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CHAPTER 1

Introduction

Suspensions of particles in fluids appear in many applications of chemical, biologi-

cal, petroleum, and environmental areas. For the dynamics of rigid non-Brownian

particles suspended in viscoelastic fluids, peculiar phenomena of the particle motion

and pattern induced by fluid elasticity have been reviewed on theoretical predictions,

experimental observations and numerical simulations from the existing papers in [6]

In Newtonian fluid, plenty numerical and experimental results have been pub-

lished. Several topics are considered, such as the random displacements resulting
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from particle encounters under creeping-flow conditions and the rotation of a neu-

trally buoyant particle in simple shear flow. The displacements from particle en-

counters lead to hydrodynamically induced particle migration, which constitutes an

important mechanism for particle redistribution in the suspending fluid (see, e.g.,

[21] and the references therein). Binary encounters of particles is a phenomenon have

been found that two balls either pass each other or swapping their cross streamline

position.

But particle suspensions in viscoelastic fluids have different behaviors, e.g., strings

of spherical particles aligned in the flow direction (e.g., see [12, 16, 19, 14]) and 2D

crystalline patches of particles along the flow direction [15] in shear flow. As men-

tioned in [17], these flow-induced self-assembly phenomena have great potency for

creating ordered macroscopic structures by exploiting the complex rheological prop-

erties of the suspending fluid as driving forces, such as its shear-thinning and elas-

ticity. Furthermore, shear-thinning of the viscosity seems to be the key rheological

parameter that determines the overall nature of the hydrodynamical interactions,

rather than the relative magnitude of the normal stress differences. Same conclu-

sion about the role of shear-thinning on the aggregation of many particles has been

reported in [16, 19]. There are numerical studies of the two particle interaction

and aggregation in viscoelastic fluids(e.g., see [8, 3, 20]). Several non-Newtonian

fluid models in bounded shear flow have been considered, such as Oldroyd-B fluid,

Giesekus fluid.

For the encounter of two balls in a bounded shear flow, the trajectories of the

two ball mass centers are consistent with those obtained in [20]. We have further

2



tested the cases of two balls for the Weissenberg number up to 1 and obtained they

either pass, return, or tumble in a bounded shear flow with two moving wall. The

trajectories of the two ball mass centers lose the symmetry due to the effect of elastic

force arising from viscoelastic fluids for the higher values of the Weissenberg number.

For the interaction of the two balls in one wall driven shear flow, two balls form a

loosely connected chain if the initial gap between two balls is small enough and then

these two balls keep rotating with respect to the midpoint between their mass centers

and migrate toward the moving wall.

DLM/FD Method

To simulate the interaction of neutrally buoyant balls in 3D bounded shear flow of

Oldroyd-B fluids, we have generalized a distributed Lagrange multiplier/fictitious

domain method (DLM/FD) developed in [13] for simulating the motion of neutrally

buoyant particles in Stokes flows of Newtonian fluids from 2D to 3D and then com-

bined such method with the operator splitting scheme and matrix-factorization ap-

proach for treating numerically the constitutive equations of the conformation tensor

of Oldroyd-B fluids. In this matrix-factorization approach, which is the technique

close to the one developed by Lozinski and Owens in [11],

3



CHAPTER 2

3D DLM/FD methods for simulating the motion of spheres in

bounded shear flows of Newtonian fluids

2.1 Stokes Equations and Newtonian Model

Consider the Stokes equations in Ω × (0, T ) describing the 3-dimensional motion of

an incompressible and isothermal fluid without body force:

−∇ · σ = ρfg,

∇ · u = 0.
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2.2. DLM/FD METHOD FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

where σ = −pI + τ with presure p and stress tensor τ, u = (u1, u2, u3) is the flow

velocity, g is the gravity, and ρf is the density of fluid.

The constitutive equation of the stress tensor is given by

τ = 2µD(u)

where µ is the Newtonian viscosity of the fluid and D(u) is the symmetric rate of

strain tensor

D(u) =
∇u + (∇u)T

2
,

with the Jacobian of the velocity ∇u,

∇u =


∂u1

∂x

∂u1

∂y

∂u1

∂z
∂u2

∂x

∂u2

∂y

∂u2

∂z
∂u3

∂x

∂u3

∂y

∂u3

∂z



2.2 DLM/FD Method for Simulating Fluid-particle

Interaction in Stokes Flow

2.2.1 The Governing Equations

Let Ω be a bounded domain in R3 and let Γ be the boundary of Ω. We suppose that

Ω is filled with a viscous fluid with density ρf and contains N moving particles of

density ρs. Let B(t) =
N
∪
i=1
Bi(t) where Bi(t) is the i-th soild particle in the fluid for
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2.2. DLM/FD METHOD FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

i = 1, 2, · · · , N . We denote by γi(t) the boundary ∂Bi(t) of Bi(t) for i = 1, 2, · · · , N

and let γ(t) =
N
∪
i=1
γi(t).

For some T > 0, the governing equations for the fluid-particles system is as

follows:

For the motion of fluid, we consider the Stokes equations in Oldroyd-B model:

−∇ · σ = ρfg in Ω \B(t), t ∈ (0, T ), (2.2.1)

∇ · u = 0 in Ω \B(t), t ∈ (0, T ), (2.2.2)

u = g0 on Γ× (0, T ),with

∫
Γ

g0 · ndΓ = 0, (2.2.3)

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (2.2.4)

where u is the flow velocity, p is the presure, g is the gravity, σ = −pI + τs, τs =

2µfD(u) is a Newtonian stress tensor, ρf is the density of fluid and µf is the solvent

viscosity of the fluid, and n is the unit normal vector pointing outward to the flow

region.

In (2.2.4), we assume a no-slip condition on γ(t):

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N,

where Vi is the translation velocity, ωi is the angular velocity, Gi is the center of

mass and x is a point on the surface of the particle.

6



2.2. DLM/FD METHOD FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

In (2.2.1), we use σ = −pI + 2µfD(u) and obtain

∇p− 2µf∇ ·D(u) = ρfg. (2.2.5)

The motion of particle satisfies the Euler-Newton’s equations:

vi(x, t) = Vi(t) +ωi(t)×
−−−−→
Gi(t)x, ∀{x, t} ∈ Bi(t)× (0, T ), i = 1, 2, · · · , N, (2.2.6)

dGi

dt
= Vi, (2.2.7)

Mi
dVi

dt
= Mig + Fi + Fr

i , (2.2.8)

d(Iiωi)

dt
= Ti +

−−−→
Gixr × Fr

i , (2.2.9)

Gi(0) = G0
i , Vi(0) = V0

i , ωi(0) = ω0
i , (2.2.10)

for i = 1, 2, · · · , N , where Mi and Ii are the mass and the moment of inertia of

the i-th particle, respectively; Fi and Ti are the hydrodynamical force and torque

imposed on the i-th particle by the fluid, and Fr
i is a short range repulsion force

imposed on the i-th particle by other particles and wall to prevent particle/particle

and particle/wall penetration.

The hydrodynamical force Fi and torque Ti imposed on the i-th particle by the

fluid are given by

Fi = −
∫
γ

σn dγ, Ti = −
∫
γ

−−→
Gix× σn dγ.

7



2.3. VARIATIONAL FORMULATION

−−−→
Gixr×Fr

i is a torque acting on the point xr where Fr
i applies on the i-th particle.

2.3 Variational Formulation

For convenience of derivation, we assume there is only one particle in the fluid, that

is, we set B(t) the soild particle in the fluid, γ(t) the boundary ∂B(t) of B(t), G(t)

the center of mass of this particle. In the equations of the motion of particle, we

set V the translation velocity of the particle B(t), ω the angular velocity of the

particle B(t), Mp and Ip the mass and the moment of inertia of the particle B(t),

respectively; F and T the hydrodynamical force and torque imposed on the particle

B(t) by the fluid, respectively, and Fr a short range repulsion force imposed on the

particle B(t).

To obtain a variational formulation for above problem (2.2.5),(2.2.2)−(2.2.4), we

define the following function spaces

Wg0(t) =
{

v
∣∣∣v ∈ (H1(Ω \B(t)))3,v = g0(t) on Γ,v = V(t) + ω(t)×

−−−→
G(t)x on ∂B(t)

}
,

W0(t) =
{

(v,Y, θ)
∣∣∣v ∈ (H1(Ω \B(t)))3,v = 0 on Γ,v = Y + θ ×

−−−→
G(t)x on ∂B(t), with Y ∈ R3, θ ∈ R3

}
,

and

L2
0(Ω \B(t)) =

{
q

∣∣∣∣q ∈ L2(Ω \B(t)),

∫
Ω\B(t)

q dx = 0

}
.

Applying the virtual power principle to the system (2.2.5),(2.2.2)−(2.2.4) obtains

the following variational formulation:

8



2.3. VARIATIONAL FORMULATION

For a.e. t > 0, find u(t) ∈ Wg0(t), p(t) ∈ L2
0(Ω \ B(t)),V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, such that



−
∫

Ω\B(t)

p∇ · v dx + 2µf

∫
Ω\B(t)

D(u) : D(v) dx

+

(
Mp

dV

dt
−Mpg − Fr

)
·Y +

(
Ip

dω

dt
−
−−→
Gxr × Fr

)
· θ

= ρf

∫
Ω\B(t)

g · v dx, ∀(v,Y,θ) ∈W0(t),

(2.3.11)

∫
Ω\B(t)

q∇ · u dx = 0, ∀q ∈ L2(Ω \B(t)), (2.3.12)

dG

dt
= V, (2.3.13)

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (2.3.14)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (2.3.15)

To obtain an equivalent fictitious domain formulation, first we fill the particle

B(t) with a fluid of density ρf and suppose that this fluid follows the same rigid

body motion as B(t) itself, which is

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (2.3.16)

Define a function space

W̃0(t) =
{

(v,Y,θ)
∣∣∣(v|Ω\B(t),Y,θ) ∈W0(t),v(x, t) = Y + θ ×

−−−→
G(t)x ∀x ∈ B(t)

}
.

