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Abstract

In finance, hedging strategies are used to safeguard portfolios against risk associated

with financial derivatives such as options. For an option with an underlying asset, the

risk can be measured in terms of the so-called Greeks. In particular, the derivative of

the option price with respect to the value of the asset is referred to as the Delta. An

alternative to optimize hedges for options is to optimize options for hedging. Here, we are

concerned with European double barrier basket options with multiple cash settlements.

The cash settlements are considered as controls and the objective is to choose the controls

such that the Delta is as close to a constant as possible. This amounts to the solution of a

control constrained optimal control problem for the multidimensional Black Scholes equa-

tion featuring Dirichlet boundary control and final time control. We prove existence and

uniqueness of the optimal control and derive the first order necessary optimality conditions

in terms of the state, the adjoint state, and the control. The numerical solution is based

on a discretization in space by P1 conforming finite elements with respect to a simplicial

triangulation of the spatial domain and a further discretization in time by the implicit

Euler scheme with respect to a partition of the time interval. The fully discretized optimal

control problem is then solved by a projected gradient method with Armijo line search.

Numerical results are given to illustrate the performance of the suggested approach.
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Chapter 1

Introduction

Options that are different from plain vanilla American or European call or put options

are commonly referred to as exotic options (cf., e.g., [24, 34, 47]). Among the exotic

options, those of single or double barrier type are of particular interest. Such options

become effective (knock-in options) or expire (knock-out options) as soon as the value of

the underlying asset hits some prespecified upper and/or lower barrier. The valuation of a

single barrier option with one underlying asset has been studied first by Merton [32] and

subsequently investigated in [9, 12, 37, 39]. As far as barrier options with more than one

underlying asset are concerned, one of the first contributions was [20] dealing with barrier

options on a single stock where the barrier is determined by another asset. Valuation

formulas for barrier options on a basket have been derived later in [26, 46]. Hedging

techniques for barrier options have been considered by different approaches including static

hedging [10, 11, 36], the partial differential equation (PDE) formulation [2, 14, 29, 33, 36,

40], and stochastic optimization [18, 30, 31].

In this thesis, we will study an optimal control approach for hedging barrier options with
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multiple cash settlements at the option’s expiration [6]. The thesis is organized as follows:

In chapter 2, we begin with the basic principles of the theory of option pricing. We introduce

plain vanilla European/American options and exotic options focusing on European Double

Barrier Basket Options (section 2.1) followed by a brief discussion of various types of traders

in section 2.2. Section 2.4 is devoted to the well-known Black-Scholes-Merton model for the

evaluation of the fair price of a European option for one underlying asset, whereas section

2.5 addresses the multidimensional case in terms of a basket of assets. The variational

(weak) formulation of the final time/boundary value problem for the Black-Scholes equation

for a European put option on two underlyings is given in section 2.6 on the basis of weighted

Sobolev spaces. In chapter 3, we will be concerned with hedging strategies with emphasis

on Delta hedging. For that purpose, we will introduce Greeks in section 3.1 and futures

contracts in section 3.2. As standard hedging instruments, we consider Delta hedging

with options and futures contracts in sections 3.3 and 3.4. A feasible alternative is Delta

hedging with European Double Barrier Options which will be illustrated in section 3.5.

In chapter 4, following the exposition in [22], we consider hedging with European double

barrier basket call options on two underlying assets featuring a certain number of cash

settlements at predetermined values of the underlying assets between the strike and the

upper barrier (section 4.1). The cash settlements are interpreted as bilaterally constrained

control variables that have to be chosen in such a way that the Delta is as close to a

prespecified constant Delta as possible leading to a tracking type objective functional. We

are thus faced with the solution of a control constrained optimal control problem for the

two-dimensional Black-Scholes equation in the space-time domain Q := Ω × (0, T ), T > 0,

where Ω is a trapezoidal domain in R
2 determined by the lower and upper barriers Kmin

and Kmax. In particular, the cash settlement at the upper barrier represents a Dirichlet

boundary control, whereas the other cash settlements occur as a final time control vector.
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As a particular feature, the Dirichlet boundary conditions on the boundaries parallel to

the coordinate axes are given by the solution of associated one-dimensional Black-Scholes

equations (section 4.2). In section 4.2, using a simple transformation in time, we rewrite

the problem as an initial control/Dirichlet boundary control problem and consider its

variational formulation in a weighted Sobolev space setting. The first order necessary

optimality conditions involving adjoint states that satisfy backward in time parabolic PDEs

as well as a variational inequality due to the bilateral constraints on the control will be

derived in section 4.2. In section 4.3, we are concerned with the discretization of the

optimal control problem. We first consider a semi-discretization in space by conforming

P1 finite elements with respect to a simplicial triangulation of the computational domain.

The semi-discretized control problem requires the minimization of a semi-discrete objective

functional subject to systems of first order ordinary differential equations (ODEs) obtained

by the finite element approximation in space and subject to the bilateral constraints on the

controls. It represents a control constrained initial control problem for the corresponding

systems of first order ODEs in terms of the associated mass and stiffness matrices as well

as the input matrices expressing the input from the semi-discretized boundary controls at

the upper barrier. The semi-discrete optimality system reflects the intrinsic relationships

between the states, the adjoint states, and the controls. A further discretization in time

with respect to a partition of the time interval gives rise to a fully discrete optimization

problem. Chapter 5.2 contains the numerical solution of the fully discrete optimal control

problem by a projected gradient method with line search as well as a documentation of

representative numerical results. The final chapter 6 summarizes the basic results of this

thesis and gives an outlook on possible future work.
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Chapter 2

Pricing Of Options

In this chapter, we introduce the basic principles of the theory of option pricing. In section

2.1, we discuss plain vanilla European and American options as well as exotic options

with emphasis on European Double Barrier Basket Options. Different types of traders are

addressed in section 2.2. Then, we present the well-known Black-Scholes-Merton model

for the evaluation of the fair price of a European option both for one underlying asset

(section 2.4) and for a basket of assets (section 2.5) followed by the variational formulation

of the final time boundary value problem for the Black-Scholes equation (section 2.6).

In section 3, we will be concerned with hedging strategies. After a brief introduction to

Greeks and futures contracts in subsections 3.1 and 3.2, we will first consider Delta hedging

with options and futures contracts (subsections 3.3 and 3.4) as standard hedging tools and

then concentrate on Delta hedging with European Double Barrier Options as an attractive

alternative which combines the advantages of hedging with options and futures contracts

(subsection 3.5).
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2.1 Types Of Options

An option(cf., e.g., [1, 4, 15]) is the right, but not the obligation, to buy or sell an asset at

a fixed price at the end or within a prespecified period of time. It is a financial instrument

that allows to make a bet on rising or falling values of an underlying asset. The underlying

asset typically is a stock, or a parcel of shares of a company. An option is a contract between

two parties about trading the asset at a certain future time. One party is the writer, often

a bank, who fixes the terms of the contract and sells the option. The other party is the

holder who purchases the option paying the market price which is called premium.

Several factors have an effect on the price of an option: the initial price S0 of the underlying

asset at the initial time t = 0, the maturity (expiry) date T , the fixed strike price K, the

volatility of the underlying asset, and the (fixed) interest rate r.

There are various option types. A European (American) Vanilla Option is a contract

which gives its owner the right to buy (Call ) or sell (Put) a certain number of shares

of the underlying asset at the strike price K until or at the maturity date T . The act

of conducting the transaction is referred to as exercising the option. We call the option

Vanilla, because it is a standard option type. European options can only be exercised at

the expiry date T , whereas American options can be exercised any time T .

One is interested in the value of an option y = y(St; t) (or P (St; t) and C(St; t) for Put/Call)

depending on the spot price St for all t ≤ T . Pricing a European Vanilla option at maturity

goes as follows: An owner of a European Put only exercises his right to sell the stock, if

the spot price ST at the expiry date T is less than the fixed strike price K. Afterwards, he

will buy the stock immediately. This leads to the payoff at maturity

P (ST ;T ) = (K − ST )+ = max(K − ST , 0). (2.1)

5



An owner of a European Call option will do the contrary: he will only exercise, if there

holds K > ST and directly sell the stock. The value of the call is given by the payoff

function

C(ST , T ) = (ST −K)+ = max(ST −K, 0). (2.2)

For both a European Call and a European Put, the payoff function is illustrated in

Figure 2.1 below in case of a strike K = 50.

Figure 2.1: Payoff for a European Call (left) and a European Put (right).

Other than the mentioned plain vanilla options are the so-called exotic options(cf., e.g.,

[24, 34, 47]). These nonstandard options created by financial engineers are mostly traded

at over-the-counter markets. For instance, it is possible to restrict the early exercise to

certain dates as well as changing the strike price during the life of the option. Many more

modifications of the option structure are possible. We are interested in European double

barrier basket options. For that purpose, we introduce basket and barrier options and

finally combine these two types.

Basket options are a class of options which depend on an underlying which is the value of

a portfolio of assets. Stock market index options, i.e., on the Dow Jones or the S&P 500,
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are popular examples of a basket option.

Barrier options are a class of options which yield a payoff depending on whether the price

of the underlying asset reaches a predefined level or remains in a certain interval during

a fixed period of time. This yields different forms of options depending on whether the

payoff vanishes (knock-out option) or the payoff begins to exist (knock-in option) when a

certain barrier is reached.

We are now able to define European double barrier basket options which are the subject of

this thesis: a European double barrier basket option is a European option on a portfolio of

assets yielding a payoff which depends on the breaching behavior of the underlying basket

of assets given an upper and a lower barrier with respect to the initial price of the portfolio

of assets. The contract of a specific European double barrier basket option particularizes

the payoff depending on whether the up- or down-barrier or neither of them is hit by the

price of the underlying portfolio of assets - which can be the weighted sum or the average

of the different assets. In particular, we will investigate European double barrier basket

options on two underlying assets with an upper and a lower knock-out barrier featuring

a finite number of cash settlements at predefined values of the underlyings between the

strike and the upper barrier.

2.2 Types Of Traders

Participants of option markets have various aims and goals. Basically we group traders

into three different classes: hedgers, speculators and arbitrageurs. We will give examples

of how these types of traders (cf., e.g., [1, 5]) use options to achieve their purposes.

Hedgers: Many investors are risk-averse, i.e., they are unwilling to take large risks and
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use options as a measure to cover possible losses from future price changes.

Let us assume that there is an investor who owns shares of a certain company and fears

losses due to a decline in the stock value. In this case, he could take a long position in

put options (i.e., buy put options) with a strike price of the current stock price. He has to

bear the costs of the put contract but this action guarantees that he can sell his shares in

the future for at least the current stock price.

Speculators: Speculators try to use uncertain future price movements to gain profits

by using options. They utilize their knowledge in the market to forecast future prices.

