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Abstract

In this work, we mainly study harmonic functions on an exterior region U ⊆ RN

(N ≥ 3), with a compact, Lipschitz boundary ∂U , in our new finite energy function

space E1 (U) (! H1 (U)), via the sequence of exterior harmonic Steklov eigenvalues

and associated eigenfunctions. These eigenfunctions consist of an orthogonal basis

for the subspace H (U) of E1 (U) of all functions harmonic in U .

Actually, our results generalize exactly certain well-known results on Laplace’s

spherical harmonics in mathematical physics, i.e., solutions of

−∆∂ Yn (θ, φ) = n (n+ 1)Yn (θ, φ) , ∀ n = 1, 2, . . . . (1)

Here, ∆∂ is the classical Laplace-Beltrami operator on S1, defined as

∆∂ :=
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
, (2)

where θ, φ are the inclination and azimuth (-angles), respectively.

Through the interior and exterior harmonic Steklov eigenvalues and associated

eigenfunctions, the space H
1
2 (∂U, dσ) and its dual space H−

1
2 (∂U, dσ) are defined,

whenever ∂U is compact and Lipschitz. This may not be the traditional definition,

as we only require weaker boundary regularity conditions. Moreover, discrete form

inner products on H
1
2 (∂U, dσ), as well as the induced ones on H−

1
2 (∂U, dσ), can

be described from using the interior and exterior harmonic Steklov eigenvalues and

associated eigenfunctions, and these norms are shown equivalent.

In the end, series representations of harmonic functions in H (G) and H (U)

v



will be obtained. These representations involve the boundary data, and the inte-

rior or exterior harmonic Steklov eigenvalues and associated eigenfunctions, which

enable us the study of explicit spectral approximations. As an application, for any

g ∈ H 1
2 (∂U, dσ), a pair of harmonic functions in H1 (G) and E1 (U) can be found

such that they share the same Dirichlet data g; while, for any h ∈ H− 1
2 (∂U, dσ),

a pair of harmonic functions in H1 (G) and E1 (U) can be found again such that

they share the same Neumann or Robin data h. Surprisingly, this differs from the

classical single and double layer potential methods, as our harmonic functions are

determined precisely in terms of their respective boundary data.
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Chapter 1

Introduction

In mathematics, spherical harmonics are the angular portion of a class of solutions

of Laplace’s equation. Represented in a system of spherical coordinates, Laplace’s

spherical harmonics are a specific set of spherical harmonics that forms an orthogo-

nal system, first introduced by P.S. Laplace in 1782. These functions are important

in many theoretical and practical applications, particularly in the computation of

atomic orbital electron configurations, the representations of gravitational fields as

well as the magnetic fields of planetary bodies and stars, and the characterization

of the cosmic microwave background radiation. By using the sequence of Laplace’s

spherical harmonics, together with the radial function |x|, two families of harmonic

functions, one in the unit ball B1 and the other in its exterior A1 := R3 \ B1, are

easily derived, and each family provides an orthogonal basis for the corresponding,

properly defined harmonic function space either in B1 or in A1.

The family of orthogonal harmonic functions on the unit ball B1 is a subset of

the Sobolev space H1 (B1), which conventionally is the standard function space to
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CHAPTER 1. INTRODUCTION

find weak solutions for various types of partial differential equations. However, for

the corresponding family of orthogonal harmonic functions obtained in the com-

plement A1 of B1, not all of them are in H1 (A1), an example being the function

|x|−1. Therefore, in order to use exterior harmonic functions, a new Sobolev func-

tion space should be introduced. That is, the finite energy space E1 (A1) (defined

in page 13), which only requires L2-integrability of the gradients of the functions

but not the functions themselves. Thereby, H1 (A1)  E1 (A1).

More generally, for any exterior region U ⊆ RN (N ≥ 3) with a compact,

Lipschitz boundary ∂U , we will have the finite energy space E1 (U) which contains

the function |x|2−N and of which H1 (U) is a proper subspace.

Let E1
0 (U) be the subspace of E1 (U) of functions whose traces on ∂U are zero.

A function u in E1 (U) is said to be harmonic, provided

∫
U

∇u · ∇vdx = 0, ∀ v ∈ E1
0 (U) . (1.1)

On the other hand, for the study of harmonic functions that are determined by

their respective Dirichlet, Neumann, or Robin boundary data, the usual approaches

used involve single and double layer potentials. For such problems, the boundary

data is usually required be continuous, and there are many open questions about

how harmonic functions are influenced by their boundary data.

After E1 (U) is introduced, we develop a theory of exterior harmonic Steklov

eigenproblems and then derive a corresponding sequence of eigenvalues and an asso-

ciated family of eigenfunctions. The traces of these eigenfunctions characterize the

boundary fractional Sobolev space H
1
2 (∂U, dσ) and its dual space H−

1
2 (∂U, dσ)

2



CHAPTER 1. INTRODUCTION

with respect to the boundary L2-inner product. Besides, this family of exterior har-

monic Steklov eigenfunctions provides an orthogonal basis for the subspace H (U)

of E1 (U) of all functions harmonic on U , and their traces provide an orthonormal

basis for the boundary space L2 (∂U, dσ). This enables the series representations of

harmonic functions in E1 (U) via their boundary data, combined with the exterior

harmonic Steklov eigenvalues and associated eigenfunctions.

When ∂U is compact and Lipschitz, the Calderón extension theorem (see Marti

[25, theorem 5.3.1], or McLean [26, theorem a.4]) holds. This will imply that there

exists an isomorphism between the harmonic function subspace H (U) in E1 (U)

and the one H (G) in H1 (G), with G := RN \ U . In addition, decomposition of

the function space D1
(
RN
)

(see Lieb and Loss [24, sections 8.2 and 8.3]) can be

accordingly described, using the spaces H (G) and H (U).

Much of the work discussed above is true for regularized harmonic functions,

which are defined as solutions of the equation

∫
U

(∇u · ∇v + uv) dx = 0, ∀ v ∈ H1
0 (U) . (1.2)

This is the simpler case as everything works out in H1 (U).

We start with a brief review of some background knowledge, and next give the

assumptions, definitions and notations in chapter 2. Then, in chapter 3, we shall

introduce the finite energy space E1 (U) and show some of its basic properties, for

example, we have γ (H1 (G)) = γ (E1 (U)). After that, we endow E1 (U) with an

inner product involving the boundary L2-term, and prove that it is a real Hilbert

function space with respect to this inner product 〈·, ·〉∂,U .

3



CHAPTER 1. INTRODUCTION

In chapter 4, we shall describe approximations of the spaces H1 (U) and E1 (U),

respectively. As H1 (U) and E1 (U) correspond to different situations yet H1 (U)

is easier to handle, we first do the approximation for H1 (U) and later in section

4.2, we do it for E1 (U). Moreover, when the boundary ∂U is nice enough, we can

show that the Gauss-Green theorem holds on E1 (U).

The study of the regularized harmonic and harmonic Steklov eigenproblems in

each truncated finite energy space E1 (Un) will then be the main part of chapter 5.

Here, Un is some bounded region that exhausts U as n → ∞. The methods used

involve standard calculus of variations and convex analysis.

Chapter 6 is devoted to the derivation of the sequences of exterior regularized

harmonic and harmonic Steklov eigenvalues and associated families of respective

Steklov eigenfunctions either in H1 (U) or in E1 (U). The limiting process depends

on a compact trace theorem, which says that the trace mapping from H1-functions

on certain bounded regions to their boundary values in L2 (∂U, dσ) is compact. In

addition, both sets of the exterior Steklov eigenvalues go to ∞.

On the other hand, in chapter 7, we shall continue the study of these exterior

Steklov eigenfunctions and show that the exterior regularized harmonic eigenfunc-

tions provide an orthogonal basis for the null space of the operator L1(u) = u−∆u

in H1 (U) while the exterior harmonic eigenfunctions provide an orthogonal basis

for the subspace of E1 (U) of all functions that are harmonic on U , from which we

can accordingly decompose H1 (U) and E1 (U), respectively. Moreover, via bound-

ary L2-normalization, the traces of both families of exterior Steklov eigenfunctions

will then provide orthonormal bases for the space L2 (∂U, dσ). In consequence, our

results actually generalize exactly certain well-known results on Laplace’s spherical

4



CHAPTER 1. INTRODUCTION

harmonics in dimension 3. We refer the reader to Axler, Bourdon and Ramey [13,

chapter 5] for a different type of generalized spherical harmonics.

In chapter 8, classical examples of sequences of both the interior and exterior

regularized harmonic and harmonic Steklov eigenvalues and associated families of

respective Steklov eigenfunctions in the standard regions B1 and A1 := RN \ B1

are provided when N = 3. They are described using the modified spherical Bessel

functions in B1 and A1, and Laplace’s spherical harmonics on S1.

Chapter 9 focuses on the weak solvability of exterior regularized harmonic and

harmonic equations, subject to Dirichlet, Neumann, or Robin boundary conditions,

in the function spaces H1 (U) and E1 (U), respectively. In particular, the fractional

Sobolev space H
1
2 (∂U, dσ) and its dual space H−

1
2 (∂U, dσ) are described. Related

boundary solution operators are also characterized. We repeat here that our space

H
1
2 (∂U, dσ) and its dual space H−

1
2 (∂U, dσ) are defined by using the interior and

exterior Steklov eigenvalues and associated eigenfunctions. This is not the original

definition, because we only require ∂U be compact and Lipschitz.

Finally, in chapter 10, through the exterior regularized harmonic and harmonic

Steklov eigenvalues and eigenfunctions, H
1
2 (∂U, dσ) can be endowed with discrete

form inner products to become a real Hilbert function space. These inner products

and those via the interior regularized harmonic and harmonic Steklov eigenvalues

and eigenfunctions can be shown all equivalent for the function space H
1
2 (∂U, dσ).

In addition, isomorphisms from H
1
2 (∂U, dσ) to the interior and exterior regularized

harmonic and harmonic function spaces are obtained, respectively.

5



Chapter 2

Assumptions, Definitions, and

Notations

A non-empty, open, connected subset U of RN (N ≥ 3) is called an exterior region

when its complement, say, G := RN \U , is a non-empty, compact subset. Without

loss of generality, let’s assume that 0 6∈ U and write r0 := sup {|x| : x 6∈ U}, with

|x| :=
√
x2

1 + x2
2 + · · ·+ x2

N for x = (x1, x2, . . . , xN) ∈ RN , the usual Euclidean

norm. For r > r0, define Ur := U ∩ Br. Here, Br is the open ball of radius r in

RN , centered at the origin. Denote the boundary of a set A by ∂A. Then, we have

∂Ur = ∂U ∪̇Sr, where Sr is the boundary of Br.

For a compact set K ⊂ RN , C (K) denotes the Banach space of all real-valued,

continuous functions on K endowed with the maximum norm. In addition, Ω ⊆ RN

denotes a non-empty, open, connected subset that can be bounded or unbounded.

Then, C1
c (Ω), as usual, denotes the set of all real-valued, continuously differentiable

functions that have compact support in Ω.

6



CHAPTER 2. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

Figure 2.1: Graph of U with the shaded area G = RN \ U .

Let p ∈ [1,∞], and let all functions be from RN to R := [−∞,∞]. Lp (Ω) and

Lp (∂Ω, dσ) are the standard spaces of real-valued, Lebesgue measurable functions

on Ω and ∂Ω with their usual norms ||·||p,Ω and ||·||p,∂Ω, respectively. In addition,

for the case when p = 2, L2 (Ω) and L2 (∂Ω, dσ) then are real Hilbert spaces with

respect to their respective inner products 〈·, ·〉2,Ω and 〈·, ·〉2,∂Ω.

W 1,p (Ω) denotes the standard Sobolev space of functions defined on Ω that are

in Lp (Ω) and whose weak derivatives Dju are again in Lp (Ω) for j = 1, 2, . . . , N .

It is a real Banach space with respect to the usual W 1,p-norm

||u||W 1,p(Ω) :=

(∫
Ω

(|u|p + |∇u|p) dx
) 1

p

, (2.1)

where ∇u := (D1u,D2u, . . . , DNu) is the weak gradient of u.

7



CHAPTER 2. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

In the situation where p = 2, we use the notation H1 (Ω) for W 1,2 (Ω). Then,

it is a real Hilbert space under the standard H1-inner product

〈u, v〉H1(Ω) :=

∫
Ω

(uv +∇u · ∇v) dx, (2.2)

and the associated norm is denoted ||u||H1(Ω).

Given a function v ∈ C1
c

(
RN
)
, its restriction to Ω is denoted RΩ(v). The set

of all such restrictions will be denoted C1
ω

(
Ω
)
, and it is a subspace of W 1,∞ (Ω).

Let G1,p (Ω) be the closure of C1
ω

(
Ω
)

with respect to ||·||W 1,p(Ω).

Grisvard (see [21, theorem 1.4.2.1]) quotes a result saying G1,p (Ω) = W 1,p (Ω)

when the region Ω has a continuous boundary ∂Ω. DiBenedetto (see [16, chapter

vii, propositions 18.1 and 19.1]) shows that G1,p (Ω) = W 1,p (Ω) when the region Ω

satisfies a segment property, and moreover he also provides a counterexample when

Ω has a disconnected boundary ∂Ω. Many of the standard extension theorems for

C1-functions on Ω will imply the equality of W and G spaces. See the discussions

about extension theorems in Brezis [15, section 9.2], Kufner, John and Fuč́ık [22,

chapter 5], and Treves [27, section 26 ] and its appendix. In fact, whether W 1,p (Ω)

equals G1,p (Ω) or not is a regularity condition on the boundary ∂Ω.

Now, we require some boundary regularity on our U such as

(B1). U is an exterior region in RN , with 0 6∈ U , and ∂U is the union of finitely

many, disjoint, closed, Lipschitz surfaces, each having finite surface area.

Remark 2.1. Note here, under assumption (B1), there exists a bounded extension

operator E : H1 (U)→ H1
(
RN
)
. Therefore, H1 (U) = G1,2 (U), i.e., all functions

in H1 (U) can be approximated by sequences of C1-functions on U with respect to

8



CHAPTER 2. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

||·||H1(U) that are restrictions of some functions in C1
c

(
RN
)

on U . See Marti [25,

theorem 5.3.1], and McLean [26, theorem a.4] for more details.

Remark 2.2. As a matter of fact, what is mostly needed later for our proofs is

to have such extension operators E : H1 (Ur)→ H1
0 (B2r) for all r > r0. This may

only require some weaker regularity conditions on ∂U than compact and Lipschitz

(see Evans and Gariepy [17, p135, theorem 1] for the latter case). Therefore, we

shall call such a U a 1-extension exterior region when this holds.

Below, we shall use those definitions and terminology from Evans and Gariepy

[17], save that σ and dσ, respectively, will represent Hausdorff (N − 1)-dimensional

measure and integration with respect to this measure. Besides, Hausdorff (N − 1)-

dimensional measure will be called surface area measure in this thesis. In addition,

we require that a unique, unit, outward, normal function ν : ∂Ω→ S1 ⊆ RN−1 be

defined σ a.e. on ∂Ω for all suitable regions Ω, bounded or not.

A region Ω is said to satisfy the Rellich-Kondratchov theorem provided the

imbedding ı : W 1,p (Ω) ↪→ Lq (Ω) is compact for 1 ≤ p < N and 1 ≤ q < pS with

pS := pN
N−p , the Sobolev conjugate of p, when N ≥ 3. Besides, it is said to satisfy the

Sobolev imbedding theorem provided the mapping ι : W 1,p (Ω) → LpS (Ω) is also

continuous. There exists a number of different criteria on Ω and ∂Ω implying these

results. In particular, when Ω is bounded, and ∂Ω is compact and Lipschitz, Evans

and Gariepy (see [17, p135, theorem 1, p144, theorem 1] plus [18, p279, theorem 2])

give them. Adams and Fournier (see [1, chapters 4 and 6]) treat various conditions

for these results thoroughly and show that they are even true for certain classes of

unbounded regions that have the property of ”small diameters”.

Moreover, a region Ω is said to satisfy the trace theorem provided the trace

9



CHAPTER 2. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

mapping γ : W 1,p (Ω)→ Lq (∂Ω, dσ) is continuous for 1 ≤ p < N and 1 ≤ q ≤ pT

with pT := p(N−1)
N−p when N ≥ 3. In addition, it is said to satisfy the compact

trace theorem provided the trace mapping γ : W 1,p (Ω) → Lq (∂Ω, dσ) is compact

for 1 ≤ q < pT . The trace operator γ is the linear extension of the mapping

restricting Hölder continuous functions on Ω to the boundary ∂Ω. When Ω is a

bounded region having a compact, Lipschitz boundary ∂Ω, and u is in W 1,1 (Ω),

the trace of u, denoted γu, then is a well-defined Lebesgue integrable function on

∂Ω with respect to σ. Evans and Gariepy (see [17, p133, theorem 1]) show that γ

is continuous, and Grisvard (see [21, theorem 1.5.1.10]) proves an inequality that

implies this compact trace result. Also, DiBenedetto [16, chapter ix, section 18]

and Leoni [23, chapter 15] both give results of this type. Recently, Auchmuty [9]

derived different trace inequalities with sharp bounds.

On the other hand, when Ω is a region with a compact, Lipschitz boundary

∂Ω, for all u, v ∈ H1 (Ω), the Gauss-Green theorem holds in the form below

∫
Ω

(vDju+ uDjv) dx =

∫
∂Ω

(γu · γv) νj dσ, (2.3)

where νj : ∂Ω → R denotes the j-th component of ν for j = 1, 2, . . . , N . Evans

and Gariepy (see [17, p209, theorem 1]) show that (2.3) holds for u, v ∈ C1
c

(
RN
)
,

and the general case follows from the density of C1
c

(
RN
)

in H1
(
RN
)

and remarks

2.1 and 2.2. By assumption (B1) on U , plus remarks 2.1 and 2.2, the Gauss-Green

theorem holds on the space H1 (U), as now H1 (U) = G1,2 (U).

In addition, an identity related to self-adjoint, divergence form partial differ-

ential equations, as will be studied in this thesis, can be derived from (2.3). That

10



CHAPTER 2. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

is, for u, v ∈ H1 (Ω) with ∆u being in L2 (Ω), we have

∫
Ω

[(∆u) v +∇u · ∇v] dx =

∫
∂Ω

(Dνu) γvdσ. (2.4)

Here, the unit, outward, normal differential operator Dν : H1 (Ω)→ H−
1
2 (∂Ω, dσ)

is defined as, for all u ∈ H1 (Ω), Dνu := ∇u·ν, and the condition γv ∈ H 1
2 (∂Ω, dσ)

is applied to justify 〈Dνu, γv〉2,∂Ω (see Auchmuty [4, sections 5-8]).

