. Let‟s assume, Ti < Tj. There can be two possible cases. 

 

Case 1: 2·Ti  Tj  

With this condition, 2 is guaranteed to be always schedulable under the priority assignment pri > prj as shown 
in theorems 5.1 and 5.3. pri > prj is a rate-monotonic priority assignment. 
 

Case 2: Ti < Tj < 2·Ti 

With this condition there are two possible cases. 
 

Case 2.1: Pi / Ti > Pj / Tj 

The priority assignment pri > prj is both a utilization and rate-monotonic priority assignment, and if 2 is 
schedulable, it is guaranteed to be schedulable under this priority assignment, as shown in theorem 5.7. 

 
Case 2.2: Pi / Ti < Pj / Tj 

 The utilization-monotonic priority assignment is prj > pri and the rate-monotonic priority assignment is pri > 

prj. These are the only two priority assignments possible for this task set. Hence, if 2 is schedulable, it is either 

under a utilization or rate-monotonic, or both, priority assignments.  
 

VI. Priority Assignment in n-Task Sets 

In this section, we prove that for P-FRP task sets having n tasks (n > 2), a single priority assignment which is 

optimal exists only when task periods are integer multiples of each other. We also show that for other n-task sets, 
no priority assignment exists which is optimal for all task sets. 

 

Theorem 6.1. For,  n={1, 2 … ,n }: n > 2, and task periods have the following relationships: Ti = f·Ti+1 , i=1,n–

1: f  2; f +
,   then the rate-monotonic priority assignment is optimal. 

 

Proof.  Consider 3 = {i, j, k}. Let , 

Tj  = f·Ti, Tk = g·f·Ti, g  2, f  2; f,g +
. 

  

The rate-monotonic priority assignment is pri > prj > prj. 
 

L = g·f·Ti, and there will be only one job of k that has to be processed in [0,L). Since the P-FRP schedulability test 
is satisfied we know: 

Pi + Pj  Ti  and  Pi + Pk  Ti. 
 

The 1
st
 job of  i will finish at time Pi and the 1

st
 job of j will be processed next as per the RM priority assignment. 

The 1
st
 job of j will finish at time  Pi + Pj, after which the 2

nd
 job of i is released at time Ti. The second job of j 

will not be released at least till time 2·Ti, hence after the 2
nd

 job of i has completed, the single job of k will 

complete processing. Jobs of two tasks i and j that will be released in the interval [2·Ti, L) will be able to complete 
processing as per theorem 5.1.  

 This same analysis can be easily extended (by considering each pair of tasks) to any general task set, n which 
has tasks whose periods are integer multiples of each other. Since, such task sets will always be schedulable in the 

rate-monotonic priority assignment, this priority assignment is optimal.     
 



Lemma 6.2. For,  n={1, 2 … ,n}: n > 2, if task periods have the following relationships: Ti > 2·Ti+1 and Ti  

f·Ti+1 , i=1,n–1: f  2; f +
  ,then the rate monotonic priority assignment  is not optimal. 

 

Proof. If we can show one schedulable task set with this condition, which is not schedulable under the rate-

monotonic priority assignment, it is sufficient to prove this lemma. Consider the task set 3: 
 

Task pr P T U 

1 1 8 60 0.13 

2 2 6 25 0.24 

3 3 3 12 0.25 

 

The priority assignment pr3 > pr2 > pr1 is RM. If we analyze the execution of this task set in its feasibility interval 

of [0, 300) with the RM priority assignment, the 4
th

 job of 1 has a deadline miss at time 240. If the priority 
assignment is changed to pr2 > pr3 > pr1, jobs of all tasks are able to complete in the feasibility interval.  An 

execution table for this task set is available in appendix 2-A.  

 

 

Lemma 6.3. For,  n={1, 2 … ,n}: n > 2, let task periods have the following relationships: i , j n, Tj < 2·Ti. 

If a U-RM priority assignment exists for n, then it is not guaranteed to be the optimal priority assignment. 
 