Therefore, they bet on the asset price to go up or down. Furthermore, the leverage effect

on options often makes it more attractive to hold an option instead of the share itself.

Let us assume an investor has 5000 US-D to invest and he picks a certain share whose

price will presumably increase. He could either buy 100 shares worth 50 US-D or purchase

2500 call options with strike 55 US-D at the current option price 2 US-D. If the price of

the stock rises as foreseen by the speculator, say up to 60 US-D, he will make a profit of

100 · (60 − 50) = 1000 US-D holding shares, but 2500 · (60 − 55) − 2 · 2500 = 7500 US-D

holding call options. On the other hand, if the strike price is not reached, he will lose the

whole investment of 5000 US-D.

Arbitrageurs: Another group of participants in the option market are arbitrageurs who

exploit price differences or wrong valuation of prices in markets to gain riskless profits by

concurrently entering transactions in these markets.

Consider three financial assets in a financial market:

• a riskless bond with value Bt = B(t) which is paid for at time t = 0 in months with

B0 = 50 US-D and results at maturity date t = 1 in months with interest rate r = 0.1

in B0(1 + r) = 55 US-D,
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• a stock with initial value 50 which attains one of the two possible states ST = 60

US-D or ST = 40 US-D at maturity date T ,

• a call option with strike K = 50 US-D, maturity date T and option price C0 = 5

US-D.

An arbitrageur would invest in a portfolio as follows: At time t = 0 he buys 2/5 of the

bond and one call option and sells (as short-selling is allowed) 1/2 stock such that the value

of his portfolio π is zero: π0 = 2/5 · 50 + 1 · 5− 1/2 · 50 = 0. Since at maturity T the value

of the stock can be either 40 US-D or 60 US-D, the value of the portfolio is either

πT = 2/5 · 60 + 1 · 10− 1/2 · 60 = 4,

or

πT = 2/5 · 60 + 1 · 0− 1/2 · 40 = 4.

Hence, the investor could realize an immediate riskless profit, because the price of the

call option is too low. Options have to be appropriately priced so that arbitrage can be

excluded. This leads to the put-call parity.

2.3 Put-Call Parity

More details about Put-Call Parity can be found in [1, 15]. Upper and lower bounds for

the price of European call and put options can be derived under the assumption that the

financial market is arbitrage-free, that the market is liquid, i.e., that there is a sufficiently

large number of buyers and sellers such that changes in supply or demand only have little
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impact on the price, and frictionless, i.e., that there are neither transaction costs nor taxes,

and that trade is possible at any time. In particular, denoting by T the maturity date,

by K the strike, by r > 0 a fixed interest rate, and by St the spot price of the underlying

asset, for the price C(St; t) of a European put option we obtain

(St −K exp(−r(T − t))+ ≤ C(St; t) ≤ St, 0 ≤ t ≤ T, (2.3)

whereas for the the price P (St; t) of a European put option there holds

(K exp(−r(T − t)− St)+ ≤ P (St; t) ≤ K exp(−r(T − t)), 0 ≤ t ≤ T. (2.4)

Moreover, C(St; t) and P (St; t) are related by the so-called put-call parity

π(t) := (St + P (St; t)− C(St; t) = K exp(−r(T − t)), 0 ≤ t ≤ T. (2.5)

The proofs of (2.3),(2.4), and (2.5) can be easily done by contradiction arguments. For

instance, in order to verify (2.5), let us first assume that π(t) < K exp(−r(T − t)). We buy

the portfolio, i.e., we buy one share, one put option and sell one call option. Furthermore,

we take a credit worthK exp(−r(T−t)) and consequently save K exp(−r(T−t))−π(t) > 0.

At maturity date, the value of the portfolio reads π(t) = ST + (K − ST )+ − (ST −K)+ =

K, which we bring to the bank to pay the credit. This leads to a risk-free profit of

K exp(−r(T − t))− π(t) > 0 at time t contradicting the no-arbitrage principle. Likewise,

if we assume π(t) > K exp(−r(T − t)), then selling the portfolio, i.e., shorting one share,

one put option, buying one call option and investing K exp(−r(T − t)) in a riskless bond

leads to a risk-free profit of π(t) − K exp(−r(T − t)) > 0 contradicting the no-arbitrage

principle as well, since at maturity T we get K from the bank and buy the portfolio at
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price π(T ) = K.

2.4 Black-Scholes Equation

The derivation of the Black-Scholes equation(cf., e.g., [4, 9, 12, 32, 37, 39]) is based on the

following assumptions on the financial market:

• there is no-arbitrage,

• the market is liquid and frictionless, i.e., there are no transaction costs and taxes,

• there are no dividends,

• the risk-free interest rate r to borrow and lend cash is constant in time, i.e., bonds

Bt, t ∈ R+ satisfy dBt = rBtdt,

• it is possible to continuously buy any fraction of a security, i.e., bonds, shares, options,

and short selling is permitted,

• the price of an asset satisfies the linear stochastic differential equation dSt = µStdt+

σStdWt where µ ∈ R is a constant drift parameter, σ ∈ R+ is the volatility of the

asset and Wt is a Wiener process.

The idea, which is so-called Delta-Hedging, is to dynamically duplicate the option with a

suitable portfolio which only consists of financial instruments whose values are known such

as the value of the stock S and an investment or credit with interest rate r. In particular, a

duplication portfolio is chosen such that this portfolio has the same value at maturity as the

option. In this way, one can interpret the option price as a discounted expectation of the

payoff at maturity T . It follows from the no-arbitrage principle and from the assumptions
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on the financial market that at each time the duplication portfolio has the same value as

the option.

We consider a risk-free self-financing portfolio R = Rt consisting of a bond B = Bt, a stock

S = St, and a European option with value y = yt. Changes in a self-financing portfolio are

only financed by either buying or selling parts of the portfolio. From the above assumptions,

Black and Scholes deduce the principle of risk-neutral valuation which implies that the

present value of an option is the expected final value of the option discounted with the

fixed interest rate r so that the drift parameter µ can be replaced by r which comes from the

first assumption. With Itô’s lemma, it can be shown that the value of the European option

satisfies the following linear second order parabolic partial differential equation known as

the Black-Scholes equation

∂y

∂t
+

1

2
σ2S2 ∂

2y

∂S2
+ rS

∂y

∂S
− ry = 0. (2.6)

In order to guarantee a unique solution of (2.6), a final time condition and appropriate

boundary conditions have to be taken into account depending on the type of the option.

For European puts and calls, at maturity T the final condition is given according to

y(S, T ) =





(S −K)+ for a European call

(K − S)+ for a European put
. (2.7)

The boundary conditions for S = 0 and S → ∞ read as follows

y(0, t) =





0 for a European call

K exp(−r(T − t)) for a European put
, (2.8)

y(S, t) = O(S) for a European call, lim
S→∞

y(S, t) = 0 for a European put.
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The Black-Scholes equation (2.6) with final time condition (2.7) and boundary data (2.8)

has the explicit solution

y(S, t) = Sφ(d1)−K exp(−r(T − t))φ(d2) for a European call, (2.9a)

and

y(S, t) = K exp(−r(T − t))φ(−d2)− Sφ(−d1) for a European call. (2.9b)

Here, φ denotes the cumulative distribution function of the standard normal distribution,

and d1, d2 are given by

d1/2 =
ln( S

K ) + (r ± σ2

2 )(T − t)

σ
√
T − t

. (2.10)

Remark 2.1. Extensions of the Black-Scholes model are able to take into account time-

dependent interest rates r = r(t) and temporally and spatially varying volatilities σ =

σ(St, t) as well as transaction costs and dividends.

2.5 Multidimensional Black-Scholes Equation

Under the same assumptions on the financial market as in the previous subsection 2.4, we

now consider a basket containing d assets whose prices Sk = (Skt)t≥0, 1 ≤ k ≤ d, satisfy

the following system of stochastic differential equations(cf., e.g., [26, 46])

dSkt = Skt

(
µkdt+

σk√
1 +

∑
ℓ 6=k

ρ2kℓ

(dWkt +

d∑

ℓ=1

ρkℓdWℓt)
)
, 1 ≤ k ≤ d. (2.11)
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Here, µk, 1 ≤ k ≤ d, denotes the constant drift term of the k-th asset. The underlying

Wiener process (Wt)t≥0 is assumed to be multidimensional, σk, 1 ≤ k ≤ d, refers to the

volatility of the k-th stock, and ρkℓ ∈ [0, 1], 1 ≤ k, ℓ ≤ d, stands for Pearson’s correlation

coefficient between stock k and ℓ. We assume that the correlation matrix

ξ :=




σ21 ρ12σ1σ2 · · · ρ1dσ1σd

ρ21σ2σ1 σ22 · · · ρ2dσ2σd

. . . . . . . . . . . .

ρd1σdσ1 ρd2σdσ2 · · · σ2d




(2.12)

is symmetric and positive definite. Applying Itô’s lemma to (2.11) as well as the principle

of risk-neutral valuation leads to the solution

Skt = Sk0 exp
(
(r − σ2k

2
)t+

σk√
1 +

∑
ℓ 6=k

ρ2kℓ

(Wkt +
∑

ℓ 6=k

ρkℓWℓt)
)
, 1 ≤ k ≤ d. (2.13)

Under the assumptions on the financial market, for the price y of the basket option the

following multidimensional Black-Scholes equation can be derived

∂y

∂t
+

1

2

d∑

k,ℓ=1

ξkℓSkSℓ
∂2y

∂Sk∂Sℓ
+ r

d∑

k=1

Sk
∂y

∂Sk
− ry = 0, (2.14)

where ξk,ℓ := ρkℓσkσℓ, 1 ≤ k, ℓ ≤ d. The equation (2.14) has to be complemented by a final

time condition and boundary conditions depending on the type of option in much the same

way as has been done in subsection 2.4.
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2.6 Variational Formulation Of The Black-Scholes Equation

2.6.1 Weighted Sobolev Spaces

We use standard notation from Lebesgue and Sobolev space theory [42]. In particular,

given a bounded Lipschitz domain Ω ⊂ R
d, d ∈ N, with boundary Γ := ∂Ω, for D ⊆ Ω

we refer to Lp(D), 1 ≤ p ≤ ∞ as the Banach spaces of p-th power integrable functions

(p <∞) and essentially bounded functions (p = ∞) on D with norm ‖ · ‖Lp(D). We denote

by Lp(D)+ the positive cone in Lp(D), i.e., Lp(D)+ := {v ∈ Lp(D) | v ≥ 0 a.e. in D}.

In case p = 2, the space L2(D) is a Hilbert space whose inner product and norm will be

referred to as (·, ·)L2(D).

