
An Image-Space Morse Decomposition of Vector Fields∗

Guoning Chen† and Shuyu Xu†

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-14-03

July 28, 2014

Keywords: Vector fields, Morse decomposition, image-space, stability analysis.

Abstract

Morse decompositions have been proposed to compute and represent the topological structure of
steady vector fields. Compared to the conventional differential topology, Morse decomposition and the
resulting Morse Connection Graph (MCG) is numerically stable. However, the granularity of the original
Morse decomposition is constrained by the resolution of the underlying spatial discretization, which
typically results in non-smooth representation. In this work, an Image-Space Morse decomposition (ISMD)
framework is proposed to address this issue. Compared to the original method, ISMD first projects
the original vector field onto an image plane, then computes the Morse decomposition based on the
projected field with pixels as the smallest elements. Thus, pixel-level accuracy can be achieved. This ISMD
framework has been applied to a number of synthetic and real-world steady vector fields to demonstrate its
utility. The performance of the ISMD is carefully studied and reported. Finally, with ISMD an ensemble
Morse decomposition can be studied and visualized, which is shown useful for visualizing the stability
of the Morse sets with respect to the error introduced in the numerical computation and the perturbation
to the input vector fields.
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Abstract

Morse decompositions have been proposed to compute and represent the topological structure of steady vector
fields. Compared to the conventional differential topology, Morse decomposition and the resulting Morse Connection
Graph (MCG) is numerically stable. However, the granularity of the original Morse decomposition is constrained
by the resolution of the underlying spatial discretization, which typically results in non-smooth representation. In
this work, an Image-Space Morse decomposition (ISMD) framework is proposed to address this issue. Compared
to the original method, ISMD first projects the original vector field onto an image plane, then computes the Morse
decomposition based on the projected field with pixels as the smallest elements. Thus, pixel-level accuracy can
be achieved. This ISMD framework has been applied to a number of synthetic and real-world steady vector fields
to demonstrate its utility. The performance of the ISMD is carefully studied and reported. Finally, with ISMD an
ensemble Morse decomposition can be studied and visualized, which is shown useful for visualizing the stability of
the Morse sets with respect to the error introduced in the numerical computation and the perturbation to the input
vector fields.
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I. INTRODUCTION

Vector field visualization and analysis has been applied to a wide variety of scientific and engineering applications
to help domain experts interpret and present their data stemming from the study of various aero- and hydro-
dynamical systems. Example applications include aircraft and automobile engineering, astrophysics, plasma physic,
mechanical engineering, oceanography, earthquake engineering, climate study and weather modeling, and medical
practices. There are two types of visualization techniques for vector field data: 1) methods that generate densely
and likely uniformly distributed visual primitives aligned with the vector field direction, e.g., glyphs, texture, and
geometric-based visualization; 2) feature-based methods that first extract a small (and sparse) set of features or
patterns of the flow and visualize them on top of the images generated in 1). The typical features that are extracted
include topology, vortices, flow separation, shear flow, and other flow deformation described by the velocity gradient
tensor, i.e., Jacobian. The feature-based methods are now getting more and more attention, as they automate the
mental construction process that the domain experts have to perform to identify the features of interest from
the images generated by non-feature-based methods. In addition, feature-based methods help achieve a reduced
representation of the data to effectively present the results.

Among all the flow features that one cares about, vector field topology can be defined and computed without
requiring a user-specified parameter. Vector field topology consists of various flow recurrences, including fixed
points and periodic orbits and their connectivity. It partitions the flow domain into a number of regions. The flow
within each region has homogeneous behaviors, i.e., all particle trajectories (i.e., streamlines) in the same region
have the same starting point and the same ending point. In addition, all streamlines do not intersect with the
boundary of the region. That said, this partition condenses the whole vector field into the boundaries of different
regions, i.e., the topology, thus, an efficient representation and interpretation of the flow behavior can be obtained.
Furthermore, it provides measurement of the sizes of the features and a rigorous neighboring relation between
features, facilitating the subsequent consistent multiscale interpretation of the flow behavior. Therefore, vector field
topology has become a popular method for analyzing steady vector fields.
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Fig. 1. The object-space Morse decomposition with τ = 0.2 (left), our image-space Morse decomposition (middle), and an ensemble of the
image-space Morse decomposition for the stability study of the Morse sets (right), of a synthetic data [5].

Conventional methods resort to numerical integration to compute vector field topology, e.g., ECG and the
topological skeleton, which can be easily compromised by the inherent numerical error, leading to unreliable
interpretation of the flow structure. Recently, Morse decomposition has been introduced by Chen et al. [1] as
a stable representation of the vector field topology. The idea of Morse decomposition is to compute a discrete
topology that consists of Morse sets and their connectivity, i.e., the Morse Connection Graph (MCG). A Morse set
is a polygonal element strip (e.g., a triangle strip for a triangulation of the domain) that encloses the flow recurrent
dynamics as defined in the conventional topology. This coarse representation offers an additional room for each
feature to tolerate certain amount of error or perturbation, resulting in a more stable representation compared to
the conventional vector field topology. Considering its advantage, it has invoked a line of similar work [2], [3], [4]
since its introduction.

However, there are a number of limitations of the original Morse decomposition. First, the resolution of the
decomposition, i.e., the granularity or size of the Morse sets is constrained by the resolution of the underlying
mesh. That is, the finest Morse set cannot be smaller than a triangle. This usually results in Morse sets with
zig-zag like boundaries (Figure 1 (a)). This visually non-smooth representation is against the smooth nature of
the flow. Second, the computation of Morse decomposition requires the adaptive re-sampling of particles along
the boundaries of each polygonal element, leading to slow performance when processing large-scale data. This
is because the adaptive framework is not easy to parallelize. Third, the existing computation and visualization of
Morse decomposition does not provide the information of the stability of the Morse sets under different sources
of uncertainty, such as the error introduced in the numerical integration and the perturbation and noise in the data.
This stability information may help the domain experts to evaluate where are the most likely locations for the actual
topological features (i.e., some special trajectories) within the detected Morse sets (i.e., some discrete regions). This
important information is not well-conveyed by the original Morse decomposition and its visualization, because all
points within a Morse set are shown with a uniform color (Figure 1 (a)), indicating the features can be anywhere
in the Morse sets with equal chance, which is not true.

