A. Nomenclature (3 points each; 9 total points)

Please provide an acceptable name for each of the following compounds, noting stereochemistry where appropriate.

1.

I., O., NO

3. CI OH

- B. Facts (1 point for every blank; 19 total points)
- 1. Rank the stability of the following cations from lowest (1) to highest (3).

2. Rank the boiling points of the following molecules from lowest (1) to highest (3).

$$-CH_2CH_3$$
 $-CH_3$ $-CH_3$

 $\boldsymbol{3}$. Rank the pK_{a} value of the following molecules from lowest (1) to highest (3).

4. Rank these molecules from slowest (1) to fastest (3) in their rate of reaction with NaOCH₃.

5. Rank the following molecules from slowest (1) to fastest (3) in their rate of Diels-Alder reactivity.

6. Answer the following questions for the molecule shown below and place the answers in the appropriate boxes. (i) How many distinct proton types are present in the molecule? (ii) How many signals would appear in the proton-decoupled ¹³C NMR spectrum? (iii) & (iv) What are the theoretically predicted multiplicities (splitting patterns) of the signals for protons **a** and **b**?

C. Reactions: Total = 30 points, 5 points each
Please provide the starting material or major product in the answer box. Be sure your drawing indicates stereochemistry if applicable. Partial credit is awarded only when intermediate products are shown below the reaction.

4.

6. H-C≡C-CH₂CH₃

- 1. Sia₂BH
- 2. H₂O₂ / OH 3. CH₃CH₂-C≡C Na +
- 4. H₃O⁺
- 5. PCC

D. Mechanisms: (9 points each)

Provide clear mechanisms for reactions 1 and 2. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. **Show all intermediates and all formal charges**. If there is more than one resonance structure, you must show the "best" (i.e. lowest energy) structure.

1.
$$\begin{array}{c} CH_2 \\ H_3C \end{array}$$

$$CH_3 \\ CH_3 \end{array}$$

$$H_3C \xrightarrow{CH_3}$$

E. Synthesis: (14 points)

Synthesize the molecule below using any of the following reagents: alkanes, alkenes or alcohols of **three carbons or less**, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

F. Spe	ctroscopy:	10	Points
--------	------------	----	---------------

A compound with the formula $C_7H_{16}O_2$ exhibits the IR, 1H NMR, and proton-decoupled ^{13}C NMR spectra shown on the following page. Please identify this compound and draw the structure in the box provided below.

 TABLE 13.2
 Characteristic infrared absorptions of groups

GR	OUP		REQUENCY NGE (cm ⁻¹)	INTENSITY
<u>A.</u>	Alkyl			
	C—H (stretching)		2853-2962	(m-s)
	Isopropyl, —CH(CH ₃) ₂	and	1380-1385 1365-1370	(s) (s)
	tert-Butyl, $C(CH_3)_3$	and	1385-1395 ~1365	(m) (s)
B.	Alkenyl			
	C—H (stretching)		3010-3095	(m)
	C=C (stretching)		1620-1680	(v)
	$R-CH=CH_2$	and	985-1000 905-920	(s) (s)
	$R_2C = CH_2$ (out-of-plane		880-900	(s)
	cis-RCH=CHR C—H bendings)		675-730	(s)
	trans-RCH=CHR		960-975	(s)
c.	Alkynyl			
	≡C—H (stretching)		~3300	(s)
	C≡C (stretching)		2100-2260	(v)
D.	Aromatic			
	Ar—H (stretching)		~3030	(v)
	Aromatic substitution type (C—H out-of-plane bendings) Monosubstituted o Disubstituted m Disubstituted p Disubstituted	and and	690-710 730-770 735-770 680-725 750-810 800-840	(very s) (very s) (s) (s) (very s) (very s)
E.	Alcohols, Phenols, and Carboxylic Acids			
	O—H (stretching)			
	Alcohols, phenols (dilute solutions)		3590-3650	(sharp, v)
	Alcohols, phenols (hydrogen bonded)		3200-3550	(broad, s)
	Carboxylic acids (hydrogen bonded)		2500-3000	(broad, v)
F.	Aldehydes, Ketones, Esters, and Carboxylic Acids			
•	C=O (stretching)		1630-1780	(s)
	Aldehydes		1690-1740	(s)
	Ketones		1680-1750	(s)
	Esters		1735-1750	(s)
	Carboxylic acids		1710-1780	(s)
	Amides		1630–1690	(s)
G.	Amines			
	N—H		3300-3500	(m)
H.	Nitriles			
	C≡N		2220-2260	(m)

^a Abbreviations: s = strong, m = medium, w = weak, v = variable, $\sim = approximately$.

TABLE 13.3 Approximate proton chemical shifts

TYPE OF PROTON	CHEMICAL SHIFT (ô, ppm)
1° Alkyl, RCH ₃	0.8-1.0
2° Alkyl, RCH ₂ R	1.2-1.4
3° Alkyl, R ₃ CH	1.4-1.7
Allylic, $R_2C = C - CH_3$	1.6-1.9
₩-	
Ketone, RCCH ₃	2.1-2.6
Benzylic, ArCH,	2.2-2.5
Acetylenic, RC≡CH	2.5-3.1
Alkyl iodide, RCH ₂ I	3.1-3.3
Ether, ROCH ₂ R	3.3-3.9
Alcohol, HOCH ₂ R	3.3-4.0
Alkyl bromide, RCH ₂ Br	3.4-3.6
Alkyl chloride, RCH ₂ Cl	3.6-3.8
Vinylic, R ₂ C=CH ₂	4.6-5.0
Vinylic, $R_2C = CH$	5.2-5.7
⊠-	
Aromatic, ArH	6.0-9.5
Aldehyde, RCH	9.5-9.6
Alcohol hydroxyl, ROH	0.5-6.0"
Amino, R—NH ₂	1.0-5.0
Phenolic, ArOH	4.5-7.7
Carboxylic, RCOH	10-13
0=	

^a The chemical shifts of these protons vary in different solvents and with temperature and concentration.

TABLE 13.4 Approximate carbon-13 chemical shifts

the state of the s	
TYPE OF CARBON ATOM	CHEMICAL SHIFT (δ, ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, RCHR ₂	15-50
Alkyl halide or amine, $-C-X(X = Cl, Br, or N-)$	10-65
Alcohol or ether, — C—O	50-90
Alkyne, —C≡	60-90
Alkene, C=	100-170
Aryl, (Oc-	100-170
Nitriles, — C≡N	120-130
O	150-180
O O Carboxylic acids, esters, —C—O	160-185
O Aldehydes, ketones, —C—	182-215