Below, we give another boundary regularity requirement such as

(B2). For each r > r0, the bounded region Ur is such that the Rellich-Kondratchov,

Sobolev imbedding, compact trace and Gauss-Green theorems hold.

In the following, we shall apply various standard results from the calculus of

variations and convex analysis. Background materials on these methods may be

found in Blanchard and Brüning [14], and Zeidler [28], both of which have some

discussions for the variational principles concerning the Dirichlet eigenvalues and

eigenfunctions of second-order elliptic operators. The variational methods used by

us here are variants of those described there and analogous to those employed by

Auchmuty [2, 3]. In addition, all variational principles and functionals are defined

on some closed, convex subsets of H1 (Ur). A functional F : H1 (Ur)→ (−∞,∞] is

said to be G-differentiable (Gâteaux ) at some u ∈ H1 (Ur), if there is a continuous

linear functional F ′(u) on H1 (Ur) such that, for all v ∈ H1 (Ur),

lim
t→0

F(u+ tv)−F(u)

t
= F ′(u)(v). (2.5)

In this situation, F ′(u) is called the G-derivative (Gâteaux ) of F at u.

11



Chapter 3

The Finite Energy Space E1 (U)

For a bounded region Ω, the standard Sobolev function space H1 (Ω) is Hilbert with

respect to the inner product (2.2). Moreover, when ∂Ω is compact and Lipschitz, all

these functions in L1 (Ω), with gradients in L2
(
Ω;RN

)
, are in L2 (Ω) by Poincaré’s

inequality (see [17, p144, theorem 1] plus [18, p290, theorem 1]) as

∫
Ω

u2dx ≤M (Ω) · u2
Ω +

∫
Ω

|∇u|2 dx, (3.1)

where uΩ := 1
M(Ω)

∫
Ω
udx. Here,M is the usual N -dimensional Lebesgue measure.

We thus can conclude that, whenever the estimate (3.1) holds,

H1 (Ω) =
{
u : u ∈ L1 (Ω) and ∇u ∈ L2

(
Ω;RN

)}
. (3.2)

When M (Ω) is infinite, there is no simple rule for the comparison of different

function spaces Lp (Ω). Also, for our exterior region U , there are functions, such as

f(x) = |x|2−N , that have gradients in L2
(
U ;RN

)
yet it is not in L2 (U). Moreover,

12



CHAPTER 3. THE FINITE ENERGY SPACE E1 (U)

we shall require some decay at infinity of the functions to be considered.

We define the finite energy space E1 (U) to be the subspace of L1
loc

(
U
)

of all

functions u such that the following two properties are satisfied.

(A1). u vanishes at infinity in a measure-theoretic sense, that is, for all a > 0,

Mu(a) :=M ({x ∈ U : |u(x)| > a}) <∞.

(A2). The weak gradient ∇u of u is in the space L2
(
U ;RN

)
.

Notice the term finite energy refers to L2-integrability of the gradients.

From Chebyshev ’s inequality (see Folland [20, theorem 6.17]), one has

Mu(a) ≤ a−p
∫
{x∈U : |u(x)|>a}

|u|p dx ≤
(
a−1 ||u||p,U

)p
<∞ (3.3)

for all u ∈ Lp (U), with 1 ≤ p <∞ and a > 0, so that (A1) holds. This implies

H1 (U)  E1 (U) . (3.4)

These results lead to proofs that the weak solutions of

µ2u−∆u = 0 in U, subject to γu = η on ∂U (3.5)

are in H1 (U), where µ > 0 and η is some suitable boundary data. When µ = 0,

however, the weak solutions of

−∆u = 0 in U, subject to γu = η on ∂U (3.6)

13



CHAPTER 3. THE FINITE ENERGY SPACE E1 (U)

need not be all in H1 (U), such as u(x) = |x|2−N for |x| sufficiently large (see also

Auchmuty and Han [10, 11]). In consequence, for the harmonic problems, we must

drop the requirement that u ∈ L2 (U), and use the function space E1 (U) instead.

Let’s for the moment go back again to the case when Ω is a bounded region with

∂Ω compact and Lipschitz. Sobolev imbedding theorem (see [17, p135, theorem 1,

p138, theorem 1] plus [18, p279, theorem 2]) gives H1 (Ω) ⊆ L2S (Ω) for 2S := 2N
N−2

(see [1, section 4.3]). Noticing 2 < 2S, one actually has that

H1 (Ω) =
{
u : u ∈ L2S (Ω) and ∇u ∈ L2

(
Ω;RN

)}
. (3.7)

Fix a r (> r0 > 0), with r0 being sup {|x| : x 6∈ U}. For the exterior region U ,

and two given constants r1, r2 satisfying r > r2 > r1 > r0, define

f(|x|) :=


0 on Br1 ∪

{
RN \Br2

}
,

exp
(

1
(|x|−r1)(|x|−r2)

)
on Br2 \Br1 ,

(3.8)

and accordingly write X(|x|) :=
∫+∞
|x| f(t)dt∫+∞
−∞ f(t)dt

.

Let X (x) be the restriction of X(|x|) on U . Then, X is a decreasing, smooth

function, lying in between [0, 1], such that


X ≡ 1 on U r1 ,

X ≡ 0 on U \ Ur2 ,

(3.9)

and such that ||∇X ||∞,U <∞.

14
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Given u ∈ E1 (U), set ŭ := (1−X )u. By zero extension to RN , ŭ ∈ L1
loc

(
RN
)
.

Applying Cauchy ’s and Poincaré’s inequalities (see (3.1)), we have

∫
RN
|∇ŭ|2 dx =

∫
RN
|(1−X )∇u− (∇X )u|2 dx

≤
∫
U

|∇u|2 dx+ ||∇X ||2∞,U
∫
Ur

u2dx+ 2 ||∇X ||∞,U
∫
Ur

|u∇u| dx

≤ 2

(∫
U

|∇u|2 dx+ ||∇X ||2∞,U
(
M (Ur) · u2

Ur +

∫
U

|∇u|2 dx
))

<∞.

(3.10)

Hence,∇ŭ ∈ L2
(
RN ;RN

)
. Also, ŭ vanishes at infinity as u does, forG is a bounded

region. Thereby, ŭ is in D1
(
RN
)
, which is the global version of our function space

E1 (U) in RN , that is, w ∈ D1
(
RN
)

whenever w ∈ L1
loc

(
RN
)
, w vanishes at infinity

in the sense of (A1) for RN , and ∇w ∈ L2
(
RN ;RN

)
. Sobolev imbedding theorem

for gradients (see Lieb and Loss [24, sections 8.2 and 8.3]) derives ŭ ∈ L2S
(
RN
)
.

In particular, the restriction of ŭ on U \ Ur2 , equaling u|U\Ur2 , is in L2S (U \ Ur2).

Besides, u|Ur is in H1 (Ur) by (3.2), so that it is also in L2S (Ur) by (3.7). We thus

obtain u ∈ L2S (U). In consequence, it actually says that

Proposition 3.1. A function u is in E1 (U) if and only if it is in L2S (U) and its

gradient ∇u is in L2
(
U ;RN

)
.

As a result, we can derive the following comparison result on different function

spaces Lp (U) when 1 ≤ p <∞, on condition that all these functions involved are

such that their weak gradients are in the space L2
(
U ;RN

)
.

Corollary 3.2. When (B1) holds, for any function u on U with ∇u ∈ L2
(
U ;RN

)
,

if u is in Lp (U) for some p ∈ [1,∞), then u will be in L2S (U).

Recall that G = RN \U . Evans and Gariepy (see [17, p135, theorem 1]) give us

15
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the existence of a bounded extension operator E : H1 (G)→ H1
0 (Br) since G b Br

for r > r0. Restrict the space H1
0 (Br) on Ur. For all u ∈ H1

0 (Br), u|Ur will be in

E1 (U) by zero extension to infinity. That is, for all u ∈ H1 (G), there exists some

ǔ ∈ E1 (U) such that γǔ = γu on ∂U . Besides, for all u ∈ E1 (U), write υ := Xu.

Then, γυ = γu on ∂U and γυ ≡ 0 on Sr2 . Again, we will have a bounded extension

operator E : H1 (Ur2)→ H1
0 (Br) since Ur2 b Br for r > r2. Restrict H1

0 (Br) on G.

For all u ∈ H1
0 (Br), one has u|G ∈ H1 (G) as G b Br. Note here, υ ∈ H1 (Ur2) by

the boundedness of ∇X and (3.2). That is, for all u ∈ E1 (U), there exists some

û ∈ H1 (G) such that γû = γu on ∂U . Therefore, we derive that

γ
(
E1 (U)

)
= γ

(
H1 (G)

)
on ∂U. (3.11)

This argument, plus remarks 2.1 and 2.2, can also show that, on ∂U , the trace

spaces of H1 (U) and H1 (G) are the same, which implies that

γ
(
E1 (U)

)
= γ

(
H1 (U)

)
on ∂U. (3.12)

On the other hand, another type of Poincaré’s inequality (see [17, p138, theo-

rem 1] plus [18, p279, theorem 3]) says ||u||H1(G) and ||∇u||L2(G;RN ) are equivalent

on H1
0 (G), the subspace of H1 (G) of all functions whose traces are zero on ∂G.

If we view H1
0 (G) as a subspace of D1

(
RN
)
, rather than H1

(
RN
)
, since only the

gradients matter, we shall get something new, as H1
(
RN
)
 D1

(
RN
)
. This also

explains how we got E1 (U), as now (3.11) and (3.12) lead to

H1 (U) ∼= H1
(
RN
) /
H1

0 (G) , (3.13)

16
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with the notation ∼= denoting (algebraic) quotient isomorphism, and

E1 (U) ∼= D1
(
RN
) /
H1

0 (G) . (3.14)

This can be regarded as the third characterization of E1 (U).

First of all, we show that D1
(
RN
)

is a real vector space. Actually, let w,w∗ ∈

D1
(
RN
)
, and let c 6= 0 be a constant. For all a > 0, we have


Mw+w∗(a) ≤Mw

(
a
2

)
+Mw∗

(
a
2

)
<∞,

Mcw(a) ≤Mw

(
a
|c|

)
<∞.

(3.15)

Noticing that M (G) <∞ as G is bounded, we are done.

Write w ∼ w∗ whenever w−w∗ ∈ H1
0 (G). Then, for all [w] ∈ D1

(
RN
) /
H1

0 (G),

u := w|U ∈ E1 (U) is uniquely defined. Yet, for all u ∈ E1 (U), (3.11) derives some

interior extension, say, û, in H1 (G) such that γu = γû on ∂U , so that, via (3.2),

w := u+û ∈ D1
(
RN
)

and [w] is uniquely determined by u. Note here, the notation

[ · ] denotes the equivalence classes in the quotient group.

Finally, we shall make E1 (U) a Hilbert space. Remember that, for any bounded

region Ω with ∂Ω compact and Lipschitz, H1 (Ω) is again a real Hilbert function

space with respect to the ∂-inner product (see [2, corollary 6.2])

〈u, v〉∂,Ω :=

∫
Ω

∇u · ∇vdx+

∫
∂Ω

γu · γvdσ, (3.16)

and the associated norm is denoted ||u||∂,Ω. Besides, the two norms ||u||H1(Ω) and

17
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||u||∂,Ω are in fact equivalent on H1 (Ω). Inspired by this, and being aware of (3.11)

implying γ (E1 (U)) ⊆ L2 (∂U, dσ), we define the ∂-inner product

〈u, v〉∂,U :=

∫
U

∇u · ∇vdx+

∫
∂U

γu · γvdσ, (3.17)

along with the associated norm ||u||∂,U , on E1 (U). Then, one has

Theorem 3.3. Under our general assumption (B1), E1(U) is a real Hilbert func-

tion space with respect to the ∂-inner product (3.17).

Proof. Obviously, E1(U) is a vector space as shown in (3.15). Besides, as ∇u ≡ 0

and condition (A1) yields u ≡ 0, ||·||∂,U is indeed a norm on E1 (U).

Let {uk}∞k=1 be a Cauchy sequence in E1 (U). That is, for each ε > 0, there

exists a positive integer K ∈ N such that, for all k1, k2 > K,

||uk1 − uk2||∂,U ≤ ε, (3.18)

from which it follows simultaneously that

||∇uk1 −∇uk2||L2(U ;RN ) ≤ ε and ||γuk1 − γuk2 ||2,∂U ≤ ε. (3.19)

For all u ∈ E1 (U), define ũ to be the unique weak solution for

∆ũ = 0 in G, subject to γũ = γu on ∂U. (3.20)

The condition γũ = γu ∈ H 1
2 (∂U, dσ), via (3.11) and [5, identity (3.2) and theorem

6.2], ensures the existence of our solution in H1 (G). Call ũ the interior harmonic

18
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extension of u over G, and write w :=

 ũ on G,

u on U.
Thereby, ∇w =

 ∇ũ on G

∇u on U

is in L2
(
RN ;RN

)
. As G is bounded, w will be in D1

(
RN
)

by (3.2).

Now, let ũk be the interior harmonic extension of uk over G, and accordingly set

wk :=

 ũk on G,

uk on U,
for every k = 1, 2, . . .. Applying Sobolev imbedding theorem

for gradients (see Lieb and Loss [24, theorem 8.3]) then leads to, for some constant

CN := π N
√

4π N(N−2)
4

(
Γ
(
N+1

2

))− 2
N relying only on N ,

||wk1 − wk2||
2
2S ,RN ≤ CN ||∇wk1 −∇wk2||

2
L2(RN ;RN )

=CN

(∫
U

|∇uk1 −∇uk2|
2 dx+

∫
G

|∇ũk1 −∇ũk2|
2 dx

)
=CN

(∫
U

|∇uk1 −∇uk2|
2 dx+

∫
∂U

(γuk1 − γuk2) (Dν ũk1 −Dν ũk2) dσ

)
,

(3.21)

where (2.4) was used to derive the last identity above. This shows that {wk}∞k=1

and {∇wk}∞k=1 are Cauchy sequences in L2S
(
RN
)

and L2
(
RN ;RN

)
, respectively,

by (3.19), as ũk ∈ H1 (G) implies that Dν ũk is in H−
1
2 (∂U, dσ), the dual space of

H
1
2 (∂U, dσ) with respect to the boundary L2-inner product, for each k = 1, 2, . . .

(see appendix, and also see Auchmuty [4, section 6] and Brezis [15, pp136-137]).

Here, Dν is the unit, outward, normal differential operator.

The completeness of the spaces L2S
(
RN
)

and L2
(
RN ;RN

)
thereby yields the

existence of a function w ∈ L2S
(
RN
)

and a vector function ~v :=
(
v1, v2, . . . , vN

)
∈

L2
(
RN ;RN

)
, such that ||wk − w||2S ,RN → 0 and ||∇wk − ~v||L2(RN ;RN ) → 0 when

k → ∞, respectively. As a consequence, for all ϕ ∈ C1
c

(
RN
)
, standard argument
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about weak derivatives derives that∫
RN

w (Djϕ) dx = lim
k→∞

∫
RN
wk (Djϕ) dx

=− lim
k→∞

∫
RN

(Djwk)ϕdx = −
∫
RN

vjϕdx,

(3.22)

which implies that ∇w = ~v ∈ L2
(
RN ;RN

)
in the weak sense, where Dj is the j-th

weak partial differential operator for each j = 1, 2, . . . , N .

Now, w ∈ L2S
(
RN
)

shows w ∈ L1
loc

(
RN
)
, and, from (3.3), w vanishes at infinity

in the sense of (A1). As a result, w is in D1
(
RN
)
. So, one has u := w|U ∈ E1 (U)

from (3.14). Applying the compact trace theorem on G (see [21, theorem 1.5.1.10]),

together with Hölder ’s inequality, we have that, for this function ũ := w|G, and for

other two vector functions ∇u := ~v|U and ∇ũ := ~v|G,

||uk − u||2∂,U = ||∇uk −∇u||2L2(U ;RN ) + ||γuk − γu||22,∂U

≤ ||∇uk −∇u||2L2(U ;RN ) + CG

(
||ũk − ũ||22,G + ||∇ũk −∇ũ||2L2(G;RN )

)
≤ (1 + CG) ||∇wk − ~v||L2(RN ;RN ) + CG (M (G))

2
N ||ũk − ũ||22S ,G

≤ (1 + CG) ||∇wk − ~v||L2(RN ;RN ) + CG (M (G))
2
N ||wk − w||22S ,RN → 0

(3.23)

as k →∞, where CG > 0 is a constant depending only on G.

Thus, E1 (U) is complete with respect to the norm ||·||∂,U .

Remark 3.4. In general, though one has ||·||∂,U ≤ C ||·||H1(U) for some constant

C > 0 that depends only on U (see [10, theorem 3.1]), H1 (U) is not complete with

respect to ||·||∂,U . This can be shown via the function f(x) = |x|2−N , using the cut-

off functions χn(x) by (4.12) and the sequence {un+1 := χnf}∞n=1.
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Remark 3.5. Adapting the above arguments, D1
(
RN
)

can be shown a real Hilbert

function space with respect to 〈·, ·〉∇, the gradient L2
(
RN ;RN

)
-inner product,

〈w,w∗〉∇ :=

∫
RN
∇w · ∇w∗dx, (3.24)

with its associated norm ||w||∇. See also Auchmuty [7, sections 2 and 3].

Remark 3.6. From the above discussions, along with the decomposition of H1 (G),

as described by Auchmuty (see [5, identity (3.2) and theorem 6.2]), that is,

H1 (G) = H1
0 (G)⊕∂,G H (G) , (3.25)

with H (G) being the subspace of H1 (G) of functions harmonic on G, we have

D1
(
RN
)

= E1 (U)⊕∇ H1 (G) = E1 (U)⊕∇
[
H1

0 (G)⊕∂,G H (G)
]
. (3.26)

Here and henceforth, we use different subscripts under the notation ⊕ to indicate

the direct sums are related to the corresponding inner products.
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Chapter 4

Approximation of Function

Spaces

4.1 The Approximation of H1 (U)

Below, we approximate the exterior region U and the space H1 (U) accordingly as

an illustration to that of E1 (U), which will be given in the next section.