To address these limitations, we introduce an Image-space Morse decomposition (ISMD) framework. Similar to
other image-space methods, we first project the original vector field that is defined in the object space onto an image
plane. We then perform Morse decomposition based on the projected vector field. In contrast to the conventional
Morse decomposition, ISMD estimates the flow maps by densely releasing particles within the individual pixels
(i.e., some small squares) instead of resorting to the adaptive sampling along the edges. This new framework
enables the parallel implementation of the flow map computation. The obtained directed graph represents the flow
mapping between pixels, and thus, the extracted Morse sets are comprised of set of pixels. Consequently, ISMD
typically achieves pixel-level accuracy compared to the original method (Figure 1 (b)). In addition, the performance
of ISMD is independent of the size of the input data, thus, it is scalable to large-scale data sets. Finally, the ISMD
framework enables us to develop an ensemble analysis framework for the study and visualization of the stability
of the individual Morse sets with respect to different uncertainty sources (Figure 1 (c)). We carefully study and
report the performance of the ISMD framework with respect to 1) the resolution of the image plane, 2) number of
particles in each pixel, and 3) the integration steps. We also apply the proposed ISMD framework for the analysis
of a number of synthetic and real-world vector field data to demonstrate its utility.
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In the meantime, we wish to point out that ISMD shares the similar limitations as other image-space methods,
e.g. view point dependency. In addition, it is equivalence to refining the underlying mesh to improve the estimation
of the flow map, while replacing the more accurate but slower adaptive edge sampling strategy with a uniform
dense sampling for particle placement to achieve faster computation. Hence, the accuracy of the obtained graph
representation may not be guaranteed when compared to the original method. Therefore, instead of replacing the
original Morse decomposition, we consider the ISMD a useful addition to the topology-based vector field analysis
for efficiently generating an overview of the flow structure.

In the following, we will first review the related work in the literature of vector field visualization and analysis, and
briefly describe the original Morse decomposition. Then, we will describe our ISMD framework and its visualization.
Third, we apply it to a number of synthetic and real-world data sets and discuss the effectiveness of its utility.
Fourth, we elaborate our framework of the ensemble analysis based on the ISMD and discuss its application for
the uncertainty analysis and visualization for various flow data. Finally, we conclude our work with a discussion
on its limitations and the future work.

II. RELATED WORK

Vector field analysis is of primary interest in many areas of science and engineering. There are a vast variety
of visualization and analysis techniques available these days for largely different vector-valued data. A series of
survey papers [6], [7], [8], [9], [10], [11] provide a comprehensive review of this literature. In the following, we
review only the most related work to the presented research.

Vector field topology was first introduced by Helman and Hesselink [12] to the visualization community. They
defined a topological skeleton that consists of first-order fixed points and their connectivity. This topological skeleton
has been extended to handle the boundary features [13] and higher-order fixed points [14], respectively. Wischgoll
and Scheuermann [15] introduced a first solution to detecting periodic orbits from 2D steady vector fields, which
has been extended to 3D vector fields [16]. Theisel et al. [17] proposed a grid-independent method for the location
of periodic orbits. Chen et al. [5] introduced an efficient method for periodic orbit detection from 2D/2.5D vector
fields and defined a more complete vector field topology by including periodic orbits into the topology construction.
In the meantime, saddle-saddle connector has been introduced by Theisel et al. [18] for 3D vector field topology
visualization to reduce the occlusion issue. Weinkauf et al. [19] proposed to extract high-order critical points to
assist the simplification of 3D vector field topological representation.

Realizing the numerical instability issues of the previous methods that focus on the computation of the differential
topology, Chen et al. [1] introduced the first stable and discrete representation of vector field topology based on
Morse decomposition. This framework has been applied to 3D vector fields [20] and extended to construct a
hierarchical representation of the flow structure [21], respectively. Recently, Szymczak and Zhang introduced a
stable Morse decomposition framework for piecewise constant vector fields [4]. The presented work improves
the conventional Morse decomposition for a smooth representation of vector field topology with the probability
information encoded.

III. VECTOR FIELD BACKGROUND AND MORSE DECOMPOSITION

In this section, we will briefly review some important concepts of vector fields and Morse decompositions.
Consider a d-manifold M ⊂ Rd (d = 2,3 in our cases), a general vector field can be expressed as an ordinary

different equation ẋ = V (x, t) or a map ϕ : R×M→ Rd , satisfying ϕ
t0
t0 (x) = x0 and ϕ

t+s
t0 (x) = ϕ t+s

s (ϕs
t0(x)) =

ϕ
t+s
t (ϕ t

t0(x)). This flow map describes the spatial correlation of points through trajectories (or flow paths) starting
at time t0: ϕ t

t0(x). In steady flows, a point x0 ∈M is a fixed point if ϕ(t0,x) = x for all t ∈ R. That is, V (x0) = 0.
x is a periodic point if there exists T > 0 such that ϕ(T,x) = x. The trajectory of a periodic point is called a
periodic orbit. Both fixed points and periodic orbits are examples of flow recurrent features. The connectivity of
these flow recurrent features represents the qualitative (or structural) information of the vector fields, which we
define as vector field topology.

a) Morse Decomposition: A Morse decomposition is a collection of disjoint closed sets (called Morse sets)
that together contain all the recurrent dynamics of the flow induced by the vector field. More precisely, sets Mi,
i∈ {1,2, . . . ,N} form a Morse decomposition if and only if the trajectory of any point is either (i) entirely contained
in one of the Morse sets or (ii) is contained in some Morse set Mi for large enough negative times and in some
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other Morse set M j, with j > i, for large enough positive times. Intuitively, (ii) means that the trajectory of any
point outside the Morse sets can only move from a set with lower subscript to a set with a higher subscript. (ii)
excludes any recurrent dynamics outside the Morse sets, making it gradient-like [22]. In practice, the partial order
between Morse sets can be represented as an acyclic directed graph called Morse connection graph, or MCG.