Proof. If we can show one schedulable task set which is not schedulable in the U-RM priority assignment, it is 

sufficient to prove this lemma. Consider the task set 3: 
 

Task pr P T U 

1 1 3 16 0.18 

2 2 4 14 0.28 

3 3 4 12 0.33 

 

The priority assignment pr3 > pr2 > pr1 is both UM and RM. If we analyze the execution of this task set in its 

feasibility interval of [0,336), the 19
th
 job of 1 has a deadline miss at time 304. If the priority assignment is 

changed to pr1 > pr3 > pr2, jobs of all tasks are able to complete in the feasibility interval. An execution table for 

this task set is available in appendix 2-B.     
 

Lemma 6.4. Two tasks when executed independently will be schedulable in the same priority assignment, in which 

they were schedulable when part of a larger task set. Or, if n={1,.., i,.. j,… ,n} is schedulable in the priority 
assignment : 

 pr1 > pr2 > … > prj … > pri > …> prn 

then 2 = {i,j} will also be schedulable in the priority assignment prj > pri. 

 

Proof.  Consider n={1, 2 … ,n }: n > 2. 

Let n be schedulable under some priority assignment. Let this priority assignment be: 

 pr1 > … > prj > … >  pri > .. > prk-1 > prk, where i, j  n.  
 

Let us remove the highest priority task k: k   i, j from n and, n-1 = n – k.  

As the priority assignment is same, the removal of the highest priority task can only lead to lesser chances of 

interference and hence, lower abort costs on all lower priority tasks. Therefore, if n is schedulable, n-1 will also be 
schedulable. 

Similarly, if we remove the highest priority task k in n-1 ( i, j), we get n-2 which will also be schedulable in 
the same priority assignment. This way we can remove all higher priority tasks without affecting the schedulability 

of the task set. Once all tasks having higher priority than i and j are removed, let us remove all tasks having lower 

priority than i and j. Since lower priority tasks do not have any impact on the response time of higher priority 
tasks, their removal will not affect the schedulability of the task set.   After removal of these lower and higher 



priority tasks we get the task set 2={i, j}, which clearly is schedulable in the same priority assignment as was in 

n , prj >   pri.  

Similarly, we can see that any two tasks taken from n , will be schedulable in the same priority assignment as 

was in the n.  

 

Theorem 6.5. For a task set  n={1, 2 … ,n}: n > 2, where task periods have the following relationships: Ti > 

f·Ti+1, i=1,n–1: f  2; f +
 , then no priority assignment exists which is optimal for every n. 

 

Proof. Let us assume n is schedulable and an optimal priority assignment exists for this case. Let this priority 
assignment be: 

 pr1 > pr2 > … > prj … > pri > …> prn. 

 

Let 2 ={i, j}: i, j  n. From lemma 6.4 we know that if n is guaranteed to be schedulable in its optimal 

priority assignment, 2 is also guaranteed to be schedulable in the priority assignment: 
   prj > pri. 

 

This implies that prj > pri is an optimal priority assignment for 2. From lemma 6.2 we know the optimal priority 

assignment for n cannot be rate-monotonic, therefore prj > pri is a non-RM priority assignment. 

However, from theorem 5.3 we know that 2 is guaranteed to be schedulable only under the RM priority 
assignment. 

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to be always 

schedulable under a non-RM priority assignment, we have a contradiction.  

 Hence, no priority assignment exists which is optimal for all n.  

 

Theorem 6.6. For, n={1, 2 … ,n }: n > 2, where task periods have the following relationships: i , j n, Tj < 

2·Ti,  no priority assignment exists which is optimal  for all n. 

 

Proof.  Let us assume n is schedulable, and an optimal priority assignment exists for this case. Let this priority 
assignment be: 

 pr1 > pr2 > … > prj … > pri > …> prn. 

 

Let 2 ={i, j}: i, j  n. From lemma 6.4 we know that if n is guaranteed to be schedulable in its optimal 

priority assignment, 2 is also guaranteed to be schedulable in the same priority assignment: 
   prj > pri. 