For m ∈ N0 and weight functions ω = (ωα)|α|≤m with ωα ∈ L∞(D)+, α = (α1, · · · , αd) ∈

N
d
0, |α| :=

∑d
i=1 αi, we denote by Wm,p

ω (D) the weighted Sobolev spaces with norms

‖v‖Wm,p
ω (D) :=





( ∑
|α|≤m

‖ωαD
αv‖pLp(D)

)1/p
, if p <∞

max
|α|≤m

‖ωαD
αv‖L∞(D) , if p = ∞

,

and refer to | · |Wm,p
ω (D) as the associated seminorms. In particular, for |α| = 1 we use the

notation ∇ωv := (S1∂v/∂S1, · · · , Sd∂v/∂Sd)T . For p < ∞ and s ∈ R+, s = m + σ,m ∈

N0, 0 < σ < 1, we define the weighted Sobolev space W s,p
ω (D) with norm ‖ · ‖W s,p

ω (D) in

analogy to the standard, non-weighted case and refer to W s,p
ω,0(D) as the closure of C∞

0 (D)

in W s,p
ω (D). For s < 0, we denote by W−s,p

ω (D) the dual space of W−s,q
ω,0 (D), p−1+ q−1 = 1.

In case p = 2, the spaces W s,2
ω (D) are Hilbert spaces. We will write Hs

ω(D) instead of

W s,2
ω (D) and refer to (·, ·)Hs

ω(D) and ‖ · ‖Hs
ω(D) as the inner products and associated norms.

In the standard case ωα ≡ 1, |α| ≤ m, we will drop the subindex ω.

For a Banach space X and its dual X∗, we refer to 〈·, ·〉X∗ ,X as the dual pairing between
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X∗ and X. For Banach spaces Xi, 1 ≤ i ≤ n, n ∈ N, and a function v ∈ ⋂n
i=1Xi, we refer

to ‖v‖⋂n
i=1 Xi

as the norm

‖v‖⋂n
i=1 Xi

:= max
i≤i≤n

‖v‖Xi
. (2.15)

Moreover, for T > 0 and a Banach space X, we denote by Lp((0, T ),X), 1 ≤ p ≤ ∞, and

C([0, T ],X) the Banach spaces of functions v : [0, T ] → X with norms

‖v‖Lp((0,T ),X) :=





( T∫
0

‖v(t)‖pXdt
)1/p

, 1 ≤ p <∞

ess supt∈[0,T ]‖v(t)‖X , p = ∞
, ‖v‖C([0,T ],X) := max

t∈[0,T ]
‖v(t)‖X .

The spaces W s,p((0, T ),X) and Hs((0, T ),X), s ∈ R+, are defined likewise.

In particular, for a subspace V ⊂ H1
ω(Ω) with dual V ∗ we will consider the space

H1((0, T ), V ∗) ∩ L2((0, T ), V ), (2.16)

and note that the following continuous embedding holds true

H1((0, T ), V ∗) ∩ L2((0, T ), V ) ⊂ C([0, T ], L2(Ω)). (2.17)

For y ∈ H1((0, T ), V ∗) ∩ L2((0, T ), V ), we further denote by γ
Σ′
(y),Σ′ ⊂ Σ := Γ× (0, T ),

the trace of y on Σ′.

2.6.2 Weak Solution Of The Black-Scholes Equation

We consider a European Basket Put Option y = y(S, t) with strike K and maturity date

T > 0 on two underlying assets S = (S1, S2)
T in Q := Ω × (0, T ). The spatial domain Ω
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is supposed to be the rectangle Ω := (0, Smax
1 ) × (0, Smax

2 ) with boundary Γ :=
∑4

ν=1 Γ̄ν ,

where Γ1 := (0, Smax
1 × {0},Γ2 := {0} × (0, Smax

2 ),Γ3 := {Smax
1 } × (0, Smax

2 ), and Γ4 :=

(0, Smax
1 )×{Smax

2 }. We assume that Smax
1 and Smax

2 are chosen sufficiently large such that

y(·, t)|Γν = 0, t ∈ (0, T ), 3 ≤ ν ≤ 4. The price of the option satisfies the following final

time/boundary value problem for the two-dimensional Black-Scholes equation

∂y

∂t
+

1

2

2∑

k,ℓ=1

ξkℓSkSℓ
∂2y

∂Sk∂Sℓ
+ r

2∑

k=1

Sk
∂y

∂Sk
− ry = 0 in Q, (2.18a)

y = gν on Σν := Γν × (0, T ), 1 ≤ ν ≤ 4, (2.18b)

y(·, T ) = yT in Ω, (2.18c)

where ξ = (ξkℓ)
2
k,ℓ=1 is the correlation matrix from (2.12) which now may depend on S and

t, r = r(t) stands for the interest rate and the boundary data gν , 1 ≤ ν ≤ 4, as well as the

the final time data yT are given by

g1(·, t) := (K exp(−r(T − t))− S1)+, g2(·, t) := (K exp(−r(T − t))− S2)+,

g3(·, t) = g4(·, t) := 0, yT := (K − (S1 + S2))+.

For the weak formulation of (2.18a)-(2.18c) we assume ξkℓ ∈ L∞((0, T );W 1,∞(Ω)), 1 ≤

k, ℓ ≤ 2, and the existence of a constant ξmin > 0 such that for all η ∈ R
2 there holds

2∑

k,ℓ=1

ξkℓ(S, t)ηkηℓ ≥ ξmin |η|2 f.a.a. (S, t) ∈ Q.

17



Moreover, we suppose that r ∈ L∞(0, T ) with r(t) > 0 for almost all t ∈ (0, T ).

Setting

W (0, T ) := {w ∈ H1((0, T );H1
ω(Ω)

∗) ∩ L2((0, T );H1
ω(Ω)) | γΣν (y) = gν , 1 ≤ ν ≤ 4},

the variational or weak formulation of (2.18a)-(2.18c) amounts to the computation of y ∈

W (0, T ) such that for all v ∈ L2((0, T );H1
ω,0(Ω)) there holds

T∫

0

〈∂y
∂t
, v〉H−1

ω (Ω),H1
ω,0(Ω) dt−

T∫

0

a(t; y, v) dt =0, (2.19a)

y(·, T ) = yT . (2.19b)

Here, the bilinear form a(t; ·, ·), t ∈ (0, T ), is given by

a(t; y, v) :=

∫

Ω

(1
2

2∑

k,ℓ=1

ξkℓSk
∂y

∂Sk
Sℓ

∂v

∂Sℓ
−

2∑

k=1

rSk
∂y

∂Sk
v −

(1
2

2∑

k,ℓ=1

(SkSℓ
∂ξkℓ
∂Sℓ

+ ξkℓSk)− r
)
yv

)
dS.

Theorem 2.2. Under the above assumptions on the data ξ, r, and gν , 1 ≤ ν ≤ 4, as well

as yT ,the variational problem (2.19a),(2.19b) admits a unique solution y ∈ W (0, T ) ⊂

C([0, T ];L2(Ω) which continuously depends on the data.

Proof. The bilinear form a(t; ·, ·) satisfies the G̊arding inequality

a(t; v, v) ≤ α ‖v‖2H1
ω(Ω) − β ‖v‖2L2(Ω) f.a.a. t ∈ (0, T ),

for some α > 0 and β ≥ 0. Then, the existence of a solution can be shown using the

Galerkin method, i.e., by considering a semi-discretization in space by means of a suitably

chosen family of dense subspaces. The uniqueness follows by standard arguments, and the

18



continuous dependence on the data results from a Gronwall-type inequality. For details we

refer to [16],[37],[43], or .
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Chapter 3

Hedging With Options And

Futures Contracts

In this chapter, we will be concerned with hedging strategies. After a brief introduction to

Greeks and futures contracts in sections 3.1 and 3.2, we will first consider Delta hedging

with options and futures contracts (sections 3.3 and 3.4) as standard hedging tools and

then concentrate on Delta hedging with European Double Barrier Options as an attractive

alternative which combines the advantages of hedging with options and futures contracts

(section 3.5).

3.1 Greeks

Amatter of particular interest for hedging portfolios are sensitivities of the option price that

describe changes in the value y, if there is a change in one of the underlying parameters and

variables while the other parameters and variables remain constant. In risk management,
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these hedge sensitivities are called Greeks(cf., e.g., [15, 23]). We briefly recall the most

important Greeks:

Delta: the Delta ∆ = ∂y/∂S indicates the rate of change of the option price with respect

to the price of the underlying asset.

Figure 3.1: European Vanilla Call Delta (left) and Put Delta (right) as a function of the
time to expiration and the initial price of the underlying (K=25).

Gamma: the Gamma Γ = ∂2y/∂S2 is the sensitivity of the Delta with respect to the

underlying asset.

Figure 3.2: European Vanilla Call Gamma (left) and Put Gamma (right) as a function of
the time to expiration and the initial price of the underlying (K=25).
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Rho: the Rho ρ = ∂y/∂r is referred to as the rate of change of the option’s value with

respect to the interest rate.

Figure 3.3: European Vanilla Call Rho (left) and Put Rho (right) as a function of the time
to expiration and the initial price of the underlying (K=25).
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Theta: the Theta Θ = ∂y/∂t is the time decay of an option, i.e., the rate of change of

the value of the option price with abbreviated maturity.

Figure 3.4: European Vanilla Call Theta (left) and Put Theta (right) as a function of the
time to expiration and the initial price of the underlying (K=25).

Vega: the Vega κ = ∂y/∂σ measures the sensitivity with respect to the volatility.

Figure 3.5: European Vanilla Call Vega (left) and Put Vega (right) as a function of the
time to expiration and the initial price of the underlying (K=25).

Note that the Call Vega and the Put Vega are always the same.
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3.2 Futures Contracts

A futures contract is a contract between two parties to buy or sell a certain amount of an

asset (e.g., commodities, currencies, securities, or stock indices) at a fixed date in the future

at a prespecified price. The contracts are traded at a futures exchange such as the CME

group (formerly Chicago Mercantile Exchange). The party which agrees to buy the assets

in the future assumes a long position, whereas the other party assumes a short position.

The future date is referred to as the delivery date or fixed settlement date, and the official

price of the futures contract at the end of the day’s trading session is called the settlement

price. As opposed to options, in case of a futures contract the holder of the contract has

the obligation to deliver or receive the assets, i.e., both parties of the contract must fulfill

the contract on the settlement day. The assets are provided either physically (physical

settlement) or in cash (cash settlement). In order to minimize counterparty risk to traders,

trades on regulated futures exchanges are guaranteed by a clearing house which becomes

the buyer to each seller and the seller to each buyer. Moreover, in order to minimize credit

risk to the exchange, traders are assumed to post a margin which typically amounts to 5

% - 15 % of the value of the futures contract. The margin consists of an initial margin,

established by the futures exchange on the maximum estimated change in contract value

within a trading day, and a variation or maintenance margin, established by the broker to

restore the amount of the available initial margin due to changes in the market price of the

asset and in the contract value. The variation margin is computed on a daily basis and

calls for that margin by the broker are expected to be paid and received on the same day.