R1

S1

S2

S3

A2

A1

Fig. 2. An MCG of a synthetic vector
field [21].

An indexing of Morse sets consistent with the above definition can be
obtained from the MCG by means of topological sort. For an example shown
in Figure 2, the Morse sets forming a Morse decomposition can be M1 = R1,
M2 = S1, M3 = S2, M4 = S3, M5 = A2, M6 = A1. Clearly, the MCG contains
more restrictions on connecting trajectories than the resulting sequence (linear
ordering) of Morse sets and therefore carries more information about the
structure of the flow.

Chen et al. [1] describe a pipeline for the computation of Morse decom-
positions of the given vector fields (see the left flow chart in Figure 3).
In this pipeline, the input vector field is firstly converted into a directed
graph (i.e. FG), denoted by F , through a numerical computation, called flow
combinatorialization. The nodes of F are the individual triangles of the mesh
where the vector field is defined. The directed edges indicate the flow mapping
relations between triangles. For instance, if there is a directed edge T1→ T2,
the particles inside triangle T1 can be advected by the flow and enter T2. In
other words, F encodes the dynamics of the flow at a combinatorial level.
There are two approaches to compute F : the geometry-based approach [5]
and the τ−map approach [1]. The geometry-based method computes the flow
mapping (directed edges) between neighboring triangles by considering the
flow behavior across each triangle edge. In contrast, the τ−map approach
keeps track of the image of each triangle over a constant time τ to obtain the flow mapping.

Second, the strongly connected components are extracted from the directed graph F . These strongly connected
components correspond to the regions enclosing flow recurrence. The Conley index of each region is computed.
Those regions with non-trivial Conley indices contain the Morse sets of interest [23]. The strongly connected
components consisting of more than two triangles are also considered since they may contain multiple features that
cancel each other such that the flow at the boundary acts like a regular flow.

Third, each strongly connected component corresponding to the region of non-trivial Conley index or region
with more than one triangle is collapsed into a single node. This reduces the original graph into a quotient graph.
From the quotient graph, the final MCG can be computed through path search between these strongly connected
components using standard graph search algorithms.

The complete algorithm of this pipeline is provided in [1]. The limitation of this original method is the non-
smooth boundaries of the obtained Morse sets in the visualization and the lack of the ability for the stability
analysis.

IV. AN IMAGE-SPACE MORSE DECOMPOSITION

To address the limitations of the original Morse decomposition, we introduce an image-space Morse decompo-
sition (ISMD). Different from the conventional Morse decomposition that is applied to the vector field defined in
the physical (or object) space. The ISMD applies to the vector field defined in an image plane, I. Therefore, the
graph nodes of the obtained directed graph, FI , from the flow combinatorialization correspond to the pixels (i.e.,
some small quadrilateral cells) of the image space instead of the polygonal elements in the object space.

A. Pipeline of the ISMD

b) Projection to an image plane, I : To compute the vector field defined on an image plane, VI , from the
original vector field, we resort to a vector field projection process that encodes the vector field into a colored image.
In particular, the R, G, B color values of each pixel encode the x, y, z components of the vector value defined at
the center of that pixel. For a 2D planar vector field, only the first two color channels are utilized. The following
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Fig. 3. The original Morse decomposition computation pipeline (left) versus the proposed image-space Morse decomposition (right).

formula describe the encoding of the vector value into R, G, B colors.

R =
vx− vxmin

vxmax− vxmin
; G =

vy− vymin

vymax− vymin
; B =

vz− vzmin

vzmax− vzmin
;

where vxmin is the minimum value of the x component of the vectors over the domain, and vxmax is the maximum.
The decoding of the vector value from the R, G, B colors can be computed as follows.

vx = vxmin +R(vxmax− vxmin); vy = vymin +G(vymax− vymin); vx = vzmin +B(vzmax− vzmin);

c) Flow combinatorialization in the image plane: After getting VI , the flow combinatorialization can be
computed by tracking the image of each pixel, pi, over a given time τ . To do so, we uniformly sample each pixel
with nsd particles and trace them by following the vector field VI over certain steps, nst p, and see where they end.
A directed edge is then added to the directed graph FI pointing from the starting pixel pi to each pixel p j that
contains the image of a particle released from pi. Without specifically mentioning, the results shown in this paper
are computed using a Runge-Kutta second-order (RK2) integrator with a constant step size. As VI is defined on
an image plane, it can be represented as a texture. Hardware acceleration techniques, such as OpenMP and CUDA
can be utilized to efficiently integrate the trajectories of the released particles. In this work, we focus only on the
CPU implementation of the ISMD.