 

This implies that prj > pri is an optimal priority assignment for 2. There can be two possible cases. 
 

Case 1: A U-RM priority assignment exists for n 

From lemma 6.3 we know that the optimal priority assignment n cannot be U-RM, therefore prj > pri is a 
priority assignment which is non-U-RM. 

However, from theorem 5.7 we know that 2 is guaranteed to be schedulable only under the U-RM priority 
assignment.  

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to be always 
schedulable under a non-U-RM priority assignment, we have a contradiction. Hence, no optimal priority 

assignment can exist for n in this case. 
 

Case 2: A U-RM priority assignment does not exist for n 

From theorem 5.7 we know that no optimal priority assignment can exist for 2 in this case.  

Since, the existence of an optimal priority assignment for n requires a guarantee from 2 to also have an 

optimal priority assignment, we have a contradiction. Hence, no optimal priority assignment can exist for n in this 

case.   
 



VII. Experimental Validation 

We present an experimental validation of the results derived for tasks sets with 2 and more than 2 tasks, using 

randomly generated task sets in groups having 2,3,4 and 5 tasks. For task sets with 2 and 3 tasks we have further 
divided them into 2 categories, based on their utilization factors. Each group has 500 tasks, and task sets in each 

group are unique in the sense that at least 1 task is different between any two task sets present in a group. 

The arrival periods and processing times of tasks are selected from sample ranges of [12, 32] and [3, 10], 
respectively. The values of these ranges were arbitrarily selected and kept low to reduce the time taken to perform 

the evaluation. As per our initial assumptions, tcopy(k) and trestore(k) are set to 1. The task periods in every task set are 

selected such that no two tasks in a set have the same period. 

  For task sets with 2 tasks we simulated the execution of every task set in its feasibility interval using the  pri > 
prj and prj > pri priority assignments. For task sets having 3,4, and 5 tasks we simulated the execution in each of the 

possible 3!, 4! and 5! priority assignments. If any task set was unschedulable in all the priority assignments, the task 

set was regenerated. Hence, each of the tasks sets we have simulated are schedulable in at least one priority 
assignment. 

In Table 1 we show the schedulability of task sets with different sizes and utilization factors in the UM or RM 

priority assignments. The number of task sets which are schedulable only by the UM priority assignment are 
classified under „only-UM‟, while those schedulable only under RM are given under „non-RM‟. Task sets not 

schedulable under both the UM and RM priority assignments are given under „non-RM/UM‟, while those 

schedulable by both UM and RM is given under „Both UM/RM‟. „U-RM Exists‟ shows the number of tasks sets for 

which a U-RM priority assignment exists and the number of tasks schedulable in the U-RM priority assignment is 
given under „U-RM Schedulable‟.  Clearly, every task set in „U-RM Exists‟ will also be in „Both UM/RM‟. 

When n=2, all task sets for which a U-RM priority assignment exists are schedulable under U-RM, which 

validates theorem 5.7. Also all the task sets are schedulable by a priority assignment which is either RM or UM, 
validating theorem 5.9. In cases where the U-RM priority assignment does not exist, some task sets are  schedulable 

by only the RM or UM priority assignments, showing that no single optimal priority assignment exists in this case, 

as proved in theorem 5.8.  

For n=3, while several task sets are schedulable by both UM and RM priority assignment, some are schedulable 
by a priority assignment which is non-UM/RM. Also for the higher utilization group, the 175 task sets for which a 

U-RM priority assignment exists, only 165 are schedulable in this priority assignment. Clearly, no single priority 

assignment is optimal for all 3-task sets which agrees with theorems 6.5 and 6.6.  However, it is interesting that in 
the lower utilization group all task sets are schedulable by UM/RM and all 191 task sets for which a U-RM priority 

assignment exists, are also schedulable in this priority assignment. 