Otherwise, the broker may close sufficient positions to satisfy the amount of the margin

call.
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3.3 Delta Hedging With Options

We want to illustrate the principle of delta hedging, i e., eliminating the risk for the writer

of an option by purchasing the underlying asset: Say, a reinsurance company is the writer

of 1000 call options worth C = 5 US-D per stock. Assuming that ∆ = 0.5, that the

value of the underlying asset increases by one point δS = 1.0, and that the Delta remains

constant during this tiny interval, the option writer loses 1000 ·∆ · δS = 500 points. Delta

hedging avoids this loss. The reinsurance company hedges by purchasing ∆ · 1000 = 500

stocks. Then, its stock portfolio gains 500 points and loses 500 from the option contracts,

i.e., the value of the whole portfolio remains constant. However, the Delta of an option

is not constant due to fluctuations in the stock price and time to maturity. Therefore,

the portfolio has to be re-balanced perpetually. These adaptations of the portfolio can be

expensive and tedious.

3.4 Delta Hedging With Futures Contracts

We illustrate hedging with Dow Jones Industrial Average Futures by the following scenario:

Scenario: A US-based insurance company has a Dow Jones Industrial Average (DJIA)-

like stock portfolio worth 109 US-D. The DJIA is 12000 points. The company predicts

decreasing stock values and wants to safeguard the portfolio, i.e., to achieve a risk-free

portfolio. Regulations or market conditions prevent the company from selling stocks.

Delta Hedging: The insurance company decides to open a Dow Jones Industrial Aver-

age Futures (FDJIA) short position, i.e., to sell FDJIA at the CME (Chicago Mercantile
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Exchange). Assume that one such short position has a profit/loss ∆FDJIA = 0.5. Conse-

quently, the insurance company has to sell

109

0.5 · 12000 ≈ 166667 FDJIA.

The clearing agency immediately demands an initial margin per FDJIA-long as well as a

safety margin in addition to that. Moreover, in the event of adverse price movements, the

selling party has to deposit more cash or securities into its margin account at the exchange.

If the company is unable to make the necessary deposit, the company is impelled to close

out its position prematurely. Moreover, the permanent margin adaption at the clearing

agency is quite troublesome. Another disadvantage is the margin variation depending on

the money volatility of options on the DJIA which may oscillate considerably. As reference,

figures 3.6, 3.7, and 3.8 which comes from the historical data on the website display the

implied three-months (six-months, one-year) at the money volatility of options on the DJIA

issued by the Chicago Board Options Exchange (CBOE).

Figure 3.6: Implied three-months at the money volatility (CBOE) of options on the DJIA
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Figure 3.7: Implied six-months at the money volatility (CBOE) of options on the DJIA

Figure 3.8: Implied one-year at the money volatility (CBOE) of options on the DJIA

27



3.5 Hedging With European Double Barrier Options

We refer to [9, 32, 8, 13] for more details about this section. European double barrier

options with optimized cash settlements are able to combine the advantages of both futures

and options. We consider a DJIA European call option C = C(S, t) for (S, t) ∈ Q :=

(DJIAmin,DJIAmax) × (0, T ) which satisfies the Black-Scholes equation (2.6). For the

profit/loss ∆ per DJIA point there holds ∆ = ∂C/∂S. Assuming a constant Delta ∆ =

∆opt > 0, it follows that ∂2C/∂S2 = 0 such that the Black-Scholes equation simplifies to

the first order PDE

∂C∆opt

∂t
+ rS

∂C∆opt

∂S
− rC∆opt = 0 in Q, (3.1a)

with the boundary conditions

C∆opt(DJIAmin, t) = ∆opt DJIAmin

(
1− exp(−r(T − t))

)
, t ∈ (0, T ), (3.1b)

C∆opt(DJIAmax, t) = ∆opt

(
DJIAmax −DJIAmin exp(−r(T − t))

)
, t ∈ (0, T ), (3.1c)

and the final time condition

C∆opt(S, T ) = ∆opt DJIAmin

(
1− exp(−r(T − t))

)
, t ∈ (0, T ), (3.1d)

C∆opt(DJIAmax, t) = ∆opt

(
S −DJIAmin

)
, S ∈ (DJIAmin,DJIAmax). (3.1e)

The analytical solution of (3.1a)-(3.1e) is given by

C∆opt(S, t) = ∆opt

(
S −DJIAmin exp(−r(T − t))

)
, (S, t) ∈ Q. (3.2)
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We note that in case of a knock-out European Double Barrier Call with the lower barrier

DJIAmin and the upper barrier DJIAmax the boundary conditions (3.1d),(3.1c) and the

final time condition (3.1e) correspond to the cash settlements at the option’s expiration,

i.e., when one of the barriers is hit or the maturity date T is reached.

Recalling the example from subsections 3.3 and 3.4, the insurance company sells 333333

DJIA European Double Barrier calls and accepts the obligation to pay the cash settlements

(3.1d),(3.1d), or (3.1e) at the expiration date. The company’s premium per call is 768.24

US-D for a strike DJIAmin = 11000, if S = 12000, r = 0.05, and T = 1 year, which

is the only payment during the option’s lifetime. The buyer of 100 options synthesizes

1 DJIA-long position costing 76824 US-D, whereas the insurance company synthesizes 1

DJIA-short position.

As mentioned earlier, a constant Delta is not realistic. In the following chapter, we will

consider how to choose the cash settlements such that the Delta comes as close to a constant

as possible.
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Chapter 4

Optimal Control Of European

Double Barrier Basket Options

The exposition of this chapter follows closely that of [22]. In this chapter, we will discuss

hedging of European Double Barrier Basket Options with two assets featuring multiple cash

settlements at the option’s expiry date and formulate the hedging as an optimal control

problem for the two-dimensional Black-Scholes equation with a tracking type objective

functional and the cash settlements as controls. In particular, we will derive the optimality

conditions in terms of the state, the control, and the adjoint state (section 4.2, cf., e.g.,

[19, 25, 27, 45]). For numerical purposes, we consider a discretization of the optimal control

problem using P1 conforming finite elements with respect to a simplicial triangulation of

the spatial domain and the implicit Euler scheme for discretization in time with respect to

a partition of the time interval(cf.,e.g., [35]).
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4.1 Hedging With European Double Barrier Basket Options

We consider a European Double Barrier Basket Call Option on a basket of two assets with

prices S1 and S2, maturity date T > 0, strike K > 0, and barriers Kmin,Kmax such that

Kmin < K < Kmax. The spatial domain Ω ⊂ R
2
+ for the price y(S, t), S = (S1, S2) ∈

Ω, t ∈ [0, T ], of the option is the trapezoidal domain (cf. Figure 3.1) Ω := {S = (S1, S2) ∈

R
2
+ | Kmin < |S| := S1 + S2 < Kmax} with boundaries Γ1 := (Kmin,Kmax) × {0},Γ2 :=

{0} × (Kmin,Kmax),Γ3 := {S ∈ R
2
+ | |S| = Kmin}, and Γ4 := {S ∈ R

2
+ | |S| = Kmax} (cf.

Figure 4.1).
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Figure 4.1: Spatial domain for European Double Barrier Basket Option.

We refer to r = r(t), t ∈ [0, T ], as the risk-free interest rate and to σk = σk(S, t), 1 ≤

k ≤ 2, S ∈ Ω, t ∈ [0, T ], as the volatilities of the assets. Moreover, ρ = (ρkℓ)
2
k,ℓ=1 with

ρkk = 1, 1 ≤ k ≤ 2, and ρ12 = ρ21 = 2θ/(1 + θ2),−1 < θ < +1, are the correlations

and ξ = (ξkℓ)
2
k,ℓ=1, ξkℓ := ρkℓσkσℓ, 1 ≤ k, ℓ ≤ 2, is the correlation matrix. We impose the

following regularity assumptions on the data:
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Assumption 1: σk ∈ C([0, T ], C2(Ω)), 1 ≤ k ≤ 2, and there exist constants σ
(min)
k >

0, Cσk
> 0, such that

σk(S, t) ≥ σ
(min)
k , (S, t) ∈ Q̄, 1 ≤ k ≤ 2, (4.1a)

|S · ∇σk(S, t)| ≤ Cσk
, (S, t) ∈ Q̄, 1 ≤ k ≤ 2. (4.1b)

Assumption 2: r ∈ C([0, T ]) such that r(t) > 0, t ∈ [0, T ].

Remark 4.1. It is an immediate consequence of Assumption 1 that the correlation matrix

satisfies ξk,ℓ ∈ C([0, T ], C2(Ω)), 1 ≤ k, ℓ ≤ 2, and that there exists a constant ξmin > 0 such

that for all η ∈ R
2 there holds

2∑

k,ℓ=1

ξk,ℓ(S, t)ηkηℓ ≥ ξmin|η|2 , (S, t) ∈ Q̄. (4.2)

It is well-known [22, 44] that the price y = y(S, t), (S, t) ∈ Q := Ω × (0, T ), of the option

satisfies the following final time/boundary value problem for the two-dimensional Black-

Scholes equation:

∂y

∂t
+A(t)y = 0 in Q := Ω× (0, T ), (4.3a)

y = yν on Σν := Γν × (0, T ) , 1 ≤ ν ≤ 4, (4.3b)

y(·, T ) = yT in Ω. (4.3c)

Here, A(t), t ∈ [0, T ], refers to the time-dependent second order elliptic operator

A(t) :=
1

2

2∑

k,ℓ=1

ξkℓSkSℓ
∂2

∂Sk∂Sℓ
+ r

2∑

k=1

Sk
∂

∂Sk
− r. (4.4)
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The final time data yT at maturity date T is given by the payoff

yT (S) := (‖S‖ −K)+ , S ∈ Ω. (4.5)

Further, y3 = 0 which means that the option expires worthlessly at the lower bound, and

the constant y4 represents a cash settlement at the upper barrier Σ4. The boundary values

yν , 1 ≤ ν ≤ 2, are the solutions of the one-dimensional Black-Scholes equations

∂yν
∂t

+Aν(t)yν = 0 in Σν := Γν × (0, T ), (4.6a)

yν(Sν , t) =





0 , Sν = Kmin

y4 , Sν = Kmax

, t ∈ (0, T ), (4.6b)

yν(·, T ) = yT |Γν in Γν . (4.6c)

Here, Aν(t), 1 ≤ ν ≤ 2, t ∈ [0, T ], are the time-dependent second order elliptic operators

Aν(t) :=
1

2
σ2νS

2
ν

∂2

∂S2
ν

+ rSν
∂

∂Sν
− r. (4.7)

As a particular feature, we consider additional cash settlements at instances between the

strike K and the upper bound Kmax (cf. Figure 4.2). To this end, we provide a partition

K =: K0 < K1 < · · · < KM := Kmax,M ∈ N, of the interval [K,Kmax], where Ki :=

K+ iδ|S|, 0 ≤ i ≤M, δ|S| := (Kmax−K)/M . We set u := (u1, · · · , uM )T ∈ R
M
+ , and define

(g(u))(S) = ui−1g
(i)
1 (S) + uig

(i)
2 (S) for |S| ∈ [Ki−1,Ki], i = 0, · · · ,M, (4.8)

g
(i)
1 (S) := (Ki − S)/δ|S| , g

(i)
2 (S) := (S −Ki−1)/δ|S|,

where for notational convenience we have set K−1 = Kmin, u−1 = u0 = 0. On this basis,
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we choose y4 = uM and yT = g(u).
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Figure 4.2: Cash settlements with respect to Ki, 1 ≤ i ≤M,M = 6.