Note that the above computation simplifies the adaptive edge sampling algorithm for the estimation of the image
of the polygonal elements in the original Morse decomposition. However, in order to capture the divergence and
stretching behavior of the flow and maintain a simply-connected image of a pixel, a large number of particles
should be released. In a later discussion, we will study how different numbers of sampled particles within a pixel
affect the ISMD results.

d) Extracting Morse sets and constructing MCG: After getting the directed graph FI , the Morse sets can be
similarly extracted as the strongly connected components of FI . And the subsequent MCG can be constructed
by searching the paths between neighboring Morse sets. Both steps remain the same as the original Morse
decomposition computation. We follow the same classification criteria as the original method to classify the detected
Morse sets. Specifically, a Morse set is a source-like Morse set (colored in green) if its corresponding sub-graph
does not have any edges pointing from the nodes outside of the sub-graph to the nodes in the interior. A Morse
set is sink-like (colored in red) if its corresponding sub-graph does not have any edges pointing from the nodes of
the sub-graph to the nodes outside of it. A Morse set is saddle-like (colored in blue) if it is neither a source-like
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Morse set, nor a sink-like Morse set.
e) Effect of different numbers of samples: According to the description above, the user needs to determine

a proper number of samples within each pixel in order to most accurately capture the image of the pixel and
construct an accurate graph, FI . However, determining the right number of samples and how they are distributed
is not trivial. This is because we are seeking for two conflict goals. On the one hand, we want to place as many
samples as possible within a pixel for accuracy concern. On the other hand, we want a fast computation. In the
current work, we resort to a simple uniform sampling strategy and place the same amount of samples within all
pixels. Figure 4 shows a study of how different numbers of samples affect the obtained ISMDs. We use an oceanic
current around the Iceland for this study. This data set consists of 23,655 triangles. We show the ISMD results
with 4, 9, and 36 samples, respectively. The result with only 4 samples (left-most image of Figure 4) contains a
lot of Morse sets with non-smooth boundaries and missing interior pixels (i.e., not simply-connected). With the
increase of the number of samples, we obtain more and more well-connected Morse sets with smoother boundaries.
However, after releasing more than 9 samples within a pixel, the ISMD result does not improve a lot. This may
indicate that 9 samples are sufficient for this data set. As expected, with the increase of the number of samples, the
computation time increases, as shown in the upper-right plot of Figure 4. Further discussion on the performance
of ISMDs with respect to the number of samples will be provided in Section IV-B.

To explain why a uniform sampling strategy is adopted in our work, we show an ISMD result with 30 random
samples within each pixel in the lower-bottom image (highlighted by the red box) of Figure 4. As we can see,
many of the obtained Morse sets have disconnected regions and non-smooth boundaries. This is because the locally
random sampling strategy cannot capture the spatially coherent flow behavior. As discussed in the original Morse
decomposition computation [1], the number of samples that is needed is determined by the divergence of the flow
during the particle advection, i.e., more samples will be inserted if the distance between pairs of neighboring samples
increases during the advection. This flow divergence behavior can be measured by the rate of flow separation – a
quantity computed using the Finite Time Lyapunov Exponent (FTLE) [24]. Therefore, a more efficient and adaptive
sampling strategy, such as those for the FTLE computation [25], can be adopted to improve our current sampling.
We plan to investigate this in the future.

4 9

36 30

Fig. 4. ISMD results of the Iceland data with different uniformly distributed samples within a pixel from 4 to 49. These results are
computed with 512 resolution and 5 integration steps. The plot shows the times spent and memory consumptions of the regular sample
results. The image highlighted with a red rectangle shows the result with 30 random seeds within a pixel.
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TABLE I
PERFORMANCE OF THE ISMDS OF THE ICELAND CURRENT DATA WITH DIFFERENT NUMBERS OF SAMPLES WITHIN EACH PIXEL

(res = 5122 , nst p = 5).

XXXXXXXXXXXMeasurement
nsd 4 9 16 25 36 49 64

Time (s) 9.835 20.063 35.837 52.52 74.241 101.993 130.36
Memory (MB) 182.3 277.3 291.1 291.9 292.2 292.3 292.2

#Morse sets 132 128 126 121 121 116 116
#edges in FI 821,877 942,675 1,002,455 1,033,304 1,054,481 1,072,156 1,085,724

k = #edges
#nodes in FI 3.135 3.596 3.824 3.942 4.022 4.09 4.142

TABLE II
PERFORMANCE OF THE ISMDS OF THE ICELAND CURRENT DATA WITH DIFFERENT IMAGE RESOLUTIONS (nst p = 5, nsd = 16).

XXXXXXXXXXXMeasurement
res

64 128 256 512 1024

Time (s) 0.644 2.277 9.071 35.837 140.033
Memory (MB) 45.6 58.1 104.1 291.1 1038.6

#Morse sets 34 49 88 126 147
#edges in FI 20,785 74,083 269,741 1,002,455 3,815,585

k = #edges
#nodes in FI 5.074 4.522 4.116 3.824 3.639

TABLE III
PERFORMANCE OF THE ISMDS OF THE ICELAND CURRENT DATA WITH DIFFERENT INTEGRATION STEPS (res = 5122 , nsd = 16).

XXXXXXXXXXXMeasurement
nst p 2 5 8 10 15 20 25

Time (s) 20.888 35.837 51.383 61.975 87.167 113.137 138.478
Memory (MB) 287.2 291.1 291.4 293.4 294.1 296.4 297.2

#Morse sets 56 126 143 159 155 148 142
#edges in FI 902,604 1,002,455 858,018 1,082,193 975,811 1,198,893 1,247,442

k = #edges
#nodes in FI 3.443 3.824 3.273 4.128 3.722 4.573 4.759

B. Results

Figure 7 shows the image-space Morse decomposition results of a number of synthetic and real-world 2D vector
field data sets. For comparison, their corresponding object-space Morse decompositions are also provided. In general,
we see that the ISMD results extract Morse sets with much smoother boundaries, compared to the object-space
method. A detailed comparison will be provided later.

f) Performance: To study the performance of the proposed image-space Morse decomposition, we conduct a
number of experiments using the oceanic currents around Iceland. There are a number of factors that may affect the
performance (e.g., computational time and memory consumption) of the ISMD. In these experiments, we particularly
concentrate on three factors: 1) size of the image plane, res 2) number of integration steps, nst p and 3) number
of samples within one pixel, nsd . Tables I, II, III provide the performance report of this study, respectively. All
the performance information is measured on a PC with Intel Xeron 1.6GHz quad-core processor and 8GB RAM
without parallel computation. Note that the object-space Morse decomposition takes about 263 seconds to extract
86 Morse sets with τ = 0.15 for this data set, and its memory footprint is 108 MB. The obtained directed graph
has 257,415 edges.