9



2.3. VARIATIONAL FORMULATION

Suppose particle B is made of an homogeneous material of density ρf which

follows

ρf

∫
B(t)

g · v dx =
ρf
ρs
Mpg ·Y, ∀(v,Y, θ) ∈ W̃0(t), (2.3.17)

∇ · v = 0 in B(t), ∀(v,Y, θ) ∈ W̃0(t), (2.3.18)

∇ · u = 0 in B(t) and D(u) = 0 in B(t). (2.3.19)

To obtain a fictitious domain formulation, we define the following function spaces

Vg0(t) =
{
v
∣∣v ∈ (H1(Ω))3,v = g0(t) on Γ

}
,

L2
0(Ω) =

{
q

∣∣∣∣q ∈ L2(Ω),

∫
Ω

q dx = 0

}
.

Combining (2.3.11)-(2.3.15) with (2.3.16)-(2.3.19), we obtain the fictitious domain

formulation as follows:

For a.e. t > 0, find find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx

+Mp
dV

dt
·Y + Ip

dω

dt
· θ − Fr ·Y −

−−→
Gxr × Fr · θ

= ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ W̃0(t),

(2.3.20)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (2.3.21)

10



2.3. VARIATIONAL FORMULATION

dG

dt
= V, (2.3.22)

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (2.3.23)

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (2.3.24)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (2.3.25)

To relax the rigid body motion condition (??), we introduce a Lagrange multiplier,

λ ∈ Λ(t) = (H1(B(t)))3, and for any µ ∈ (H1(B(t)))3 and v ∈ (H1(Ω))3:

〈µ,v〉Λ(t) =

∫
B(t)

(µ · v +∇µ · ∇v) dx.

We obtain the fictitious domain formulation with Lagrange multiplier as follows:

For a.e. t > 0, find find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, λ ∈ Λ(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx +Mp
dV

dt
·Y + Ip

dω

dt
· θ

−Fr ·Y −
−−→
Gxr × Fr · θ −

〈
λ,v −Y − θ ×

−→
Gx
〉

Λ(t)

= ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ (H1
0 (Ω))3 × R3 × R3,

(2.3.26)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (2.3.27)

dG

dt
= V, (2.3.28)

11



2.4. FINITE ELEMENT APPROXIMATION AND OPERATOR SPLITTING
SCHEME

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (2.3.29)〈
µ,u(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λ(t)

= 0, ∀µ ∈ Λ(t), (2.3.30)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x). (2.3.31)

Since u is divergence free and satisfies the Dirichlet boundary conditions on Γ,

we obtain

2

∫
Ω

D(u) : D(v) dx =

∫
Ω

∇u : ∇v dx, ∀v ∈ (H1
0 (Ω))3.

2.4 Finite Element approximation and Operator

Splitting scheme

2.4.1 Finite Element approximation

For the purpose of finding an approximation solution of problem (2.3.26)-(2.3.31),

we need a partition of the flow region Ω ∈ R3 . We use an uniform finite element

mesh for Ω and let h be the uniform finite element mesh size for the velocity field,

T h be a tetrahedrization of Ω, and T 2h be twice coarser than T h.

For space discretization, we have chosen P1-iso-P2 finite elements for the velocity

field and P1 finite elements for the pressure where Pi is the space of the polynomials

in three variables of degree ≤ i for i = 1, 2.

12



2.4. FINITE ELEMENT APPROXIMATION AND OPERATOR SPLITTING
SCHEME

Then we define the following function spaces:

Vh =
{

vh

∣∣∣vh ∈ (C0(Ω̄)
)3
,vh

∣∣
T ∈ (P1)3 ,∀T ∈ T h

}
,

Vg0h(t) = {vh |vh ∈ Vh,vh |Γ = g0h(t) } ,

V0h = {vh |vh ∈ Vh,vh |Γ = 0 } ,

L2
h =

{
qh
∣∣qh ∈ C0(Ω̄), qh |T ∈ P1, ∀T ∈ T 2h

}
,

and

L2
0h =

{
qh

∣∣∣∣qh ∈ L2
h,

∫
Ω

qh dx = 0

}
,

where g0h(t) is an approximation of gh(t) satisfying

∫
Γ

g0h(t) · ndΓ = 0,

and

Γ−h = {x |x ∈ Γ,g0h(x, t) · n(x) < 0} .

For the space of Lagrange multipier Λ(t), we need to define a finite dimensional

space to approach Λ(t). Let {ξi}Ni=1 be a set of points from B(t) which cover B(t)

evenly. We define the discrete Lagrange multiplier space by

Λh(t) =

{
µh

∣∣∣∣∣µh =
N∑
i=1

µiδ(x− ξi), µi ∈ R3,∀i = 1, · · · , N

}
,

where x → δ(x − ξi) is the Dirac measure at x = ξi. For different approaches,
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2.4. FINITE ELEMENT APPROXIMATION AND OPERATOR SPLITTING
SCHEME

there are two different definitions of discretize scalar pairung < ·, · >Λh(t). We will

introduce these two scalar pairings in next section.

Baesd on the finite dimensional spaces above, we obtain the following approxi-

mation of problem (2.3.26)- (2.3.31) :

For a.e. t > 0, find find uh(t) ∈ Vg0h
(t), p(t) ∈ L2

0h, V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, λh ∈ Λh(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

∇uh : ∇v dx

+Mp
dV

dt
·Y + Ip

dω

dt
· θ − Fr ·Y −

−−→
Gxr × Fr · θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λh,v −Y − θ ×

−→
Gx
〉

Λh(t)
,

∀(v,Y,θ) ∈ V0h × R3 × R3,

(2.4.32)

∫
Ω

q∇ · uh dx = 0, ∀q ∈ L2
h, (2.4.33)

dG

dt
= V, (2.4.34)

uh(x, 0) = u0h(x), ∀x ∈ Ω \Bh(0), (2.4.35)〈
µh,uh(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λh(t)

= 0, ∀µh ∈ Λh(t), (2.4.36)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (2.4.37)
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where u0h is an approximation of u0 such that

∫
Ω

q∇ · u0hdx = 0, ∀q ∈ L2
h.

2.4.2 Collocation Boundary Method and Immersed Bound-

ary Method

When we deal with the boundary of the particle B(t), there are several methods

have been considered for discretization. Here we introduce two of them, which are

collocation boundary method and immersed boundary method.

For collocation boundary method, we define the scalar pairing < ·, · >Λh(t) as

follows:

〈µh,vh〉Λh(t) =
N∑
i=1

µi · vh(xi), ∀µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h,

By using the above scalar pairing < ·, · >Bh(t), the rigid body motion of particle

B(t) is forced via a collocation boundary method.

For immersed boundary method, we define the scalar pairing < ·, · >Λh(t) as

follows:

〈µh,vh〉Λh(t) =
N∑
i=1

M∑
j=1

µi · vh(xj)Dh(xj − ξi)h3, ∀µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h,

where {xj}Mj=1 are the grid points of the finite elements for the velocity, and the

15
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function Dh(X− ξi) is defined as

Dh(X− ξi) = δh(X1 − ξi1)δh(X2 − ξi2)δh(X3 − ξi3)

with X = (X1, X2, X3) and ξi = (ξi1, ξi2, ξi3), and the one-dimensional discrete δh

defined by

δh(z) =



1

8h

3− 2|z|
h

+

√
1 +

4|z|
h
− 4

(
|z|
h

)2
 , |z| ≤ h,

1

8h

5− 2|z|
h
−

√
−7 +

12|z|
h
− 4

(
|z|
h

)2
 , h ≤ |z| ≤ 2h,

0, otherwise.

By using the above scalar pairing < ·, · >Λh(t), the rigid body motion of particle B(t)

is forced via an immersed boundary method.

2.4.3 Operator Splitting scheme

Applying the Lie’s scheme to the discrete analogue of the problem (2.3.26)-(2.4.37)

and backward Euler’s method, we obtain:

Given u0 = u0h,G
0 = G0,V

0 = V0,ω
0 = ω0. For n ≥ 0, un,Gn,Vn,ωn are

known, we predict the position and the translation velocity of the center of mass as

follows.

dG

dt
= V(t), (2.4.38)
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Mp
dV

dt
= 0, (2.4.39)

Ip
dω

dt
= 0, (2.4.40)

V(tn) = Vn,ω(tn) = ωn,G(tn) = Gn, (2.4.41)

for tn < t < tn+1. Then set Vn+ 1
2 = V(tn+1), ωn+ 1

2 = ω(tn+1), and Gn+ 1
2 = G(tn+1).

and we get B
n+ 1

2
h based on the center of particle Gn+ 1

2 and take ωn+ 1
2 = ωn.

Then we enforce the rigid body motion in B
n+ 1

2
h and solve un+1 and pn+1 simul-

taneously as follows:

Find un+1 ∈ Vn+1
g0h

, pn+1 ∈ L2
0h, λ

n+1 ∈ Λn+1
h , Vn+1 ∈ R3, ωn+1 ∈ R3 such that



−
∫

Ω

pn+1∇ · v dx + 2µf

∫
Ω

∇un+1 : ∇v dx

+Mp
Vn+1 −Vn+ 1

2

∆t
·Y + Ip

ωn+1 − ωn+ 1
2

∆t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+1,v −Y − θ ×

−−−−→
Gn+ 1

2 x

〉
Λn+1
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(2.4.42)

∫
Ω

q∇ · un+1 dx = 0, ∀q ∈ L2
h, (2.4.43)

〈
µ,un+1 −Vn+1 − ωn+1 ×

−−−−→
Gn+ 1

2 x

〉
Λn+1
h

= 0, ∀µ ∈ Λ
n+ 1

2
h . (2.4.44)

Finally we set Gn+1 = Gn+ 1
2 .