Fix a r > max {1, r0}, so that RN \ U b Br. For every n = 1, 2, . . ., define

the bounded region Un := U ∩ Brn , having a compact, Lipschitz boundary ∂Un =

∂U ∪̇Srn , and correspondingly define the truncated finite energy space

E1 (Un) :=
{
u ∈ H1 (U) : u ≡ 0 on U \ Un

}
. (4.1)

In consequence, we have, via the very definition,

E1 (U1) ⊆ · · · ⊆ E1 (Un) ⊆ E1 (Un+1) ⊆ · · · ⊆ H1 (U) . (4.2)
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Here and henceforth, by abuse of notations, we write Un instead of Urn .

Denote the restriction of E1 (Un) on Un by H1
ô (Un).

Obviously, H1
ô (Un) is a subspace of H1 (Un) of functions whose traces are zero

on Srn . Take u ∈ H1 (Un) to be such that γu ≡ 0 on Srn . Via zero extension to

infinity, it is then in E1 (Un). So, u itself is in H1
ô (Un). H1

ô (Un) is also closed in

H1 (Un). Actually, let {uk}∞k=1 be a Cauchy sequence in H1
ô (Un) with respect to

||·||H1(Un). Recall ||·||H1(Un) and ||·||∂,Un are equivalent on H1 (Un). The complete-

ness of H1 (Un) yields a function u ∈ H1 (Un) such that

∫
Un

|∇uk −∇u|2 dx+

∫
∂U

(γuk − γu)2 dσ +

∫
Srn

(γu)2 dσ → 0 (4.3)

when k →∞. Therefore, γu ≡ 0 on Srn , so that u is in H1
ô (Un).

Consequently, H1
ô (Un) is the maximal subspace of H1 (Un) of all functions that

have zero traces on Srn . So, H1
0 (Un)  H1

ô (Un) follows accordingly, where H1
0 (Un)

denotes the closure of the set C1
c (Un) with respect to ||·||H1(Un).

Our next step is to prove the following approximation result.

Proposition 4.1. Given u ∈ H1 (U), there exists a sequence {un}∞n=1 of functions,

with un ∈ E1 (Un) for each n ≥ 1, such that lim
n→∞

||un − u||H1(U) = 0.

Proof. Define, for every n = 1, 2, . . ., and for all x ∈ RN ,

fn(|x|) :=


0 on Brn ∪

{
RN \Brn+1

}
,

exp
(

1
(|x|−rn)(|x|−rn+1)

)
on Brn+1 \Brn ,

(4.4)
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and correspondingly write Xn(|x|) :=
∫+∞
|x| fn(t)dt∫+∞
−∞ fn(t)dt

.

Let Xn(x) be the restriction of Xn(|x|) on U . We then easily see that Xn is a

decreasing, smooth function, lying in between [0, 1], such that


Xn ≡ 1 on Un,

X ≡ 0 on U \ Un+1,

(4.5)

and such that ||∇Xn||∞,U is bounded, independent of n.

Now, for all u ∈ H1 (U), write un+1 := Xnu. Then, un+1 is in E1 (Un+1) since

un+1 ≡ 0 on U \ Un+1. Besides, ||un+1 − u||2,U ≤ 2 ||u||2,U\Un → 0 as n → ∞, for

u ∈ L2 (U). Moreover, from Cauchy ’s inequality, we have

∫
U

|∇un+1 −∇u|2 dx =

∫
U

|u∇Xn + Xn∇u−∇u|2 dx

=

∫
U\Un+1

|∇u|2dx+

∫
Un+1\Un

|u∇Xn + (Xn − 1)∇u|2 dx

≤
∫
U\Un

|∇u|2dx+

∫
Un+1\Un

|u∇Xn|2 + 2

∫
Un+1\Un

|u∇Xn · ∇u| dx

≤ 2

(∫
U\Un

|∇u|2dx+ ||∇Xn||2∞,U
∫
U\Un

u2dx

)
→ 0

(4.6)

as n→∞, for u ∈ H1 (U). Thus, ||un+1 − u||H1(U) → 0 as n→∞.

Let C1
ω

(
U
)
, as before, be the restriction of C1

c

(
RN
)

on U . That is,

C1
ω

(
U
)

:=
{
ψ : ψ = ϕ|U for some ϕ ∈ C1

c

(
RN
)}
. (4.7)

By remarks 2.1 and 2.2, C1
ω

(
U
)

is dense in H1 (U) with respect to ||·||H1(U).
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4.2 The Approximation of E1 (U)

In this section, we approximate the finite energy space E1 (U).

First, observe that the truncated finite energy space E1 (Un) equals

E1 (Un) =
{
u ∈ E1 (U) : u ≡ 0 on U \ Un

}
(4.8)

via condition (B2) and (3.2), when restricted on Un. So, we also have

E1 (U1) ⊆ · · · ⊆ E1 (Un) ⊆ E1 (Un+1) ⊆ · · · ⊆ E1 (U) . (4.9)

Similarly, we can derive the approximation result below.

Proposition 4.2. Given u ∈ E1 (U), there exists a sequence {un}∞n=1 of functions,

with un ∈ E1 (Un) for each n ≥ 1, such that lim
n→∞

||un − u||∂,U = 0.

Proof. Define, for every fn(|x|), given by (4.4), with n = 1, 2, . . .,

Fn(|x|) :=



∫+∞
|x| fn(t)dt∫+∞
−∞ fn(t)dt

on Brn+εn ∪
{
RN \Brn+1−εn

}
,

∫+∞
rn+εn

fn(t)dt∫+∞
−∞ fn(t)dt

− (|x|−rn−εn)
∫ rn+1−εn
rn+εn

fn(t)dt

(rn+1−rn−2εn)
∫+∞
−∞ fn(t)dt

on Brn+1−εn \Brn+εn ,

(4.10)

where εn = O
(

1
rn+1 log(rn+1)

)
> 0 is a constant so chosen that

exp

(
1

εn (rn + εn − rn+1)

)
=

∫ rn+1−εn
rn+εn

fn(t)dt

rn+1 − rn − 2εn
. (4.11)

Let χn(x) be the restriction of Fn(|x|) on U . One then easily sees that χn is a
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decreasing, smooth function, lying in between [0, 1], such that



χn ≡ 1 on Un,

χn ≡ 0 on U \ Un+1,

||∇χn||∞,U is exactly O
(

1
rn+1

)
.

(4.12)

For all u ∈ E1 (U), set un+1 := χnu. So, un+1 is in E1 (Un+1) via the bounded-

ness of ∇χn and (3.2), as un+1 ≡ 0 on U \ Un+1. In addition, γun+1 = γu on ∂U .

From proposition 3.1, and Cauchy ’s and Hölder ’s inequalities, we have

∫
U

|∇un+1 −∇u|2 dx =

∫
U

|u∇χn + χn∇u−∇u|2 dx

=

∫
U\Un+1

|∇u|2 dx+

∫
Un+1\Un

|u∇χn + (χn − 1)∇u|2 dx

≤
∫
U\Un+1

|∇u|2 dx+ 2

∫
Un+1\Un

(
|u∇χn|2 + |∇u|2

)
dx

≤ 2

∫
U\Un

|∇u|2 dx+ 2 ||∇χn||2∞,U
∫
Un+1\Un

|u|2 dx

≤ 2

∫
U\Un

|∇u|2 dx+ 2 ||∇χn||2∞,U
(∫

Un+1\Un
dx

) 2
N
(∫

Un+1\Un
|u|2S dx

)N−2
N

≤ 2 ||∇u||2
L2(U\Un;RN) + 2 ||∇χn||2∞,U

(
M
(
Un+1 \ Un

)) 2
N ||u||22S ,U\Un → 0

(4.13)

when n→∞, as u ∈ E1 (U) implies that ||u||22S ,U\Un → 0 and ||∇u||2
L2(U\Un;RN) →

0, respectively, when n→∞, while, on the other hand, as ||∇χn||∞,U = O
(

1
rn+1

)
yields that ||∇χn||∞,U

(
M
(
Un+1 \ Un

)) 1
N = O(1), independent of r, when n→∞.
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4.2 THE APPROXIMATION OF E1 (U)

In consequence, it follows that ||un+1 − u||∂,U → 0 when n→∞.

Propositions 4.1 and 4.2 tell us that E1 (Un) exhausts H1 (U) with respect to

||·||H1(U), and E1 (U) instead with respect to ||·||∂,U , as n→∞.

Recall that D1
(
RN
)

is the finite energy space on RN . One has

Corollary 4.3. Take {Vj}∞j=1 to be any class of bounded regions satisfying Vj b

Vj+1 and RN =
⋃∞
j=1 Vj, such that ∂Vj is compact and Lipschitz for every j =

1, 2, . . .. Then, for all w ∈ D1
(
RN
)
, there exists a sequence {wj}∞j=1 of functions,

with wj ∈ H1
0 (Vj) for each j ≥ 1, such that lim

j→∞
||wj − w||∇ = 0. Here, ||·||∇ (see

remark 3.5) denotes the gradient L2
(
RN ;RN

)
-norm.

Proof. As discussed ahead of (3.13), via zero extension over RN , H1
0 (Vj) becomes

a subspace of D1
(
RN
)

with respect to the norm ||·||∇. For all j sufficiently large,

there are two integers nj2 > nj1 , with Br
nj1 b Vj b Br

nj2 , such that

H1
0 (Br

nj1 ) ⊆ H1
0 (Vj) ⊆ H1

0 (Br
nj2 ) . (4.14)

Now, a slightly modified proof of proposition 4.2 shows that the space D1
(
RN
)

can be approximated through the spaces H1
0 (Brn) as n→∞ with respect to ||·||∇.

Actually, for all w ∈ D1
(
RN
)
, write wn+1 := Fnw ∈ H1

0 (Brn+1). Proposition 3.1,

the fact ||∇Fn||∞,U = O
(

1
rn+1

)
and the estimate (4.13) then yield it.

Therefore, along with (4.14), this gives us the desired limit.

Remark 4.4. What this result really says is, with respect to ||·||∇, C1
c

(
RN
)

is

dense in D1
(
RN
)
, as D1

(
RN
)

can be approximated by H1
0 (Brn) and C1

c (Brn) is

dense in H1
0 (Brn), in view of Poincaré’s inequality.
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4.3 THE GAUSS-GREEN THEOREM

Recall that C1
ω

(
U
)

denotes the restriction of C1
c

(
RN
)

on U . C1
ω

(
U
)

is dense

in E1 (U) with respect to ||·||∂,U , which follows from remarks 2.1 and 2.2 again,

together with an estimate like (3.23). We shall show it below.

Let u be a function in E1 (U). For each ε > 0, there exists a un ∈ E1 (Un), for

sufficiently large n, such that ||un − u||∂,U ≤
ε
2
. Restricting un on Un and using the

same notation leads to un ∈ H1
ô (Un). Remarks 2.1 and 2.2 (also see (3.11)) then

give a wn ∈ H1
0 (Brn), which is an extension of un over Brn , as γun ≡ 0 on Srn and

Un ⊆ Brn . Therefore, there exists a sequence {ϕk}∞k=1 of functions in C1
c (Brn) such

that ||∇ϕk −∇wn||∇ → 0 as k →∞, by Poincaré’s inequality and zero extension

outside Brn to RN . Let ψk be the restriction of ϕk on U . Then,

||ψk − un||2∂,U ≤ ||∇ϕk −∇wn||
2
L2(U ;RN ) + ||γϕk − γwn||22,∂U

≤ ||∇ϕk −∇wn||2L2(U ;RN ) + CG

(
||ϕk − wn||22,G + ||∇ϕk −∇wn||2L2(G;RN )

)
≤max {1, CG} ||∇ϕk −∇wn||2L2(Brn ;RN ) + CG ||ϕk − wn||22,Brn

≤CBrn ||∇ϕk −∇wn||
2
L2(Brn ;RN ) = CBrn ||∇ϕk −∇wn||

2
∇ → 0

(4.15)

as k →∞, where the compact trace theorem on G and Poincaré’s inequality were

applied for deriving this estimate, CG > 0 is the constant given below (3.23), and

CBrn > 0 is a constant relying only upon Brn . As a consequence, ||ψk − u||∂,U ≤ ε

follows immediately when k is sufficiently large.

4.3 The Gauss-Green Theorem

As an application, we have the following version Gauss-Green theorem.
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4.3 THE GAUSS-GREEN THEOREM

Theorem 4.5. Let u ∈ E1 (U) be such that its Laplacian ∆u exists and is in the

intersection space L2
loc

(
U
)
∩ L

2N
N+2 (U). Then, for all v ∈ E1 (U), one has

∫
U

[(∆u) v +∇u · ∇v] dx =

∫
∂U

(Dνu) γvdσ. (4.16)

In particular, when u is a function in H1 (U) such that its Laplacian ∆u exists

and is in the space L2 (U), this identity still holds for all v ∈ H1 (U).

Proof. On each bounded region Un, in view of our assumptions, we have

∫
Un

[(∆u)ψ +∇u · ∇ψ] dx =

∫
∂U

(Dνu) γψdσ +

∫
Srn

(Dνu) γψdσ (4.17)

by (2.4) for such a u ∈ E1 (U) described as above, so that, letting n→∞ leads to

∫
U

[(∆u)ψ +∇u · ∇ψ] dx =

∫
∂U

(Dνu) γψdσ (4.18)

for all ψ ∈ C1
ω

(
U
)
. Being aware of the fact u ∈ L2S (U) and the density of C1

ω

(
U
)

in E1 (U) with respect to ||·||∂,U , our desired result then follows.

On the other hand, for such a u ∈ H1 (U) as described in our hypothesis, the

identity (4.18) still holds for all ψ ∈ C1
ω

(
U
)
. Noticing now the density of C1

ω

(
U
)

in H1 (U) with respect to ||·||H1(U), we finally finishes the proof.

Corollary 4.6. The respective weak solutions of the systems below,


−∆u = 0 in U, subject to γu = η1 on ∂U,

or

−∆u = 0 in U, subject to Dνu+ b (γu) = η2 on ∂U,

(4.19)
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4.3 THE GAUSS-GREEN THEOREM

in our space E1 (U), if exist, are unique, where b ≥ 0 is a constant.

In addition, the respective weak solutions of the systems below,


µ2u−∆u = 0 in U, subject to γu = η3 on ∂U,

or

µ2u−∆u = 0 in U, subject to Dνu+ b (γu) = η4 on ∂U,

(4.20)

with some constant µ > 0, in the space H1 (U), if exist, are again unique.

Proof. Take v = u ∈ E1 (U) to be harmonic in (4.16) such that either γu ≡ 0 or

Dνu + b (γu) ≡ 0 on ∂U . We thereby have
∫
U
|∇u|2 dx = 0, so that u ≡ 0 from

condition (A1). This consequently confirms the first statement.

When u is a weak solution of µ2u−∆u = 0, applying (4.16) yields

∫
U

(
µ2uv +∇u · ∇v

)
dx =

∫
∂U

(Dνu) γvdσ, ∀ v ∈ H1 (U) . (4.21)

Suppose again that either γu ≡ 0 or Dνu+ b (γu) ≡ 0 on ∂U . Substituting v = u

into (4.21) leads to u ≡ 0 as µ > 0. This finally finishes our proof.
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Chapter 5

Steklov Eigenproblems in the

Function Space H1
ô (Un)

5.1 The Regularized Harmonic Case

In this section, we study in detail the regularized harmonic Steklov eigenproblems

in the truncated finite energy space H1
ô (Un), using standard variational principles

and convex analysis, whereas simply outline the parallel results in the next section

for the harmonic Steklov eigenproblems, again in H1
ô (Un).

In the following, we shall find the weak solutions of the following mixed Dirichlet-

Robin type eigenvalue problem in H1 (Un)


L1(u) := u−∆u = 0 in Un, subject to

Dνu = τu on ∂U, and γu = 0 on Srn .

(5.1)
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5.1 THE REGULARIZED HARMONIC CASE

On the bounded region Un having a nice boundary ∂Un = ∂U ∪̇Srn , the Gauss-

Green theorem holds. In consequence, we are going to find the non-trivial solutions

in H1
ô (Un)× (0,∞) that satisfies the following identity

∫
Un

(∇u · ∇v + uv) dx− τ
∫
∂U

γu · γvdσ = 0, ∀ v ∈ H1
ô (Un) . (5.2)

We call our problem regularized harmonic due to the operator L1(u) = u−∆u,

yet, the results are exactly the same if we instead consider the operator Lµ(u) :=

µ2u −∆u for µ > 0 and using the weighted H1
µ-inner product. To avoid blurring

the essence, we simply consider the standard case where µ = 1.

Let K be the closed unit ball in H1
ô (Un) with respect to the standard H1-norm,

given by (2.2). That is, K ⊆ H1
ô (Un) is such that

K :=

{
u ∈ H1

ô (Un) :

∫
Un

(
u2 + |∇u|2

)
dx ≤ 1

}
. (5.3)

Define the functional T : H1 (U)→ [0,∞) by

T (u) :=

∫
∂U

(γu)2 dσ. (5.4)

Note here, T is also well-defined by (4.2) for u in H1
ô (Un). Consider the variational

principle
(
RhS1,n

)
of maximizing T on K, and write

κ1,n := sup
u∈K
T (u). (5.5)

K is a bounded, closed, convex subset of H1
ô (Un), which enables us to prove
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5.1 THE REGULARIZED HARMONIC CASE

the following existence result for solutions of
(
RhS1,n

)
.

Theorem 5.1. There exists some maximizer u1,n (so does −u1,n) of T in K with

||u1,n||H1(Un) = 1, which is an eigenfunction for the problem (5.2) corresponding to

the least positive eigenvalue τ1,n with τ1,n := 1
κ1,n

.

Proof. As K is bounded, closed and convex, it is weakly compact in H1
ô (Un). Also,

the compact trace theorem on Un implies that T is weakly continuous on the space

H1 (Un), and so is it on H1
ô (Un). Hence, T attains its supremum, technically as a

maximum, at at least one function, say, u1,n ∈ K, such that κ1,n = T (u1,n) > 0 is

finite. If ||u1,n||H1(Un) < 1, we set c := ||u1,n||−1
H1(Un) > 1, so that ||cu1,n||H1(Un) = 1;

yet, cu1,n ∈ K and T (cu1,n) = c2T (u1,n) > κ1,n. This is a contradiction.