To see how different sizes of the image plane affect the performance, we compute the ISMDs for the Iceland
current data with resolutions 64, 128, 256, 512, and 1024, respectively. Note that in all our experiments, we assume
a square-like image plane. Therefore, without further specification the number of pixels of the image with resolution
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1024512

256128

Fig. 5. ISMD results of the Iceland data with different resolutions from 128 to 1024. These results are computed with a regular sampling
with 16 seeds per pixel and 5 integration steps. The right most column shows the times spent and memory consumptions of these results.

2 8

15 25

Fig. 6. ISMD results of the Iceland data with different integration steps from 2 to 25. These results are computed with 512 resolution and
a regular sampling with 16 seeds per pixel. The right most column shows the times spent and memory consumptions of these results.

res is res2. In all these ISMD computations, we fix nst p = 5 and nsd = 16. From the experiments, we observe that
with the increase of the image size, both the computation and memory costs increase accordingly, especially, the
complexity of computation cost is linear with respect to the image resolution. This is expected as the computation
time is determined by the number of particles that are released in the image plane, and the memory consumption
is determined by the size of the graph, FI . Both the number of the particles and the size of FI are functions of
the image resolution, res. Specifically, the number of the particles that are released is res×nsd and the graph size
|FI| ≈ res2 + k× res2, where k = #edges

#nodes ∈ R+ is a positive constant that measures the average number of edges
adjacent to a node in FI . Figure 5 shows the ISMDs with different resolutions and the corresponding plots of
their performance. The last row of Table II shows the average number of edges, i.e., k, adjacent to each node in
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(a) (b)

(c) (d)

Fig. 7. ISMDs (left) of a number of vector fields and their object-space Morse decompositions (right): (a)-(b) two synthetic vector fields;
(c) a slice of the diesel engine simulation [5]; (d) a time step of the OSU wind tunnel data [26].

the obtained directed graph FI . As we see that k decreases when the resolution increases, which indicates that the
graph has been refined, i.e., one node is split to multiple ones, accordingly.

Figure 6 shows the ISMDs with different integration steps, i.e., different integration times. In this study, we
fix res = 512 and nsd = 16. From the obtained results, we see that with the increase of the integration steps (or
times), the obtained Morse sets become finer. This important property has been shown in the Morse decomposition
computed in the object-space [1], and has been applied to achieve multiscale representation of the flow structure [21].
Similarly, with the increase of the integration steps, the computation time increases linearly, while the increase of
memory consumption is much slower.

The effect of the number of samples within each pixel and the sampling strategy has been discussed previously.
How different numbers of samples affect the performance is illustrated in the plots of Figure 4. Again, with the
increase of the number of samples within each pixel, the computational time increases linearly based on the discus-
sion above, while the memory consumption does not change much after increasing the number of samples above 9,

Fig. 8. ISMD of the HCCI data
set (res= 512, nst p = 50, nsd = 16).

meaning that the graph does not improve a lot with more samples. This indicates that
for this data set 9 samples per pixel should be sufficient. A similar observation can
be seen for other incompressible or weak-incompressible flow data, for instance,
the combustion data as shown in Figure 8. This is a 2D time-varying vector
field simulation of a homogeneous charge compression ignition (HCCI) engine
combustion [27] represented as a 640×640 regular grid with a periodic boundary.
The data set consists of 299 time steps. We use step 137 in our experiment. The
ISMD results do not improve much with the increase of the samples after 9 or more
samples are used. Note that Table I also shows that the average number of the edges
adjacent to each node, k, increases with the increase of samples, indicating that the
accuracy of the graph has been improved.

C. Comparison with the conventional Morse decomposition

As described before, image-space approach is suitable for providing a quick
overview of the data set without worrying about the size of the original data. Therefore, its performance is
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independent of the data size. This facilitates the analysis and visualization of some large scale data that the traditional
method has trouble to handle. For instance, for the aforementioned HCCI data (Figure 8), the traditional object-space
Morse decomposition cannot compute its MCG due to insufficient memory space, while the ISMD successfully
computes its decomposition. The ISMD also provides smoother visualization of the detected Morse sets, which more
closely reflect the smooth nature of the underlying flow behavior. In some cases, the ISMD locates more accurate
position of the Morse sets, especially when they are close to the boundary of the domain where the sampling is
not sufficient for an accurate computation in the object-space method. Figure 9 provides such an example. It shows
a 2D slice of the ABC flow. The magnified view of the left image highlights a Morse set (i.e., a green triangle)
that does not match the vortex center as indicated by the LIC texture. In contrast, our ISMD accurately locate and
highlight this vortex area (i.e., the blue disk). As this Morse set contains a saddle, thus, its type is saddle-like and
shown as blue.

source-like sink-like saddle-like

Fig. 9. The object-space Morse decomposition (left) and our ISMD (right) of a 2D slice of the ABC flow. The magnified view highlights a
region in the flow where the object-space method fails to accurately locate the true Morse set (shown by the underlying LIC) at the boundary
of the domain, while our ISMD can accurate identify and visualize.