In the above, Vn+1
g0h

= Vg0h(tn+1), Λn+1
h = Λh(t

n+1), and Bn+s
h = Bh(t

n+s).
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2.5 On the solution of the subproblems from op-

erator splitting

2.5.1 Solution of the rigid body motion enforcement prob-

lems

In system (2.4.42)-(2.4.44), there are two multipliers. p and λ. We have solved this

system via an Uzawa-conjugate gradient method driven by both multipliers. The

general problem is as follows:

Find u ∈ Vg0h
, p ∈ L2

0h, λ ∈ Λh, V ∈ R3, ω ∈ R3 such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇u : ∇v dx +Mp
V −V0

4t
·Y + Ip

ω − ω0

4t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λ,v −Y − θ ×

−→
Gx
〉

Λh

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(2.5.45)∫
Ω

q∇ · u dx = 0, ∀q ∈ L2
h, (2.5.46)〈

µ,u−V − ω ×
−→
Gx
〉

Λh

= 0, ∀µ ∈ Λh. (2.5.47)

Applying the following Uzawa-conjugate gradient algorithm operating in the

space L2
0h × Λh to solve the sysyem (2.5.45)-(2.5.47):

Assume p0 ∈ L2
0h and λ0 ∈ Λh are given.

We solve the problem:
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Find u0 ∈ Vg0h
, V0 ∈ R3, ω0 ∈ R3 satisfying


µf

∫
Ω

∇u0 : ∇v dx =

∫
Ω

p∇ · v dx +
〈
λ0,v

〉
Λh
,

∀ v ∈ V0h; u
0 ∈ Vg0h

,

(2.5.48)

Mp
V0 −V0

4t
·Y =

(
1− ρf

ρs

)
Mpg ·Y −

〈
λ0,Y

〉
Λh
, ∀ Y ∈ R3, (2.5.49)

Ip
ω0 − ω0

4t
· θ = −

〈
λ0,θ ×

−→
Gx
〉

Λh

, ∀ θ ∈ R3, (2.5.50)

and then compute

g0
1 = ∇ · u0; (2.5.51)

next find g0
2 ∈ Λh satisfying

〈
µ,g0

2

〉
Λh

=
〈
µ,u0 −V0 − ω0 ×

−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (2.5.52)

and set

w0
1 = g0

1, w0
2 = g0

2. (2.5.53)

Then for k ≥ 0, assuming that pk, λk, uk, Vk, ωk, gk
1, gk2, wk

1 and wk
2 are known,

compute pk+1, λk+1, uk+1, Vk+1, ωk+1, gk+1
1 , gk+1

2 , w1
k+1 and wk+1

2 as follows:


µf

∫
Ω

∇uk : ∇v dx =

∫
Ω

wk
1∇ · v dx +

〈
wk

2 ,v
〉

Λh
,

∀ v ∈ V0h; u
k ∈ Vg0h

,

(2.5.54)
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Mp
V
k

4t
·Y = −

〈
wk

2 ,Y
〉

Λh
, ∀ Y ∈ R3, (2.5.55)

Ip
ωk

4t
· θ = −

〈
wk

2 ,θ ×
−→
Gx
〉

Λh

, ∀ θ ∈ R3, (2.5.56)

and then compute

gk
1 = ∇ · uk; (2.5.57)

next find gk2 ∈ Λh satisfying

〈
µ,gk2

〉
Λh

=
〈
µ,uk −V

k − ωk ×
−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (2.5.58)

and compute

ρk =

∫
Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh∫

Ω

gk1wk
1dx +

〈
gk2,w

k
2

〉
Λh

, (2.5.59)

and

pk+1 = pk − ρkw1
k, (2.5.60)

λk+1 = λk − ρkwk
2 , (2.5.61)

uk+1 = uk − ρkuk, (2.5.62)

Vk+1 = Vk − ρkV
k
, (2.5.63)

ωk+1 = ωk − ρkωk, (2.5.64)

gk+1
1 = gk1 − ρkgk1, (2.5.65)

gk+1
2 = gk2 − ρkgk2. (2.5.66)
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If ∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣g0
1

∣∣2 dx +
〈
g0

2,g
0
2

〉
Λh

≤ ε, (2.5.67)

then take p = pk+1, λ = λk+1, u = uk+1, V = Vk+1, and ω = ωk+1. Otherwise,

compute

γk =

∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh

, (2.5.68)

and set

wk+1
1 = gk+1

1 + γkw1
k, (2.5.69)

wk+1
2 = gk+1

2 + γkw
k
2 . (2.5.70)

Then do m = m+ 1 and go back to (2.5.54).

2.6 Numerical results

2.6.1 Rotation of a single particle

We have first considered the cases of a single neutrally buoyant ball in a bounded

shear flow of a Newtonian fluid. The ball is placed at the middle between two walls

initially, and it remains there in simulation even though it can move freely in fluid.

The computational domain is Ω = (−1, 1)× (−1, 1)× (−H/2, H/2) (i.e., L1 = 2 and

L2 = 2) for different values of the height H. The ball radius is a = 0.15 and its mass

center is located at (0,0,0) initially. The blockage ratio is defined by K = 2a/H.
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The shear rate γ̇ = 1 so the velocity of the top wall is U = H/2 and that of the

bottom wall is −U = −H/2. The fluid and particle densities are ρf = ρs = 1, the

fluid viscosity being µ = 1. The mesh sizes for the velocity field is h = 1/48 or 1/64

and the mesh size for the pressure is 2h, the time step being ∆t = 0.001. For all

the numerical simulations considered in this section, we assume that all dimensional

quantities are in the CGS units.
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K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω
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h = 1/64

Under creeping conditions, the rotating velocity of the ball with respect to the

x2-axis (see Fig. ??) is γ̇/2 = 0.5 in an unbounded shear flow of a Newtonian fluid,

according to the associated Jeffery’s solution [10]. In Fig. ??, the ball rotating
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velocities have been shown for different values of the blockage ratio. Our numerical

results are in a good agreement with the Jeffery’s solution for most values of the

blockage ratio; but we can observe the wall influence on the rotating velocity for the

largest value of the blockage ratio, K = 0.3, in Fig. ??.

2.6.2 Sedimentation of a single particle

In this section we have considered the terminal speed of sedimentary single particle in

a vertical channel of infinitie length fillled with a Newtonian fluid. The computational

domain is Ω = (−1, 1) × (−1, 1) × (−1, 1). The ball radius is a = 0.1 and its mass

center is located at (0,0,0) initially. The fluid and particle densities are ρf = 1,ρs =

1.5, the fluid viscosity being µ = 1. The mesh sizes for the velocity field is h = 1/48,

1/64, or 1/80 and the mesh size for the pressure is 2h, the time step being ∆t = 0.001.

We can valid the numerical results with the theoretical solution in [?, 7]. The formula

of the theoretical solution of terminal speed V of sedimentary single particle is

V =
2

9

ρs − ρf
µ

ga2 (2.6.71)

where g is the gravity. So the theoretical solution in our case is −1.0896.
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Mesh

Size H

Terminal Speed

Collocation Boundary

Method

Immersed Boundary

Method

1/48 -1.0147 -0.9495

1/64 -1.0558 -0.9919

1/80 -1.0662 -1.0151

Table 2.6.1
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2.6.3 Two balls interaction in an one wall-driven bounded

shear flow
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3.1. SEVERAL MODELS OF NON-NEWTONIAN FLUID

CHAPTER 3

3D DLM/FD methods for simulating the motion of spheres in

bounded shear flows of Oldroyd-B fluids

3.1 Several Models of Non-Newtonian Fluid

3.1.1 Stokes Equations

Consider the Stokes equations in Ω × (0, T ) describing the 3-dimensional motion of

an incompressible and isothermal fluid without body force:

−∇ · σ = ρfg,

∇ · u = 0.
28
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where σ = −pI + τ with presure p and stress tensor τ, u = (u1, u2, u3) is the flow

velocity, g is the gravity, and ρf is the density of fluid.

3.1.2 Newtonian Model

The constitutive equation of the stress tensor is given by

τ = 2µD(u)

where µ is the solvent viscosity of the fluid and D(u) is the symmetric rate of strain

tensor

2D(u) = ∇u + (∇u)t,

with the Jacobian of the velocity ∇u.

3.1.3 The UCM-model

In the UCM-model, we use the following constitutive equation to describe the vis-

coelastic stress tensor τE:

λ1
∇
τE + τE = 2ηD(u).

Here
∇
τE is called the upper-convected time derivative of τE and is defined by

∇
τE =

∂τE
∂t

+ (u · ∇)τE − τE · (∇u)t − (∇u) · τE,

where λ1 is the relaxation time of the fluid, and η is the elastic viscosity of the fluid.
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So we have the constitutive equation

∂τE
∂t

+ (u · ∇)τE − τE · (∇u)t − (∇u) · τE +
1

λ1

τE =
2η

λ1

D(u).

3.1.4 The Oldroyd-B model

In the more general Oldroyd-B model, the stress tensor τ is composed of a Newtonian

component τs and a viscoelastic component τE,

τ = τs + τE,

and τs is governed by a Newtonian consitutive equation τs = 2µD(u).

Thus, the Oldroyd-B model can be seen as a linear interpolation of the UCM and

the Newtonian model: 
−∇ · σ = ρfg,

∇ · u = 0,

λ1
∇
τE + τE = 2ηD(u),

where σ = −pI + τs + τE.