  The results for 4 and 5 task sets also agree with results derived for n-task sets in section 6. It is noteworthy that, 
even though no single optimal priority assignment exists, several n-task sets (n > 2) are still schedulable by UM or 

RM priority assignments, with UM clearly outperforming RM. As a general recommendation to engineers, for 

determining priority assignments under which an n-task set will be schedulable, first the schedulability in UM and 

RM priority assignments should be evaluated followed by rest of the (n! – 2) priority assignments. 
 

n Umin Umax only 

UM 

only 

RM 

Non 

UM/R

M  

Both 

UM/R

M 

U-RM 

Exists 

U-RM 

Schedulable 

2 0.10 0.50 0 0 0 500 314 314 

2 0.51 1.0 2 20 0 478 364 364 

3 0.10 0.50 1 0 0 499 191 191 

3 0.51 1.0 84 21 26 369 175 165 

4 0.10 1.0 150 16 74 260 107 94 

5 0.10 1.0 120 32 244 104 82 40 

 
Table 1: Task sets schedulable under different priority assignments 



VIII. Related Work 

Response time analysis of P-FRP was first studied by Kaibachev et al [16], who derive response time bounds by 

placing restrictions on execution times of higher priority tasks. Ras and Cheng [22], have presented response time 
analysis and have compared the performance of P-FRP execution with priority inversion strategies. Both [16], [22] 

do not discuss priority assignment strategies for P-FRP.  Response time analysis of transactional memory systems 

[14] has been done by Fahmy et al [11] while Manson et al [19] study response time of atomic processing of critical 

sections in Java. Anderson et al [1] have presented response time analysis of the lock-free execution. Lock-free is a 
mechanism to avoid priority inversion [23], the implementation of which is via an unconditional loop that 

terminates when the necessary updates to the shared resource are complete. Sivasankaran et al [25], have discussed 

priority assignment in real-time active databases. They have defined polices for parent, immediate and deferred 
transactions. The focus in this paper has been on dynamic priority assignment, which makes this unsuitable for our 

need as we are concerned with fixed assignment policies. 

Notable work on fixed priority assignment strategies for the preemptive model have been done by Audsley [2] 
and Davis and Burns [7],[8]. In [2], an offline polynomial time algorithm that uses a transformation function to 

change the priorities of tasks, is presented. This paper also identifies minimum number of priority levels required 

for each task. This work has been extended in [5] to derive priority assignment in the presence of blocking. In [7], 

the concept of a „robust‟ priority ordering for is introduced.  
 

IX. Conclusion and Future Work 

We have studied priority assignments in P-FRP and shown that unlike the classical model, a single priority 

assignment is not universally optimal, even for 2-task sets. However, for 2-task sets we have proven that if a single 
priority assignment is both UM and RM, then it is guaranteed to be the optimal priority assignment. It has also been 

proven that every schedulable 2-task will also be schedulable by a UM or RM priority assignments. 

In [18], Liu and Layland also present their initial results using 2-task sets and then scale these methods for n-
task sets in a fairly straight-forward way. Unfortunately, the execution model of P-FRP does not have this 

simplicity, and the optimality of UM or RM priority assignment do not hold true when there are more than 2 tasks. 

However, for n-task sets where task periods are double, or more than double or each other the RM priority 

assignment is optimal. For n-task sets where task periods do not share this relationship we prove that no single 
optimal priority assignment can exist. An algorithm based approach which evaluates all the possible n! priority 

assignments is the only way to determine priority assignments under which such an n-task set is schedulable. It 

should however be noted, that a high percentage of P-FRP tasks sets having more than two tasks are schedulable by 
the UM/RM priority assignment, hence, in several situations analyzing all the n! possible priority assignments 

might not be required. 

While the classical preemptive model is well understood and several mature studies have been done over the 

past several years, the abort-restart model has not been thoroughly researched. Our work has characterized the 
execution of P-FRP, hence, the abort-restart model, using the concept of intermediate release points (IRP), abort-

IRP and delay-IRP. Introducing such concepts is important because of the additional cost of abort which is 

dependent solely on the release time of jobs of higher priority tasks. The abort cost introduces a dynamic nature to 
the execution of tasks in P-FRP, analysis of which cannot be done by the variety of existing methods.  