A Lagrangian functional for the above variational principle
(
RhS1,n

)
is given

by F1 : H1
ô (Un)× [0,∞)→ R, which is defined as, for some constant λ ≥ 0,

F1(u, λ) := λ

(∫
Un

(
u2 + |∇u|2

)
dx− 1

)
−
∫
∂U

(γu)2dσ. (5.6)

Our problem of maximizing T on K is equivalent to finding an inf-sup point of

F1 on its domain. Any such a maximizer is a critical point of F1(·, λ) on H1
ô (Un),

that is, F ′1(·, λ)(v) = 0 for all v ∈ H1
ô (Un). As a result, we have

λ

(∫
Un

(∇u1,n · ∇v + u1,nv) dx

)
−
∫
∂U

γu1,n · γvdσ = 0, ∀ v ∈ H1
ô (Un) . (5.7)

Letting v = u1,n yields λ = κ1,n. Thus, (5.2) holds with τ1,n = 1
κ1,n

> 0.

If τ1,n is not the least positive eigenvalue of (5.2), there would be a τ̈1,n < τ1,n

and some ü1,n ∈ K with ||ü1,n||H1(Un) = 1 such that (5.2) is satisfied by (ü1,n, τ̈1,n).
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5.1 THE REGULARIZED HARMONIC CASE

Yet, this is impossible, for otherwise we would have κ̈1,n = 1
τ̈1,n

> 1
τ1,n

= κ1,n.

Remark 5.2. As an immediate application, by homogeneity, it follows that

||γu||2,∂U ≤
√
κ1,n ||u||H1(Un) , ∀ u ∈ H

1
ô (Un) . (5.8)

Given the first k (≥ 1) regularized harmonic Steklov eigenvalues {τ1,n, . . . , τk,n}

and an associated set {u1,n, . . . , uk,n} of 〈·, ·〉H1(Un)-orthonormal eigenfunctions, we

show below how to find the next pair (uk+1,n, τk+1,n) ∈ H1
ô (Un)× (0,∞).

For each k ≥ 1, define

Kk :=
{
u ∈ K : 〈γu, γui,n〉2,∂U = 0 for i = 1, 2, . . . , k

}
. (5.9)

Noticing 0 < τ1,n ≤ τ2,n ≤ · · · ≤ τk,n, by (5.2), it is equivalent to set

Kk :=
{
u ∈ K : 〈u, ui,n〉H1(Un) = 0 for i = 1, 2, . . . , k

}
. (5.10)

Consider the variational principle
(
RhSk+1,n

)
of maximizing the functional T

on the subset Kk of H1
ô (Un) ⊆ H1 (Un), and write

κk+1,n := sup
u∈Kk

T (u). (5.11)

Theorem 5.3. There are maximizers ±uk+1,n of T on Kk with ||uk+1,n||∂,Un = 1.

These functions are eigenfunctions of our problem (5.2) associated with the eigen-

value τk+1,n such that τk+1,n := 1
κk+1,n

. Moreover, τk+1,n is the smallest eigenvalue

for our problem greater than or equal to τk,n.
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5.1 THE REGULARIZED HARMONIC CASE

Proof. Via the compact trace theorem on Un, each of the linear functional Ti(u) :=∫
∂U
γui,n · γudσ is continuous in H1

ô (Un) for i = 1, 2, . . . , k. Thus, Kk is bounded,

closed and convex in H1
ô (Un) by (5.9). So, it is weakly compact.

As a result, T attains its supremum, again as a maximum, at some function,

say, uk+1,n ∈ Kk, such that κk+1,n = T (uk+1,n) > 0 is finite. Also, κk+1,n ≤ κk,n

follows, and, similar to our proof of theorem 5.1, ||uk+1,n||H1(Un) = 1 holds.

Let Vk be the linear space spanned by {u1,n, u2,n, . . . , uk,n}. A result of Auch-

muty (see [3, theorem 2.1]) says uk+1,n satisfying the identity below

〈γu, γv〉2,∂U = 〈λu+ ω, v〉H1(Un) , ∀ v ∈ H
1
ô (Un) , (5.12)

for a constant λ ≥ 0 and some function ω in Vk. That is,

∫
∂U

γuk+1,n · γvdσ −
∫
Un

(∇ω · ∇v + ωv) dx

=λ

∫
Un

(∇uk+1,n · ∇v + uk+1,nv) dx, ∀ v ∈ H1
ô (Un) .

(5.13)

Keep in mind (5.9) and (5.10). Letting v = uk+1,n yields λ = κk+1,n since ω ∈ Vk,

while letting v = ω yields ω ≡ 0. So, (5.2) holds with τk+1,n = 1
κk+1,n

> 0. Just as

theorem 5.1, τk+1,n is the least positive eigenvalue of such kind.

Clearly, this process can be iterated to derive a countable, increasing sequence

{τk,n}∞k=1 of regularized harmonic Steklov eigenvalues such that

Theorem 5.4. We have lim
k→∞

τk,n =∞ for all n = 1, 2, . . ..

Proof. Since the family {uk,n}∞k=1 of associated regularized harmonic Steklov eigen-

functions is part of an orthonormal basis for H1
ô (Un) with respect to 〈·, ·〉H1(Un),
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5.1 THE REGULARIZED HARMONIC CASE

it converges weakly to zero. Therefore, the compact trace theorem on Un yields a

subsequence {ukl,n}
∞
l=1 such that γukl,n → 0 in L2 (∂U, dσ) as l →∞, from which

we have κkl,n = T (ukl,n)→ 0, and thereby τkl,n →∞, as l→∞.

From (5.2), we see that, for every k = 1, 2, . . .,

∫
Un

(∇uk,n · ∇v + uk,nv) dx = 0, ∀ v ∈ C1
c (Un) . (5.14)

Let Nô,L1 (Un) be the null space of the operator L1, given by (5.1), in H1
ô (Un).

That is, it is the collection of all functions in H1
ô (Un) such that (5.14) is satisfied.

Nô,L1 (Un) is called the subspace of regularized harmonic functions in H1
ô (Un). We

can accordingly decompose the space H1
ô (Un) such as

H1
ô (Un) = Nô,L1 (Un)⊕H1(Un) H

1
0 (Un) . (5.15)

Theorem 5.5. The family {uk,n}∞k=1 of regularized harmonic Steklov eigenfunc-

tions is a maximal 〈·, ·〉H1(Un)-orthonormal subset of Nô,L1 (Un).

Proof. Obviously, by definition, these eigenfunctions {uk,n}∞k=1 are in Nô,L1 (Un),

and are 〈·, ·〉H1(Un)-orthonormal. Also, one has lim
k→∞
T (uk,n) = 0. If they are not

maximal in Nô,L1 (Un), there would exist some function un ∈ Nô,L1 (Un) such that

||un||H1(Un) = 1 and 〈un, uk,n〉H1(Un) = 0 for all k = 1, 2, . . .. If T (un) > 0, a k0 ∈ N

can be found such that κk0,n ≥ T (un) > κk0+1,n. However, by definition of uk0+1,n,

T (un) ≤ κk0+1,n must be true, for un is in Kk0 . Nevertheless, T (un) = 0 yields

un ∈ H1
0 (Un), so that un ≡ 0 as it is in Nô,L1 (Un) ∩H1

0 (Un).

Thus, {uk,n}∞k=1 provides a 〈·, ·〉H1(Un)-orthonormal basis for the space Nô,L1 (Un).
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5.1 THE REGULARIZED HARMONIC CASE

On the other hand, define

uk,n :=
√
τk,nuk,n. (5.16)

From (5.2) and the condition that ||uk,n||H1(Un) = 1, ||γuk,n||2,∂U = 1 follows for

every k = 1, 2, . . .. We can consequently derive the result below.

Corollary 5.6. The sequence {γuk,n}∞k=1 of trace functions of {uk,n}∞k=1 provides

a 〈·, ·〉2,∂U -orthonormal basis for the space L2 (∂U, dσ).

Proof. By (5.9) and (5.16), {γuk,n}∞k=1 is orthonormal. Now, let g ∈ L2 (∂U, dσ) ⊆

H−
1
2 (∂U, dσ) be such that 〈g, γuk,n〉2,∂U = 0 for each k = 1, 2, . . .. Consider the

mixed Dirichlet-Neumann type boundary value problem such as


u−∆u = 0 in Un, subject to

Dνu = g on ∂U, and γu = 0 on Srn .

(5.17)

The H1-solvability of (5.17) in H1 (Un) is answered in Auchmuty [2, 6]. In partic-

ular, for such a g as given, we have a unique weak solution.

Let u ∈ Nô,L1 (Un) be this unique solution. As we already showed, {uk,n}∞k=1 is

a 〈·, ·〉H1(Un)-orthonormal basis for Nô,L1 (Un). Therefore, u =
∞∑
k=1

ckuk,n, with ck

being constants for all k = 1, 2, . . .. Then, on ∂U ,

g = Dνu =
∞∑
k=1

ckDνuk,n =
∞∑
k=1

ckτk,n
γuk,n√
τk,n

. (5.18)

So, ck = 1√
τk,n
〈g, γuk,n〉2,∂U = 0 for each k ≥ 1, and thus g ≡ 0.
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5.2 THE HARMONIC CASE

5.2 The Harmonic Case

In this section, analogous to (5.1), we consider the weak solvability of the following

mixed Dirichlet-Robin type eigenvalue problem in H1 (Un)


−∆u = 0 in Un, subject to

Dνu = δu on ∂U, and γu = 0 on Srn .

(5.19)

Systems like (5.19) are called the harmonic Steklov eigenproblems, so that ours are

to find the non-trivial solutions in H1
ô (Un)× (0,∞) such that

∫
Un

∇u · ∇vdx− δ
∫
∂U

γu · γvdσ = 0, ∀ v ∈ H1
ô (Un) . (5.20)

Let B be the closed unit ball of H1
ô (Un) with respect to ||·||∂,Un . That is,

B :=

{
u ∈ H1

ô (Un) :

∫
Un

|∇u|2 dx+

∫
∂U

(γu)2 dσ ≤ 1

}
. (5.21)

Consider the variational principle (HS1,n) of maximizing T on B, and write

β1,n := sup
u∈B
T (u). (5.22)

As ||·||H1(Un) and ||·||∂,Un are equivalent on H1 (Un), and as H1
ô (Un) is maximal

in H1 (Un) with zero traces on Srn , B is bounded, closed and convex in H1
ô (Un),

which enables us to prove the existence result for solutions of (HS1,n).

Theorem 5.7. There exists some maximizer s1,n (so does −s1,n) of T in B such
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5.2 THE HARMONIC CASE

that ||s1,n||∂,Un = 1, which is an eigenfunction of the problem (5.20) corresponding

to the least positive eigenvalue δ1,n with δ1,n := 1−β1,n
β1,n

.

Proof. As B is a bounded, closed, convex subset, it is weakly compact in H1
ô (Un).

Thus, T attains its supremum, as a maximum, at a function s1,n ∈ B such that

β1,n = T (s1,n) > 0 is finite. Similarly, ||s1,n||∂,Un = 1 holds. Now, if β1,n = 1, then∫
Un
|∇s1,n|2 dx = 0 by (5.21), so that s1,n is a constant. However, it is impossible,

as one would have γs1,n = ± 1√
σ(∂U)

6= 0 on ∂U yet γs1,n = 0 on Srn .

A Lagrangian functional for the above variational principle (HS1,n) is described

by F2 : H1
ô (Un)× [0,∞)→ R, which is defined as, for some constant λ ≥ 0,

F2(u, λ) := λ

(∫
Un

|∇u|2 dx+

∫
∂U

(γu)2 dσ − 1

)
−
∫
∂U

(γu)2 dσ. (5.23)

Analogously, we can derive that, as a critical point, s1,n satisfies

λ

(∫
Un

∇s1,n · ∇vdx+

∫
∂U

γs1,n · γvdσ
)
−
∫
∂U

γs1,n · γvdσ = 0 (5.24)

for all v ∈ H1
ô (Un). Letting v = s1,n yields λ = β1,n. As a result, (5.20) follows

with δ1,n = 1−β1,n
β1,n

> 0.

Finally, δ1,n can be shown the least positive eigenvalue of (5.20).

Remark 5.8. Again, as an application, by homogeneity, one has that

||γu||2,∂U ≤

√
β1,n

1− β1,n

||∇u||L2(Un;RN ) , ∀ u ∈ H
1
ô (Un) . (5.25)

This further implies that, for the function space H1
ô (Un), the gradient L2-norm is

equivalent to ||·||H1(Un), as ||·||H1(Un) ≤ CUn ||·||∂,Un for some CUn > 0.
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5.2 THE HARMONIC CASE

Given the first k (≥ 1) harmonic Steklov eigenvalues {δ1,n, . . . , δk,n} and a set

{s1,n, . . . , sk,n} of associated 〈·, ·〉∂,Un-orthonormal eigenfunctions, we show how to

derive the next pair (sk+1,n, δk+1,n) ∈ H1
ô (Un)× (0,∞) below.

For each k ≥ 1, let

Bk :=
{
u ∈ B : 〈γu, γsi,n〉2,∂U = 0 for i = 1, 2, . . . , k

}
. (5.26)

As 0 < δ1,n ≤ δ2,n ≤ · · · ≤ δk,n, by (3.17) and (5.20), it is the same to set

Bk :=
{
u ∈ B : 〈u, si,n〉∂,Un = 0 for i = 1, 2, . . . , k

}
. (5.27)

Now, consider the variational principle (HSk+1,n) of maximizing the functional

T on the bounded, closed, convex subset Bk ⊆ B ⊆ H1
ô (Un), and write

βk+1,n := sup
u∈Bk

T (u). (5.28)

Theorem 5.9. There are maximizers ±sk+1,n of T on Bk with ||sk+1,n||∂,Un = 1.

These functions are eigenfunctions of our problem (5.20) associated with the eigen-

value δk+1,n such that δk+1,n :=
1−βk+1,n

βk+1,n
. Besides, δk+1,n is the smallest eigenvalue

for our problem greater than or equal to δk,n.

Proof. Obviously, by (5.26), Bk is a bounded, closed, convex subset of H1
ô (Un). So,

it is also weakly compact. Hence, T attains its supremum, as a maximum, at some

function sk+1,n ∈ Bk such that βk+1,n = T (sk+1,n) > 0 is finite. βk+1,n ≤ βk,n < 1

follows, and, analogous to theorem 5.1, ||sk+1,n||∂,Un = 1 holds.

Let Sk be the linear space spanned by {s1,n, s2,n, . . . , sk,n}. Then, for a constant
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5.2 THE HARMONIC CASE

λ ≥ 0 and some function ω in Sk, we similarly have

∫
∂U

γsk+1,n · γvdσ −
(∫

Un

∇ω · ∇vdx+

∫
∂U

γω · γvdσ
)

=λ

(∫
Un

∇sk+1,n · ∇vdx+

∫
∂U

γsk+1,n · γvdσ
)
, ∀ v ∈ H1

ô (Un) .

(5.29)

Recall (5.26) and (5.27). Letting v = sk+1,n yields λ = βk+1,n as ω ∈ Sk, and letting

v = ω yields ω ≡ 0, so that (5.20) holds with δk+1,n =
1−βk+1,n

βk+1,n
> 0. Besides, δk+1,n

can also be shown the least positive eigenvalue of such kind.

Analogically, this process can again be iterated to derive a countable, increasing

sequence {δk,n}∞k=1 of harmonic Steklov eigenvalues such that

Theorem 5.10. One has lim
k→∞

δk,n =∞ for each n = 1, 2, . . ..

Proof. Since the family {sk,n}∞k=1 of associated eigenfunctions is part of a 〈·, ·〉∂,Un-

orthonormal basis for H1
ô (Un), and since ||·||H1(Un) and ||·||∂,Un are equivalent on

H1 (Un), being aware of remark 5.8, the gradient L2-norm is determinant. Then,

the compact trace theorem on Un yields the desired result.

From (5.20), we can easily see that, for all v ∈ C1
c (Un),

∫
Un

∇sk,n · ∇vdx = 0 (5.30)

holds for this family {sk,n}∞k=1 of harmonic Steklov eigenfunctions.

Take Hô (Un) to be the collection of all functions in H1
ô (Un) that satisfy (5.30),

and call it the subspace of harmonic functions in H1
ô (Un). Because H1

0 (Un) is also

the closure of the set C1
c (Un) with respect to the norm ||·||∂,Un , we thus have that
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5.2 THE HARMONIC CASE

the function space H1
ô (Un) can be decomposed as

H1
ô (Un) = Hô (Un)⊕∂,Un H1

0 (Un) . (5.31)

Theorem 5.11. The family {sk,n}∞k=1 of associated harmonic Steklov eigenfunc-

tions is a maximal 〈·, ·〉∂,Un-orthonormal subset of Hô (Un).

Proof. Obviously, by definition, these eigenfunctions {sk,n}∞k=1 are in Hô (Un), and

are 〈·, ·〉∂,Un-orthonormal. Moreover, lim
k→∞

βk,n = lim
k→∞
T (sk,n) = 0. Therefore, we

can similarly prove this result as discussed in theorem 5.5.

This result actually says that Hô (Un) is exactly the closed subspace of H1
ô (Un)

generated by all these harmonic Steklov eigenfunctions {sk,n}∞k=1 with respect to

the inner product 〈·, ·〉∂,Un . On the other hand, write

sk,n :=
√

1 + δk,n sk,n. (5.32)

From (5.20) and the condition that ||sk,n||∂,Un = 1, ||γsk,n||2,∂U = 1 follows for

every k = 1, 2, . . .. We can then derive the result below.

Corollary 5.12. The sequence {γsk,n}∞k=1 of trace functions of {sk,n}∞k=1 provides

a 〈·, ·〉2,∂U -orthonormal basis for the space L2 (∂U, dσ).

Before to start our proof, we first discuss the H1-solvability of


−∆u = 0 in Un, subject to

Dνu = g on ∂U, and γu = 0 on Srn ,

(5.33)
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5.2 THE HARMONIC CASE

i.e., a mixed Dirichlet-Neumann type boundary value problem, in H1 (Un).

Without loss of generality, we consider both the harmonic case (5.33) and the

regularized harmonic case (5.17) altogether. As a matter of fact, there will exist a

variational principle for studying this. For g ∈ L2 (∂U, dσ), consider the problem

of minimizing the functional F : H1
ô (Un)→ (−∞,∞], defined by

F(u) :=

∫
Un

(
ϑu2 + |∇u|2

)
dx− 2

∫
∂U

g · γudσ, (5.34)

where ϑ is an index which equals either 0 or 1 such that ϑ = 0 corresponds to the

situation (5.33) while ϑ = 1 corresponds to the situation (5.17).

