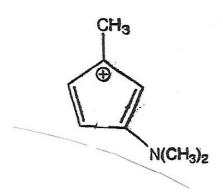
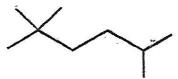
Alt. Exam 1

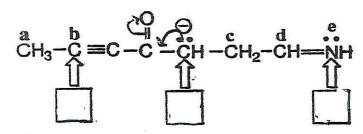

1. Give an acceptable IUPAC name for each of the compounds in a-c. Draw the structure of the compound in d. Be sure to indicate the stereochemistry where appropriate. (16 points)

b.

C.


2. Draw a proper Lewis s all lone pairs and formal	structure for the condense charges. (5pts)	ed formula below. Be s	ure to show
(CH ₃) ₂ OAICI ₃			
 Place the compounds 3=highest melting point) 	below in order of increas (6 pts.)	ing meiting point, (1=lo	owest,
			each.
4. Place the compounds soluble, 3=most soluble)	below in order of increas (6 pts.)	ing solubility in H ₂ O. (1	l=least
			2pts each
CH ₃ CH ₂ OCH ₂ CH ₃	CH ₃ CH ₂ OH	CH ₃ CH ₂ NH ₂	

5. For the structure given below, draw the important resonance contributors. Circle the major contributor. (12 pts.)



6. Place the compounds in order of increasing acidity. (1=least acidic, 3=most acidic) (6 pts.)

7. Draw all structural isomers resulting from the monobromination of 2,2,5-trimethyhexane (shown below). You will be penalized for duplicate structures. (10 pts.)

8. Consider the structure below and answer the following questions.

- a. Write the hybridization of each atom indicated by an arrow in the box provided. (6 pts.)
- b. What is the C_c - C_d - N_e bond angle? (2 pts.)
- c. The sigma bond between the atoms labeled a and b is formed by the overlap of what types of orbitals? Be specific. (2 pts.)

9. Viewing the molecule along the C3-C4 bond, construct the Newman projection of the least stable conformation of 3,4-dimethylheptane. (5 points)

10. a. Draw the more stable chair conformation for each of the substituted cyclohexanes shown below. (8 points)

b. Which isomer is more stable? A or B? (2 points)

44	An equation representing the halogenation of an alkane is shown below.	a) Provide the
11.	All equation representing the randy	ate (6 naints)
ord	pagation steps of the mechanism that explain the formation of the produ	cis. (a house)

$$+$$
 Br₂ $\xrightarrow{\text{light}}$ $+$ HBr

- b. Consider the termination steps, and provide a structure for a possible side product. (2pt.)
- c. Given the bond dissociation energies (BDE) below, calculate the overall Δ H°for the reaction, a You must show your work to receive credit! (4 points)
- d. Are the products or reactants favored at equilibrium? (2 points)

Bond-Dissociation Energy			Bond-Dissociation Energy	
Bond	kcal/mol	Bond	kcal/mol :	
H—X bonds and X—X bonds H—H D—D F—F Cl—Cl Br—Br I—I H—F H—Cl H—Br H—I HO—H HO—OH Methyl bonds CH ₂ —H CH ₃ —F CH ₃ —F CH ₃ —G CH ₃ —Br CH ₃ —I CH ₃ —OH Bonds to primary carbons CH ₃ CH ₂ —H CH ₃ CH ₂ —H CH ₃ CH ₂ —H CH ₃ CH ₂ —F CH ₃ CH ₂ —H CH ₃ CH ₂ —F CH ₃ CH ₂ —Br CH ₃ CH ₂ —I CH ₃ CH ₂ —Cl CH ₃ CH ₂ CH ₂ —Br	104 106 38 58 46 36 136 103 88 71 119 51 104 109 84 70 56 91 98 107 81 68 53 91 98 107 81 68 53	Bonds to secondary carbons (CH ₃) ₂ CH—H (CH ₃) ₂ CH—F (CH ₃) ₂ CH—E (CH ₃) ₂ CH—B ₁ (CH ₃) ₂ CH—I (CH ₃) ₂ CH—I (CH ₃) ₂ CH—I (CH ₃) ₃ C—H (CH ₃) ₃ C—H (CH ₃) ₃ C—F (CH ₃) ₃ C—F (CH ₃) ₃ C—C (CH ₃) ₃ C—C (CH ₃) ₃ C—OH Other C—H bonds PhCH ₂ —H (benzylic) CH ₂ —CHCH ₂ —H (allylic) CH ₂ —CH—H (vinyl) Ph—H (aromatic) C—C bonds CH ₃ —CH ₃ CH ₃ —CH ₃ CH ₃ CH ₂ —CH ₃ CH ₃ CH ₂ —CH ₃ (CH ₃) ₃ C—CH ₃	95 106 80 68 53 91 91 106 79 65 50 91 85 87 108 110	