We consider the cash settlements u in (4.8) as a control vector that has to be chosen such

that the Greek ∆ := ∇y per asset point is as close to a prespecified profit d = (d1, d2)
T

as possible. For given bounds 0 < αi < βi, 1 ≤ i ≤ M, the controls are subject to the

constraints

u ∈Uad := {v = (v1, · · · , vM )T ∈ R
M
+ | αi ≤ vi ≤ βi, 1 ≤ i ≤M}. (4.9)

Consequently, the hedging with European Double Barrier Basket Options featuring mul-

tiple cash settlements u can be stated as the following optimal control problem for the

two-dimensional Black-Scholes equation:

Find (y,u) such that

inf
y,u

J(yQ, u) :=
1

2

T∫

0

∫

Ω

|∇y − d|2dSdt, (4.10)
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subject to (4.3a)-(4.3c),(4.6a)-(4.6c), and (4.9).

For the variational formulation of the optimal control problem, we first reformulate the final

time/boundary value problems for the backward parabolic equations as initial/boundary

value problems:

∂y

∂t
−A(t)y = 0 in Q := Ω× (0, T ), (4.11a)

y =





yν , on Σν := Γν × (0, T ) , 1 ≤ ν ≤ 2,

0 , on Σ3 := Γ3 × (0, T )

uM , on Σ4 := Γ4 × (0, T )

, (4.11b)

y(·, 0) = g(u) in Ω, (4.11c)

∂yν
∂t

−Aν(t)yν = 0 in Σν, (4.12a)

yν(Sν , t) =





0 , Sν = Kmin

uM , Sν = Kmax

, t ∈ (0, T ), (4.12b)

yν(·, 0) = g(u)|Γν in Γν . (4.12c)

We note that for notational simplicity we have kept the same notation for y and yν as well

as for the operators A(t), Aν(t), 1 ≤ ν ≤ 2.

For the weak formulations of the initial/boundary value problems (4.11a)-(4.11c) and
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(4.12a)-(4.12c) we introduce the function spaces

W (0, T ) := H1((0, T ), V ∗) ∩ L2((0, T ), V ),

V := {v ∈ H1
ω(Ω) | v|Σnu

= yν , 1 ≤ ν ≤ 2, v|
Σ3

= 0, v
Σ4

= uM},

Wν(0, T ) := H1((0, T ), V ∗
ν ) ∩ L2((0, T ), Vν), 1 ≤ ν ≤ 2,

Vν := {v ∈ H1
ω(Σν) | v(Kmin) = 0, v(Kmax) = uM}, 1 ≤ ν ≤ 2,

as well as the bilinear forms a(t; ·, ·), t ∈ (0, T ), and aν(t; ·, ·), t ∈ (0, T ), 1 ≤ ν ≤ 2, according

to

a(t; y, v) :=

∫

Ω

(1
2

2∑

k,ℓ=1

ξkℓSk
∂y

∂Sk
Sℓ

∂v

∂Sℓ
−

2∑

k=1

rSk
∂y

∂Sk
v −

(1
2

2∑

k,ℓ=1

(SkSℓ
∂ξkℓ
∂Sℓ

+ ξkℓSk)− r
)
yv

)
dS,

and

aν(t; yν , vν) :=

∫

Γν

(1
2
σ2νSν

∂yν
∂Sν

Sν
∂vν
∂Sν

−

rSν
∂yν
∂Sν

vν − (σ2νSν + σνS
2
ν

∂σν
∂Sν

− r)yνvν

)
dSν .

A function y ∈W (0, T ) is called a weak solution of (4.11a)-(4.11c), if for all v ∈ L2((0, T ),

H1
ω,0(Ω)) there holds

T∫

0

〈∂y
∂t
, v〉H−1

ω (Ω),H1
ω,0(Ω)dt+

T∫

0

a(t; y, v)dt = 0, (4.13a)

y(·, 0) = g(u) (4.13b)

36



Likewise, a function yν ∈ Wν(0, T ) is said to be a weak solution of (4.12a)-(4.12c), if for

all vν ∈ L2((0, T ),H1
ω,0(Γν)) there holds

T∫

0

〈∂yν
∂t

, vν〉dt+
T∫

0

aν(t; yν , vν)dt = 0, (4.14a)

yν(·, 0) = g(u)|Γν . (4.14b)

The existence and uniqueness of weak solutions and their regularity properties can be

deduced as, for instance, in [1]. In particular, we have the following result:

Theorem 4.2. For any admissible control u ∈ Uad, the state equations (4.13a),(4.13b)

and (4.14a),(4.14b) admit solutions satisfying

y ∈ C([0, T ], V ) ∩ L2((0, T ), V ∩H2
ω(Ω)), (4.15a)

yν ∈ C([0, T ], Vν) ∩ L2((0, T ), Vν ∩H2
ω(Γν)), 1 ≤ ν ≤ 2. (4.15b)

Moreover, the solutions depend continuously on the data in the following sense:

exp(−2λt)‖y(t)‖2L2(Ω) + 2ξ2min

t∫

0

exp(−2λτ)|y(τ)|2V dτ ≤‖g(u)‖2L2(Ω), (4.16)

exp(−2λνt)‖yν(t)‖2L2(Γν )
+

1

2
(σ(min)

ν )2
t∫

0

exp(−2λντ)|yν(τ)|2Vν
dτ ≤‖g(u)‖2L2(Γν)

.

Proof. Observing assumptions 1,2 and taking the Poincaré-Friedrichs inequalities for weighted

Sobolev spaces into account, we deduce that the bilinear forms a(t; ·, ·) and aν(t; ·, ·) sat-

isfy G̊arding-type inequalities uniformly in t. Consequently, the initial-boundary value

problems (4.13a),(4.13b) and (4.14a),(4.14b) have unique solutions y ∈ W (0, T ) and yν ∈

Wν(0, T ), 1 ≤ ν ≤ 2, satisfying (4.16) (cf., e.g., Thm. 2.11 and section 2.6 in [1]). The
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assertions (4.15a),(4.15a) follow from standard regularity results for parabolic partial dif-

ferential equations [16, 28, 38].

Finally, the weak form of the optimal control problem can be stated as follows:

Find (y, u), where y ∈W (0, T ), y|Σν = yν ∈Wν(0, T ), 1 ≤ ν ≤ 2, and u ∈ Uad such that

inf
y,u

J(y,u) :=
1

2

T∫

0

∫

Ω

|∇y − d|2dSdt, (4.17a)

subject to (4.13a),(4.13b) and (4.14a),(4.14b). (4.17b)

4.2 Existence and uniqueness of an optimal solution and first

order necessary optimality conditions

In this section, we first prove the existence and uniqueness of an optimal solution of

(4.17a),(4.17b) and then derive the first order necessary optimality conditions.

Theorem 4.3. The optimal control problem (4.17a),(4.17b) admits a unique solution

(y,u) ∈W (0, T )×Uad.

Proof. We prove the result with respect to the control-reduced formulation. To this end,

we introduce S : Uad → W (0, T ) and Sν : Uad → Wν(0, T ), 1 ≤ ν ≤ 2, as the control-to-

state maps which assign to an admissible control u ∈ Uad the unique solutions of the state

equations (4.13a),(4.13b) and (4.14a),(4.14b). We further introduce the reduced objective
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functional

Ĵ(u) :=
1

2

T∫

0

∫

Ω

|∇S(u)− d|2dSdt. (4.18)

The control-reduced formulation of (4.17a),(4.17b) reads:

inf
u∈Uad

Ĵ(u), (4.19a)

such that S(u) and Sν(u), 1 ≤ ν ≤ 2, satisfy (4.13a),(4.13b) and (4.14a),(4.14b).

(4.19b)

We note that (4.19a),(4.19a) is equivalent to (4.17a),(4.17b). The existence and unique-

ness of an optimal solution of (4.19a),(4.19a) follows by a standard minimizing sequence

argument.

For the derivation of the first order necessary optimality conditions we set

x := (y, y1, y2,u) ∈ X :=W (0, T )×W1(0, T ) ×W2(0, T ) ×R
M ,

and introduce Lagrange multipliers

z := (p, p1, p2, q) ∈ Z :=W (0, T )×W1(0, T ) ×W2(0, T ) ×Q,
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where

q = ((q
Σν

)4ν=1, (q
ν
Kmax

)2ν=1, (q
ν
Kmin

)2ν=1, q0,Ω , (q0,Γν
)2ν=1),

Q :=
4∏

ν=1

L2((0, T ),H−1/2
ω (Γν))× R

2 ×R
2 × L2(Ω)×

2∏

ν=1

L2(Γν).

We define the Lagrangian L : X × Z → R according to

L(x, z)) := J(y,u) +

T∫

0

(
〈∂y
∂t
, p〉+ a(t; y, p)

)
dt+

2∑

ν=1

T∫

0

(
〈∂yν
∂t

, pν〉+ a(t; yν , pν)
)
dt

+
4∑

ν=1

T∫

0

〈q
Σν
, yν − y|Σν 〉 dt+

2∑

ν=1

T∫

0

(
qν
Kmax

(uM − yν(Kmax))− qν
Kmin

yν(Kmin

)

+ (y(0) − g(u), q
0,Ω

)L2(Ω) +
2∑

ν=1

(yν(0)− g(u), q
0,Γν

)L2(Γν).