Our work gives system designers/engineers an important insight on the schedulability characteristics of a system 

implemented using P-FRP. This work will guide system designers on tweaking task parameters which enhance the 
schedulability of the task sets, as well as help them identify priority assignments where the task set will be 

unschedulable. In future work, we will enhance this study by considering more practical values of tcopy(k) and 

trestore(k) for a task k, and by determining if the optimal priority assignments derived in this paper, also hold true 
when tasks are released asynchronously.  
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Appendix: 1-A 
 
Task Set: 

 

Task Pr P T U 

  1 3 12 0.25 

 2 6 10 0.6 

 

U_RM Priority Assignment: pr2 > pr1 ; non-U_RM is pr1 > pr2 

 

Time Release U_RM Non-U_RM Time Release U_RM Non-U_RM 

0 T1, T2 T2 T1 31   T2   

1   T2 T1 32   T2   

2   T2 T1 33   T2   

3   T2 T2 34   T2   

4   T2 T2 35   T2   

5   T2 T2 36 T1 T1   

6   T1 T2 37   T1   

7   T1 T2 38   T1   

8   T1 T2 39   *   

9   * * 40 T2 T2   

10 T2 T2 T2 41   T2   

11   T2 T2 42   T2   

12 T1 T2 T1 43   T2   

13   T2 T1 44   T2   

14   T2 T1 45   T2   

15   T2 T2 46   *   

16   T1 T2 47   *   

17   T1 T2 48 T1 T1   

18   T1 T2 49   T1   

19   * T2 50 T2 T2   

20 T2 T2 Deadline Miss 51   T2   

21   T2   52   T2   

22   T2   53   T2   

23   T2   54   T2   

24 T1 T2   55   T2   

25   T2   56   T1   

26   T1   57   T1   

27   T1   58   T1   

28   T1   59   *   

29   *           

30 T2 T2           

 



Appendix: 1-B 
 
Task Set: 

 

Task Pr P T U 

 1 6 15 0.4 

 2 4 12 0.33 

 

RM Priority Assignment: pr2 > pr1 ; UM is pr1 > pr2 

 

Time Release RM UM Time Release RM UM 

0 T1, T2 T2 T1 31   T1   

1   T2 T1 32   T1   

2   T2 T1 33   T1   

3   T2 T1 34   T1   

4   T1 T1 35   T1   

5   T1 T1 36 T2 T2   

6   T1 T2 37   T2   

7   T1 T2 38   T2   

8   T1 T2 39   T2   

9   T1 T2 40 T1     

10       41       

11       42       

12 T2 T2 T2 43       

13   T2 T2 44       

14   T2 T2 45   T1   

15 T1 T2 T1 46   T1   

16   T1 T1 47   T1   

17   T1 T1 48 T2 T2   

18   T1 T1 49   T2   

19   T1 T1 50 T1 T2   

20   T1 T1 51   T2   

21   T1 T2 52   T1   

22     T2 53   T1   

23     T2 54   T1   

24 T2 T2 Deadline Miss 55   T1   

25   T2   56   T1   

26   T2   57   T1   

27   T2   58       

28       59       

29               

30 T1 T1           

 



Appendix: 2-A 
 

 
Task Set: 

 

Task Pr P T U 

1 1 8 60 0.13 

2 2 6 25 0.24 

3 3 3 12 0.25 

 

RM Priority Assignment: pr3 > pr2 > pr1; non-RM is pr2 > pr3 > pr1 

 

 

Time Release Non-RM RM Time Release Non-RM RM Time Release Non-RM RM 

0 T1,T2,T3 T2 T3 56   T3 T2 111         
1   T2 T3 57   T3    112         
2   T2 T3 58   T3    113         
3   T2 T2 59         114         
4   T2 T2 60 T1,T3 T3 T3 115         
5   T2 T2 61   T3 T3 116         
6   T3 T2 62   T3 T3 117         
7   T3 T2 63   T1 T1 118         
8   T3 T2 64   T1 T1 119         
9   T1 T1 65   T1 T1 120 T1,T3 T3 T3 

