Alt. Exam 1 1. Give an acceptable IUPAC name for each of the compounds in a-c. Draw the structure of the compound in d. Be sure to indicate the stereochemistry where appropriate. (16 points) b. C. | 2. Draw a proper Lewis s
all lone pairs and formal | structure for the condense
charges. (5pts) | ed formula below. Be s | ure to show | |---|---|---|--------------| | | | | | | (CH ₃) ₂ OAICI ₃ | | | | | | | | | | | | | | | Place the compounds 3=highest melting point) | below in order of increas
(6 pts.) | ing meiting point, (1=lo | owest, | | | | | each. | | | | | | | | | | | | 4. Place the compounds soluble, 3=most soluble) | below in order of increas
(6 pts.) | ing solubility in H ₂ O. (1 | l=least | | | | | 2pts
each | | CH ₃ CH ₂ OCH ₂ CH ₃ | CH ₃ CH ₂ OH | CH ₃ CH ₂ NH ₂ | | | | | | | 5. For the structure given below, draw the important resonance contributors. Circle the major contributor. (12 pts.) 6. Place the compounds in order of increasing acidity. (1=least acidic, 3=most acidic) (6 pts.) 7. Draw all structural isomers resulting from the monobromination of 2,2,5-trimethyhexane (shown below). You will be penalized for duplicate structures. (10 pts.) 8. Consider the structure below and answer the following questions. - a. Write the hybridization of each atom indicated by an arrow in the box provided. (6 pts.) - b. What is the C_c - C_d - N_e bond angle? (2 pts.) - c. The sigma bond between the atoms labeled a and b is formed by the overlap of what types of orbitals? Be specific. (2 pts.) 9. Viewing the molecule along the C3-C4 bond, construct the Newman projection of the least stable conformation of 3,4-dimethylheptane. (5 points) 10. a. Draw the more stable chair conformation for each of the substituted cyclohexanes shown below. (8 points) b. Which isomer is more stable? A or B? (2 points) | 44 | An equation representing the halogenation of an alkane is shown below. | a) Provide the | |-----|---|----------------| | 11. | All equation representing the randy | ate (6 naints) | | ord | pagation steps of the mechanism that explain the formation of the produ | cis. (a house) | $$+$$ Br₂ $\xrightarrow{\text{light}}$ $+$ HBr - b. Consider the termination steps, and provide a structure for a possible side product. (2pt.) - c. Given the bond dissociation energies (BDE) below, calculate the overall Δ H°for the reaction, a You must show your work to receive credit! (4 points) - d. Are the products or reactants favored at equilibrium? (2 points) | Bond-Dissociation
Energy | | | Bond-Dissociation
Energy | | |---|---|---|--|--| | Bond | kcal/mol | Bond | kcal/mol : | | | H—X bonds and X—X bonds H—H D—D F—F Cl—Cl Br—Br I—I H—F H—Cl H—Br H—I HO—H HO—OH Methyl bonds CH ₂ —H CH ₃ —F CH ₃ —F CH ₃ —G CH ₃ —Br CH ₃ —I CH ₃ —OH Bonds to primary carbons CH ₃ CH ₂ —H CH ₃ CH ₂ —H CH ₃ CH ₂ —H CH ₃ CH ₂ —F CH ₃ CH ₂ —H CH ₃ CH ₂ —F CH ₃ CH ₂ —Br CH ₃ CH ₂ —I CH ₃ CH ₂ —Cl —Br | 104
106
38
58
46
36
136
103
88
71
119
51
104
109
84
70
56
91
98
107
81
68
53
91
98
107
81
68
53 | Bonds to secondary carbons (CH ₃) ₂ CH—H (CH ₃) ₂ CH—F (CH ₃) ₂ CH—E (CH ₃) ₂ CH—B ₁ (CH ₃) ₂ CH—I (CH ₃) ₂ CH—I (CH ₃) ₂ CH—I (CH ₃) ₃ C—H (CH ₃) ₃ C—H (CH ₃) ₃ C—F (CH ₃) ₃ C—F (CH ₃) ₃ C—C (CH ₃) ₃ C—C (CH ₃) ₃ C—OH Other C—H bonds PhCH ₂ —H (benzylic) CH ₂ —CHCH ₂ —H (allylic) CH ₂ —CH—H (vinyl) Ph—H (aromatic) C—C bonds CH ₃ —CH ₃ CH ₃ —CH ₃ CH ₃ CH ₂ —CH ₃ CH ₃ CH ₂ —CH ₃ (CH ₃) ₃ C—CH ₃ | 95
106
80
68
53
91
91
106
79
65
50
91
85
87
108
110 | |