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Abstract  

In this paper, we propose a design and development plan to build an energy-aware framework for 

multicore mobile systems which extends Android with two features it lacks: fine-grain power 

management functionality and real-time support. We also provide three novel energy-aware real-time 

multicore scheduling algorithms to reduce both dynamic and leakage power consumptions. These 

algorithms address leakage power consumption more than other existing algorithms since leakage power 

is considered more dominant in low-power multicore architectures. Both DCS and thermal-aware task 

allocation are utilized to avoid overheating and unnecessary leakage.  
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I. INTRODUCTION 

Mobile real-time (RT) systems have been  increasingly applied in many areas such as sensor network, unmanned airplanes, 

unmanned vehicles, satellites, medical equipments and billions of personal mobile devices [5, 8, 13, 18]. Enabled by smaller 

and more complex integrated circuits (IC) [25], multicore mobile devices are prevailing for both hard real-time and soft real-

time mobile applications. A monitoring system example for the hospital [13] requires support for both hard real-time 

applications such as sending alarms for abnormal heart beats or brain signals from the emergency room, and soft real-time 

applications such as sending reminders of medicine and meals to nurses. Another example is in disaster control and rescue. A 

robot who finds a human being needs to send SOS signals in a guaranteed interval, while it can send signals of “operating 

normally” after deadlines now and then without disastrous damages. Android, as the fastest growing mobile OS, does not have 

real-time support required by mobile RT systems today, and its various applications are getting adapted to satisfy diverse 

computing needs of industries, homes and personal usage. One of the reasons is because the Linux kernel, as the foundation of 

Android, is a time sharing system. As a result, there is no deterministic response or predictable run time of the tasks. To 

address this issue in Android, two features are keys to integrate. One is a low cost preemption strategy which is necessary to 

guarantee response time. The other is an efficient resource allocation strategy which can guarantee immediate resource access. 

Besides RT support, energy efficiency is of paramount importance for mobile systems due to the increasing complexity of 

architectures such as multicore and hardware multithreading techniques [26]. Power density directly transforms into heat. The 

temperature in modern integrated circuits increases dramatically due to smaller feature size (such as the recently announced 

28nm technology [25], higher packing density, and rising power consumption [6]), and therefore it is critical to tackle thermal 

issues in all levels of the system design. Thus, a full set of power management features exposed from hardware to the 

applications is necessary, such as turning on and off functional logics. Android only supports a coarse-grain power 

management to control the CPU, screen and keyboard with "wake locks" through the Android application framework and 

native Linux libraries. 

In our paper, we propose a framework to extend both RT support and fine-grain power management into Android from 

hardware to applications. Specifically, four features are extended: power management, interrupt handling, resource allocation 

and performance monitoring.  

Also, three novel energy-aware real-time scheduling algorithms for multicore systems are presented which utilize all the 

extended features. Dynamic scaling techniques, including Dynamic Voltage Scaling (DVS) and Dynamic Circuits Scaling 

(DCS), are used to reduce both dynamic power consumption and leakage power consumption. The design premise of DCS is to 

reduce the leakage power through reducing the number of running circuits. The ratio of leakage power consumption gets higher 

in low-power multicore architectures because of two reasons: 1) they significantly increase the number of circuits to produce  
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the same throughput at lower clock frequencies; 2) dynamic power consumption is a cubic function  of frequency (Equation 

(6)) while leakage power consumption is a linear function of frequency (Equation (7) (8)).  At the same time, a simple thermal 

model (Equation (10)) is frequently used to guide task allocation by the scheduler. A wide range of studies for energy-aware 

real-time scheduling on multicore systems have been delivered in a decade [2, 3, 6, 7, 9, 11, 12, 15, 17, 21]. However, most 

work does not focus on reducing leakage power consumption. The closed work we found is [17] which power off the whole 

cores when necessary. Our work is different in two aspects: 1) we use our thermal model to guide the task allocation to avoid 

overheating; 2) we use fine-grained control on functional logics to power off unnecessary logics first, then power off the whole 

core. 

We leverage the performance monitoring unit (PMU) on the hardware instruction level, which can help us to obtain 

performance statistics of each application offline. The design premise of DVS is to extend the execution time of tasks running 

on lower clock frequencies. Thus, the most energy-efficient DVS is Look-ahead DVS [16] which highly utilizes slacks. The 

more accurate the execution times of the tasks we can predict, the higher slack utilization we can get. Performance monitoring 

(in Section 3.2) can provide such an insight into the applications.  