The first order necessary optimality conditions correspond to the conditions for a critical

point of the Lagrangian:

∂L
∂p

(x, z) = 0,
∂L
∂pν

(x, z) = 0, 1 ≤ ν ≤ 2, (4.20a)

∂L
∂y

(x, z) = 0,
∂L
∂yν

(x, z) = 0, 1 ≤ ν ≤ 2,
∂L
∂q

(x, z) = 0, (4.20b)

∂L
∂u

(x, z) · (v − u) ≥ 0, v ∈ Uad. (4.20c)

Conditions (4.20a) clearly recover the state equations (4.11a)-(4.11c) and (4.11a)-(4.11c).
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On the other hand, the conditions (4.20b) imply that

q
Σν

= γΣν (nΣν
· R

Σν
(pQ)) , 1 ≤ ν ≤ 4, (4.21a)

q
Kmin,ν

= RKmin
(p

Σν
), q

Kmax,ν
= RKmax(pΣν

), 1 ≤ ν ≤ 2, (4.21b)

q
0,Ω

= γ
0,Ω

(p) , q
0,Σν

= pν(0) , 1 ≤ ν ≤ 2, (4.21c)

and

y|Σν = yν , 1 ≤ ν ≤ 4, (4.22a)

yν(Kmin) = 0 , yν(Kmax) = uM , 1 ≤ ν ≤ 2, (4.22b)

y(·, 0) = g(u), yν(·, 0) = g(u)|
Σν

, 1 ≤ ν ≤ 2. (4.22c)

Moreover, it follows that pν , 1 ≤ ν ≤ 2, is the weak solution of

−∂pν
∂t

−A∗
ν(t)pν = γ

Σν
(n

Σν
·R

Σν
(p)) in Γν , (4.23a)

RKmin
(pν) = RKmax(pν) = 0, (4.23b)

pν(·, T ) = 0 in Γν . (4.23c)

where A∗
ν(t) is the adjoint of Aν(t) and R

Σν
(p)), 1 ≤ ν ≤ 4, as well as RK(pν),K ∈

{Kmin,Kmax} are given by

R
Σν

(p) = (R(1)
Σν

(p), R(2)
Σ4

(p))T , R(k)
Σν

(p) := Sk

(1
2

2∑

ℓ=1

ξkℓSℓ
∂p

∂Sℓ
− rp

)
, 1 ≤ k ≤ 2,

RK(pν) :=
1

2
σ2νS

2
K

∂pν
∂Sν

(K)− rSKpν(K), 1 ≤ ν ≤ 2, K ∈ {Kmin,Kmax}.

Since (nΣν
· RΣν

(p))|Σν
= 0, 1 ≤ ν ≤ 2, it follows that pν = 0, 1 ≤ ν ≤ 2. Moreover, we
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deduce that p is the weak solution of

−∂p
∂t

−A∗(t)p = −∇ · (∇y − d) in Q, (4.24a)

p = 0 on Σ, (4.24b)

p(·, T ) = 0 in Ω, (4.24c)

where A∗(t) is the second order elliptic differential operator adjoint to A(t). Finally, ob-

serving (4.8) and y4 = uM as well as the regularity results of Theorem 4.2, the condition

(4.22c) implies the variational inequality

( T∫

0

(
γΣ4

(nΣ4
· RΣ4

(p))
)
dt eM − g∗u(u)p(0)

)
· (v − u) ≥ 0, v ∈ Uad, (4.25)

where eM ∈ R
M is the M -th unit vector and g∗u(u) ∈ L(L2(Ω),RM ) is the adjoint of the

Fréchet derivative of g at u ∈ Uad.

Summarizing the previous findings, we have the following result:

Theorem 4.4. Assume that (y, u) ∈W (0, T )×Uad is the optimal solution of (4.17a),(4.17b).

Then, there exists

p ∈W0(0, T ) := H1((0, T ),H−1
ω (Ω)) ∩ L2((0, T ),H1

ω,0(Ω)), (4.26)

such that p is the weak solution of the adjoint problem (4.24a)-(4.24c) and the variational

inequality (4.25) holds true.
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4.3 Discretization of the Optimal Control Problem

4.3.1 Semi-Discretization in Space

More details can be found in [5, 7]. We discretize the parabolic problems (4.13a),(4.13b)

and (4.14a),(4.14b) in space by conforming P1 finite elements. To this end, we consider a

family of shape-regular simplicial triangulations Th(Ω) of Ω that are assumed to align with

Γj, 1 ≤ j ≤ 4, in the sense that these triangulations also generate triangulations Th(Γj) of

Γj, 1 ≤ j ≤ 4. Using standard notation from the finite element analysis, we refer to Nh(D)

and Eh(D) , D ⊆ Ω, as the sets of vertices and edges in D ⊆ Ω. We denote by hT and |T |

the diameter and area of an element T ∈ T (m)
h (Ω). For D ⊂ Ω, we refer to Pk(D), k ∈ N0,

as the linear spaces of polynomials of degree ≤ k on D.

We define Vh as the finite element space of continuous P1 finite elements associated with

the triangulation Th(Ω), i.e., Vh := {vh ∈ C(Ω̄) | vh|T ∈ P1(T ), T ∈ Th(Ω)} , and we

refer to Vh,0 := Vh ∩ C0(Ω̄) as the associated finite element space of functions vanishing

on the boundary Γ. Likewise, we define Vh,ν, 1 ≤ ν ≤ 2, as the finite element spaces

of continuous P1 finite elements associated with the triangulations Th(Γν) attaining the

values 0 at Sν = Kmin and uM at Sν = Kmax, i.e., Vh,ν := {vh ∈ C(Γ̄ν) | vh|T ∈ P1(T ), T ∈

Th(Γν), vh(Kmin) = 0, vh(Kmax) = uM} , and we define Vh,ν,0 in the same way, but

replacing uM with 0.

The semi-discrete approximation of (4.14a),(4.14b) requires the computation of y
h,ν

∈

C1([0, T ], Vh,ν), 1 ≤ ν ≤ 2, such that

(
dy

h,ν

dt
, vh)L2(Γν) + a(t; y

h,ν
, vh) = 0 , vh ∈ Vh,ν,0, (4.27a)

(y
h,ν

(·, 0), vh)L2(Γν) = (g(u), vh)L2(Γν) , vh ∈ Vh,ν. (4.27b)
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The semi-discrete approximation of (4.13a),(4.13b) requires the computation of yh ∈

C1([0, T ], Vh) with yh(·, t)|Γν = y
h,ν

(·, t), 1 ≤ ν ≤ 2, and yh(·, t)|Γ3 = 0, yh(·, t)|Γ4 = uM ,

such that

(
dyh
dt
, vh)L2(Ω) + a(t; yh, vh) = 0 , vh ∈ Vh,0, (4.28a)

(yh(·, 0), vh)L2(Ω) = (g(u), vh)L2(Ω) , vh ∈ Vh. (4.28b)

The semi-discrete optimal control problems reads: Find (yh,u) such that

inf
yh,u

Jh(yh,u) :=
1

2

T∫

0

∑

K∈Th(Ω)

‖∇(yh(·, t)− d‖2L2(K) dt, (4.29a)

subject to (4.27a), (4.27b), (4.28a), (4.28b) and (4.9). (4.29b)

4.3.2 Algebraic formulation of the semi-discretized problem

We derive the algebraic formulation of (4.29a),(4.29b) in terms of associated mass and

stiffness matrices M ∈ R
N×N ,A(t) ∈ R

N×N , input matrices B(t),G ∈ R
N×M , and ob-

servation matrices C,D(k) ∈ R
NQ×NQ , 1 ≤ k ≤ 2. We note that N := NQ + NΓ1 + NΓ2 ,

where NQ, NΓν stand for the number of nodal points in Nh(Ω) and Nh(Γν), 1 ≤ ν ≤ 2,

respectively. In the sequel, we refer to ψi
Ω, 1 ≤ i ≤ NQ, and ψ

i
Γν
, 1 ≤ i ≤ NΓν , as the nodal

basis functions associated with the nodal points in Nh(Γ1),Nh(Γ2), and Nh(Γ4).
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Mass matrix: The mass matrix M ∈ R
N×N is a block-structured matrix of the form

M =




MΩ MΩΓ1 MΩΓ2

0 MΓ1 0

0 0 MΓ2



,

Here, MΩ ∈ R
NΩ×NΩ ,MΩΓν ∈ R

NΩ×N
Γν and MΓνΓν , 1 ≤ ν ≤ 2, are the submatrices

(MΩ)ij := (ψj
Ω, ψ

i
Ω)L2(Ω) , 1 ≤ i, j ≤ NΩ,

(MΩΓν )ij := (ψj
Ω, ψ

i
Ω)L2(Ω) , 1 ≤ i ≤ NΩ, 1 ≤ j ≤ NΓν , 1 ≤ ν ≤ 2,

(MΓν )ij := (ψj
Γν
, ψi

Γν
)L2(Γν) , 1 ≤ i, j ≤ NΓν , 1 ≤ ν ≤ 2,

Stiffness matrix: The stiffness matrix is a block-structured matrix of the form

A(t) =




AΩ(t) AΩΓ1(t) AΩΓ2(t)

0 AΓ1(t) 0

0 0 AΓ2(t)




, t ∈ (0, T ].

Here, the submatrices AΩ(t) ∈ R
NΩ×NΩ ,AΩΓν (t) ∈ R

NΩ×N
Γν ,AΓν (t) ∈ R

N
Γν

×N
Γν are

given by

(AΩ(t))ij := a(t;ψj
Ω, ψ

i
Ω) , 1 ≤ i, j ≤ NΩ,

(AΩΓν (t))ij := a(t;ψj
Γν
, ψi

Ω) , 1 ≤ i ≤ NΩ , 1 ≤ j ≤ NΓν , 1 ≤ ν ≤ 2,

(AΓν (t))ij := a(t;ψj
Γν
, ψi

Γν
) , 1 ≤ i, j ≤ NΓν , 1 ≤ ν ≤ 2.

Input matrices: The input matrix B(t) ∈ R
N×M describes the input from the controls
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on the boundaries. It is of the form

B(t) = (0 BM (t)) , 0 ∈ R
N×(M−1), BM (t) = (BM,Ω(t),BM,Γ1(t),BM,Γ2(t))

T , t ∈ (0, T ],

The submatrices BM,Ω(t) ∈ R
NQ×1 and BM,Γν (t) ∈ R

N
Γν

×1, 1 ≤ ν ≤ 2, are given by

(BM,Ω(t))i := −
N

Γ4∑

j=1

a(t;ψj
Γ4
, ψi

Ω) , 1 ≤ i ≤ NΩ,

(BM,Γν (t))i := −a(t;ψN
(ν)
Γ4

Γ4
, ψi

Γν
) , 1 ≤ i ≤ NΓν , 1 ≤ ν ≤ 2,

where N
(ν)
Γ4

:= (2− ν) + (ν − 1)NΓ4 , 1 ≤ ν ≤ 2.