We have also applied the ISMD to the analysis of two time-dependent vector fields. These two data sets are
taken from the top layer of a 3D simulation of global oceanic eddies for 350 days of the year 2002 [28]. The 2D
time-varying vector field has resolution 3600× 2400. We extract tiles from the central Atlantic Ocean (60× 60),
denoted by OceanA, and south Atlantic Ocean (100×100), denoted by OceanB, respectively. We use slices from
#20311 to #20314 from OceanA, and slices from #20606 to #20609 from OceanB for this experiment [28]. We apply
ISMD to the individual time steps of the vector fields which are essential some steady vector fields. The resolution
of the ISMD for these two examples is 512. Figures 12 and 11 show the ISMD results (top row) of these two data
sets for four consecutive time steps. For comparison, we show the traditional Morse decomposition results in the
bottom row. The computation of the ISMD results takes less than 35 second per-frame, while the computation of
the object-space Morse decomposition takes about 167 for OceanA and 268 seconds for OceanB per-frame. Overall,
the transition of Morse sets from ISMD over time is much smoother than those from the traditional method.

g) Difference between ISMD and object-space Morse decomposition: To compare with the object-space Morse
decomposition, we check whether a pixel that belongs to a Morse set from the ISMD falls in a triangle that is in
a Morse set in the object-space, and vice versa. We record the difference in two types, i.e., I) pixels in an ISMD
Morse set but not in an object-space Morse set, and II) pixels not in an ISMD Morse set but in an object-space
Morse set. The former we consider it a false positive, while the latter a false negative. The pixel-triangle mapping
relation can be represented by computing an additional image in the projection step of the ISMD pipeline. This
image assigns a unique color to a pixel based on the triangle ID that this pixel falls in. Similar method has been
used in the coherent texture-based flow visualization [29].

Based on the above difference types, we define a measurement to quantify the difference between the two
approaches. Let nI and nII be the numbers of type I and type II pixels, respectively. We can define a number of
error rate based on nI and nII: 1) type I error rate, errI =

nI
res2 , 2) type II error rate, errII =

nII
res2 , and 3) total error

rate, errtotal = errI + errII . Since we wish to capture as many recurrent features as possible during analysis, type
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source-like sink-like saddle-like

Fig. 10. OceanA data set from slice #20311 to #20314. Top row shows our ISMD results, while the bottom row shows the object-space
Morse decomposition with τ = 0.2.

source-like sink-like saddle-like

Fig. 11. OceanB data set from slice #20606 to #20609. Top row shows our ISMD results, while the bottom row shows the object-space
Morse decomposition with τ = 0.2.

II error (i.e., missing features) is more important when compared to the object-space results which are considered
more accurate.

Table IV provides the statistics of the comparison of the ISMD and the traditional Morse decomposition via a
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number of data sets. Note that all the ISMD results use res = 512, nst p = 5, and nsd = 16. Table V provides the
error measurement of the ISMDs of the Iceland current data with different numbers of samples when compared
to an object-space Morse decomposition with τ = 0.15. While the type I error increases with the increase of the
numbers of samples within a pixel, the type II error decreases accordingly. This indicates that with more samples,
the ISMD results capture more and more flow regions that have recurrent flows which are also identified by the
object-space method. Visually, the Morse sets in the image space have less missing interior pixels and smoother
boundaries with more samples. Table VI provides the error measurement of the ISMDs of the Iceland current data
with different resolutions when compared to an object-space Morse decomposition with τ = 0.15. The type I error
decreases with the increase of the image resolution, while the type II error remains in a similar level with small
fluctuation. The overall error rate generally decreases with the increase of the image resolution, indicating that the
accuracy is improved with higher image resolution (i.e., finer sampling), as expected.

TABLE IV
ERROR STUDY OF THE ISMDS OF A NUMBER OF DATA SETS USED IN THIS WORK. (res = 512, nst p = 5, nsd = 16). THE OBJECT-SPACE

MORSE DECOMPOSITIONS OF THESE DATA SETS ARE TYPICALLY COMPUTED WITH τ = 0.2 EXCEPT FOR THE WIND TUNNEL DATA SET

WHERE τ = 0.5 IS USED.

XXXXXXXXXXXError
Datasets OceanA OceanB

ABC Fig.1 Fig.13
311 312 313 314 606 607 608 609

errI 0.6% 0.5% 1.7% 1.1% 2.0% 2.0% 2.2% 2.1% 0.7% 0.1% 1.5%
errII 1.2% 1.5% 0.7% 3.4% 1.6% 1.9% 1.7% 1.7% 0.4% 0.4% 4.7%

errtotal 1.8% 2.0% 2.4% 4.5% 3.6% 3.9% 3.9% 3.8% 1.1% 0.5% 6.2%

TABLE V
ERROR STUDY OF THE ISMDS OF THE ICELAND CURRENT DATA WITH DIFFERENT NUMBERS OF SAMPLES WITHIN EACH PIXEL

(res = 512, nst p = 5), COMPARED TO THE OBJECT-SPACE MORSE DECOMPOSITION WITH τ = 0.15.

PPPPPPPPPError
nsd 4 9 16 25 36 49 64

errI 2.2% 4.2% 4.4% 4.6% 4.7% 5.1% 5.6%
errII 5.2% 3.9% 3.5% 3.3% 3.26% 3.2% 2.7%

errtotal 7.4% 8.1% 7.9% 7.9% 7.96% 8.3% 8.3%

TABLE VI
ERROR STUDY OF THE ISMDS OF THE ICELAND CURRENT DATA WITH DIFFERENT RESOLUTIONS (nst p = 5, nsd = 16), COMPARED TO

THE OBJECT-SPACE MORSE DECOMPOSITION WITH τ = 0.15.