Using σ = −pI + 2µD(u) + τE, we obtain

∇p− 2µ∇ ·D(u)−∇ · τE = ρfg.

Remark 3.1. Using the definition of conformation tenser C =
λ1

η
τE + I, we obtain
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the Oldroyd-B model in terms of C:


∇p− 2µ∇ ·D(u)− η

λ1

∇ · (C− I) = ρfg,

∇ · u = 0,

∂C

∂t
+ (u · ∇)C− (∇u) ·C−C · (∇u)t +

1

λ1

C =
1

λ1

I,

where λ1 is the relaxation time of the fluid, η is the elastic viscosity of the fluid, and

I is the identity matrix. Here the conformation tensor C is symmetric and positive

definite.

3.1.5 The Carreau model

We also consider the non-Newtonian fluid with shear thinning. In pure Oldroyd-B

Model, the viscosity of fluid η1 is a constant on the given domain and we define the

elastic viscosity of the fluid η to be

η = η1

(
1− λ2

λ1

)

where λ1 is relaxation time and λ2 is retardation time.

To consider the shear thinning in Oldroyd-B model, we use Carreau model to

simulate it. Under Carreau model, the viscosity of fluid η1(
·
γe) depends on the fluid

velocity. We define η1(
·
γe) to be

η1(
·
γe) =

η1(
1 + (λ1

·
γe)2

) 1−n
2

(3.1.1)
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where η1 is the fluid viscosity without shear thinning,
·
γe =

√
2D(u) : D(u) and n is

a number less than 1.

3.2 DLM/FD method for simulating fluid-particle

interaction in stokes flow

3.2.1 The governing equations

Let Ω be a bounded domain in R3 and let Γ be the boundary of Ω. We suppose that

Ω is filled with a viscoelasic fluid of Oldroyd-B type with density ρf and contains

N moving particles of density ρs. Let B(t) =
N
∪
i=1
Bi(t) where Bi(t) is the i-th solid

particle in the fluid for i = 1, 2, · · · , N . We denote by γi(t) the boundary ∂Bi(t) of

Bi(t) for i = 1, 2, · · · , N and let γ(t) =
N
∪
i=1
γi(t).

For some T > 0, the governing equations for the fluid-particles system is as

follows:

For the motion of fluid, we consider the Stokes equations in Oldroyd-B model

∇p− 2µ∇ ·D(u)− η

λ1

∇ · (C− I) = ρfg in Ω \B(t), t ∈ (0, T ), (3.2.2)

∇ · u = 0 in Ω \B(t), t ∈ (0, T ), (3.2.3)

u = g0 on Γ× (0, T ),with

∫
Γ

g0 · ndΓ = 0, (3.2.4)

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (3.2.5)
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∂C

∂t
+(u ·∇)C− (∇u) ·C−C · (∇u)t+

1

λ1

C =
1

λ1

I in Ω\B(t), t ∈ (0, T ), (3.2.6)

C(x, 0) = C0(x), x ∈ Ω \B(0), (3.2.7)

C = CL on Γ−, (3.2.8)

where n is the unit normal vector pointing outward to the flow region.

In (3.2.5), we assume a no-slip condition on the boundary of particles γ(t)

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N,

where Vi is the translation velocity, ωi is the angular velocity, Gi is the center of

mass and x is a point on the surface of the particle.

The motion of particle satisfies the Euler-Newton’s equations

vi(x, t) = Vi(t) +ωi(t)×
−−−−→
Gi(t)x, ∀{x, t} ∈ Bi(t)× (0, T ), i = 1, 2, · · · , N, (3.2.9)

dGi

dt
= Vi, (3.2.10)

Mi
dVi

dt
= Mig + Fi + Fr

i , (3.2.11)

d(Iiωi)

dt
= Ti +

−−−→
Gixr × Fr

i , (3.2.12)

Gi(0) = G0
i , Vi(0) = V0

i , ωi(0) = ω0
i , (3.2.13)

for i = 1, 2, · · · , N , where Mi and Ii are the mass and the moment of inertia of

the i-th particle, respectively; Fi and Ti are the hydrodynamical force and torque
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imposed on the i-th particle by the fluid, and Fr
i is a short range repulsion force

imposed on the i-th particle by other particles and wall to prevent particle/particle

and particle/wall penetration.

The hydrodynamical force Fi and torque Ti imposed on the i-th particle by the

fluid are given by

Fi = −
∫
γ

σn dγ, Ti = −
∫
γ

−−→
Gix× σn dγ. (3.2.14)

−−−→
Gixr×Fr

i is a torque acting on the point xr where Fr
i applies on the i-th particle.

3.2.2 DLM/FD formulation

To obtain a distributed Lagrange multiplier/ fictitious domain formulation for the

above problem (3.2.2) − (3.2.14), we have the following three steps, namely: (i) we

derive a global variational formulation of the virtual power type of problem (3.2.2)−

(3.2.14), (ii) we then extend the fluid motion into the region of particles with rigid

body motion constraint, and then (iii) we relax that constraint by using a distributed

lagrange multiplier.

For convenience of derivation, we assume there is only one particle in the fluid,

that is, we set B(t) the solid particle in the fluid, γ(t) the boundary ∂B(t) of B(t),

G(t) the center of mass of this particle. In the equations of the motion of particle,

we set V the translation velocity of the particle B(t), ω the angular velocity of the

particle B(t), Mp and Ip the mass and the moment of inertia of the particle B(t),
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respectively; F and T the hydrodynamical force and torque imposed on the particle

B(t) by the fluid, respectively, and Fr a short range repulsion force imposed on the

particle B(t).

To obtain a variational formulation for above problem (3.2.2)− (3.2.8), we define

the following function spaces

Wg0(t) =
{

v
∣∣∣v ∈ (H1(Ω \B(t)))3,v = g0(t) on Γ,v = V(t) + ω(t)×

−−−→
G(t)x on ∂B(t)

}
,

W0(t) =
{

(v,Y,θ)
∣∣∣v ∈ (H1(Ω \B(t)))3,v = 0 on Γ,v = Y + θ ×

−−−→
G(t)x on ∂B(t), with Y ∈ R3,θ ∈ R3

}
,

L2
0(Ω \B(t)) =

{
q

∣∣∣∣q ∈ L2(Ω \B(t)),

∫
Ω\B(t)

q dx = 0

}
,

and

W(Ω \B(t)) =
{

A
∣∣∣A = [aij] ∈M3×3, aij ∈ H1(Ω \B(t)), i, j = 1, 2, 3

}
,

WCL
(Ω \B(t)) =

{
A
∣∣∣A ∈W(Ω \B(t)),A = CL(t) on Γ−

}
.

Applying the virtual power principle to the system (3.2.2) − (3.2.8) obtains the

following variational formulation:

For a.e. t ∈ (0, T ), find u(t) ∈Wg0(t), p(t) ∈ L2
0(Ω \ B(t)), C(t) ∈WCL

,V(t) ∈
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R3, G(t) ∈ R3, ω(t) ∈ R3, such that



−
∫

Ω\B(t)

p∇ · vdx + 2µf

∫
Ω\B(t)

D(u) : D(v)dx

− η

λ1

∫
Ω\B(t)

v · (∇ · (C− I))dx +

(
Mp

dV

dt
−Mpg − Fr

)
·Y

+

(
d (Ipω)

dt
−
−−→
Gxr × Fr

)
· θ = ρf

∫
Ω\B(t)

g · v dx ∀(v,Y,θ) ∈W0(t),

(3.2.15)∫
Ω\B(t)

q∇ · u dx = 0, ∀q ∈ L2(Ω \B(t)), (3.2.16)


∫

Ω\B(t)

(
∂C

∂t
+ (u · ∇)C− (∇u) ·C−C · (∇u)t +

1

λ1

C

)
: s dx =

1

λ1

∫
Ω\B(t)

I : s dx,

∀s ∈W,

(3.2.17)

dG

dt
= V, (3.2.18)

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (3.2.19)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.2.20)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (3.2.21)

To obtain an equivalent fictitious domain formulation, first we fill B with a fluid of

density ρf and suppose that this fluid follows the same rigid body motion as B itself,

which is

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (3.2.22)
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Define a function space

W̃0(t) =
{

(v,Y,θ)
∣∣∣(v|Ω\B(t),Y,θ) ∈W0(t),v(x, t) = Y + θ ×

−−−→
G(t)x ∀x ∈ B(t)

}
.

Suppose particle B is made of an homogeneous material of density ρf which follows

ρf

∫
B(t)

g · v dx =
ρf
ρs
Mpg ·Y, ∀(v,Y,θ) ∈ W̃0(t), (3.2.23)

∇ · v = 0 in B(t), ∀(v,Y,θ) ∈ W̃0(t), (3.2.24)

∇ · u = 0 in B(t) and D(u) = 0 in B(t). (3.2.25)

To obtain a fictitious domain formulation, we define the following function spaces

Vg0(t) =
{
v
∣∣v ∈ (H1(Ω))3,v = g0(t) on Γ

}
,

L2
0(Ω) =

{
q

∣∣∣∣q ∈ L2(Ω),

∫
Ω

q dx = 0

}
,

and

VCL
(Ω) =

{
A
∣∣A ∈W(Ω),A = CL(t) on Γ−

}
,

VC0(Ω) =
{
A
∣∣A ∈W(Ω),A = 0 on Γ−

}
.