The input matrix G ∈ R
N×M describes the input from the initial control. It has the form

G = (GΩ,GΓ1
,G

Γ2
)T ,

where the submatrices GΩ ∈ R
NΩ×M and G

Γν
∈ R

N
Γν

×M , 1 ≤ ν ≤ 2, are given by

(GΩ)ij :=

∫

Ωj

g
(j)
2 (S)ψi

Ω(S)dS +

∫

Ωj+1

g
(j+1)
1 (S)ψi

Ω(S)dS,

(G
Γν
)ij :=

Kj∫

Kj−1

g
(j)
2 (Sν)ψ

i
Γν
(Sν)dSν +

Kj+1∫

Kj

g
(j+1)
1 (Sν)ψ

i
Γν
(Sν)dSν , 1 ≤ ν ≤ 2.

Observation matrices: The observation matrices C and D(k), 1 ≤ k ≤ 2, stem from the

semi-discretization in space of the objective functional. In particular, C ∈ R
NΩ×NΩ has
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the entries

(C)ij :=
∑

T∈Th(Ω)

∫

T

∇ψj
Ω · ∇ψi

ΩdS , 1 ≤ i, j ≤ NΩ,

whereas the entries of D(k) ∈ R
NΩ×NΩ are given by

(D(k))ij :=
∑

T∈Th(Ω)

∫

T

∂ψj
Ω

∂Sk
ψi
ΩdS , 1 ≤ i, j ≤ NΩ , 1 ≤ k ≤ 2.

Algebraic formulation of the semi-discrete optimal control problem:

Find y ∈ C1([0, T ],RN ), y = (yQ, y1, y2)
T , and u ∈ Uad, such that

inf
y,u

J(y,u) :=
1

2

T∫

0

(
yTQCyQ − 2

2∑

k=1

dTkD
(k)yQ +

2∑

k=1

dTkMΩdk

)
dt, (4.30a)

subject to

M
dy

dt
+A(t)y = Bu , t ∈ [0, T ], (4.30b)

My(0) = Gu. (4.30c)

Existence and uniqueness of a solution:

The existence and uniqueness of an optimal solution can be shown along the same lines of

proof as in the continuous regime.

First order necessary optimality conditions:

For the derivation of the first order necessary optimality conditions we set

x := (y,u) ∈ X := C1([0, T ],RNQ)× R
M
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and introduce Lagrange multipliers

z := (p, p1, p2, q0) ∈ Z,

Z := C1([0, T ],RN
Q )×

2∏

ν=1

C1([0, T ],RN
Γν
)× R

NQ .

The Lagrangian L : X× Z → R is given by

L(x, z) := J(y,u) +

T∫

0

p · (M dy

dt
+A(t)y −Bu) dt+ q0 · (My(0) −Gu),

and the optimality conditions read

∂L
∂y

(x, z) = 0, (4.31a)

∂L
∂u

(x, z) · (v − u) ≥ 0, v ∈ Uad, (4.31b)

∂L
∂z

(x, z) = 0. (4.31c)

In particular, the optimality condition (4.31a) reveals that p solves the adjoint system

MΩ
dp

dt
−AΩ(t)

T p = −CΩyQ +
2∑

k=1

(D
(k)
Ω )T dk, t ∈ [0, T ], (4.32a)

Mp(T ) = 0, (4.32b)

and that pν = 0, 1 ≤ ν ≤ 2 as well as q0 = p(0).

On the other hand, the optimality condition (4.31b) gives rise to

(
−GT

Ωp(0)−
T∫

0

BΩ(t)
T p dt

)
· (v − u) ≥ 0 , v ∈ Uad. (4.33)
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We have thus shown the following result:

Theorem 4.5. The semi-discrete optimization problem (4.30a)-(4.30c) admits a unique so-

lution. If y ∈ C1([0, T ],RN ),u ∈ Uad is the optimal solution, there exists p ∈ C1([0, T ],RN
Ω )

such that p satisfies the adjoint system (4.32a),(4.32b) and p,u are related by the varia-

tional inequality (4.33).

4.3.3 Implicit time stepping

The discretization in time of the semi-discrete optimal control problem (4.30a)-(4.30c) is

done by the implicit time stepping with respect to a partition 0 =: t0 < t1 < · · · < tR :=

T/R,R ∈ N, of the time interval [0, T ] with step lengths ∆tr := tr − tr−1, 1 ≤ r ≤ R.

In particular, the objective functional (4.30a) is split into the sum over the subintervals

(tr−1, tr) and the corresponding integrals are approximated by the quadrature formula

∫ tr
tr−1

vdt ≈ ∆trv(tr), whereas the ordinary differential equation (4.30b) is approximated by

the implicit Euler scheme. We denote by

yr = (yrQ, y
r
Σ1
, yrΣ1

)T

approximations of y = (yQ, yΣ1
, y

Σ1
)T at tr, 0 ≤ r ≤ R, and we set

y := (y0, · · · , yR)T ,yQ := (y0Q, · · · , yRQ)T ,yΣν := (y0Σν
, · · · , yRΣν

)T , 1 ≤ ν ≤ 2.

49



The fully discrete optimal control problem can be stated as follows:

Find (y, u) ∈ R
(R+1)N ×Uad such that

inf
y,u

J(y,u) :=
1

2

R∑

r=1

∆tr

(
(yrQ)

TCΩy
r
Q − 2

2∑

k=1

dTkD
(k)
Ω yrQ +

2∑

k=1

dTkMΩdk

)
, (4.34a)

subject to

Myr +∆trA(tr)y
r = ∆trBu+Myr−1, 1 ≤ r ≤ R, (4.34b)

My0 = Gu. (4.34c)

The existence and uniqueness of an optimal solution follows as in the previous subsection

4.3.2, and the optimality conditions can be derived as well in much the same manner. In

particular, there exists an adjoint state p = (p0, · · · , pR)T ∈ R
(R+1)NQ such that

MΩp
r−1 +∆trAΩ(tr−1)

T pr−1 = MΩp
r +∆tr(CΩy

r
Q +

2∑

k=1

(D
(k)
Ω )Tdk), (4.35a)

MΩp
R = 0. (4.35b)

Moreover, the following variational inequality holds true

(
−GT

Ωp
0 −

R−1∑

r=0

∆tr+1B(tr)
T pr

)
· (v − u) ≥ 0 , v ∈ Uad. (4.36)

Summarizing, we have the following result:

Theorem 4.6. The fully discrete optimization problem (4.34a)-(4.34c) admits a unique

solution. If y ∈ R
(R+1)N ,u ∈ Uad is the optimal solution, there exists p = (p0, · · · , pR)T ∈

R
(R+1)NQ such that the adjoint system (4.35a),(4.35b) holds true and the variational in-

equality (4.36) is satisfied.
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Chapter 5

Numerical Results

In the first section 5.1 of this chapter, we apply the projected gradient method with line

search(cf., e.g., [3]) as a solver for the fully discretized optimal control problem, whereas

the subsequent section 5.2 is devoted to a documentation of computational results.

5.1 Projected gradient method with line search

The control-reduced form of the fully discrete optimal control problem (4.34a)-(4.34c) is

given by

inf
u∈Uad

Ĵ(u), Ĵ(u) := J(S(u),u), (5.1)

where S : Uad → R
(R+1)N stands for the control-to-state map which assigns to an admissi-

ble control u ∈ Uad the solution y ∈ R
(R+1)N of the discrete state equation (4.34a),(4.34b).
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According to Theorem 4.6, the gradient of the control-reduced objective functional reads

∇Ĵ(u) = −GT
Ωp

0
Q −

R−1∑

r=0

∆tr+1BΩ(tr)
T pr. (5.2)

Given an initial control u(0) ∈ Uad, we solve (4.34a)-(4.34c) by the projected gradient

method with Armijo line search (cf., e.g., [25, 35])

u(ℓ+1) = u(ℓ) − αℓ ∇Ĵ(u(ℓ))), ℓ ≥ 0. (5.3)

Here, αℓ is the step length chosen such that u(ℓ+1) is feasible, i.e., u(ℓ+1) ∈ Uad, and that

the Wolfe conditions

Ĵ(u(ℓ) − αℓ∇Ĵ(u(ℓ))) ≤ Ĵ(u(ℓ))− c1αℓ‖∇Ĵ(u(ℓ))‖2, (5.4a)

∇Ĵ(u(ℓ))T∇Ĵ(u(ℓ) − αℓ∇Ĵ(u(ℓ))) ≤ c2‖∇Ĵ(u(ℓ))‖2, (5.4b)

are satisfied, where 0 < c1 ≪ c2 < 1. We note that (5.4a) is called the Armijo rule [3],

whereas (5.4b) is referred to as the curvature condition.

Comparably, we solve (4.34a)-(4.34c) by the projected gradient method with Backtracking

line search with algorithm as follows:

given a descent direction ∆x for f at x ∈ domf , α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.

while f(x+ t∆x) > f(x) + αt∇f(x)T∆x, t := βt
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5.2 Numerical results

We study the performance of the projected gradient method in case of a fixed maturity

time and strike, fixed lower and upper barriers, and a fixed number of cash settlements

(controls), but various values of the desired Delta, the interest rate, and the volatilities

of the underlying assets. Table 5.1 contains the data that remain fixed for all numerical

experiments.

For discretization in space, we have chosen a simplicial triangulation Th(Ω) of the trape-

zoidal domain Ω with h := max{diam(T ) | T ∈ Th(Ω)} = 5.0 for both the state and the

adjoint state. On the other hand, for discretization in time we have used a uniform time

step of ∆t = 0.01. The projected gradient method with line search has been initialized with

an initial control u0 = (0, 50, 0, 50, 0)T and has been stopped when the projected gradient

became smaller than TOL := 1.0E − 06.

Parameter Notation Value

M Number of controls 5
Kmin Lower Barrier 50
Kmax Upper Barrier 150
K Strike 100
T Maturity 1
ρ Correlation between assets -0.5

ui,min Lower bound on the controls 0.0
ui,max Upper bound on the controls 50.0

Table 5.1: Data of the optimal control problem that remain fixed for all experiments

Experiments 1-6. In the first example, we study the impact of different desired Deltas,

different interest rates, and different volatilities, whereas the respective other data are kept
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fixed. Table 5.2 contains the desired delta, interest rate and volatilities for the two under-

lying assets used in the experiments 1-6.