The rest of this paper is organized as follows: Section 2 describes our framework architecture based on Android. Section 3 

describes our system design in detail, including the power management, performance monitoring, interrupt handling and 

resource allocation mentioned above. And Section 4 proposes our energy-aware real-time scheduling algorithms in general. 

Finally, Section 5 lists the task breakdowns and project timelines for implementation. 

II. SYSTEM ARCHITECTURE 

Android has a layered architecture as illustrated in Figure 1. We choose to implement all our extended features in a library 

for the following reasons. First, it can access Linux kernel, which makes it practical to expose hardware functionalities with 

low cost implementation of interrupts, resource allocation and power management. Second, they are not intrusive modifications 

to the kernel, which makes the method portable to other systems. Finally, it provides the flexibility for developers to choose 

real-time scheduling or others in the same system. 

 
Fig. 1.  Android system architecture. It describes the components in each layer of Android system. 

  

 
Fig. 2.  EcoMobile system architecture. It describes the layers of EcoMobile system and the components in each layer. 

 

Figure 2 describes how we fit our library into the Android architecture. The layered architecture allows us to fit in the 

Android architecture easily and enable each layer to be extended with new functionalities. To fulfill our requirements of low 

cost implementation, we need to access the hardware through the Linux kernel. To make the library portable, we make the 

minimum modification to the kernel and we abstract all the hardware functionalities directly exposed to the application. This 

abstract layer allows us to extend support to various multicore architectures without changing the applications. Portability and 

low cost implementation are tradeoffs in the same design. However, such a design is achieved. For example, studies about 
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POSIX® real-time extensions [14] show that portability can be implemented efficiently. Thus, the library is a practical choice 

for us. 

The scheduling manager sits on the Application Framework layer. It calls the services provided by libraries and Linux 

kernel, including our extended features, and cooperates with services provided by other modules in this layer such as resource 

manager. It provides energy-aware real-time scheduling algorithms as well as a demonstration about how other uses can utilize 

the extended features. 

III. SYSTEM DESIGN 

In this section, we describe each in more detail. Regarding resource allocation, our first focus is memory management due to 

its influence on performance. However, other resources such as high throughput I/O and other peripheral devices can be added 

in the similar way. 

A. Power management 

In modern architecture, power management ICs (PMIC) are often provided on system-on-a-chip devices. A PMIC may 

include battery management, voltage regulation, and charging functions. In our hardware abstract layer, functionalities to 

expose are 1) voltage regulation to change IC voltages, 2) frequency regulation to change clock speed, and 3) functionalities to 

power on and power off whole or partial ICs. For example, Cortex-A9 has resets to power off the whole MPCore, individual 

CPUs, individual functional logics, individual SIMD logics of MPE, and so on. 

Regarding power-aware scheduling, there are two kinds of strategies to reduce energy consumption. One is Dynamic 

Voltage Scheduling (DVS) or Dynamic Voltage Frequency Scheduling (DVFS) which lowers dynamic power consumption. 

The other aims at reducing leakage power consumption for CPUs with turning off ICs or the whole unit. 

B. Performance monitoring 

One difficulty for real-time scheduling algorithms to meet deadlines is to accurately predict task execution time. Worst Case 

Execution Time (WCET) is usually used in all scheduling decisions. Performance Monitoring Unit (PMU) is increasingly used 

in both single core and multicore architectures to gather statistics on the operations of processor and memory system, which 

helps analyze bottlenecks and predict a task‟s execution time more accurately. Since the overhead to use PMU is high, 

performance monitoring functionalities are designed to use offline with multiple runs of applications. 

Depending on the architecture, a different number of events and registers can be provided by the PMU. We mainly gather 5 

statistics: 1) total number of floating point operations totalFP; 2) total number of operations totalP; 3) total number of misses 

in L1 instruction cache L1IMiss; 4) total number of misses in L1 data cache L1DMiss; 5) total number of misses in L2 cache 

L2Miss. These five numbers can describe how well the memory hierarchy works and estimate the total execution time for 

unknown problem sizes. For example, Equations (1 – 5) can be used to predict task execution time with curve fitting 

mechanisms based on multiple offline runs of a floating operation intensive application. 