Recalling remark 5.8 and applying Hölder ’s inequality, we have

∣∣∣∣∫
∂U

g · γudσ
∣∣∣∣ ≤ ||g||2,∂U · ||γu||2,∂U ≤ Cg ||∇u||L2(Un;RN ) (5.35)

for all u ∈ H1
ô (Un). So, F is coercive, strictly convex and continuous on H1

ô (Un).

Thus, F has at least one minimizer, say, m, which is a critical point of it in H1
ô (Un),

that is, F ′(m)(v) = 0 for all v ∈ H1
ô (Un). In consequence, one has

∫
Un

(∇m · ∇v + ϑmv) dx−
∫
∂U

g · γvdσ = 0, ∀ v ∈ H1
ô (Un) . (5.36)

Therefore, the minimizer m ∈ H1
ô (Un) satisfies weakly the system (5.17) in the

case when ϑ = 1 and the system (5.33) in the case when ϑ = 0.

In addition, one sees that the existence of m in H1
ô (Un) actually is unique as

the family of constant functions is excluded from this space.

Below, let’s give the proof of corollary 5.12.
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5.2 THE HARMONIC CASE

Proof. We see easily that {γsk,n}∞k=1 is orthonormal in L2 (∂U, dσ), by (5.26) and

(5.32). Let g ∈ L2 (∂U, dσ) ⊆ H−
1
2 (∂U, dσ) be such that 〈g, γsk,n〉2,∂U = 0 for all

k = 1, 2, . . .. Then, the system (5.33) admits a unique weak solution u ∈Hô (Un) ⊆

H1
ô (Un). Write

∞∑
k=1

cksk,n as the series expansion of u in terms of {sk,n}∞k=1, where

ck is a constant for every k = 1, 2, . . .. Hereby, on ∂U , one has

g = Dνu =
∞∑
k=1

ckDνsk,n =
∞∑
k=1

ckδk,n
γsk,n√
1 + δk,n

. (5.37)

Therefore, ck =
〈g,γsk,n〉

2,∂U

δk,n(1+δk,n)
− 1

2
= 0 for each k ≥ 1, and thus g ≡ 0.
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Chapter 6

The Exterior Steklov

Eigenproblems

6.1 The Regularized Harmonic Case

In this part, we shall study the exterior regularized harmonic Steklov eigenproblems.

That is, we want to find the non-trivial solutions (u, τ) in H1 (U)×(0,∞) satisfying

∫
U

(∇u · ∇v + uv) dx− τ
∫
∂U

γu · γvdσ = 0, ∀ v ∈ H1 (U) . (6.1)

Such eigenfunctions are weak solutions in H1 (U) of


L1(u) = u−∆u = 0 in U,

subject to Dνu = τu on ∂U.

(6.2)
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6.1 THE REGULARIZED HARMONIC CASE

In view of (5.2) and (6.1), we derive constructively the non-trivial solutions for

(6.1) as the limits of those for (5.2). We need to ensure τ1 > 0, as τ1,n is decreasing

with respect to n (see also Auchmuty [8] for another description).

Theorem 6.1. There are non-trivial solutions ±u1 for (6.1) corresponding to the

eigenvalue τ1 > 0.

Proof. Upon zero extension to infinity, theorem 5.1 guarantees the existence of at

least one solution u1,n of (6.1) in E1 (Un) ⊆ H1 (U), through (4.2), with τ1,n > 0, for

each n ≥ 1. In addition, when n1 ≤ n2, then τ1,n1 ≥ τ1,n2 follows, as a consequence

of the fact that E1 (Un1) ⊆ E1 (Un2) implies κ1,n1 ≤ κ1,n2 by definition.

For this class {τ1,n}∞n=1 of eigenvalues and an associated set {u1,n}∞n=1 of eigen-

functions with ||u1,n||H1(U) = 1, recall (5.16) for
{
u1,n =

√
τ1,nu1,n

}∞
n=1

. Hence, we

have ||γu1,n||22,∂U = 1 and ||u1,n||2H1(U) = τ1,n ≤ τ1,1 for all n = 1, 2, . . ..

There exists a subsequence
{
u1,nj

}∞
j=1

of {u1,n}∞n=1 and a function u1 in H1 (U),

as the function u1,n’s are bounded with respect to ||·||H1(U), such that

u1,nj ⇀ u1 in H1 (U) (6.3)

when j →∞, where ⇀ denotes the notion of weak convergence.

Set υ1,nj := X1u1,nj (see (4.5)) for every j = 1, 2, . . .. One then has


∣∣∣∣υ1,nj

∣∣∣∣
2,U2
≤
∣∣∣∣u1,nj

∣∣∣∣
2,U2
≤
∣∣∣∣u1,nj

∣∣∣∣
2,U
≤
∣∣∣∣u1,nj

∣∣∣∣
H1(U)

,

∣∣∣∣∇υ1,nj

∣∣∣∣
L2(U2;RN )

≤ C
∣∣∣∣u1,nj

∣∣∣∣
H1(U2)

≤ C
∣∣∣∣u1,nj

∣∣∣∣
H1(U)

,

(6.4)
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6.1 THE REGULARIZED HARMONIC CASE

where C is such a constant that C ≥
√

2 max
{

1, ||∇X1||∞,U
}
> 0.

Thus,
{
υ1,nj

}∞
j=1

are inH1
ô (U2) by construction, when restricted on U2. Besides,

υ1 := X1u1 is also in H1
ô (U2). Moreover, from (6.3), as j →∞, we have

υ1,nj ⇀ υ1 in H1 (U2) . (6.5)

In fact, for all ω ∈ L2 (U2) and each i = 1, 2, . . . , N , it follows that



∫
U2
υ1,njωdx =

∫
U
u1,nj (X1ω) dx→

∫
U
u1 (X1ω) dx =

∫
U2
υ1ωdx,

∫
U2

(
Diυ1,nj

)
ωdx =

∫
U
u1,nj (ωDiX1) dx+

∫
U

(
Diu1,nj

)
(X1ω) dx

→
∫
U
u1 (ωDiX1) dx+

∫
U

(Diu1) (X1ω) dx =
∫
U2

(Diυ1)ωdx

(6.6)

when j →∞, as X1ω, ωDiX1 ∈ L2 (U) by zero extension to infinity.

From (6.4),
{
υ1,nj

}∞
j=1

are bounded with respect to ||·||H1(U2), as {u1,n}∞n=1 are

with respect to ||·||H1(U). Since γυ1 = γu1 and γυ1,nj = γu1,nj on ∂U for all j ≥ 1,

applying (6.5) and the compact trace theorem on U2 to the function υ1,nj ’s derives

a subsequence
{
υ1,njl

}∞
l=1

of
{
υ1,nj

}∞
j=1

such that γu1,njl
→ γu1 in L2 (∂U, dσ) as

l→∞. This further yields that ||γu1||2,∂U = lim
l→∞

∣∣∣∣∣∣γu1,njl

∣∣∣∣∣∣
2,∂U

= 1.

On the other hand, the lower semicontinuity of norms implies that

||u1||2H1(U) ≤ lim
j→∞

∣∣∣∣u1,nj

∣∣∣∣2
H1(U)

= lim
j→∞

τ1,nj = τ1, (6.7)

where τ1 ≥ 0 is defined as the limit of the decreasing sequence {τ1,n}∞n=1.

47



6.1 THE REGULARIZED HARMONIC CASE

By definition, τ1 = 0 implies υ1 ≡ 0, which however contradicts the condition

||γυ1||2,∂U = 1 and the trace estimate on U2. Thus, τ1 > 0 must be true.

Finally, substituting the pair
(
u1,njl

, τ1,njl

)
into (5.2) and letting l→∞, then

equation (6.1) follows from the approximation scheme proposition 4.1, (6.3), and

the fact that γu1,njl
→ γu1 in L2 (∂U, dσ) when l→∞.

Remark 6.2. As τ1 > 0 holds,

||γu||2,∂U ≤
√
κ1 ||u||H1(U) , ∀ u ∈ H

1 (U) , (6.8)

follows from the estimate (5.8) by taking limit, where κ1 := 1
τ1

. This provides an

explicit trace estimate upper bound (see also remark 3.4).

Now, given the first k (≥ 1) exterior regularized harmonic Steklov eigenvalues

{τ1, τ2, . . . , τk} and an associated set {u1, u2, . . . , uk} of orthogonal Steklov eigen-

functions in H1 (U) with respect to 〈·, ·〉H1(U), we shall describe below how to find

the next eigenvalue τk+1 and a corresponding eigenfunction uk+1.

Via the proof of theorem 6.1, (6.1) and induction, we have

||uj||2H1(U) = τj and ||γuj||2,∂U = 1 (6.9)

for j = 1, 2, . . . , k, while, for j1, j2 = 1, 2, . . . , k with j1 6= j2, we assume

〈uj1 , uj2〉H1(U) = 〈γuj1 , γuj2〉2,∂U = 0. (6.10)

Obviously, 0 < τ1,n ≤ · · · ≤ τk,n ≤ τk+1,n for all n ≥ 1, which combined with

the limiting process gives us 0 < τ1 ≤ · · · ≤ τk ≤ τk+1 := lim
n→∞

τk+1,n.
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6.1 THE REGULARIZED HARMONIC CASE

Theorem 6.3. There exists at least one non-trivial pair (uk+1, τk+1) in H1 (U)×

(0,∞) for which equation (6.1) is satisfied, with τk+1 being the eigenvalue, given

as above, and uk+1 being an associated eigenfunction, such that

||uk+1||2H1(U) = τk+1 and ||γuk+1||2,∂U = 1, (6.11)

and such that, for all j = 1, 2, . . . , k,

〈uj, uk+1〉H1(U) = 〈γuj, γuk+1〉2,∂U = 0. (6.12)

Proof. The proof of theorem 6.1 ensures the existence of a subsequence
{
u1,n1,l

}∞
l=1

of {u1,n}∞n=1 and a function u1 such that u1,n1,l
⇀ u1 in H1 (U) and γu1,n1,l

→ γu1

in L2 (∂U, dσ) as l→∞, and u1 is an eigenfunction for (6.1) corresponds to τ1 > 0.

Inductively, there is a subsequence
{
uk,nk,l

}∞
l=1

of
{
uk,nk−1,l

}∞
l=1

and a function uk

such that uk,nk,l ⇀ uk in H1 (U) and γuk,nk,l → γuk in L2 (∂U, dσ) as l→∞, and

such that (6.1) is satisfied by (uk, τk) with τk > 0. Accordingly, repeating the proof

of theorem 6.1 derives again a subsequence
{
uk+1,nk+1,l

}∞
l=1

of
{
uk+1,nk,l

}∞
l=1

and a

function uk+1 such that uk+1,nk+1,l
⇀ uk+1 in H1 (U) and γuk+1,nk+1,l

→ γuk+1 in

L2 (∂U, dσ) as l→∞, and such that equation (6.1) is satisfied by (uk+1, τk+1), with

τk+1 ≥ τk > 0 and ||γuk+1||2,∂U = lim
l→∞

∣∣∣∣γuk+1,nk+1,l

∣∣∣∣
2,∂U

= 1. The existence of a

non-trivial pair (uk+1, τk+1) in H1 (U)×(0,∞) for equation (6.1) is thus confirmed.

Letting u = v = uk+1 in (6.1) then yields ||uk+1||2H1(U) = τk+1.

Notice 〈uk+1,n, uj,n〉H1(U) = 〈γuk+1,n, γuj,n〉2,∂U = 0 by (5.9) and (5.10) while

||γuj,n||2,∂U = 1 by (5.16) for all n = 1, 2, . . . and j = 1, 2, . . . , k. Also, from (6.1),

one has 〈u, uk+1〉H1(U) = 0 if and only if 〈γu, γuk+1〉2,∂U = 0.
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Therefore, applying Hölder ’s inequality derives that

∣∣∣〈γuj, γuk+1〉2,∂U
∣∣∣ ≤ ∣∣∣〈γuj − γuj,nk+1,l

, γuk+1

〉
2,∂U

∣∣∣
+
∣∣∣〈γuj,nk+1,l

, γuk+1 − γuk+1,nk+1,l

〉
2,∂U

∣∣∣
≤
∣∣∣∣γuj,nk+1,l

− γuj
∣∣∣∣

2,∂U
· ||γuk+1||2,∂U

+
∣∣∣∣γuk+1,nk+1,l

− γuk+1

∣∣∣∣
2,∂U
·
∣∣∣∣γuj,nk+1,l

∣∣∣∣
2,∂U
→ 0

(6.13)

as l→∞, so that (6.12) is indeed true for every j = 1, 2, . . . , k.

In the following, a property of the sequence of exterior regularized harmonic

Steklov eigenvalues {τk}∞k=1, derived by iteration as shown above in the proofs of

theorems 6.1 and 6.3, shall be described, a consequence of which further implies

that each eigenvalue τk is at most of finite multiplicity for k = 1, 2, . . ..

Theorem 6.4. Under our hypothesis, it follows that

lim
k→∞

τk =∞. (6.14)

Proof. Suppose that, on the contrary, τ∞ := lim
k→∞

τk < ∞. From (6.9) or (6.11),{
||uk||H1(U)

}∞
k=1

are uniformly bounded. So, there exists a subsequence
{
ukj
}∞
j=1

of {uk}∞k=1 and a function u∞ such that, when j → ∞, ukj ⇀ u∞ in H1 (U) and

γukj → γu∞ in L2 (∂U, dσ), exactly as shown in the proof of theorem 6.1. Since

||γuk||2,∂U = 1 for k = 1, 2, . . ., ||γu∞||2,∂U = 1 is also true. However, by (6.10) and

(6.12), {γuk}∞k=1 is part of an orthonormal basis for L2 (∂U, dσ), so that γuk ⇀ 0.

In consequence, γu∞ ≡ 0, and thus a contradiction follows.
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6.2 The Harmonic Case

In this section, we shall instead study the exterior harmonic Steklov eigenproblems.

That is, we want to find the non-trivial solutions (s, δ) in E1 (U)×(0,∞) satisfying

∫
U

∇s · ∇vdx− δ
∫
∂U

γs · γvdσ = 0, ∀ v ∈ E1 (U) , (6.15)

which can also be viewed as the weak form of the following system

−∆s = 0 in U, subject to Dνs = δs on ∂U. (6.16)

In view of (5.20) and (6.15), we can again derive constructively the non-trivial

solutions of (6.15) as the limits of those of (5.20). The point is to have δ1 > 0.

Theorem 6.5. There are non-trivial solutions ±s1 of (6.15) corresponding to the

eigenvalue δ1 > 0.

Proof. Similarly, theorem 5.7 ensures the existence of at least one solution s1,n of

(6.15) in E1 (Un) ⊆ E1 (U) (see (4.9) now), with δ1,n > 0, for all n ≥ 1.

Recall, for the eigenvalues {δ1,n}∞n=1 and a set {s1,n}∞n=1 of associated eigenfunc-

tions with ||s1,n||∂,U = 1,
{
s1,n =

√
1 + δ1,n s1,n

}∞
n=1

via (5.32). So, ||γs1,n||22,∂U = 1

and ||s1,n||2∂,U = 1 + δ1,n ≤ 1 + δ1,1 for all n = 1, 2, . . .. A subsequence {s1,nl}
∞
l=1 of

{s1,n}∞n=1 and a function s1 in E1 (U) exist such that, as l→∞,


∇s1,nl ⇀ ∇s1 in U,

γs1,nl ⇀ γs1 on ∂U.

(6.17)
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From proposition 4.2, and the fact that E1 (U) is a Hilbert space and thereby

contained in its own dual space, we let l→∞ in (5.20) to derive that

∫
U

∇s1 · ∇vdx− δ1

∫
∂U

γs1 · γvdσ = 0, ∀ v ∈ E1 (U) , (6.18)

where δ1 ≥ 0 is the limit of the decreasing sequence {δ1,n}∞n=1.

Below, we shall show δ1 > 0. Hence, s1 will be an eigenfunction for the exterior

harmonic Steklov eigenproblem (6.15) associated to the eigenvalue δ1.

Now, for each n = 1, 2, . . ., put w1,n :=

 s̃1,n on G,

s1,n on U.
Here, s̃1,n is the interior

harmonic extension of s1,n over G, as given by (3.20). Auchmuty (see [5, theorems

3.1 and 6.1]) shows that, using the sequence
{
δGj
}∞
j=0

of interior harmonic Steklov

eigenvalues, and an associated family
{
sGj
}∞
j=0

of interior harmonic Steklov eigen-

functions on G that is a maximal 〈·, ·〉∂,G-orthonormal subset of the space H (G)

in H1 (G) of all harmonic functions on G and whose trace functions on ∂U provide

a complete orthogonal basis of L2 (∂U, dσ), the expansions below

s̃1,n =
∞∑
j=0

(
1 + δGj

) 〈
γs1,n, γs

G
j

〉
2,∂U
· sGj (6.19)

hold for all n = 1, 2, . . ., with G = RN \ U , such that

||s̃1,n||2∂,G =
∞∑
j=0

(
1 + δGj

)2
∣∣∣〈γs1,n, γs

G
j

〉
2,∂U

∣∣∣2 <∞. (6.20)

Note here, as discussed in Auchmuty [5, theorem 6.2], estimate (6.20) is a sufficient

and necessary condition for saying that γs̃1,n = γs1,n ∈ H
1
2 (∂U, dσ).
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6.2 THE HARMONIC CASE

Next, we claim
{
||s̃1,nl ||∂,G

}∞
l=1

is bounded. On the contrary, suppose that there

is a subsequence (for convenience still using) {s̃1,nl}
∞
l=1 such that ||s̃1,nl ||∂,G →∞ as

l→∞. Via (6.17) and recalling the fact that γsGj ∈ H
1
2 (∂U, dσ) ⊆ H−

1
2 (∂U, dσ),

the dual space of H
1
2 (∂U, dσ), we have, for every j = 0, 1, 2, . . .,

∫
∂U

γs1,nl · γsGj dσ →
∫
∂U

γs1 · γsGj dσ (6.21)

as l→∞. Yet, this would imply ||s̃1||∂,G =∞ by (6.20), with s̃1 being the interior

harmonic extension of s1 over G, contradicting γs̃1 = γs1 ∈ H
1
2 (∂U, dσ) (also see

(3.11) and the discussions after (3.20)). Our claim is thus verified.

In consequence, the compact trace theorem on G induces a subsequence (again

we shall use) {s̃1,nl}
∞
l=1 and a function t in L2 (∂U, dσ), such that

γs1,nl = γs̃1,nl → t (6.22)

in L2 (∂U, dσ) as l→∞. By (6.17), γs1 = t holds. So, γs1,nl → γs1 in L2 (∂U, dσ)

as l→∞, which further gives us ||γs1||2,∂U = lim
l→∞
||γs1,nl ||2,∂U = 1.