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
d (0.1,0.4) (0.4,0.1) (0.3,0.3) (0.3,0.3) (0.3,0.3) (0.3,0.3)
r 0.04 0.04 0.02 0.10 0.04 0.04
σ1 0.25 0.25 0.25 0.25 0.10 0.40
σ2 0.25 0.25 0.25 0.25 0.40 0.10

Table 5.2: Values of the desired Delta d = (d1, d2), the interest rate r, and the volatilities
σ1, σ2 of the underling assets in Experiments 1-6.
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Figure 5.1: Option price at maturity for Exp. 1 (left) and Exp. 2 (right).
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.105e+03 5.237e+01 10 2.242e+02 2.161e+00
20 1.080e+02 4.272e-03 30 1.080e+02 9.623e-06
34 1.080e+02 3.238e-07

Table 5.3: Experiment 1 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 1.226e+03 3.566e+01 10 1.130e+02 1.015e-01
19 1.080e+02 6.811e-05

Table 5.4: Experiment 1 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.227e+03 5.603e+01 10 9.218e+01 4.997e+00
20 1.389e+02 2.446e-02 30 1.388e+02 4.053e-06
33 1.388e+02 1.886e-07

Table 5.5: Experiment 2 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 1.799e+02 9.338e+00 10 1.389e+02 2.174e-02
13 1.388e+02 3.209e-04

Table 5.6: Experiment 2 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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Figure 5.2: Option price at maturity for Exp. 3 (left) and Exp. 4 (right).
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.931e+03 5.673e+01 10 6.741e+01 3.083e+00
20 1.594e+01 3.766e-03 30 1.595e+01 6.460e-06
34 1.595e+01 6.990e-07

Table 5.7: Experiment 3 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 6.828e+02 1.081e+01 10 1.596e+01 1.013e-02
20 1.595e+01 6.836e-04

Table 5.8: Experiment 3 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.353e+03 4.638e+01 10 2.870e+01 1.404e+00
20 1.708e+01 2.405e-03 30 1.708e+01 7.917e-06
33 1.708e+01 5.799e-07

Table 5.9: Experiment 4 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 1.131e+02 6.232e+00 10 1.709e+01 1.225e-02
14 1.708e+01 9.361e-05

Table 5.10: Experiment 4 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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Figure 5.3: Option price at maturity for Exp. 5 (left) and Exp. 6 (right).
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.971e+03 5.971e+01 10 5.723e+01 2.085e+00
20 1.970e+01 6.970e-04 30 1.970e+01 8.502e-07

Table 5.11: Experiment 5 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 1.481e+003 4.760e+01 10 4.101e+01 1.806e+00

20 1.970e+001 1.058e-03 29 1.970e+01 1.870e-05

Table 5.12: Experiment 5 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 3.366e+03 5.932e+01 10 5.380e+01 2.115e+00
20 1.692e+01 9.243e-04 30 1.692e+01 4.625e-07

Table 5.13: Experiment 6 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 9.510e+02 3.468e+01 10 1.751e+01 2.924e-01
17 1.692e+01 7.524e-06

Table 5.14: Experiment 6 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

Tables 5.3-5.14 contain a documentation of the convergence history of the projected

gradient algorithm with Armijo line search and Back-tracking line search. Here, ℓ stands

for the iteration number, Jred(u
(ℓ)) is the corresponding value of the objective functional,

and ‖∇Jred(u(ℓ))‖ refers to the norm of the gradient. As a termination criterion for the

iteration, we have used ‖∇Jred(u(ℓ))‖ < TOL := 1.0E − 06. When we use projected gra-

dient method with Back-tracking line search, we need to find appropriate initials to get

the good convergence rate, however, we can pick the initials randomly for the Armijo line

search to achieve better results.

As far as the impact of different desired Deltas is concerned, in Figure 5.1 we observe

that the option price with respect to S2 is a bit higher in Exp. 1 than in Exp. 2 contrary

to the price with respect to S1 which is lower in Exp. 1 than in Exp. 2.

With regard to the influence of different interest rates, Figure 5.2 reveals that the option

price is higher with respect to both S1 and S2 for higher interest rates.

Finally, the impact of different volatilities is displayed in Figure 5.3. In Exp. 5 (σ1 is lower

than σ2), the option price increases more rapidly in S1 than in S2, whereas in Exp. 6

(values of σ1 and σ2 exchanged) we observe the opposite behavior.

Experiments 7-12. The second set of experiments deals with the case of time-varying
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interest rate r and space-varying volatilities σ1, σ2:

r(t) = r1 · t+ r2 · (1− t),

σ1(S, t) = σ̂1 · ((S1 + S2 − 100)/50)2 ,

σ2(S, t) = σ̂2 · ((S1 + S2 − 100)/50)2 .

The values of the desired Deltas d = (d1, d2) and of the coefficients r1, r2 in r(t) as well

as the coefficients σ̂1, σ̂2 in σ1(S, t), σ2(S, t) are given in the following table.

Parameter Exp. 7 Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12
d (0.1,0.4) (0.4,0.1) (0.3,0.3) (0.3,0.3) (0.3,0.3) (0.3,0.3)
r1 0.03 0.03 0.02 0.08 0.03 0.03
r2 0.07 0.07 0.08 0.02 0.07 0.07
σ̂1 0.50 0.50 0.50 0.50 0.20 0.70
σ̂2 0.50 0.50 0.50 0.50 0.70 0.20

Table 5.15: Values of the desired Delta d = (d1, d2), the coefficients r1, r2, σ̂1, σ̂2 used in
Experiments 7-12.

In tables 5.16-5.27, we can see less advantage for Armijo line search with respect to

Back-tracking line search.

As shown in Figures 5.4, 5.5 and 5.6, for Exp. 7-12 we obtain similar results as in

Exp. 1-6. However, the differences in the option prices are less pronounced, since the time-

dependent interest rates and space-dependent volatilities are linearly varying between two

extreme states.
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Figure 5.4: Option price at maturity for Exp. 7 (left) and Exp. 8 (right).

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.391e+02 1.862e+00 9 1.295e+02 5.762e-05

Table 5.16: Experiment 7 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.391e+02 1.862e+00 9 1.295e+02 6.479e-05

Table 5.17: Experiment 7 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.757e+02 2.481e+00 10 1.311e+02 1.647e-04
18 1.311e+02 8.946e-07

Table 5.18: Experiment 8 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 2.757e+02 2.481e+00 10 1.311e+02 1.647e-04
17 1.311e+02 7.048e-06

Table 5.19: Experiment 8 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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Figure 5.5: Option price at maturity for Exp. 9 (left) and Exp. 10 (right).

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 4.186e+02 2.773e-01 10 1.979e+02 3.935e-01
20 2.793e+01 3.203e-02 30 2.579e+01 3.236e-03
40 2.573e+01 3.599e-04 50 2.571e+01 1.040e-05
60 2.570e+01 3.055e-06 62 2.570e+01 6.694e-07

Table 5.20: Experiment 9 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 4.186e+02 2.773e-01 10 1.979e+02 3.935e-01
20 2.793e+01 3.203e-02 30 2.579e+01 3.236e-03
40 2.573e+01 3.599e-04 50 2.571e+01 1.040e-05
60 2.570e+01 3.055e-06 62 2.570e+01 6.694e-07

Table 5.21: Experiment 9 using Backtracking line search(Convergence history (maturity t =
T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional,
and norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 5.600e+02 2.245e+00 10 9.364e+01 4.049e-01
20 3.074e+01 1.574e-02 30 2.627e+01 4.690e-03
40 2.607e+01 1.043e-03 50 2.595e+01 3.049e-05
60 2.594e+01 6.592e-06 68 2.594e+01 7.526e-07

Table 5.22: Experiment 10 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 5.600e+02 2.245e+00 10 9.364e+01 4.049e-01
20 3.074e+01 1.574e-02 30 2.627e+01 4.690e-03
40 2.607e+01 1.043e-03 50 2.595e+01 3.049e-05
60 2.594e+01 6.592e-06 68 2.594e+01 7.526e-07

Table 5.23: Experiment 10 using Backtracking line search(Convergence history (maturity
t = T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective func-
tional, and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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Figure 5.6: Option price at maturity for Exp. 11 (left) and Exp. 12 (right).

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 4.578e+02 5.722e-01 10 4.570e+01 2.132e-01
20 3.064e+01 1.264e-02 30 2.966e+01 3.134e-03
40 2.957e+01 5.495e-04 50 2.953e+01 3.030e-05
60 2.952e+01 8.243e-06 68 2.952e+01 9.405e-07

Table 5.24: Experiment 11 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 4.578e+02 5.722e-01 10 4.570e+01 2.132e-01
20 3.064e+01 1.264e-02 30 2.966e+01 3.134e-03
40 2.957e+01 5.495e-04 50 2.953e+01 3.030e-05
60 2.952e+01 8.243e-06 68 2.952e+01 9.405e-07

Table 5.25: Experiment 11 using Backtracking line search(Convergence history (maturity
t = T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective func-
tional, and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 8.052e+01 7.929e-01 10 3.303e+01 6.941e-02
20 2.812e+01 2.219e-03 30 2.776e+01 3.760e-04
40 2.773e+01 9.660e-05 50 2.772e+01 7.333e-06
60 2.772e+01 1.313e-06 61 2.772e+01 8.437e-07

Table 5.26: Experiment 12 using Armijo line search(Convergence history (maturity t = T )):
Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective functional, and
norm ‖∇Jred(u(ℓ))‖ of the gradient.

ℓ Jred(u
(ℓ)) ‖∇Jred(u(ℓ))‖ ℓ Jred(u

(ℓ)) ‖∇Jred(u(ℓ))‖
1 8.052e+01 7.929e-01 10 3.303e+01 6.941e-02
20 2.812e+01 2.219e-03 30 2.776e+01 3.760e-04
40 2.773e+01 9.660e-05 50 2.772e+01 7.333e-06
60 2.772e+01 1.313e-06 61 2.772e+01 8.437e-07

Table 5.27: Experiment 12 using Backtracking line search(Convergence history (maturity
t = T )): Number ℓ of projected gradient iteration, value Jred(u

(ℓ)) of the objective func-
tional, and norm ‖∇Jred(u(ℓ))‖ of the gradient.
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Chapter 6

Conclusions

In this thesis, we have demonstrated that hedging with European Double Barrier Bas-

ket Options can be an attractive alternative to hedging with standard options or with

futures contracts both for the buyer and for the seller. We have introduced a variant of

such an option featuring multiple cash settlements that can be chosen in order to mini-

mize a tracking-type objective functional in terms of the Delta of the option. Imposing

bilateral constraints on the cash settlements, the problem can be formulated as a control

constrained optimal control problem for the multidimensional Black-Scholes equation with

Dirichlet boundary and final time control. The discretization in space by P1 conforming

finite elements with respect to a simplicial triangulation of the spatial domain and in time

by using the implicit Euler scheme with respect to a partition of the time interval leads to

a finite dimensional constrained optimization problem which can be numerically solved by

the projected gradient method with Armijo line search.

A reduction of the computational complexity could be achieved by projected model re-

duction based optimal control using, e.g., balanced truncation in case of time-independent
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data or Proper Orthogonal Decomposition (POD) in the general case. This will be the

subject of future work.
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