10   T1 T1 66   T1 T1 121   T3 T3 
11   T1 T1 67   T1 T1 122   T3 T3 
12 T3 T3 T3 68   T1 T1 123   T1 T1 
13   T3 T3 69   T1 T1 124   T1 T1 
14   T3 T3 70   T1 T1 125 T2 T2 T2 
15   T1 T1 71         126   T2 T2 
16   T1 T1 72 T3 T3 T3 127   T2 T2 
17   T1 T1 73   T3 T3 128   T2 T2 
18   T1 T1 74   T3 T3 129   T2 T2 
19   T1 T1 75 T2 T2 T2 130   T2 T2 
20   T1 T1 76   T2 T2 131   T1 T1 
21   T1 T1 77   T2 T2 132 T3 T3 T3 
22   T1 T1 78   T2 T2 133   T3 T3 

23         79   T2 T2 134   T3 T3 
24 T3 T3 T3 80   T2 T2 135   T1 T1 
25 T2 T2 T3 81         136   T1 T1 
26   T2 T3 82         137   T1 T1 
27   T2 T2 83         138   T1 T1 
28   T2 T2 84 T3 T3 T3 139   T1 T1 
29   T2 T2 85   T3 T3 140   T1 T1 
30   T2 T2 86   T3 T3 141   T1 T1 
31   T3 T2 87         142   T1 T1 
32   T3 T2 88         143         
33   T3    89         144 T3 T3 T3 
34         90         145   T3 T3 
35         91         146   T3 T3 
36 T3 T3 T3 92         147         
37   T3 T3 93         148         
38   T3 T3 94         149         
39         95         150 T2 T2 T2 
40         96 T3 T3 T3 151   T2 T2 
41         97   T3 T3 152   T2 T2 
42         98   T3 T3 153   T2 T2 
43         99         154   T2 T2 
44         100 T2 T2 T2 155   T2 T2 
45         101   T2 T2 156 T3 T3 T3 
46         102   T2 T2 157   T3 T3 
47         103   T2 T2 158   T3 T3 

48 T3 T3 T3 104   T2 T2 159         
49   T3 T3 105   T2 T2 160         
50 T2 T2 T3 106         161         
51   T2 T2 107         162         
52   T2 T2 108 T3 T3 T3 163         
53   T2 T2 109   T3 T3 164         
54   T2 T2 110   T3 T3 165         
55   T2 T2             

 



 