Combining (3.2.15)-(3.2.21) with (3.2.22)-(3.2.25), we obtain the fictitious domain

formulation as follows:

For a.e. t ∈ (0, T ), find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), C(t) ∈ VCL

,V(t) ∈ R3,
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G(t) ∈ R3, ω(t) ∈ R3, such that (p = 0, D(u) = 0, C = I, ∇ · u = 0 in B(t) )



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx

− η

λ1

∫
Ω

v · (∇ · (C− I)) dx +Mp
dV

dt
·Y +

d (Ipω)

dt
· θ

−Fr ·Y −
−−→
Gxr × Fr · θ = ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ W̃0(t),

(3.2.26)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (3.2.27)


∫

Ω

(
∂C

∂t
+ (u · ∇)C− (∇u) ·C−C · (∇u)t +

1

λ1

C

)
: s dx =

1

λ1

∫
Ω

I : s dx,

∀s ∈ VC0 ,C = I inB(t),

(3.2.28)

dG

dt
= V, (3.2.29)

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (3.2.30)

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (3.2.31)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.2.32)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (3.2.33)

To relax the rigid body motion condition (3.2.30), we introduce a Lagrange mul-

tiplier, λ ∈ Λ(t) = (H1(B(t)))3, and for any µ ∈ (H1(B(t)))3 and v ∈ (H1(Ω))3
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such that

〈µ,v〉Λ(t) =

∫
B(t)

(
µ · v +

1

d2
∇µ : ∇v

)
dx,

where d is a scaling constant and, typically, has been used as the diameter of the

particles.

Then we obtain the fictitious domain formulation over the entire region Ω as

follows:

For a.e. t ∈ (0, T ), find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), C(t) ∈ VCL

,V(t) ∈ R3,

G(t) ∈ R3, ω(t) ∈ R3, λ(t) ∈ Λ(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx− η

λ1

∫
Ω

v · (∇ · (C− I)) dx

+Mp
dV

dt
·Y +

d (Ipω)

dt
· θ − Fr ·Y −

−−→
Gxr × Fr · θ

−
〈
λ,v −Y − θ ×

−→
Gx
〉

Λ(t)
= ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ (H1
0 (Ω))3 × R3 × R3,

(3.2.34)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (3.2.35)


∫

Ω

(
∂C

∂t
+ (u · ∇)C− (∇u) ·C−C · (∇u)t +

1

λ1

C

)
: s dx =

1

λ1

∫
Ω

I : s dx,

∀s ∈ VC0 ,C = I inB(t),

(3.2.36)

dG

dt
= V, (3.2.37)

u(x, 0) = u0(x), ∀x ∈ Ω \B(0), (3.2.38)
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〈
µ,u(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λ(t)

= 0, ∀µ ∈ Λ(t), (3.2.39)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.2.40)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x). (3.2.41)

Remark 3.2. Since u is divergence free and satisfies the Dirichlet boundary condi-

tions on Γ, we obtain

2

∫
Ω

D(u) : D(v) dx =

∫
Ω

∇u : ∇v dx, ∀v ∈ (H1
0 (Ω))3.

So in relation (3.2.34) we can replace 2

∫
Ω

D(u) : D(v) dx by

∫
Ω

∇u : ∇v dx. Also

the gravity g in (3.2.34) can be absorbed into the presure term.

3.3 Numerical methods

3.3.1 Finite element approximation

For the purpose of finding an approximation solution of problem (3.2.34)-(3.2.41),

we need a partition of the flow region Ω ∈ R3 . We use an uniform finite element

mesh for Ω and let h be the uniform finite element mesh size for the velocity field,

T h be a tetrahedrization of Ω, and T 2h be twice coarser than T h.

For the space discretization, let Pi be the space of the polynomials in three

variables of degree ≤ i, we have chosen P1-iso-P2 finite element space for the velocity

field and conformation tensor and P1 finite elementspace for the pressure. Then we
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have the following function spaces:

Vh =
{

vh

∣∣∣vh ∈ (C0(Ω̄)
)3
,vh

∣∣
T ∈ (P1)3 ,∀T ∈ T h

}
,

Vg0h(t) = {vh |vh ∈ Vh,vh |Γ = g0h(t) } ,

V0h = {vh |vh ∈ Vh,vh |Γ = 0 } ,

L2
h =

{
qh
∣∣qh ∈ C0(Ω̄), qh |T ∈ P1, ∀T ∈ T 2h

}
,

L2
0h =

{
qh

∣∣∣∣qh ∈ L2
h,

∫
Ω

qh dx = 0

}
,

VCLh
=
{

sh

∣∣∣sh ∈ (C0(Ω̄)
)3×3

, sh

∣∣∣T ∈ (P1)3×3,∀T ∈ T h, sh
∣∣∣Γ−

h
= CLh(t)

}
,

and

VC0h
=
{

sh

∣∣∣sh ∈ (C0(Ω̄)
)3×3

, sh

∣∣∣T ∈ (P1)3×3,∀T ∈ T h, sh
∣∣∣Γ−

h
= 0

}
,

where g0h(t) is an approximation of g0(t) satisfying

∫
Γ

g0h(t) · ndΓ = 0,

and

Γ−h = {x |x ∈ Γ,g0h(x, t) · n(x) < 0} .

For simulating the particle motion in fluid flow, we need to define a finite dimensional

space to approach the space of Lagrange multipier Λ(t). Let {ξi}N(t)
i=1 be a set of points

from B(t) which cover B(t) evenly. We define the discrete Lagrange multiplier space

41



3.3. NUMERICAL METHODS

by

Λh(t) =

µh
∣∣∣∣∣∣µh =

N(t)∑
i=1

µiδ(x− ξi),µi ∈ R3,∀i = 1, · · · , N(t)

 ,

where x→ δ(x− ξi) is the Dirac measure at x = ξi. Then we define a pairing over

Λh(t)×Vg0h(t) (or Λh(t)×Vg0) by

〈µh,vh〉Λh(t) =
N∑
i=1

µi · vh(ξi), (3.3.42)

for µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h. A typical set {ξi}N(t)
i=1 of points from B(t) to be

used in (3.3.42) is defined as

{ξi}N(t)
i=1 = {ξi}N1(t)

i=1

⋃
{ξi}N(t)

i=N1(t)+1,

where {ξi}N1(t)
i=1 is the set of those vertices of the velocity grid T h contained in B(t)

and the distance between those vertices and the boundary ∂B(t) is greater than or

equal to h
2
, and selected points {ξi}N(t)

i=N1(t)+1 from ∂B(t). For simulating particle

interactions in Stokes flow, we define a modified pairing < ·, · >Λh(t) as follows:

〈µh,vh〉Λh(t) =

N1(t)∑
i=1

µi · vh(ξi) +

N(t)∑
i=N1(t)+1

M∑
j=1

µi · vh(ξi)Dh(ξi − xj)h
3, (3.3.43)

for µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h where {xj}Mj=1 are the grid points of the finite

elements for the velocity, and the function Dh(X− ξi) is defined as

Dh(X− ξi) = δh(X1 − ξi1)δh(X2 − ξi2)δh(X3 − ξi3),
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with X = (X1, X2, X3)t and ξi = (ξi1, ξi2, ξi3)t, and the one-dimensional approximate

Dirac measure δh being defined by

δh(z) =



1

8h

3− 2|z|
h

+

√
1 +

4|z|
h
− 4

(
|z|
h

)2
 , |z| ≤ h,

1

8h

5− 2|z|
h
−

√
−7 +

12|z|
h
− 4

(
|z|
h

)2
 , h ≤ |z| ≤ 2h,

0, otherwise.

By using the above pairing < ·, · >Λh(t), the rigid body motion of particle B(t) is

forced via an immersed boundary method develped by Peskin.

Based on the finite dimensional spaces above, we obtain the following approxi-

mation of problem (3.2.34)- (3.2.41) :

For a.e. t ∈ (0, T ), find uh(t) ∈ Vg0h
(t), p(t) ∈ L2

0h, Ch(t) ∈ VCLh
(t),V(t) ∈ R3,

G(t) ∈ R3, ω(t) ∈ R3, λh ∈ Λh(t) such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇uh : ∇v dx− η

λ1

∫
Ω

v · (∇ · (Ch − I)) dx +Mp
dV

dt
·Y +

d (Ipω)

dt
· θ

−Fr ·Y −
−−→
Gxr × Fr · θ =

(
1− ρf

ρs

)
Mpg ·Y +

〈
λh,v −Y − θ ×

−→
Gx
〉

Λh(t)
,

∀(v,Y,θ) ∈ V0h × R3 × R3,

(3.3.44)∫
Ω

q∇ · uh dx = 0, ∀q ∈ L2
h, (3.3.45)
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
∫

Ω

(
∂Ch

∂t
+ (uh · ∇)Ch − (∇uh) ·Ch −Ch · (∇uh)

t +
1

λ1

Ch

)
: sh dx =

1

λ1

∫
Ω

I : sh dx,

∀sh ∈ VC0h
,Ch = I in Bh(t),

(3.3.46)

dG

dt
= V, (3.3.47)

uh(x, 0) = u0h(x), ∀x ∈ Ω \Bh(0), (3.3.48)〈
µh,uh(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λh(t)

= 0, ∀µh ∈ Λh(t), (3.3.49)

Ch(x, 0) = C0h(x), ∀x ∈ Ω, (3.3.50)

G(x, 0) = G0(x), V(x, 0) = V0(x), ω(x, 0) = ω0(x), (3.3.51)

where u0h is an approximation of u0 such that

∫
Ω

q∇ · u0hdx = 0, ∀q ∈ L2
h.

Remark 3.3. If we consider our particle as a sphere, the moment of inertia Ip is

a constant with respect to time t. Then in relation (3.3.44) the term
d (Ipω)

dt
can be

rewriten as Ip
dω

dt
.

3.3.2 Operator splitting scheme

Consider the following initial value problem:


dφ

dt
+ A(φ) = 0 on (0, T ),

φ(0) = φ0,
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with 0 < T < +∞. We suppose that operator A has a decompsition such as

A =
J∑
j=1

Aj with J ≥ 2.