Finally, the lower semicontinuity of norms implies that

1 ≤ ||s1||2∂,U ≤ lim
l→∞
||s1,nl ||

2
∂,U = lim

l→∞
1 + δ1,nl = 1 + δ1. (6.23)

If δ1 = 0, we would have
∫
U
|∇s1|2 dx = 0 by substituting v = s1 into (6.18). Thus,

s1 ≡ 0 from condition (A1). In consequence, one then sees s̃1 ≡ 0, which however

is impossible in view of the trace estimate on G, as now ||γs1||2,∂U = 1. Therefore,

δ1 > 0 must hold and then ||s1||2∂,U = 1 + δ1 by (3.17) and (6.18).

53



6.2 THE HARMONIC CASE

Remark 6.6. Again, as δ1 > 0 holds, for $1 := 1
δ1

, we see that

||γu||2,∂U ≤
√
$1 ||∇u||L2(U ;RN ) , ∀ u ∈ E

1 (U) , (6.24)

from (5.25), which further implies that, for the function space E1 (U), the gradient

L2
(
U ;RN

)
-norm is equivalent to ||·||∂,U (in other words, β1 := lim

n→∞
β1,n < 1). So,

E1 (U) is pretty much like the space H1
∂ (Ω) of all functions in H1 (Ω) having null

integral averages on ∂Ω (see Auchmuty [2, corollary 6.14]), where Ω is a bounded

region with a compact, Lipschitz boundary. On the other hand, this further confirms

that ||·||∂,U ≤
√

1 +$1 ||·||H1(U) on H1 (U) (see remarks 3.4 and 6.2).

Now, given the first k (≥ 1) exterior harmonic Steklov eigenvalues {δ1, δ2, . . . , δk}

and an associated set {s1, s2, . . . , sk} of orthogonal exterior harmonic Steklov eigen-

functions in E1 (U) with respect to 〈·, ·〉∂,U , we assume that

||sj||2∂,U = 1 + δj and ||γsj||2,∂U = 1 (6.25)

for j = 1, 2, . . . , k, while, for j1, j2 = 1, 2, . . . , k with j1 6= j2,

〈sj1 , sj2〉∂,U = 〈γsj1 , γsj2〉2,∂U = 0. (6.26)

Notice 0 < δ1,n ≤ · · · ≤ δk,n ≤ δk+1,n for all n ≥ 1. Then, combining this with

the limiting process derives that 0 < δ1 ≤ · · · ≤ δk ≤ δk+1 := lim
n→∞

δk+1,n.

Repeating the proof of theorem 6.3 and using induction yield a pair (sk+1, δk+1)

in E1 (U)× (0,∞) for which equation (6.15) is satisfied such that ||γsk+1||2,∂U = 1.

Letting s = v = sk+1 in (6.15) then yields ||sk+1||2∂,U = 1+δk+1 from (3.17). Recall
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6.2 THE HARMONIC CASE

〈sk+1,n, sj,n〉∂,U = 〈γsk+1,n, γsj,n〉2,∂U = 0 by (5.26) and (5.27) and ||γsj,n||2,∂U = 1

by (5.32) for all n = 1, 2, . . . and j = 1, 2, . . . , k. Also, 〈s, sk+1〉∂,U = 0 if and only

if 〈γs, γsk+1〉2,∂U = 0 by (3.17) and (6.15). Hölder ’s inequality yields

∣∣∣〈γsj, γsk+1〉2,∂U
∣∣∣ ≤ ∣∣∣〈γsj − γsj,nk+1,l

, γsk+1

〉
2,∂U

∣∣∣
+
∣∣∣〈γsj,nk+1,l

, γsk+1 − γsk+1,nk+1,l

〉
2,∂U

∣∣∣
≤
∣∣∣∣γsj,nk+1,l

− γsj
∣∣∣∣

2,∂U
· ||γsk+1||2,∂U

+
∣∣∣∣γsk+1,nk+1,l

− γsk+1

∣∣∣∣
2,∂U
·
∣∣∣∣γsj,nk+1,l

∣∣∣∣
2,∂U
→ 0

(6.27)

as l→∞, so that (6.26) is indeed true for each j = 1, 2, . . . , k, k + 1.

Summing up the preceding discussions, we actually proved that

Theorem 6.7. There is at least one non-trivial pair (sk+1, δk+1) in E1 (U)×(0,∞)

for (6.15), with δk+1 and sk+1 being the (k + 1)-th eigenvalue and a corresponding

eigenfunction, such that (6.25) and (6.26) hold for j = 1, 2, . . . , k, k + 1.

Again, from theorems 6.4, 6.5 and 6.7, we can similarly show that

Theorem 6.8. Under our hypothesis, it follows that

lim
k→∞

δk =∞. (6.28)

Remark 6.9. It is somewhat intriguing to derive our theorems 6.4 and 6.8 directly

from the conclusions of theorems 5.4 and 5.10, respectively. Yet, we perhaps cannot

do so, because rigorous arguments for ensuring lim
k→∞

lim
n→∞

· = lim
n→∞

lim
k→∞
· are missing.

However, we can view these results the other way around, since, given n = 1, 2, . . .,

the estimates τk,n ≥ τk and δk,n ≥ δk hold for all k = 1, 2, . . ..
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Chapter 7

Decomposition of Function Spaces

First, note here, as shown after remark 4.4, E1 (U) is the closure of C1
ω

(
U
)

with

respect to ||·||∂,U , while, via remarks 2.1 and 2.2, H1 (U) is the closure of C1
ω

(
U
)

with respect to ||·||H1(U), which together with remark 6.6 again lead to H1(U) ⊆

E1(U). In addition, E1
0 (U), the subspace of E1 (U) of functions having zero traces

on ∂U , is the closure of C1
c (U) with respect to ||·||∂,U , or simply with respect to

the gradient L2
(
U ;RN

)
-norm, while H1

0 (U) is the closure of C1
c (U) with respect

to ||·||H1(U), so that this further implies that H1
0 (U) ⊆ E1

0 (U).

In the following, for all k = 1, 2, . . ., write, respectively,

uk :=
1
√
τk
uk ∈ H1 (U) , (7.1)

and

sk :=
1√

1 + δk
sk ∈ E1 (U) . (7.2)

Therefore, ||uk||H1(U) = 1 and ||sk||∂,U = 1, from (6.9) and (6.25).
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7.1 THE E1-SITUATION

7.1 The E1-situation

A function u in E1 (U) is said to be a weak solution of

−∆u = 0 on U, (7.3)

provided that

〈u, v〉∂,U =

∫
U

∇u · ∇vdx = 0, ∀ v ∈ C1
c (U) . (7.4)

All such functions will be called harmonic on U .

Let H (U) be the subspace of E1 (U) of all harmonic functions on U . It is clear

that H (U) and E1
0 (U), as subspaces of E1 (U), are actually 〈·, ·〉∂,U -orthogonal.

Therefore, we have the following decomposition of E1 (U) such as

E1 (U) = H (U)⊕∂,U E1
0 (U) . (7.5)

Obviously, the eigenfunctions {sk}∞k=1 are in H (U) by (6.15) and (7.4). Also,

they are maximal in H (U), which implies that H (U) is generated by all these

exterior harmonic Steklov eigenfunctions. Moreover, their trace functions {γsk}∞k=1

provide a 〈·, ·〉2,∂U -orthonormal basis for L2 (∂U, dσ).

Theorem 7.1. Under conditions (B1) and (B2), the sequence {γsk}∞k=1 of trace

functions provides a 〈·, ·〉2,∂U -orthonormal basis for L2 (∂U, dσ).

Proof. First, a subset of the index set {n = 1, 2, . . .}, let’s call it {α = 1, 2, . . .},

can be found such that, for all k = 1, 2, . . ., sk,α ⇀ sk in E1 (U) and γsk,α → γsk

57



7.1 THE E1-SITUATION

in L2 (∂U, dσ) when α→∞. Actually, using the same notations,

s1,n1,l
⇀ s1 γs1,n1,l

→ γs1 {n1,1, n1,2, . . .} ⊆ {n = 1, 2, . . .}

s2,n2,l
⇀ s2 γs2,n2,l

→ γs2 {n2,1, n2,2, . . .} ⊆ {n1,1, n1,2, . . .}

... ... ...

sk,nk,l ⇀ sk γsk,nk,l → γsk {nk,1, nk,2, . . .} ⊆ {nk−1,1, nk−1,2, . . .}

sk+1,nk+1,l
⇀ sk+1 γsk+1,nk+1,l

→ γsk+1 {nk+1,1, nk+1,2, . . .} ⊆ {nk,1, nk,2, . . .}

... ... ...

holds accordingly. Taking the diagonal sequence {n1,1, n2,2, . . . , nk,k, nk+1,k+1, . . .}

and renaming it {α = 1, 2, . . .}, we get our desired index subset.

The 〈·, ·〉2,∂U -orthonormality of this sequence {γsk}∞k=1 follows easily by (6.25),

(6.26) and induction. On the other hand, for all g ∈ L2 (∂U, dσ), 〈g, γsk,α〉2,∂U → 0

when k → ∞, as {γsk,α}∞k=1 provides a 〈·, ·〉2,∂U -orthonormal basis of L2 (∂U, dσ)

for every given α = 1, 2, . . .. In addition, g can be expressed as

g =
∞∑
k=1

〈g, γsk,α〉2,∂U · γsk,α (7.6)
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7.1 THE E1-SITUATION

for all α = 1, 2, . . . such that

||g||2,∂U =

√√√√ ∞∑
k=1

∣∣∣〈g, γsk,α〉2,∂U ∣∣∣2 <∞, (7.7)

which however does not depend on α.

Now, let g ∈ L2 (∂U, dσ) be such that 〈g, γsk〉2,∂U = 0 for each k ≥ 1.

If, for each ε > 0, there exists an integer K ∈ N and a subset {αl}∞l=1 of the

index set {α = 1, 2, . . .} such that, for all l = 1, 2, . . ., we have

√√√√ ∞∑
k=K+1

∣∣∣〈g, γsk,αl〉2,∂U ∣∣∣2 ≤ ε√
2
, (7.8)

then, accordingly, there exists an integer aε,K ∈ N such that

∣∣∣〈g, γs1,αl〉2,∂U
∣∣∣ , ∣∣∣〈g, γs2,αl〉2,∂U

∣∣∣ , · · · , ∣∣∣〈g, γsK,αl〉2,∂U ∣∣∣ ≤ ε√
2K

(7.9)

for all αl ≥ aε,K , as γsk,α → γsk when α→∞ for each k = 1, 2, . . .. Thus, it leads

to ||g||2,∂U ≤ ε, so that actually g ≡ 0 via the arbitrariness of ε.

If not, there would be a fixed ε0 > 0 such that, for all integers K ∈ N and all

subsets of the index set {α = 1, 2, . . .}, a corresponding index from each one could

be found that violates the estimate (7.8). In consequence, for {α = 1, 2, . . .} itself,

an index, say, α = 1 (do renumbering if necessary), exists such that

√√√√ ∞∑
k=K

∣∣∣〈g, γsk,α〉2,∂U ∣∣∣2 ≥ ε0 > 0 (7.10)
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7.1 THE E1-SITUATION

for α = 1; again, for {α = 2, 3, . . .}, an index, say, α = 2, exists such that (7.10)

holds for α = 2; continuing like this, (7.10) will finally hold for all these indices

α = 1, 2, . . ., independent of K. Letting K → ∞ thereby derives a contradiction

against (7.7) accordingly, which finally finishes our proof.

Theorem 7.2. The family {sk}∞k=1 of exterior harmonic Steklov eigenfunctions,

given by (7.2), is a maximal 〈·, ·〉∂,U -orthonormal subset of H (U).

Proof. Obviously, the 〈·, ·〉∂,U -orthonormality of {sk}∞k=1 follows from (6.25), (6.26)

and (7.2) by induction. Suppose there exists a so ∈H (U) such that ||so||∂,U = 1

and such that 〈so, sk〉∂,U = 0 for every k = 1, 2, . . .. As a result, from (3.17), (6.15)

and again (7.2), 〈γso, γsk〉2,∂U = 0 for all k = 1, 2, . . ., so that γso ≡ 0 on ∂U and

thus so ∈ E1
0 (U). Therefore, so ∈H (U) ∩ E1

0 (U), that is, so ≡ 0.

This result can also be interpreted as saying that H (U) is the closed subspace

of E1 (U), with all these exterior harmonic Steklov eigenfunctions {sk}∞k=1 being a

〈·, ·〉∂,U -orthonormal basis. So, for any function u in E1 (U), its associated 〈·, ·〉∂,U -

orthogonal projection into H (U) is uniquely determined by

PH (U)(u) :=
∞∑
k=1

〈u, sk〉∂,U · sk, (7.11)

and the projection operator PH (U) : E1 (U)→H (U) is onto.

In particular, Parseval ’s theorem tells us that every function s ∈H (U) has a

unique series expansion of the following form

s =
∞∑
k=1

〈s, sk〉∂,U · sk (7.12)
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such that

||s||∂,U =

√√√√ ∞∑
k=1

∣∣∣〈s, sk〉∂,U ∣∣∣2 <∞. (7.13)

Moreover, for all u ∈ E1 (U), γu can be uniquely represented as

γu = γ
(
PH (U)(u)

)
=
∞∑
k=1

〈u, sk〉∂,U√
1 + δk

· γsk (7.14)

on ∂U , via the decomposition of E1 (U) by (7.5) and (7.2), such that

||γu||2,∂U =

√√√√√ ∞∑
k=1

∣∣∣〈u, sk〉∂,U ∣∣∣2
1 + δk

≤

∣∣∣∣PH (U)(u)
∣∣∣∣
∂,U√

1 + δ1

≤
||u||∂,U√

1 + δ1

<∞, (7.15)

where the increasing property of the sequence {δk}∞k=1 was applied.

For each M ∈ N, setting

uM :=
M∑
k=1

〈u, sk〉∂,U · sk ∈H (U) (7.16)

on U , and arguing in an analogous manner as above, with the M -th truncated trace

mapping γM : E1 (U)→ L2 (∂U, dσ), defined by

γM(u) :=
M∑
k=1

〈u, sk〉∂,U√
1 + δk

· γsk, (7.17)

we have the following spectral approximation estimate.
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7.2 THE H1-SITUATION

Proposition 7.3. Under the above hypothesis, for all u ∈ E1 (U), one has

||(γ − γM) (u)||2,∂U ≤

√√√√√ ∞∑
k=M+1

∣∣∣〈u, sk〉∂,U ∣∣∣2
1 + δk

≤
||u− uM ||∂,U√

1 + δM+1

, (7.18)

and the operator norm of γ − γM is exactly 1√
1+δM+1

, upon letting u = sM+1.

Obviously, in sight of theorem 6.8, 1√
1+δM+1

tends to zero as M →∞.

On the other hand, noticing (3.25) and (3.26), (7.5) further implies that

D1
(
RN
)

=
[
E1

0 (U)⊕∂,U H (U)
]
⊕∇

[
H1

0 (G)⊕∂,G H (G)
]
. (7.19)

Here, D1
(
RN
)

is the finite energy space on RN when N ≥ 3, as given in [24].

7.2 The H1-situation

A function u in H1 (U) is said to be a weak solution of

−∆u+ µ2u = 0 on U, (7.20)

with µ > 0 being a constant, provided that

〈u, v〉H1
µ(U) :=

∫
U

(
µ2uv +∇u · ∇v

)
dx = 0, ∀ v ∈ C1

c (U) . (7.21)

All such functions will be called µ-regularized harmonic on U .

Here, the weighted H1
µ-inner product is defined in exactly the same manner as
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7.2 THE H1-SITUATION

(7.21), just replacing U by any region Ω and then taking u, v ∈ H1 (Ω).

Let Nµ (U) be the subspace of H1 (U) of all µ-regularized harmonic functions on

U . Clearly, as subspaces of H1 (U), Nµ (U) and H1
0 (U) are 〈·, ·〉H1

µ(U)-orthogonal.

Consequently, we have the following decomposition of H1 (U) such as

H1 (U) = Nµ (U)⊕H1
µ(U) H

1
0 (U) . (7.22)

Remark 7.4. One has H1 (U)  E1 (U). Thus, unlike in the bounded case, on U ,

as µ→ 0, the space H1 (U), used for finding weak solutions to (7.20), will blow up

to a strictly larger one E1 (U), used for finding weak solutions to (7.3).

Just as what we have already said, there is no significant difference if we simply

consider the standard situation where µ = 1. Now, it is obvious that {uk}∞k=1 are

in N1 (U) by (6.1) and (7.21). Also, they are maximal in N1 (U) so that N1 (U) is

exactly the closed subspace of H1 (U) generated by all these exterior regularized

harmonic Steklov eigenfunctions. In addition, their trace functions {γuk}∞k=1 again

provide a 〈·, ·〉2,∂U -orthonormal basis for L2 (∂U, dσ).

Using parallel ideas, we can prove the following result.

Theorem 7.5. Under conditions (B1) and (B2), the sequence {γuk}∞k=1 of trace

functions of {uk}∞k=1 provides a 〈·, ·〉2,∂U -orthonormal basis for L2 (∂U, dσ). Also,

the family {uk}∞k=1 of exterior regularized harmonic Steklov eigenfunctions, defined

in (7.1), is a maximal 〈·, ·〉H1(U)-orthonormal subset of N1 (U).

Similar to the E1-situation, for any function u ∈ H1 (U), its associated 〈·, ·〉H1(U)-
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7.2 THE H1-SITUATION

orthogonal projection into N1 (U) is uniquely determined by

PN1(U)(u) :=
∞∑
k=1

〈u, uk〉H1(U) · uk, (7.23)

and the projection operator PN1(U) : H1 (U)→ N1 (U) is onto.

Accordingly, the trace γu of u can be uniquely represented as

γu = γ
(
PN1(U)(u)

)
=
∞∑
k=1

〈u, uk〉H1(U)√
τk

· γuk (7.24)

on ∂U , via the decomposition of H1 (U) by (7.22) and (7.1), such that

||γu||2,∂U =

√√√√√ ∞∑
k=1

∣∣∣〈u, uk〉H1(U)

∣∣∣2
τk

≤

∣∣∣∣PN1(U)(u)
∣∣∣∣
H1(U)√

τ1

≤
||u||H1(U)√

τ1

<∞, (7.25)

where the increasing property of the τk’s was applied.