PPPPPPPPPError
nsd 64 128 256 512 1024

errI 9.3% 6.3% 5.1% 4.4% 4.1%
errII 3.2% 2.7% 3.4% 3.5% 4.0%

errtotal 12.5% 9.0% 8.5% 7.9% 8.1%

Remark It is worth noting that our ISMD can be combined with the traditional Morse decomposition framework
in order to improve its ability of encoding important flow information. Since the pixel-triangle mapping relation is
stored in the previous error estimation, it is straight forward to compute the directed graph in the object-space, FO,
based on the results of the graph in the image space, FI . Particularly, if there is a directed edge pi→ p j in FI , and
pi ∈ Tk, p j ∈ Tl (Tk and Tl are triangles of the original mesh), we add an edge Tk→ Tl in FO. In addition, we can
store the statistic information in the flow map given the current triangulation as the edge weights. Specifically, given
all pixels that fall in a triangle Tk, denoted by {p}|Tk , we define the weight on the edge Tk→ Tl as

|{p}|Tk→Tl |
|{p}|Tk |

, where
{p}|Tk→Tl is the set of pixels that can reach triangle Tl from Tk, which is non-empty, and | · | represents the number
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Fig. 12. The difference between the ISMD versus the object-space Morse decomposition on the slice #20311 from the OceanA data. There
are 1,471 nI type of pixels (yellow in the left image) and 3,256 nII type of pixels (cyan in the middle image). The right image shows all
the pixels that the two methods do not agree.

of pixels in a given set. With this statistical information encoded, a few graph analyses can be conducted [30],
[31], which we plan to further explore in the future.

D. Discussion and Limitations

The aforementioned ISMD framework can be extended to 3D volumetric vector field analysis by resorting to the
3D texture representation. However, it currently does not apply to vector fields defined on curved surfaces. This
is because even though any local neighborhood of a surface point behaves like a plane, without a proper surface
parameterization, it is impossible to project a general surface vector field on to a planar image. To address that, one
can consider the surface flow is constrained in a 3D thin shell that encloses the surface boundary. This approximates
the surface vector field as a volumetric field that has non-zero value only within the thin shell. Similar idea has
been applied by Kwatra et al. for texturing dynamic fluid surface [32]. Another alternative is to adapt the method
on coherent texture-based flow visualization [29]. We plan to investigate this in a future work.

Another limitation of the ISMD is its view point dependency, which requires the recomputation of the ISMD
whenever the user changes the view point, such as zooming and panning. In addition, if a portion of a circulating
feature is outside of the image plane due to the user interaction, the ISMD will not be able to capture it, as the
projected vector field will not be able to represent the whole feature. This is an inherent limitation of all the
image-space methods. Therefore, instead of replacing the more accurate object-space computation, ISMD should
serve as a tool to achieve quick overview of the flow recurrent dynamics before the accurate extraction.

V. A STUDY OF MORSE SET STABILITY USING ISMD

With the proposed ISMD framework, the stability of the detected Morse sets under different sources of uncer-
tainty can be approximated and visualized, which is difficult to obtain via the conventional Morse decomposition
framework. In this study, we consider two sources of uncertainty, including 1) the error introduced during integration
and 2) the noise contained in the vector field data. For both studies, we artificially introduce error and noise to the
data and the computation, and examine the behavior of the obtained ISMD in an ensemble fashion.

A. Integration Error

In this study, we perform ISMD on the same vector fields with different numerical integrators and different
integration step sizes, i.e., with different integration error. In particular, we experiment with the Euler, RK2, and
RK4 integrators, respectively. Two random integer numbers, n1ran and n2ran, are computed before each ISMD
computation, which are used to determine the integrator and the corresponding step sizes for this ISMD computation.
This results in an ensemble of the ISMDs of the same vector field. For each of these ISMD results, we label each
pixel as either 0 (not within a Morse set) or k ∈ {1,2,3} (1–in a source-like Morse set, 2–in a sink-like Morse set,
or 3–in a saddle-like Morse set). Next, we count how many times a pixel falls in a Morse set, nhits, and what is
the type of the Morse set where it falls in. This information will be used to determine the color of the pixel in the
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rendering. Specifically, we adopt the HSV color space. For each pixel, we assign the hue value as either 120 if
most times the pixel is in a source-like Morse set; 0 if it is mostly in a sink-like Morse set; 240 if it is mostly in a
saddle-like Morse set; or 330 if its type cannot be determined. The saturation and intensity values of the pixel are
both set as nhits

Ntrials
, where Ntrials is the number of trials for this ensemble analysis. With this simple transfer function,

a pixel that is more likely in a Morse set (i.e., larger nhits value) will have brighter and more saturated color, while
a pixel that has a low likelihood to be in a Morse set will get a darker color.

Figure 13 shows the ensemble analysis of the ISMD and the stability of the Morse sets under different integration
schemes for two synthetic (left two images) and two real-world data sets (right two images). For these experiments,
res = 512, nst p = 5, nsd = 16, Ntrials = 20, n1ran ∈ {0,1,2}, and n2ran ∈ {1,2, ...,10}. For example, if n1ran = 0, the
Euler integrator with step size dt = ∆

n2ran
is selected, where ∆ is the interval between two neighboring pixels along

X direction. From these results, we see for all these vector fields, the less stable areas of the Morse sets under
different error introduced by the integration are near their boundaries (highlighted by the magenta arrows), while
for the incompressible flow data (the two middle fields), the less stable areas can also arise near the center of the
vortices (highlighted by the yellow arrows). This is expected because the numerical integrators, especially those
with fixed step size, have trouble to compute the accurate flow paths in areas with high flow curvature, e.g., the
center of a vortex.

Fig. 13. The ensemble ISMDs of the PIV wind tunnel data with different amount of perturbations: 5%, 10%, 20%, and 30%. The probability
p is set 0.8 and res = 512, nst p = 5, nsd = 16 for all these computation.