Let τ > 0 be a time-discretization step, we denote nτ by tn. By setting φn as

an approximation of φ(tn), we can write down the Lie’s scheme as follows: Given

φ0 = φ0. For n ≥ 0, φn is known and we compute φn+1 via


dφ

dt
+ Aj(φ) = 0 on (tn, tn+1),

φ(tn) = φn+ j−1
J ;φn+ j

J = φ(tn+1),

for j = 1, · · · , J .

Since the conformation tensor C is symmetric and positive definite, by Cholesky

factorization there is a 3 × 3 lower triangular matrix A such that C = AAt, where

At is the transpose matrix of A. To split the constitutive equation with respect to

C, we have derived the following results.

Lemma 3.4. For a lower triangular matrix A and C = AAt, given u ∈ R3 and a

positvie constant λ1, we have

(i) if A satisfies the equation
dA

dt
+ (u · ∇)A = 0, then C satisfies the equation

dC

dt
+ (u · ∇)C = 0;

(ii) if A satisfies the equation
dA

dt
+

1

2λ1

A − (∇u)A = 0, then C satisfies the

equation

dC

dt
+

1

λ1

C− (∇u)C−C(∇u)t = 0.

Proof. (i) Given
dA

dt
+ (u ·∇)A = 0. Mulitplying the equation by At to the right,
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we obtain

dA

dt
At + (u · ∇)AAt = 0. (3.3.52)

Mulitplying the transpose of the equation by A to the left, we obtain

A
dAt

dt
+ A(u · ∇)At = 0. (3.3.53)

Adding (3.3.52) and (3.3.53) gives

d (AAt)

dt
+ (u · ∇)

(
AAt

)
= 0.

Thus, we get

dC

dt
+ (u · ∇)C = 0.

(ii) Given
dA

dt
+

1

2λ1

A− (∇u)A = 0. Mulitplying the equation by At to the right,

we obtain

dA

dt
At +

1

2λ1

AAt − (∇u)AAt = 0 (3.3.54)

Mulitplying the transpose of the equation by A to the left, we obtain

A
dAt

dt
+

1

2λ1

AAt −AAt(∇u)t = 0 (3.3.55)

Adding (3.3.54) and (3.3.55) gives

d (AAt)

dt
+

1

λ1

AAt − (∇u)AAt −AAt(∇u)t = 0.
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Thus, we get

dC

dt
+

1

λ1

C− (∇u)C−C(∇u)t = 0.

Similarly, we can define finite dimensional spaces VALh
(t) or VA0h

for A.

Applying the Lie’s scheme to the discrete analogue of the problem (3.3.44)-

(3.3.51) with C = AAt and the backward Euler’s method to some subproblems,

we obtain:

Given u0 = u0h,C
0 = C0h,G

0 = G0,V
0 = V0,ω

0 = ω0. For n ≥ 0, un,Cn,Gn,Vn,ωn

are known, we first predict the position and the translation velocity of the center of

mass as follows.

dG

dt
= V(t), (3.3.56)

Mp
dV

dt
= 0, (3.3.57)

Ip
dω

dt
= 0, (3.3.58)

V(tn) = Vn,ω(tn) = ωn,G(tn) = Gn, (3.3.59)

for tn < t < tn+1. Then set Vn+ 1
4 = V(tn+1), ωn+ 1

4 = ω(tn+1), and Gn+ 1
4 = G(tn+1).

With the center Gn+1 we get in the above step, the region of Bn+1
h occupied by the

particle is determined and we set Cn+ 1
4 = I in Bn+1

h and Cn+ 1
4 = Cn otherwise.

Then we enforce the rigid body motion in Bn+1
h and solve un+1 and pn+1 simul-

taneously as follows:
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Find un+1 ∈ Vn+1
g0h

, pn+1 ∈ L2
0h, λ

n+1 ∈ Λn+1
h , Vn+1 ∈ R3, ωn+1 ∈ R3 such that



−
∫

Ω

pn+1∇ · v dx + µf

∫
Ω

∇un+1 : ∇v dx− η

λ1

∫
Ω

v ·
(
∇ ·
(
Cn+ 1

4 − I
))

dx

+Mp
Vn+1 −Vn+ 1

4

4t
·Y + Ip

ωn+1 − ωn+ 1
4

∆t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+1,v −Y − θ ×

−−−−→
Gn+1x

〉
Λn+1
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.3.60)∫
Ω

q∇ · un+1 dx = 0, ∀q ∈ L2
h, (3.3.61)

〈
µ,un+1 −Vn+1 − ωn+1 ×

−−−−→
Gn+1x

〉
Λn+1
h

= 0, ∀µ ∈ Λn+1
h . (3.3.62)

and set Cn+ 2
4 = Cn+ 1

4 .

Next, we set An+ 2
4 (An+ 2

4 )t = Cn+ 2
4 and compute An+ 3

4 via the solution of



∫
Ω

dA(t)

dt
: s dx +

∫
Ω

(un · ∇) A(t) : s dx = 0,∀s ∈ VA0h

A(tn) = An+ 2
4 ,

A(t) ∈ Vn+1
ALh

, t ∈ [tn, tn+1]

(3.3.63)

and set A(tn+1) = An+ 3
4 and un+ 3

4 = un+ 2
4 .

Then we compute An+1 via the solution of


∫

Ω

[
An+1 −An+ 3

4

∆t
− (∇un) An+1 +

1

2λ1

An+1

]
: s dx = 0,

∀s ∈ VA0h
,An+1 ∈ Vn+1

ALh
,

(3.3.64)
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and set

Cn+1 = An+1(An+1)t +
1

λ1

I. (3.3.65)

In the above,Vn+1
ALh

= VALh
(tn+1), Vn+1

g0h
= Vg0h(tn+1), Λn+1

h = Λh(t
n+1), and Bn+s

h =

Bh(t
n+s) where the spaces VALh

(t) and VA0h
for A are defined similar to those VCLh

(t)

and VC0h
.

3.3.3 Logarithm of conformation tensor

Besides matrix factorization approach, we consider the log-conformation representa-

tion for the conformation tensor.

add the derivation of logarithm conformation.

In order to resolve the exponential behavior of the conformation tensor, we replace

(3.3.63)− (3.3.65) by (3.3.66)− (3.3.68) when solving the constitutive equation:

We set ψn+ 2
4 = log

(
Cn+ 2

4

)
and compute ψn+ 3

4 via the solution of



∫
Ω

∂ψ(t)

∂t
: s dx +

∫
Ω

(un · ∇)ψ(t) : s dx = 0,∀s ∈ VC0h

ψ(tn) = ψn+ 2
4 ,

ψ(t) ∈ Vn+1
CLh

, t ∈ [tn, tn+1]

(3.3.66)

and set ψn+ 3
4 = ψ(tn+1) and un+ 3

4 = un+ 2
4 .
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Then, we set Cn+ 3
4 = eψ

n+3
4 and On+ 3

4 + Sn+ 3
4 + Nn+ 3

4

(
Cn+ 3

4

)−1

= ∇un+ 3
4 and

compute ψn+1 via the solution of


∂ψ(t)

∂t
−
(
On+ 3

4ψ(t)−ψ(t)On+ 3
4

)
− 2Sn+ 3

4 = 0,

ψ(tn) = ψn+ 3
4 ,

ψ(t) ∈ Vn+1
CLh

, t ∈ [tn, tn+1]

(3.3.67)

and set ψn+1 = ψ(tn+1) and Cn+1 = eψ
n+1

. Then solve the ODE


∂C

∂t
=

1

λ1

(I−C),

C(tn) = Cn+1,

C(t) ∈ Vn+1
CLh

, t ∈ [tn, tn+1]

(3.3.68)

In (3.3.67), it is better to use exact solution instead of the approxiamtion from

the first order scheme.

3.3.4 Operator splitting scheme of Carreau model

To consider the operator splitting scheme of Carreau model, we have:

Given u0 = u0h,C
0 = C0h,G

0 = G0,V
0 = V0,ω

0 = ω0. For n ≥ 0, un,Cn,Gn,Vn,ωn

are known, we first predict the position and the translation velocity of the center

of mass as follows. Taking Vn+ 1
4
,0 = Vn and Gn+1,0 = Gn, for k = 1, 2, · · · , N ,
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computing

dG

dt
= V(t), (3.3.69)

Mp
dV

dt
= 0, (3.3.70)

Ip
dω

dt
= 0, (3.3.71)

V(tn) = Vn,ω(tn) = ωn,G(tn) = Gn, (3.3.72)

for tn < t < tn+1.Then set Vn+ 1
4 = V(tn+1), ωn+ 1

4 = ω(tn+1), and Gn+ 1
4 = G(tn+1).

With the center Gn+1 we get in the above step, the region of Bn+1
h occupied by the

particle is determined and we set Cn+ 1
4 = I in Bn+1

h and Cn+ 1
4 = Cn otherwise.