 

   ExeTime psize A B C D CPUClock      (1) 

  0A k totalFP psize FpPipelineNum FPRpeatRate    (2) 

 1 1 1B k L DMiss psize L MissPenalty      (3) 

 2 1 1IC k L IMiss psize L MissPenalty      (4) 

 3 2 2D k L Miss psize L MissPenalty      (5) 

 
In the above equations, 0k ~ 3k are constants and vary for different architectures. They are obtained through curve fitting 

functions. psize is the problem size. For example, for an FFT, problem size can be the size of one dimension of the matrix. 

CPUClock is the frequency. FpPipelineNum and FpRpeatRate are platform specific features. Specifically, FpPipelineNum is 

the number of floating point pipeline on the measured core. And FpRpeatRate is the repeat rate of the pipeline, which is the 

number of clock cycles that occur between the issuance of one instruction and the issuance of the next instruction to the same 

execution unit. The miss penalty is the difference between the latencies of the current level and next level in memory hierarchy, 

because misses in cache incur data to be fetched from the next level in the memory hierarchy. It is to be noticed that we assume 

all the data is loaded into memory in the above equations because we do not consider stalls incurred in the lower level of 

memory hierarchy such as I/O, hard drives and tapes. 

C. Interrupt handling 

An essential characteristic of a real-time operating system is that its response time is deterministic. Interrupt handling in the 

current Linux kernel cannot support priority scheduling and bounded execution time. The reason is because low priority 
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hardware interrupts can block high priority threads, i.e. Priority Inversion. Hardware and software interrupts are running in 

parallel. Device drivers start their interrupt service routines right after an interrupt is received, while software interrupts are 

handled by the kernel. Low priority hardware interrupts can steal resources from high priority threads with technologies such 

as Direct Memory Access (DMA). This is not an issue for Linux because it is a time sharing operating system. However, to 

fully support Priority scheduling, all interrupts should be served in order of their priorities in real-time systems. Thus, two steps 

are designed in our system: 1) all the interrupts are directed to a central control system with their priorities; and 2) threads with 

corresponding priorities are created to serve the interrupts. This means the scheduler schedule all the threads based on their 

priorities. However, one question needs to be answered first: how are we going to assign the priorities to interrupt service 

routines? Our answer is to assign the same priority to both its task and service routines. Related works are LynxOS [20], 

RTLinux [1, 22, 28], RTAI [29] and Xenomai [31]. 

D. Memory management 

A time sharing operating system such as Linux favors fairness in the design. So is resource allocation in Linux kernel. 

Regarding memory management subsystem, this means it is possible that periodic tasks need to warm up caches at the 

beginning of every period. Also, it is not guaranteed for high priority tasks to get more resources when they need them or to 

keep the resources they already have. One solution is to lock the memory pages assigned to high priority tasks.  

Virtual memory locking and unlocking are supported by many modern architectures. For example, mlock (), unlock (), 

mlockall () and maniacal () were introduced in kernel 2.6.9 and later versions. The problem to avoid with memory locks is 

priority inversion because low priority tasks can lock their frames in RAM, which incurs throttling for high priority tasks. Our 

solution for schedulable task sets is: 1) to enable memory locks for periodic tasks only; 2) to allow memory locks for the 

highest priority tasks through its lifetime and disable others. That means we need a central control in memory management 

subsystem to control locks in the above way. 

IV. ENERGY-AWARE REAL-TIME MULTICORE SCHEDULING 

We propose three novel energy-aware real-time scheduling algorithms in our scheduling manager based on the above 

features enabled through hardware to the library. We target both dynamic and leakage power consumptions. To reduce 

dynamic power consumption, DVS is used. To reduce leakage power consumption, two techniques are used: Dynamic Circuit 

Scaling (DCS) and thermal-aware task allocation. 

Our DCS is used in a similar way to calculate an optimal number of cores to run as in [17]. However, our low level power 

management functionalities allow us to power off the functional logics when they are idle. For example, the SIMD logic of 

MPE is not in use when a sensor is sending and receiving signals, so we power it off but the core is running. This fine-grain 

control adds more complexity to our algorithms (compare with DCS in [17]).  

We first address our thermal models, and then integrate them in existing real-time multicore scheduling algorithms [4]: 

Partitioned Earliest Deadline First (P-EDF) which is best for hard real-time applications; Clustered Earliest Deadline First (C-

EDF) which is the best for soft real-time systems; and Staggered PD
2
 (S-PD

2
) which is among the best for both. 