B. Noise in the Data

In this study, we artificially perturb the vector value at every data point to mimic the noise in the data. Assuming
no prior knowledge is available, we perturb each vector by a uniform random noise. Specifically, given a vector
pointing from p to q, a new ending point q′ is selected from a disk with radius r and centered at q. r = c×|Vmax|,
where |Vmax| is the largest magnitude among the vector values in the vector field and c∈ (0,1] quantifies the amount
of perturbation. Figure 14 (middle diagram) illustrates such a perturbation. With this strategy, we generate a series
of perturbed vector fields from the input data for an ensemble analysis. Similar to the above study of integration
error, we compute an ISMD for each perturbed vector field and record each pixel on whether it is in a Morse set or
not. With the aforementioned blending process, we generate a visualization so that the pixels that are more likely
on the true Morse sets will be assigned brighter colors, while the pixels with less certainty get darker colors.

We use a 2D data set obtained at the OSU wind tunnel [26] to study this. This data set represents experimentally
obtained velocity components in a two dimensional plane along the centerline of a wing in a moderate Reynolds
number (Re = 6×104 based on the chord length). This data set was obtained using particle image velocimetry and
represents a snapshot of the velocity field with a vector resolution of 0.684mm in a total field of field of 54mm
× 47mm. The wing is at a 20◦ angle of attack (chord line relative to flow direction) and as such experiences a
leading edge separation.

Figure 15 shows the ensemble visualization of the ISMDs with different amount of perturbations being added
randomly. For all these computations, we set res = 512, nst p = 5, nsd = 16, and Ntrials = 20. From these results,
we see that with more perturbations the obtained Morse sets tend to have larger less certain areas, i.e., those dark
regions. Also, in most cases, those less certain areas are typically located at the boundaries of the Morse sets (also
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Fig. 14. Generation of the ISMD ensemble. First, each vector value of the input vector field is perturbed to generate a series of new vector
fields, as described in the middle illustration. Second, ISMDs of these new vector fields are computed and recorded. Finally, this ensemble
of ISMDs are blended to generate the visualization shown in the right image.

5% 10% 20% 30%

Fig. 15. The ensemble ISMDs of the PIV wind tunnel data with different amount of perturbations: 5%, 10%, 20%, and 30%. The probability
p is set 0.8 and res = 512, nst p = 5, nsd = 16 for all these computation.

shown in Figure 1(c)), which is expected as the points (here pixels) near the boundary of a Morse sets are most
influenced by the perturbation. This can be explained by the behavior of the strongly connected components of a
directed graph. As shown in Figure 16, a small perturbation may change some edges of the graph. The change of
the edges at the boundary (Figure 16(a)) of the strongly connected component has larger influence than those in
the interior (Figure 16(b)) of the strongly connected component.

From the results shown in Figure 15, we observe that two Morse sets are less stable under perturbation than the
others. The Morse set highlighted by the yellow arrows becomes less stable, shown by the dark color, with the
increasing amount of perturbation. Similarly, the Morse set highlighted by the magenta arrows changes type, i.e.,
from sink-like to saddle-like Morse set, with the increasing amount of perturbation. Both Morse sets are close to
the wing that indicate certain vortex behavior of the air. However, what causes this instability will need in-depth
investigation and the discussion with the domain experts.

VI. CONCLUSION

In this work, we present an Image-Space Morse decomposition (ISMD). Compared to the original Morse
decomposition that is computed in the object-space, the ISMD first projects the input vector field onto an image
plane. Then, a directed graph, FI , is constructed based on the projected vector field defined in the image plane,
where the graph nodes correspond to the individual pixels and the directed edges indicate the flow mapping relation
between pixels. This is in contrast to the object-space method where the graph nodes correspond to the triangles
(or other polygonal elements) of the space discretization. Next, the Morse decomposition is computed using the
original method based on FI . With this modification, ISMD addresses the boundary smoothness issue of the original
representation and achieves pixel-level accuracy in the visualization. In addition, with the ISMD framework, the
stability of the Morse sets under different sources of uncertainty, including the error introduced in the numerical
integration and the perturbation or noise in the data, can be studied and visualized, which is difficult to achieve
via the original method. We have also provided a thorough study of the performance of the proposed ISMD and
applied it to a number of synthetic and real-world vector field data to demonstrate its utility.
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Fig. 16. Illustration of how small perturbation can affect the detected strongly connected components. (a) the perturbation causes the
change of the direction of an edge (starting from a node p, highlighted as green), which makes p becomes part of a strongly connected
component. (b) the perturbation removes an interior edge starting from a node q (highlighted as green). This does not change the original
strongly connected component.

Similar to other image-space approaches, ISMD is also view-dependent and requires recomputation during user
interaction. In addition, certain features will be missed when they are partially outside the viewport. Further, the
memory consumption of the ISMD may be larger than the object-space method if the resolution of the input mesh
is coarser than the image resolution. Also, the uniform sampling strategy for placing particles for the estimation
of the flow map need not be as accurate as the object-space method. Therefore, instead of claiming the proposed
ISMD is better than the original method, we consider it a valuable addition to the existing Morse decomposition
techniques, which may provide a quick overview of the flow recurrent behavior.

In the future, we would like to extend the current ISMD framework to handle the tangential vector fields defined
on curved surfaces and 3D vector fields. We would also like to combine the ISMD framework with the object-space
method to further enhance the information encoding during the construction of the graph for the development of a
new and unified graph-based vector field analysis framework, and continue improving the smoothness of the visual
representation of the decomposition results. In addition, we will explore the utility of ISMD framework for the
uncertainty analysis and visualization of vector fields, as well as the hierarchical representation of the flow structure.
Finally, we plan to improve the performance of the current ISMD by studying a better sampling strategy and more
compact representation of the graph.
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