Setting

uM :=
M∑
k=1

〈u, uk〉H1(U) · uk ∈ N1 (U) (7.26)

on U , and arguing in an analogous manner as above, with the M -th truncated trace

mapping γM : H1 (U)→ L2 (∂U, dσ), defined by

γM(u) :=
M∑
k=1

〈u, uk〉H1(U)√
τk

· γuk, (7.27)

for M = 1, 2, . . ., we have a similar spectral approximation estimate.
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Proposition 7.6. Under the above assumptions, for all u ∈ H1 (U), one has

||(γ − γM) (u)||2,∂U ≤

√√√√√ ∞∑
k=M+1

∣∣∣〈u, uk〉H1(U)

∣∣∣2
τk

≤
||u− uM ||H1(U)√

τM+1

, (7.28)

and the operator norm of γ − γM is exactly 1√
τM+1

, upon letting u = uM+1.

Again, in view of theorem 6.4, 1√
τM+1

tends to zero as M →∞.

Finally, a result of Auchmuty (see [2, section 5]) implies that

H1 (G) = N1 (G)⊕H1(G) H
1
0 (G) , (7.29)

where N1 (G) denotes the subspace of H1 (G) of all regularized harmonic functions

on G = RN \ U . Combing this with (3.13) and (7.22), it follows that

H1
(
RN
)

=
[
H1

0 (U)⊕H1(U) N1 (U)
]
⊕H1(RN )

[
H1

0 (G)⊕H1(G) N1 (G)
]
. (7.30)
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Chapter 8

Several Examples

It is of interest to describe the interior and exterior Steklov eigenproblems for some

standard regions in R3, the physically most important situation.

Let G = B1 and then let U = R3 \B1. Write A1 := U .

Set σ̃ := 1
4π
σ in order that σ̃ (S1) = 1 for S1 := ∂B1. Moreover, all eigenfunc-

tions described below will be of L2 (S1, dσ̃)-normalization.

Denote Yj,l (θ, φ) the (j, l)-th normalized Laplace’s spherical harmonic, derived

from the j-th Legendre polynomial Pj and the (j, l)-th associated Legendre function

of the first kind P l
j . It is defined as, for j ≥ 0 and −j ≤ l ≤ j,

Yj,l (θ, φ) :=



N(j,l)P
−l
j (cos θ) sin (−lφ) , l = −1,−2, . . . ,−j,

N(j,0)P
0
j (cos θ) = N(j,0)Pj (cos θ) , l = 0,

N(j,l)P
l
j (cos θ) cos (lφ) , l = 1, 2, . . . , j.

(8.1)

66



CHAPTER 8. SEVERAL EXAMPLES

Here, N(j,l) denotes the (j, l)-th normalization constant for j, l.

Given j ≥ 0, Yj,l (θ, φ) are eigenfunctions of the Laplace-Beltrami operator ∆∂

on S1, associated with the eigenvalue −j (j + 1), for −j ≤ l ≤ j.

In consequence, in spherical polar coordinates x = (r, θ, φ) ∈ R3, with r being

the radial distance, θ being the inclination (polar angle), and φ being the azimuthal

angle, the interior harmonic Steklov eigenfunctions on B1 are

sij,l = rj ·
√

2Yj,l (θ, φ) . (8.2)

The interior harmonic Steklov eigenvalues are δij = 0, 1, 2, . . ., and the eigenvalue

j has multiplicity exactly 2j + 1. In particular, when j = 0, si0,0 ≡ 1.

As a consequence, we have that the family of interior harmonic Steklov eigen-

functions
{
sij,l
}
j=0,1,2,...,−j≤l≤j provides a 〈·, ·〉∂,B1

-orthonormal basis for H (B1),

the subspace of H1 (B1) of all harmonic functions on B1.

In addition, the exterior harmonic Steklov eigenfunctions on A1 are

sek,l =
1

rk
·
√

2Yk−1,l (θ, φ) (8.3)

for k = 1, 2, . . . and −k+1 ≤ l ≤ k−1. The exterior harmonic Steklov eigenvalues

are δek = 1, 2, . . ., and the eigenvalue k has multiplicity exactly 2k − 1.

Let E1 (A1) be our finite energy space. The family of exterior harmonic Steklov

eigenfunctions
{
sek,l
}
k=1,2,...,−k+1≤l≤k−1

is a 〈·, ·〉∂,A1
-orthonormal basis for H (A1),

the subspace of E1 (A1) of all harmonic functions on A1. In particular, when k = 1,

se1,0 = r−1, which is clearly not in H1 (A1) as it is not in L2 (A1). Besides, all these

functions r−ς sin (r−ι − 1) f(θ, φ), with ι > 0 and ς ∈
(

1
2
, 3

2

]
, are in E1

0 (A1) but
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CHAPTER 8. SEVERAL EXAMPLES

clearly not in H1
0 (A1) in view of the conclusion of proposition 3.1.

On the other hand, the interior µ-regularized harmonic Steklov eigenvalues and

associated interior µ-regularized harmonic Steklov eigenfunctions on B1 are

τ ij =
µĨ ′

j+ 1
2

(1)

Ĩj+ 1
2
(1)

=

∞∑
t=0

(2t+j)µ2t+j

4tt!Γ(j+t+ 3
2)

∞∑
t=0

µ2t+j

4tt!Γ(j+t+ 3
2)

(8.4)

for j = 0, 1, 2, . . ., and, with −j ≤ l ≤ j,

uij,l = Ĩj+ 1
2
(r) ·
√

2Yj,l (θ, φ)

=

∞∑
t=0

µ2t+jr2t+j

4tt!Γ(j+t+ 3
2)

∞∑
t=0

µ2t+j

4tt!Γ(j+t+ 3
2)

·
√

2Yj,l (θ, φ) .
(8.5)

Here, Ĩj+ 1
2
(r) :=

1√
r
I
j+1

2
(r)

I
j+1

2
(1)

and
√

π
2r
Ij+ 1

2
(r) denotes the j-th modified spherical

Bessel function of the first kind for j = 0, 1, 2, . . ..

In particular, when j = 0, τ i0 = µ and ui0,0 = eµr−e−µr
r(eµ−e−µ)

.

Analogically, the family of interior µ-regularized harmonic Steklov eigenfunc-

tions
{
uij,l
}
j=0,1,2,...,−j≤l≤j provides a 〈·, ·〉H1

µ(B1)-orthonormal basis for Nµ (B1), the

subspace of H1 (B1) of all µ-regularized harmonic functions on B1.

As a matter of fact, given j ≥ 0, one sees that
√

π
2r
Ij+ 1

2
(r) is a solution of the

following linear ordinary differential equation, when r < 1,

(
µ2 +

j (j + 1)

r2

)
gj(r) −

1

r2

d

dr

(
r2gj(r)

)
= 0, (8.6)

subject to gj(0) <∞. This then yields that uij,l are µ-regularized harmonic Steklov
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eigenfunctions associated with the eigenvalue τ ij for −j ≤ l ≤ j.

In addition, on A1, the exterior µ-regularized harmonic Steklov eigenvalues and

associated exterior µ-regularized harmonic Steklov eigenfunctions are

τ ek = −
µK̃ ′

k− 1
2

(1)

K̃k− 1
2
(1)

=

k−1∑
t=0

(t+1+µ)(k+t−1)!
2tt!Γ(k−t)µt+1

k−1∑
t=0

(k+t−1)!
2tt!Γ(k−t)µt+1

(8.7)

for k = 1, 2, . . ., and, with −k + 1 ≤ l ≤ k − 1,

uek,l = K̃k− 1
2
(r) ·
√

2Yk−1,l (θ, φ)

= eµ(1−r)

k−1∑
t=0

(k+t−1)!
2tt!Γ(k−t)µt+1rt+1

k−1∑
t=0

(k+t−1)!
2tt!Γ(k−t)µt+1

·
√

2Yk−1,l (θ, φ) ,
(8.8)

where K̃k− 1
2
(r) :=

1√
r
K
k− 1

2
(r)

K
k− 1

2
(1)

and
√

π
2r
Kk− 1

2
(r) denotes the k-th modified spherical

Bessel function of the third kind that solves equation (8.6) (replacing j by k − 1),

when r > 1 and subject to lim
r→∞

gk(r) <∞, for k = 1, 2, . . ..

In particular, when k = 1, τ e1 = 1 + µ and ue1,0 = eµ(1−r)

r
. Even though eµ(1−r)

r
is

in H1 (A1) when µ > 0, one has lim
µ→0+

eµ(1−r)

r
= r−1 ∈ E1 (A1) \H1 (A1).

Similarly, the family of exterior µ-regularized harmonic Steklov eigenfunctions{
uek,l
}
k=1,2,...,−k+1≤l≤k−1

provides a 〈·, ·〉H1
µ(A1)-orthonormal basis for Nµ (A1), the

subspace of H1 (A1) of all µ-regularized harmonic functions on A1.

For more details, see M. Abramowitz and I.A. Stegun (eds), Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter 10,

National Bureau of Standards, Washington, DC, 1984.
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Chapter 9

Boundary Value Problems

9.1 The Harmonic Case

In this section, we shall describe the weak solvability in E1 (U) of the harmonic

boundary value problem, subject to various boundary conditions. Then, we shall

discuss that briefly for the regularized harmonic case in H1 (U).

First, let’s consider this problem under Dirichlet data, i.e.,

−∆u = 0 in U, subject to γu = η1 on ∂U, (9.1)

with η1 ∈ L2 (∂U, dσ). Suppose that (9.1) has a weak solution, say, h1 in E1 (U).

By definition, h1 ∈H (U). Via the conclusion of theorem 7.2, we have

h1 =
∞∑
k=1

cksk, (9.2)

70



9.1 THE HARMONIC CASE

where the ck’s are constants for k = 1, 2, . . .. Then, on ∂U , it follows that

η1 = γh1 =
∞∑
k=1

ckγsk =
∞∑
k=1

ck
γsk√
1 + δk

(9.3)

from (7.2). So, by theorem 7.1, one has ck =
√

1 + δk 〈η1, γsk〉2,∂U for k = 1, 2, . . ..

Being aware of theorem 6.8, we see that h1 ∈ E1 (U) if and only if

(
||h1||2∂,U =

) ∞∑
k=1

(1 + δk)
∣∣∣〈η1, γsk〉2,∂U

∣∣∣2 <∞. (9.4)

Obviously, (9.4) need not be true for all η1 ∈ L2 (∂U, dσ). In view of (3.11) and

certain results below (3.20), (9.4) actually gives another definition of H
1
2 (∂U, dσ),

compared with the interior one by Auchmuty [4]. That is, as a proper subspace of

L2 (∂U, dσ), a function η1 ∈ H
1
2 (∂U, dσ) whenever (9.4) holds.

Hence, (9.1) is weakly solvable in the space E1 (U) if and only if (9.4) is satisfied,

and its uniqueness follows from the first part of corollary 4.6.

Theorem 9.1. Under the hypothesis, when subject to Dirichlet boundary condition

η1 ∈ H
1
2 (∂U, dσ), the system (9.1) has a unique solution h1 in E1 (U), as described

by (9.2), with ck =
√

1 + δk 〈η1, γsk〉2,∂U for k = 1, 2, . . ..

Represent the exterior Poisson kernel, with (x, y) ∈ (U, ∂U), by

PeD(x, y) :=
∞∑
k=1

√
1 + δk sk(x) · γsk(y). (9.5)

When η1 ∈ H
1
2 (∂U, dσ), then PeD(·, y)η1(y) is integrable over ∂U , and, for x ∈ U ,

h1(x) =
∫
∂U
PeD(x, y)η1(y)dσ is the unique weak solution of (9.1) in E1 (U).
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9.1 THE HARMONIC CASE

Keep in mind that, on G = RN \U , the constant functions are harmonic. Thus,

(3.11) implies that, associated with these constant functions in H1 (G), there is a

family of harmonic functions in E1 (U) whose trace functions on ∂U are constant.

In consequence, one has that PeD(·, y) is integrable over ∂U .

Analogously, via the sequence
{
δGj
}∞
j=0

of interior harmonic Steklov eigenvalues

and an associated family
{
sGj
}∞
j=0

of interior harmonic Steklov eigenfunctions over

G (see the proof of theorem 6.5), the representation of the interior Poisson kernel

can be given by, for (z, y) ∈ (G, ∂U) with G = RN \ U ,

PD(z, y) :=
∞∑
j=0

√
1 + δGj s

G
j (z) · γsGj (y), (9.6)

which can be compared to [13, theorem 5.33] (see also [2, section 9]), where

sGj :=
√

1 + δGj s
G
j (9.7)

so that
∣∣∣∣γsGj ∣∣∣∣2,∂U = 1, as we know

∣∣∣∣sGj ∣∣∣∣∂,G = 1, for j = 0, 1, 2, . . ..

In particular, when N = 3 and G = B1, one has the identities



PD(z, y) = 1
4π

1−|z|2

|z−y|3 =
∑

j=0,1,2,...,−j≤l≤j
2 |z|j Yj,l (θ, φ)Yj,l (θ

∗, φ∗)

and

PeD(x, y) = 1
4π
|x|2−1

|x−y|3 =
∑

k=1,2,...,−k+1≤l≤k−1

2

|x|kYk−1,l (θ, φ)Yk−1,l (θ
∗, φ∗)

(9.8)

for x = (|x| , θ, φ) ∈ A1 = R3 \B1, z = (|z| , θ, φ) ∈ B1 and y = (θ∗, φ∗) ∈ S1.
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9.1 THE HARMONIC CASE

Moreover, for any data g ∈ H 1
2 (∂U, dσ), there are two harmonic functions


hg(x) :=

∫
∂U
PeD(x, y)g(y)dσ ∈H (U)

and

h̃g(z) :=
∫
∂U
PD(z, y)g(y)dσ ∈H (G)

(9.9)

satisfying γhg = γh̃g = g on ∂U , via (9.5) and (9.6), which differs from the classical

double layer potential method (see Folland [19, chapter 3]).

As a matter of fact, our solution can be determined explicitly by its boundary

data, involving the Steklov eigenvalues and eigenfunctions.

On the other hand, let’s discuss the harmonic boundary value problem, subject

to Neumann or Robin boundary conditions, i.e.,

−∆u = 0 in U, subject to Dνu+ b (γu) = η2 on ∂U, (9.10)

where b ≥ 0 is a constant, and b = 0 corresponds to the Neumann case.

Now, suppose that (9.10) has a weak solution in E1 (U), say,

h2 =
∞∑
k=1

dksk (9.11)

for some constants d1, d2, . . .. Then, on ∂U , it follows that, from (7.2),

η2 = Dνh2 + b (γh2) =
∞∑
k=1

dk (δk + b)
γsk√
1 + δk

. (9.12)
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9.1 THE HARMONIC CASE

Thus, dk =
√

1+δk
δk+b

〈η2, γsk〉2,∂U for k = 1, 2, . . .. As
√

1+δk
δk+b

= O
(

1√
δk

)
,

(
||h2||2∂,U =

) ∞∑
k=1

(
1 + δk

(δk + b)2

∣∣∣〈η2, γsk〉2,∂U
∣∣∣2) <∞ (9.13)

whenever η2 is in L2 (∂U, dσ), via the conclusion of theorem 6.8.

Then, (9.13) gives a definition for the dual space H−
1
2 (∂U, dσ) of H

1
2 (∂U, dσ).

That is, η2 ∈ H−
1
2 (∂U, dσ) if and only if (9.13) is satisfied. Noticing ∂U is compact,

H−
1
2 (∂U, dσ) contains all these spaces Lq (∂U, dσ) for q ≥ 2(N−1)

N
.

Hence, (9.10) is weakly solvable in the space E1 (U) whenever (9.13) holds, and

its uniqueness again follows from the first part of corollary 4.6.

Theorem 9.2. Under our assumptions, and subject to Neumann or Robin bound-

ary data η2 ∈ H−
1
2 (∂U, dσ), the system (9.10) has a unique solution h2 in E1 (U),

as described by (9.11), with dk =
√

1+δk
δk+b

〈η2, γsk〉2,∂U for k = 1, 2, . . ..

For the Neumann or Robin boundary value problems, we set

PeNR(x, y) :=
∞∑
k=1

√
1 + δk
δk + b

sk(x) · γsk(y) (9.14)

to be the boundary solution operator (NR-kernel) for some b ≥ 0, with b = 0 cor-

responding to the Neumann case, and thereby have h2(x) =
∫
∂U
PeNR(x, y)η2(y)dσ

is the unique weak solution of (9.10) in E1 (U), when η2 ∈ H−
1
2 (∂U, dσ).

In view of (9.5) and theorem 6.8, PeNR(·, y) is also integrable over ∂U . Moreover,

PeNR(·, y)η2(y) is integrable over ∂U whenever η2 ∈ H−
1
2 (∂U, dσ).

In addition, series representations of the exterior and interior Neumann-Robin
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kernels can be described respectively such as PeNR(x, y) by (9.14) and

PNR(z, y) :=
∞∑
j=0

√
1 + δGj

δGj + b
sGj (z) · γsGj (y), (9.15)

so that 
hh(x) :=

∫
∂U
PeNR(x, y)h(y)dσ ∈H (U)

and

h̃h(z) :=
∫
∂U
PNR(z, y)h(y)dσ ∈H (G)

(9.16)

are two harmonic functions obeying Dνhh + b (γhh) = Dν h̃h + b
(
γh̃h

)
= h on ∂U ,

for any data h ∈ H− 1
2 (∂U, dσ), which again is different from the well-known single

layer potential method (see again Folland [19, chapter 3]).

Once more, using the Steklov eigenvalues and eigenfunctions, influences of the

boundary data on our solution can be determined explicitly.

9.2 The Regularized Harmonic Case

In the regularized harmonic situation, for the system below

−∆u+ u = 0 in U, subject to γu = η3 on ∂U, (9.17)

with η3 ∈ L2 (∂U, dσ), it has a weak solution, say, k1 ∈ H1 (U) if and only if

k1 =
∞∑
k=1

√
τk 〈η3, γuk〉2,∂U · uk, (9.18)
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via (7.1) and the conclusions of theorem 7.5, such that

(
||k1||2H1(U) =

) ∞∑
k=1

τk

∣∣∣〈η3, γuk〉2,∂U
∣∣∣2 <∞, (9.19)

which gives another description of H
1
2 (∂U, dσ) by (3.11), (3.12) and theorem 6.4.