Time Release RM non-RM Time Release RM non-RM Time Release RM non-RM 

166         221      T1 276 T3 T2   

167         222      T1 277   T2   

168 T3 T3 T3 223      T1 278   T2   

169   T3 T3 224      T1 279   T2   

170   T3 T3 225 T2 T2 T2 280   T2   

171         226   T2 T2 281   T3   

172         227   T2 T2 282   T3   

173         228 T3 T2 T3 283   T3   

174         229   T2 T3 284        

175 T2 T2 T2 230   T2 T3 285        

176   T2 T2 231   T3 T2 286        

177   T2 T2 232   T3 T2 287        

178   T2 T2 233   T3 T2 288 T3 T3   

179   T2 T2 234      T2 289   T3   

180 T1,T3 T2 T3 235      T2 290   T3   
181   T3 T3 236      T2 291        

182   T3 T3 237      T1 292        

183   T3 T2 238      T1 293        

184   T1 T2 239      T1 294        

185   T1 T2 240 T1,T3 T3 

Deadline 

Miss 295        

186   T1 T2 241   T3   296        

187   T1 T2 242   T3   297        

188   T1 T2 243   T1   298        

189   T1 T1 244   T1   299        

190   T1 T1 245   T1           

191   T1 T1 246   T1           

192 T3 T3 T3 247   T1           

193   T3 T3 248   T1           

194   T3 T3 249   T1           

195      T1 250 T2 T2           

196      T1 251   T2           

197      T1 252 T3 T2           

198      T1 253   T2           

199      T1 254   T2           

200 T2 T2 T2 255   T2           

201   T2 T2 256   T3           

202   T2 T2 257   T3           

203   T2 T2 258   T3           

204 T3 T2 T3 259   T1           

205   T2 T3 260   T1           

206   T3 T3 261   T1           

207   T3 T2 262   T1           

208   T3 T2 263   T1           

209      T2 264 T3 T3           

210      T2 265   T3           

211      T2 266   T3           

212      T2 267   T1           

213      T1 268   T1           

214      T1 269   T1           

215      T1 270   T1           

216 T3 T3 T3 271   T1           

217   T3 T3 272   T1           

218   T3 T3 273   T1           

219      T1 274   T1           

220      T1 275 T2 T2           

 

 



Appendix: 2-B 
 
Task Set: 

Task Pr P T U 

1 1 3 16 0.18 

2 2 4 14 0.28 

3 3 4 12 0.33 

 

U_RM Priority assignment: pr3 > pr2 > pr1; non-U_RM is pr1> pr3 > pr2 

 