Then we calculate η1(
·
γ
n
) by using the previous time step velocity un and set

µ(
·
γ
n
) = η1(

·
γ
n
)
λ2

λ1

and η(
·
γ
n
) = η1(

·
γ
n
) − µ(

·
γ
n
), enforce the rigid body motion in

Bn+1
h and solve un+1 and pn+1 simultaneously as follows:

Find un+1 ∈ Vn+1
g0h

, pn+1 ∈ L2
0h, λ

n+1 ∈ Λn+1
h , Vn+1 ∈ R3, ωn+1 ∈ R3 such that

(
·
γ
n
)2

= 2D(un) : D(un),

η1

(
·
γ
n
)

=
η1(

1 + (λ1
·
γ
n
)2
) 1−n

2

, µ
(
·
γ
n
)

= η1

(
·
γ
n
) λ2

λ1

, η
(
·
γ
n
)

= η1

(
·
γ
n
)
− µ

(
·
γ
n
)
,
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

−
∫

Ω

pn+1∇ · v dx + µf

∫
Ω

∇un+1 : ∇v dx +Mp
Vn+1 −Vn+ 1

4

4t
·Y + Ip

ωn+1 − ωn+ 1
4

4t
· θ

= 2

∫
Ω

(
µf − µ

(
·
γ
n
))

(D(un) : ∇v) dx +

∫
Ω

v ·

∇ · η
(
·
γ
n
)

λ1

(
Cn+ 1

4 − I
) dx

+

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+1,v −Y − θ ×

−−−−→
Gn+1x

〉
Λn+1
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.3.73)∫
Ω

q∇ · un+1 dx = 0, ∀q ∈ L2
h, (3.3.74)

〈
µ,un+1 −Vn+1 − ωn+1 ×

−−−−→
Gn+1x

〉
Λn+1
h

= 0, ∀µ ∈ Λn+1
h . (3.3.75)

and set Cn+ 2
4 = Cn+ 1

4 .

Next, we set An+ 2
4 (An+ 2

4 )t = Cn+ 2
4 and compute An+ 3

4 via the solution of



∫
Ω

dA(t)

dt
: s dx +

∫
Ω

(un · ∇) A(t) : s dx = 0,∀s ∈ VA0h

A(tn) = An+ 2
4 ,

A(t) ∈ Vn+1
ALh

, t ∈ [tn, tn+1]

(3.3.76)

and set A(tn+1) = An+ 3
4 and un+ 3

4 = un+ 2
4 .

Then we compute An+1 via the solution of


∫

Ω

[
An+1 −An+ 3

4

4t
− (∇un) An+1 +

1

2λ1

An+1

]
: s dx = 0,

∀s ∈ VA0h
,An+1 ∈ Vn+1

ALh
,

(3.3.77)

52



3.4. ON THE SOLUTION OF THE SUBPROBLEMS FROM OPERATOR
SPLITTING

and set

Cn+1 = An+1(An+1)t +
1

λ1

I. (3.3.78)

In the above,Vn+1
ALh

= VALh
(tn+1), Vn+1

g0h
= Vg0h(tn+1), Λn+1

h = Λh(t
n+1), and Bn+s

h =

Bh(t
n+s) where the spaces VALh

(t) and VA0h
for A are defined similar to those VCLh

(t)

and VC0h
.

3.4 On the solution of the subproblems from op-

erator splitting

3.4.1 Solution of the advection subproblems

We solve the advection problem (3.3.63) by a wave-like equation method [4]. After

translation and dilation on the time axis, each component of the velocity vector u

and of the tensor A is solution of a transport equation of the following type:


∂ϕ

∂t
+ (U · ∇)ϕ = 0 in Ω× (tn, tn+1),

ϕ(0) = ϕ0, ϕ = g on Γ− × (tn, tn+1),

(3.4.79)
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where ∇ · U = 0 and
∂U

∂t
= 0 on Ω × (0, t). Thus, (3.4.79) is equivalent to the

well-posed problem:



∂2ϕ

∂t2
−∇ · ((U · ∇ϕ)U) = 0 in Ω× (0, t),

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −U · ∇ϕ0, ϕ = g on Γ− × (tn, tn+1),

(U · n)

(
∂ϕ

∂t
+ (U · ∇)ϕ

)
= 0 on Γ \ Γ− × (tn, tn+1).

(3.4.80)

Solving the wave-like equation (3.4.80) by a classical finite element/ time stepping

method, a variational formulation of (3.4.80) is given by


∫

Ω

∂2ϕ

∂t2
vdx +

∫
Ω

(U · ∇ϕ)(U · ∇v)dx +

∫
Γ\Γ−

U · n∂ϕ
∂t
vdΓ = 0,∀v ∈ W0,

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −U · ∇ϕ0, ϕ = g on Γ− × (tn, tn+1),

(3.4.81)

with the test function space W0 defined by W0 = {v|v ∈ H1(Ω), v = 0 on Γ−}.

Let H1
h be a C0-conforming finite element subspace of H1(Ω). We define W0h =

H1
h ∩W0. We suppose that lim

h→0
W0h = W0 in the usual finite element sense. Next, we

define τ1 > 0 by τ1 =
4t
Q

where Q is a positive integer, and we discretize problem

(3.4.81) by


ϕ0 = ϕ0,∫

Ω

(ϕ−1 − ϕ1)vdx = 2τ1

∫
Ω

(Uh · ∇ϕ0)vdx, ∀v ∈ W0h, ϕ
−1 − ϕ1 ∈ W0h,

(3.4.82)
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and for q = 0, 1, 2, · · · , Q− 1,



ϕq+1 ∈ H1
h, ϕ

q+1 = gh on Γ−,∫
Ω

ϕq+1 + ϕq−1 − 2ϕq

τ2
vdx +

∫
Ω

(Uh · ∇ϕq)(Uh · ∇v)dx

+

∫
Γ\Γ−

Uh · n
(
ϕq+1 − ϕq−1

τ

)
vdΓ = 0, ∀v ∈ W0,

(3.4.83)

where Uh and gh are the approximates of U and g, respectively.

Remark 3.5. Scheme (3.4.82) − (3.4.83) is a centreed scheme which is formally

second order accurate with respect to space and time discretizations. To be stable,

scheme (3.4.82) − (3.4.83) has to verify a condition such as τ1 ≤ ch, which c of

order of
1

‖U‖
. Since the advection problem is decoupled from the other ones, we

can choose proper time step here so that the above condition is satisfied. If one uses

the trapezoidal rule to compute the first and the third integrals in (3.4.83), the above

scheme becomes explicit and ϕq+1 is obtained via the solution of a linear system with

diagonal matrix.

Remark 3.6. Scheme (3.4.82) − (3.4.83) does not introduce numerical dissipation,

unlike the upwinding schemes commonly used to solve transport problems like (3.4.79).

Remark 3.7. If we consider the homogeneous boundary condition, Uh|Γ = 0 and

set Q = 1 in (3.4.82)− (3.4.83). Then we obtain the following:


∫

Ω

ϕ1 − ϕ0

4t
vdx +

∫
Ω

(Uh · ∇ϕ0)vdx

= −4t
2

∫
Ω

(Uh · ∇ϕ0)(Uh · ∇v)dx, ∀v ∈ H1
h;ϕ ∈ H1

h

(3.4.84)
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3.4.2 Solution of the rigid body motion enforcement prob-

lems

In system (3.3.60)-(3.3.62), there are two multipliers. p and λ. We have solved this

system via an Uzawa-conjugate gradient method driven by both multipliers. The

general problem is as follows:

Find u ∈ Vg0h
, p ∈ L2

0h, λ ∈ Λh, V ∈ R3, ω ∈ R3 such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇u : ∇v dx− η

λ1

∫
Ω

v · (∇ · (C− I)) dx

+Mp
V −V0

4t
·Y + Ip

ω − ω0

4t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λ,v −Y − θ ×

−→
Gx
〉

Λh

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.4.85)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2
h, (3.4.86)〈

µ,u−V − ω ×
−→
Gx
〉

Λh

= 0, ∀µ ∈ Λh. (3.4.87)

Applying the following Uzawa-conjugate gradient algorithm operating in the

space L2
0h × Λh to solve the sysyem (3.4.85)-(3.4.87):

Assume p0 ∈ L2
0h and λ0 ∈ Λh are given.

We solve the problem:

Find u0 ∈ Vg0h
, V0 ∈ R3, ω0 ∈ R3 satisfying
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
µf

∫
Ω

∇u0 : ∇v dx =

∫
Ω

p∇ · v dx +
η

λ1

∫
Ω

v · (∇ · (C− I)) dx +
〈
λ0,v

〉
Λh
,

∀ v ∈ V0h; u
0 ∈ Vg0h

,

(3.4.88)

Mp
V0 −V0

4t
·Y =

(
1− ρf

ρs

)
Mpg ·Y −

〈
λ0,Y

〉
Λh
, ∀ Y ∈ R3, (3.4.89)

Ip
ω0 − ω0

4t
· θ = −

〈
λ0,θ ×

−→
Gx
〉

Λh

, ∀ θ ∈ R3, (3.4.90)

and then compute

g0
1 = ∇ · u0; (3.4.91)

next find g0
2 ∈ Λh satisfying

〈
µ,g0

2

〉
Λh

=
〈
µ,u0 −V0 − ω0 ×

−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (3.4.92)

and set

w0
1 = g0

1, w0
2 = g0

2. (3.4.93)

Then for k ≥ 0, assuming that pk, λk, uk, Vk, ωk, gk
1, gk2, wk

1 and wk
2 are known,

compute pk+1, λk+1, uk+1, Vk+1, ωk+1, gk+1
1 , gk+1

2 , w1
k+1 and wk+1

2 as follows:


µf

∫
Ω

∇uk : ∇v dx =

∫
Ω

wk
1∇ · v dx +

〈
wk

2 ,v
〉

Λh
,

∀ v ∈ V0h; u
k ∈ Vg0h

,

(3.4.94)

Mp
V
k

4t
·Y = −

〈
wk

2 ,Y
〉

Λh
, ∀ Y ∈ R3, (3.4.95)
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Ip
ωk

4t
· θ = −

〈
wk

2 ,θ ×
−→
Gx
〉

Λh

, ∀ θ ∈ R3, (3.4.96)

and then compute

gk
1 = ∇ · uk; (3.4.97)

next find gk2 ∈ Λh satisfying

〈
µ,gk2

〉
Λh

=
〈
µ,uk −V

k − ωk ×
−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (3.4.98)

and compute

ρk =

∫
Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh∫

Ω

gk1wk
1dx +

〈
gk2,w

k
2

〉
Λh

, (3.4.99)

and

pk+1 = pk − ρkw1
k, (3.4.100)

λk+1 = λk − ρkwk
2 , (3.4.101)

uk+1 = uk − ρkuk, (3.4.102)

Vk+1 = Vk − ρkV
k
, (3.4.103)

ωk+1 = ωk − ρkωk, (3.4.104)

gk+1
1 = gk1 − ρkgk1, (3.4.105)

gk+1
2 = gk2 − ρkgk2. (3.4.106)
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If ∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣g0
1

∣∣2 dx +
〈
g0

2,g
0
2

〉
Λh

≤ ε, (3.4.107)

then take p = pk+1, λ = λk+1, u = uk+1, V = Vk+1, and ω = ωk+1. Otherwise,

compute

γk =

∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh

, (3.4.108)

and set

wk+1
1 = gk+1

1 + γkw1
k, (3.4.109)

wk+1
2 = gk+1

2 + γkw
k
2 . (3.4.110)

Then do m = m+ 1 and go back to (3.4.94).