A. Thermal models 

There are two kinds of energy-aware techniques to address two kinds of power consumptions on ICs: dynamic power 

consumption and leakage power consumption [3, 6, 7, 11, 12, 15, 21]. The dynamic power consumption is widely modeled as 

(6): 

 

 2
dynamicP C V f    (6) 

 

where C is the collective switching capacitance,V is the power supply voltage and f is the operation frequency. 

The leakage power consumption grows exponentially, and the dominant types will be sub-threshold leakage and gate 

leakage [7, 11, 12]. For low-power multicore architecture, leakage power can be approximated by a linear function in the 

operating temperature ranges of ICs with roughly 5% error [11, 15]. Thus, we use the leakage power function defined in (7):  

 

  leakageP       (7) 

 

where ,  are constants and    is a function of time for the operation temperature. 

Thermal models derived from (6) and (7) have different forms in a wide range of studies. One of the most influential studies 

is about the relationship between a function unit‟s temperature and its frequency formalized as a super-linear function in [19], 

and a simplified temperature function defined in (8): 
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       0

0
b

C Ca f b e a f b
   

 
        (8) 

 

where , ,a b  are curve fitting constants, and  0 is the operation temperature at a start point 0 when the system is in an 

equilibrium state. The system is in the equilibrium state before all the tasks arrive, and we can derive  0 from another 

simplified function for the operation frequency defined in (9): 

 

    
1

Cf b a


    (9) 

 

where , ,a b  are the same fitting constants as in (8). 

The linear relationships of temperature and frequency expressed in (8) and (9) are simplified with fixing one or the other 

[19]. That is, (8) is derived with a constant frequency Cf  and (9) is derived with a constant temperature C . Since temperature 

keeps changing during run-time, we estimate it on the first derivative of (8): 

 

     0
b

Cb a f b e             (10) 

 

where , ,a b  are the same as in (8). 

B. Scheduling algorithms 

As mentioned above, we integrate energy-aware techniques in three real-time multicore scheduling algorithms. Thus, we 

have Energy-aware P-EDF (EP-EDF), Energy-aware C-EDF (EC-EDF) and Energy-aware S-PD2 (ES-PD2). In our 

implementation, a cluster of cores is grouped based on the fact that they share Level 2 cache or not. Thus, the task migration is 

very light because only Level 1 Instruction and Data caches need to clean. A more loosely coupled grouping can be based on if 

the cores are sharing the same bus of memory access. In this case, no memory access is required and the task can be migrated 

through a bus on board such as a cache transfer bus. 

Table 1 describes the steps of algorithm EC-EDF which migrates tasks before their release times if necessary. current is 

initialized with the environmental temperature.  expected current   where  is defined in Equation (10).  

 
TABLE I 

STEPS OF EC-EDF 

 
Initial state: All cores are switched off 

 

While task queue is not empty? 

           applies DCS to calculate the number of cores N to use; 

           choose the smalled N tuples (current, expected) among 
all the cores; 

           update each expected of the chose cores with  ; 

           if expected lower than threshold temperature?  

assign task Ti to the chosen core; 

detect unused logics and power off; 

           else  

add task Ti back to queue and set this 
core to cooling status; 

Add a new core to N tuples; 

 

cooling: power off the core; 

 

ES-PD
2 

can be implemented in the same way. However, P-EDF has fixed mapping between tasks and cores, thus only DCS 

is applied. 

V. PROJECT MANAGEMENT 

We choose to build our platform on Android 3.1 which is the latest version to support the multicore architectures [23]. 

Although Honeycomb branch (3.0 and afterwards) targets on larger screen devices such as tablets, the reason that we believe 

we can build it on dual-core smartphones which can run Gingerbread and earlier branches (2.3 and earlier) is because Android 
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is backward compatible. Thus, we select Motorola Atrix 4G with Cortex-A9 (dual-core) as our first build device [27]. Our 

development languages are hardware specific assembly languages, C/C++ and Java. Assembly language [24] and C/C++ are 

for hardware support and hardware abstract layer for performance concern [30], while Java is for library layer development. 

The task breakdowns and timeline are described in Figure 3. The following are the details of each task: 

 Design phase 

o Define attributes and operations of hardware unit we need in hardware abstract layer (HAL) 

o Define APIs in the library layer 

o Cortex-A9 architecture analysis and Linux kernel support 

 Implementation 

o HAL and unit testing 

o Library and unit testing 

o Scheduling algorithms and unit testing 

o Demo applications and unit testing 

 System Integration Test 

o From installation to each unit test case run   

 
 

Fig. 3.  The task breakdowns and timeline. 
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