Moreover, its uniqueness follows from the second part of corollary 4.6.

Theorem 9.3. When subject to Dirichlet data η3 ∈ H
1
2 (∂U, dσ), the system (9.17)

has a unique solution k1 =
∞∑
k=1

√
τk 〈η3, γuk〉2,∂U · uk in H1 (U).

Let

KeD(x, y) :=
∞∑
k=1

√
τkuk(x) · γuk(y) (9.20)

be the boundary solution operator (D-kernel). Then, k1(x) =
∫
∂U
KeD(x, y)η3(y)dσ

is the unique weak solution of (9.17) in H1 (U), when η3 ∈ H
1
2 (∂U, dσ).

Analogously, using the identity γ (H1 (U)) = γ (H1 (G)) on ∂U instead, we have

that KeD(·, y) is an integrable function on ∂U . Further, KeD(·, y)η3(y) is integrable

over ∂U whenever η3 ∈ H
1
2 (∂U, dσ).

On the other hand, for the system below

−∆u+ u = 0 in U, subject to Dνu+ b (γu) = η4 on ∂U, (9.21)

with b ≥ 0, it has a weak solution, say, k2 ∈ H1 (U) if and only if

k2 =
∞∑
k=1

√
τk

τk + b
〈η4, γuk〉2,∂U · uk (9.22)
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such that (
||k2||2H1(U) =

) ∞∑
k=1

(
τk

(τk + b)2

∣∣∣〈η4, γuk〉2,∂U
∣∣∣2) <∞, (9.23)

which yields another characterization of H−
1
2 (∂U, dσ) via duality and theorem 6.4,

and its uniqueness again follows from the second part of corollary 4.6.

Theorem 9.4. When subject to Neumann or Robin data η4 ∈ H−
1
2 (∂U, dσ), the

system (9.21) has a unique solution k2 =
∞∑
k=1

√
τk

τk+b
〈η4, γuk〉2,∂U · uk in H1 (U).

Let

KeNR(x, y) :=
∞∑
k=1

√
τk

τk + b
uk(x) · γuk(y) (9.24)

be the boundary solution operator (NR-kernel). So, k2(x) =
∫
∂U
KeNR(x, y)η4(y)dσ

is the unique weak solution of (9.21) in H1 (U), when η4 ∈ H−
1
2 (∂U, dσ).

Noticing (9.20) and theorem 6.4, KeNR(·, y) is also integrable over ∂U . Moreover,

KeNR(·, y)η4(y) is integrable over ∂U whenever η4 ∈ H−
1
2 (∂U, dσ).

Remark 9.5. Note here, the existence of weak solutions for (9.10) in E1 (U) and

these for (9.21) in H1 (U) is guaranteed using variational arguments such as those

shown in between (5.33) and (5.36), plus our remarks 6.2 and 6.6.

Through the sequence
{
τGj
}∞
j=0

of interior regularized harmonic Steklov eigen-

values, and a corresponding family
{
uGj
}∞
j=0

of interior regularized harmonic Steklov

eigenfunctions over G that consists of a maximal 〈·, ·〉H1(G)-orthonormal subset of

N1 (G) in H1 (G) and whose L2 (∂U, dσ)-normalized trace functions on ∂U ,

uGj :=
√
τGj uGj for j = 0, 1, 2, . . . , (9.25)
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provide a complete orthonormal basis for L2 (∂U, dσ) (see Auchmuty [2]), we define


KD(z, y) :=

∞∑
j=0

√
τGj u

G
j (z) · γuGj (y)

and

KNR(z, y) :=
∞∑
j=0

√
τGj

τGj +b
uGj (z) · γuGj (y).

(9.26)

In a similar manner, for any data g ∈ H 1
2 (∂U, dσ) and h ∈ H− 1

2 (∂U, dσ), there

are two pairs of regularized harmonic functions, respectively,


kg(x) :=

∫
∂U
KeD(x, y)g(y)dσ ∈ N1 (U)

and

k̃g(z) :=
∫
∂U
KD(z, y)g(y)dσ ∈ N1 (G) ,

(9.27)

and 
kh(x) :=

∫
∂U
KeNR(x, y)h(y)dσ ∈ N1 (U)

and

k̃h(z) :=
∫
∂U
KNR(z, y)h(y)dσ ∈ N1 (G) ,

(9.28)

such that γkg = γk̃g = g and Dνkh + b (γkh) = Dν k̃h + b
(
γk̃h

)
= h on ∂U .
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Chapter 10

The Boundary H
1
2-Space

Recall that, using the interior harmonic Steklov eigenvalues
{
δGj
}∞
j=0

and eigenfunc-

tions
{
sGj
}∞
j=0

(see (9.7)), Auchmuty [4] defines H
1
2 (∂U, dσ), as a proper subspace

of L2 (∂U, dσ), as the real Hilbert function space with respect to the inner product

〈g, h〉G,H
H

1
2 (∂U)

:=
∞∑
j=0

(√
1 + δGj

∫
∂U

gγsGj dσ

)(√
1 + δGj

∫
∂U

hγsGj dσ

)
, (10.1)

with the associated norm denoted ||g||G,H
H

1
2 (∂U)

.

For all g ∈ H 1
2 (∂U, dσ), let

h̃g :=
∞∑
j=0

√
1 + δGj

〈
g, γsGj

〉
2,∂U
· sGj (10.2)

be the unique interior harmonic extension of g over G. So,
∣∣∣∣∣∣h̃g∣∣∣∣∣∣

∂,G
= ||g||G,H

H
1
2 (∂U)

.

As a result, it follows that the trace mapping

γ : H (G)→ H
1
2 (∂U, dσ) (10.3)
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1
2 -SPACE

can be made an isometric isomorphism, via using the norms ||·||∂,G and ||·||G,H
H

1
2 (∂U)

on these two Hilbert spaces H (G) and H
1
2 (∂U, dσ), respectively.

In this situation, denote the inverse of γ by EHi . That is,

EHi : H
1
2 (∂U, dσ)→H (G) , (10.4)

which again is an isometric isomorphism such that h̃g = EHi (g).

Moreover, as the dual space of H
1
2 (∂U, dσ) in terms of 〈·, ·〉2,∂U , H−

1
2 (∂U, dσ)

can be defined as a real Hilbert function space with respect to the inner product

〈g, h〉G,H
H−

1
2 (∂U)

:=
∞∑
j=0

 1√
1 + δGj

∫
∂U

gγsGj dσ

 1√
1 + δGj

∫
∂U

hγsGj dσ

 . (10.5)

Accordingly, denote the generated norm by ||g||G,H
H−

1
2 (∂U)

. Obviously, from this, one

has, as function spaces, H
1
2 (∂U, dσ)  L2 (∂U, dσ)  H−

1
2 (∂U, dσ). We refer the

reader to Auchmuty [4, 5] for more details on the preceding results.

Next, from the identities (3.11), (3.12), (7.5) and (7.22), one sees that, for all

u in H (U), a function ŭ in H1 (U)  E1 (U) can be found such that γŭ = γu ∈

H
1
2 (∂U, dσ) on ∂U . Since we assume that U is a 1-extension region (see remarks

2.1, 2.2 and (3.13)), via identity (3.25), there exists a unique function ũ in H (G)

such that γũ = γu ∈ H 1
2 (∂U, dσ) on ∂U , as described by (3.20). In consequence,

a homomorphism from H (U) to H (G) exists, that is,

EHi ◦ γ : H (U)→H (G) . (10.6)
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On the other hand, for all g ∈ H 1
2 (∂U, dσ), let

hg :=
∞∑
k=1

√
1 + δk 〈g, γsk〉2,∂U · sk (10.7)

be the unique exterior harmonic extension of g over U , as given by (9.2).

Also, via the exterior harmonic Steklov eigenvalues {δk}∞k=1 and eigenfunctions

{sk}∞k=1, H
1
2 (∂U, dσ) is a real Hilbert function space with respect to

〈g, h〉H
H

1
2 (∂U)

:=
∞∑
k=1

(√
1 + δk

∫
∂U

gγskdσ

)(√
1 + δk

∫
∂U

hγskdσ

)
, (10.8)

and the associated norm is denoted ||g||H
H

1
2 (∂U)

.

As a matter of fact, from theorems 7.1 and 7.2, one has ||hg||∂,U = ||g||H
H

1
2 (∂U)

.

Therefore, any sequence {gk}∞k=1 of functions in H
1
2 (∂U, dσ) is Cauchy with respect

to ||·||H
H

1
2 (∂U)

, if and only if the generated sequence {hgk}
∞
k=1 of harmonic functions

in H (U) ( E1 (U)), as defined by (10.7), is Cauchy with respect to ||·||∂,U . The

completeness of the space E1 (U), plus the identities (3.11) and (7.5), then gives

us the corresponding completeness of the space H
1
2 (∂U, dσ).

In addition, the foregoing argument also tells us that, for all g ∈ H 1
2 (∂U, dσ),

||g||G,H
H

1
2 (∂U)

<∞ whenever ||g||H
H

1
2 (∂U)

<∞, by the homomorphism (10.6). Hence, a

universal constant C > 0 can be found such that ||·||G,H
H

1
2 (∂U)

≤ C ||·||H
H

1
2 (∂U)

. In fact,

if not, there would be a sequence {gk}∞k=1 in H
1
2 (∂U, dσ) such that ||gk||H

H
1
2 (∂U)

= 1

yet ||gk||G,H
H

1
2 (∂U)

≥ k. As now ||gk||G,H
H

1
2 (∂U)

is bounded for each k ≥ 1, we write ηk :=

1

||gk||G,H
H

1
2 (∂U)

gk and have ||ηk||G,H
H

1
2 (∂U)

= 1. Therefore, lim
k→∞
||ηk||H

H
1
2 (∂U)

= 0. Resorting

to {hηk}
∞
k=1, the completeness of E1 (U) leads to lim

k→∞
hηk = 0, so that lim

k→∞
h̃ηk = 0
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via (10.6), too. This can not be true, for we would then have lim
k→∞
||ηk||G,H

H
1
2 (∂U)

= 0

otherwise. Consequently, ||·||G,H
H

1
2 (∂U)

≤ C ||·||H
H

1
2 (∂U)

must hold. Finally, a standard

result (see e.g. Brezis [15, corollary 2.8]) thus yields that the two norms ||·||H
H

1
2 (∂U)

and ||·||G,H
H

1
2 (∂U)

on the space H
1
2 (∂U, dσ) are actually equivalent.

A corollary of this result says that the sequences of interior and exterior har-

monic Steklov eigenvalues
{
δGj
}∞
j=0

and {δk}∞k=1 will go to infinity at exactly the

same speed, as j, k →∞. The preciseness is shown in chapter 8.

Furthermore, in this situation, the trace mapping

γ : H (U)→ H
1
2 (∂U, dσ) (10.9)

can again be made an isometric isomorphism, instead via using the norms ||·||∂,U

and ||·||H
H

1
2 (∂U)

on H (U) and H
1
2 (∂U, dσ), respectively.

Let EHe be its inverse. That is,

EHe : H
1
2 (∂U, dσ)→H (U) , (10.10)

which again is an isometric isomorphism such that hg = EHe (g).

Noticing (10.7) and the equivalence of the two norms ||·||H
H

1
2 (∂U)

and ||·||G,H
H

1
2 (∂U)

on H
1
2 (∂U, dσ), the homomorphism from H (U) to H (G), given by (10.6), is in

fact an isomorphism and its inverse is described such as

EHe ◦ γ : H (G)→H (U) . (10.11)
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In addition, H−
1
2 (∂U, dσ) is also a real Hilbert function space with respect to

〈g, h〉H
H−

1
2 (∂U)

:=
∞∑
k=1

(
1√

1 + δk

∫
∂U

gγskdσ

)(
1√

1 + δk

∫
∂U

hγskdσ

)
, (10.12)

and the associated norm is denoted ||g||H
H−

1
2 (∂U)

, which is equivalent to ||g||G,H
H−

1
2 (∂U)

.

For more details on the spaces Hs (∂U, dσ) (s ∈ R), see [4, 5, 12].

On the other hand, using the interior and exterior regularized harmonic Steklov

eigenvalues
{
τGj
}∞
j=0

and {τk}∞k=1, together with associated eigenfunctions
{
uGj
}∞
j=0

(see (9.25)) and {uk}∞k=1, H
1
2 (∂U, dσ), with respect to the inner products


〈g, h〉G,R

H
1
2 (∂U)

:=
∞∑
j=0

(√
τGj
∫
∂U
gγuGj dσ

)(√
τGj
∫
∂U
hγuGj dσ

)
and

〈g, h〉R
H

1
2 (∂U)

:=
∞∑
k=1

(√
τk
∫
∂U
gγukdσ

) (√
τk
∫
∂U
hγukdσ

)
,

(10.13)

is a real Hilbert function space, with the generated norms ||g||G,R
H

1
2 (∂U)

and ||g||R
H

1
2 (∂U)

which are equivalent on H
1
2 (∂U, dσ) through analogous discussions.

For all g ∈ H 1
2 (∂U, dσ), let


k̃g :=

∞∑
j=0

√
τGj
〈
g, γuGj

〉
2,∂U
· uGj

and

kg :=
∞∑
k=1

√
τk 〈g, γuk〉2,∂U · uk

(10.14)

be the respective unique interior and exterior regularized harmonic extensions of g

over G and U . Then, we have
∣∣∣∣∣∣k̃g∣∣∣∣∣∣

H1(G)
= ||g||G,R

H
1
2 (∂U)

and ||kg||H1(U) = ||g||R
H

1
2 (∂U)

.
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Accordingly, we can obtain the following isometric isomorphisms


γ : N1 (G)→ H

1
2 (∂U, dσ) and ERi : H

1
2 (∂U, dσ)→ N1 (G) ,

γ : N1 (U)→ H
1
2 (∂U, dσ) and ERe : H

1
2 (∂U, dσ)→ N1 (U) ,

(10.15)

with k̃g = ERi (g) and kg = ERe (g), respectively, and the isomorphisms below

ERi ◦ γ : N1 (U)→ N1 (G) and ERe ◦ γ : N1 (G)→ N1 (U) . (10.16)

Moreover, H−
1
2 (∂U, dσ) is a real Hilbert function space with respect to


〈g, h〉G,R

H−
1
2 (∂U)

:=
∞∑
j=0

(
1√
τGj

∫
∂U
gγuGj dσ

)(
1√
τGj

∫
∂U
hγuGj dσ

)
or

〈g, h〉R
H−

1
2 (∂U)

:=
∞∑
k=1

(
1√
τk

∫
∂U
gγukdσ

)(
1√
τk

∫
∂U
hγukdσ

)
,

(10.17)

with the equivalent norms denoted ||g||G,R
H−

1
2 (∂U)

and ||g||R
H−

1
2 (∂U)

, respectively.

Finally, via (3.25), (7.29) and the fact ||·||H1(G) ∼ ||·||∂,G on H1 (G), one has

H (G) ∼= H1 (G)
/
H1

0 (G) ∼= N1 (G) . (10.18)

This further implies that all these spaces H (G), N1 (G), H (U), and N1 (U) in

fact are isomorphic to one another using composition of the trace mapping γ with

its suitable inverses EHi , ERi , EHe , and ERe , respectively, and that all these norms on

H
1
2 (∂U, dσ) and all those on H−

1
2 (∂U, dσ) are equivalent, respectively.
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Appendix

We now show below how exactly (3.19) and (3.21) derives that

∫
∂U

(γuk1 − γuk2) (Dν ũk1 −Dν ũk2) dσ → 0 (a.1)

when k1, k2 →∞.

Actually, via the interior harmonic Steklov eigenvalues
{
δGj
}∞
j=0

and associated

eigenfunctions
{
sGj
}∞
j=0

over G, any sequence {gk}∞k=1 of functions in H
1
2 (∂U, dσ),

decaying to zero as k →∞ in the norm ||·||2,∂U , can be rephrased as

gk =
∞∑
j=0

〈
gk, γs

G
j

〉
2,∂U
· γsGj (a.2)

such that

||gk||2,∂U =

√√√√ ∞∑
j=0

∣∣∣〈gk, γsGj 〉2,∂U

∣∣∣2 → 0 (a.3)

as k →∞, and such that, for all k = 1, 2, . . .,

||gk||G,H
H

1
2 (∂U)

=

√√√√ ∞∑
j=0

(
1 + δGj

) ∣∣∣〈gk, γsGj 〉2,∂U

∣∣∣2 <∞. (a.4)

Moreover, noticing (9.2) and (10.2), for each k = 1, 2, . . ., let

υ̃k :=
∞∑
j=0

√
1 + δGj

〈
gk, γs

G
j

〉
2,∂U
· sGj (a.5)

be the unique interior harmonic extension of gk over G.
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We then have ||υ̃k||∂,G = ||gk||G,H
H

1
2 (∂U)

<∞ by (10.1) and (a.4).

In addition, on ∂U , one sees that

Dν υ̃k =
∞∑
j=0

〈
gk, γs

G
j

〉
2,∂U

δGj · γsGj , (a.6)

which together with (10.5) further implies that

||Dν υ̃k||G,H
H−

1
2 (∂U)

=

√√√√√ ∞∑
j=0

∣∣∣〈gk, γsGj 〉2,∂U
δGj

∣∣∣2
1 + δGj

≤ ||gk||G,H
H

1
2 (∂U)

<∞. (a.7)

Now, resorting to a subsequence if necessary, it follows that

∫
∂U

(γυ̃k) (Dν υ̃k) dσ =
∞∑
j=0

δΩ
j

∣∣∣〈gk, γsGj 〉2,∂U

∣∣∣2 → 0 (a.8)

when k →∞. This can be proved in exactly the same manner as those discussions

shown in between (7.8) and (7.10), since now we have
(
1 + δGj

) ∣∣∣〈gk, γsGj 〉2,∂U

∣∣∣2 → 0

via (a.3) and (a.4) when k →∞, for any fixed j = 0, 1, 2, . . ..

Note here, along with certain arguments in the preceding chapter, we actually

have proved that all sequences {gk}∞k=1 of functions in the space H
1
2 (∂U, dσ) are

Cauchy with respect to ||·||G,H
H

1
2 (∂U)

, if and only if they are Cauchy with respect to

||·||H
H

1
2 (∂U)

, and if and only if they are Cauchy with respect to ||·||2,∂U . Nevertheless,

the completeness of the space H
1
2 (∂U, dσ) is derived either from that of H1 (G)

or from that of E1 (U), but clearly not from that of L2 (∂U, dσ).
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