Time Release non-U_RM U_RM Time Release non-U_RM U_RM Time Release non-U_RM U_RM 

0 T1,T2,T3 T1 T3 55       111   T3 T3 

1   T1 T3 56 T2 T2 T2 112 T1,T2 T1 T2 

2   T1 T3 57   T2 T2 113   T1 T2 

3   T3 T3 58   T2 T2 114   T1 T2 

4   T3 T2 59   T2 T2 115   T2 T2 

5   T3 T2 60 T3 T3 T3 116   T2 T1 

6   T3 T2 61   T3 T3 117   T2 T1 

7   T2 T2 62   T3 T3 118   T2 T1 

8   T2 T1 63   T3 T3 119       

9   T2 T1 64 T1 T1 T1 120 T3 T3 T3 

10   T2 T1 65   T1 T1 121   T3 T3 

11       66   T1 T1 122   T3 T3 

12 T3 T3 T3 67       123   T3 T3 

13   T3 T3 68       124       

14 T2 T3 T3 69       125       

15   T3 T3 70 T2 T2 T2 126 T2 T2 T2 

16 T1 T1 T2 71   T2 T2 127   T2 T2 

17   T1 T2 72 T3 T3 T3 128 T1 T1 T2 

18   T1 T2 73   T3 T3 129   T1 T2 

19   T2 T2 74   T3 T3 130   T1 T1 

20   T2 T1 75   T3 T3 131   T2 T1 

21   T2 T1 76   T2 T2 132 T3 T3 T3 

22   T2 T1 77   T2 T2 133   T3 T3 

23       78   T2 T2 134   T3 T3 

24 T3 T3 T3 79   T2 T2 135   T3 T3 

25   T3 T3 80 T1 T1 T1 136   T2 T1 

26   T3 T3 81   T1 T1 137   T2 T1 

27   T3 T3 82   T1 T1 138   T2 T1 

28 T2 T2 T2 83       139   T2   

29   T2 T2 84 T2,T3 T3 T3 140 T2 T2 T2 

30   T2 T2 85   T3 T3 141   T2 T2 

31   T2 T2 86   T3 T3 142   T2 T2 

32 T1 T1 T1 87   T3 T3 143   T2 T2 

33   T1 T1 88   T2 T2 144 T1,T3 T1 T3 

34   T1 T1 89   T2 T2 145   T1 T3 

35       90   T2 T2 146   T1 T3 

36 T3 T3 T3 91   T2 T2 147   T3 T3 

37   T3 T3 92       148   T3 T1 

38   T3 T3 93       149   T3 T1 

39   T3 T3 94       150   T3 T1 

40       95       151       

41       96 T1,T3 T1 T3 152       

42 T2 T2 T2 97   T1 T3 153       

43   T2 T2 98 T2 T1 T3 154 T2 T2 T2 

44   T2 T2 99   T3 T3 155   T2 T2 

45   T2 T2 100   T3 T2 156 T3 T3 T3 

46       101   T3 T2 157   T3 T3 

47       102   T3 T2 158   T3 T3 

48 T1,T3 T1 T3 103   T2 T2 159   T3 T3 

49   T1 T3 104   T2 T1 160 T1 T1 T2 

50   T1 T3 105   T2 T1 161   T1 T2 

51   T3 T3 106   T2 T1 162   T1 T2 

52   T3 T1 107       163   T2 T2 

53   T3 T1 108 T3 T3 T3 164   T2 T1 

54   T3 T1 109   T3 T3 165   T2 T1 



 
Time 

Time 

Time 

Release U_RM non-

U_RM 

Time Release U_RM non-U_RM Time Release U_RM non-U_RM 

166   T2 T1 223       280 T2 T2 T2 

167       224 T1,T2 T1 T2 281   T2 T2 

168 T2, T3 T3 T3 225   T1 T2 282   T2 T2 

169   T3 T3 226   T1 T2 283   T2 T2 

170   T3 T3 227   T2 T2 284       

176 T1 T1 T1 233   T2 T1 290   T1 T3 

177   T1 T1 234   T2 T1 291   T3 T3 

178   T1 T1 235   T2   292   T3 T1 

179       236       293   T3 T1 

180 T3 T3 T3 237       294 T2 T3 T2 

181   T3 T3 238 T2 T2 T2 295   T2 T2 

182 T2 T3 T3 239   T2 T2 296   T2 T2 

183   T3 T3 240 T1,T3 T1 T3 297   T2 T2 

184   T2 T2 241   T1 T3 298   T2 T1 

185   T2 T2 242   T1 T3 299     T1 

186   T2 T2 243   T3 T3 300 T3 T3 T3 

187   T2 T2 244   T3 T2 301   T3 T3 

188       245   T3 T2 302   T3 T3 

189       246   T3 T2 303   T3 T3 

190       247   T2 T2 304 T1 T1 

Deadline 

Miss 

191       248   T2 T1 305   T1   

192 T1,T3 T1 T3 249   T2 T1 306   T1   

193   T1 T3 250   T2 T1 307       

194   T1 T3 251       308 T2 T2   

195   T3 T3 252 T2,T3 T3 T3 309   T2   

196 T2 T3 T2 253   T3 T3 310   T2   

197   T3 T2 254   T3 T3 311   T2   

198   T3 T2 255   T3 T3 312 T3 T3   

199   T2 T2 256 T1 T1 T2 313   T3   

200   T2 T1 257   T1 T2 314   T3   

201   T2 T1 258   T1 T2 315   T3   

202   T2 T1 259   T2 T2 316       

203       260   T2 T1 317       

204 T3 T3 T3 261   T2 T1 318       

205   T3 T3 262   T2 T1 319       

206   T3 T3 263       320 T1 T1   

207   T3 T3 264 T3 T3 T3 321   T1   

208 T1 T1 T1 265   T3 T3 322 T2 T1   

209   T1 T1 266 T2 T3 T3 323   T2   

210 T2 T1 T2 267   T3 T3 324 T3 T3   

211   T2 T2 268   T2 T2 325   T3   

212   T2 T2 269   T2 T2 326   T3   

213   T2 T2 270   T2 T2 327   T3   

214   T2 T1 271   T2 T2 328   T2   

215     T1 272 T1 T1 T1 329   T2   

216 T3 T3 T3 273   T1 T1 330   T2   

217   T3 T3 274   T1 T1 331   T2   

218   T3 T3 275       332       

219   T3 T3 276 T3 T3 T3 333       

220     T1 277   T3 T3 334       

221     T1 278   T3 T3 335       

222     T1 279   T3 T3         

 

 
 

 