3.5 Numerical results

3.5.1 Rotation of a single particle

We have considered the cases of a single neutrally buoyant ball placed at the middle

between two walls initially with respect to relaxation time λ1 in a bounded shear flow

of Oldroyd-B fluids. The densities of the fluid and that of the particle are ρf = ρs = 1

and the viscosity µf = 1. The computational domain is Ω = (−x1, x1)× (−x2, x2)×

(−x3, x3)(i.e.,L1 = 2x1, L2 = 2x2, and L3 = 2x3).The shear rate γ̇ = 1 sec−1 so the

velocity of the top wall is U = x3 and the velocity of the bottom wall is −U = −x3.

59



3.5. NUMERICAL RESULTS

For all the numerical simulations, we assume that all dimensional quantities are in

the CGS units. We have obtained the rotating angular velocity with respect to the

x2-axis for different values of λ1 with the retardation time λ2 = λ1/8.

First, to study the slowing down effect in the particle rotating angular velocity

due to a finite wall-particle distance, we consider the mass center of the ball is fixed

at (0, 0, 0) with three different λ1 and define the blockage ratio K = 2r/L3 with five

particle radii r = 1/10, 1/5, 1/3, 2/5, 1/2. The associated values of the Weissenberg

number Wi ( = λ1γ̇) are 0.5, 0.75, and 1.0. In order to assure the unpertubed

conditions, the computational domain is Ω = (−L/2, L/2) × (−L/2, L/2) × (−1, 1)

where L = 20r and L3 = 2. So we can consider five different block ratios K as same

as those cases in [5] for the numerical results.

graph????

Second, to study the effect of viscoelasticity in the particle rotating angular veloc-

ity, we consider two different setups of mass center. First one is the cases of particle

with fixed mass center at (0, 0, 0) all the time and the second one is the case of free

moving particle without fixed mass center. The particle radius r is 0.1. The compu-

tational domain is Ω = (−1.5, 1.5)× (−1.5, 1.5)× (−1.5, 1.5). The mass center of the

ball is located at (0, 0, 0) initially. We have obtained the rotating angular velocity

with respect to the x2-axis for ten different values of the relaxation time λ1 with the

retardation time λ2 = λ1/8. The associated values of the Weissenberg number Wi

(= λ1γ̇) are 0.01, 0.1, 0.25, 0.5, 1, 1.6, 2.6, 3.56, 4.2, and 5.5.
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3.5.2 Migration of a single particle in an one wall driven

bounded shear flow

3.5.3 Two ball interacting with large initial distance in a two

wall driven bounded shear flow
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In this section we consider the cases of two balls of the same size interacting in a

bounded shear flow fluid of Oldroyd-B type as visualized in Fig. ??. The ball radii

are r = 0.1. The fluid and ball densities are ρf= ρs = 1, the viscosity being µ = 1.

The computational domain is Ω = (−1.5, 1.5) × (−1, 1) × (−0.5, 0.5) (i.e., L1 = 3,

L2 = 2, and L3 = 1). The shear rate is fixed at γ̇ = 1 so the velocity of the top

wall is U = 0.5, the bottom wall being U = −0.5. The mass centers of the two balls

are located on the shear plane at (−d0, 0,4s) and (d0, 0,−4s) initially, where 4s

varies and d0 is 0.5. The time step being 4t = 0.001. Then we consider six or seven
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dimensionless initial vertical displacements D = 4s/a from the ball center to the

middle plane in the two wall driven bounded shear flow.
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When two balls move in a bounded shear flow of a Newtonian fluid at Stokes

regime with D = 0.122, 0.194, 0.255, 0.316, 0.5, 1 as in Fig. ??, the higher ball

takes over the lower one and then both return to their initial heights for those large

vertical displacements D = 0.316, 0.5 and 1. These two particle paths are called

pass (or open) trajectories. But for smaller vertical displacements, D = 0.122, 0.255

and 0.316, they first come close to each other and to the mid-plane between the

two horizontal walls, then, the balls move away from each other and from the above

mid-plane. These two particle paths are called return trajectories. Both kinds are

on the shear plane as shown in Fig. ?? for Wi=0 (Newtonian case) and they are

consistent with the results obtained in [21].
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For the two balls interacting in an Oldroyd-B fluid with D = 0.122, 0.194, 0.255,

0.316, 0.42, 0.5, 1 , we have summarized the results for Wi=0.1, 0.25, 0.5, 0.75, and

1 in Figs. ?? to ??. As in Newtonian fluids, there are results of pass and return

trajectories concerning two ball encounters; but the those of the two ball mass centers

lose the symmetry due to the effect of elastic force arising from viscoelastic fluids.

For example, the open trajectories associated with D = 0.5 for Wi=0.1, 0.25, 0.5,
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and 1 are closer to the mid-plane after two balls pass over/under each other. The

elastic force is not strong enough to hold them together during passing over/under,

but it already pulls the balls toward each other and then change the shape of the

trajectories. For higher values of Wi considered in this section, there are less return

trajectories; instead it is easier to obtain the two ball chain once they run into each

other. Actually depending on the Weissenberg number Wi and the initial vertical

displacement 4s, a chain of two balls can be formed in a bounded shear flow, and

then such chain tumbles. For example, for D = 0.316, the two balls come to each

other, form a chain and then rotate with respect to the midpoint between two mass

centers for Wi=0.1, 0.25, 0.5, and 1. The details of the phase diagram of pass, return,

and tumbling are shown in Fig. ??. The range of the vertical distance for the passing

over becomes bigger for higher Weissenberg numbers. For the shear flow considered

in this article, the increasing of the value of the Wi with a fixed shear rate is same

as to increase the shear rate with a fixed relaxation time. This explains why, for

Wi=1, two balls can have bigger gap between them while rotating with respect to

the middle point between two mass centers since the two balls are kind of moving

under higher shear rate. Those tumbling trajectories are associated with the closed

streamlines around a freely rotating ball centred at the origin.
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3.5.4 Two ball interacting with small initial distance in an

one wall driven bounded shear flow
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In this section we consider the cases of two balls of the same size interacting in a

bounded shear flow driven by the upper wall as visualized in Fig. ??. The ball radii

are r = 0.1. The fluid and ball densities are ρf= ρs = 1, the viscosity being µ = 1.

The computational domain is Ω = (−1.5, 1.5)× (−1, 1)× (−0.5, 0.5). The shear rate

is fixed at γ̇ = 1 but the velocity of the top wall is U = 1, the bottom wall being

U = 0. The mesh size for the velocity field and the conformation tensor is h = 1/48,

the mesh size for the pressure is 2h, The time step being 4t = 0.001. The mass

centers of the two balls are located on the shear plane at (−x0, 0, z0) and (x0, 0,−z0)

initially such that the angle between the mid-plane and the line segment of two initial

locations of mass center of particle is 175◦ counterclockwisely. We define the gap size
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= d− 2r where d is the distance between two mass centers of particle and r is 0.1.
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For the two balls interacting in Oldroyd-B fluid with gap= h/8, h/4, h/2, h, 2h,

and 3h where h is the mesh size, we have summarized the results for Wi=0.1, 0.25,

0.5, 0.75, and 1 in Figs. ?? to ??.
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Figure 3.5.1: The tumbling motion as Wi = 0.5: the initial distance between two
particles is 2r+gap where r = 0.1, gap=3h.For each frame, the horizontal direction
is X1 axis and vertical direction is X3 axis.
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Figure 3.5.2: The kayaking motion as Wi = 1.0: the initial distance between two
particles is 2r+gap where r = 0.1, gap=3h. For each frame, the horizontal direction
is X2 axis and vertical direction is X3 axis.
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CHAPTER 4

Concluions and Future work

4.1 Concluions

4.2 Future work

The particles chain phenomenon in non-Newtonian shear flow has been observed

experimentally in [12] and [18]. The numerical model of three particles alignment in

a viscoelastic fluid has been introduced in [9]. However, the numerical simulation of

particle-chains in non-Newtonian shear flow haven’t been developed. I will use the
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Oldroyd-B fluid with shear thinning to investigate the chain phenomenon of many

particles with random initial positions.

Figure 4.2.1: Particles alignment in polyisobutylene solution(J. Michele et al. Rheol.
Acta 1977)

Another extension of my current work will be the finitely extensible nonlinear

elastic (FENE) dumbbell model in non-Newtonian fluid flow. In order to study the

properties of dilute polymer fluid, the motion of polymer molecules in the fluid is

modeled as a suspension of dumbbells or spring chains with finite extensibility (e.g.,

see [1] and [2]). Besides the typical topics, such as the flow in the channel, flow in a

cross-slot geometry and impacting drop problem, it would be interesting to consider

the fluid-particle and particle-particle interactions in non-Newtonian fluid flow of

FENE type with particles.
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