Chem 3332 Bean 4

CHAPTER 16: Aromatic Compounds

We can separate organic compounds into two large categories:

Structure of Benzene - initially a puzzling compound

1825 - Michael Faraday isolates "benzene" from lampblack (pyrolyzed whale oil) - determines empirical formula CH

1834 - Eilhard Mitscherlich synthesizes "benzene" and determines molecular formula C_6H_6

Examine the results of typical reactions of multiple bonds:

$$\begin{array}{c} & \text{Br}_{2}/\text{CCl}_{4}\\ & \text{dark, } 25 \text{ °C} \end{array}$$

$$\begin{array}{c} & \text{KMnO}_{4}/\text{H}_{2}\text{O}\\ & \text{25 °C} \end{array}$$

$$C_{6}\text{H}_{6}$$

$$\begin{array}{c} & \text{H}_{3}\text{O}^{+}/\text{H}_{2}\text{O}\\ & & \text{H}_{2}/\text{Ni} \end{array}$$

Add Lewis acid catalyst during bromination:

$$C_6H_6$$
 $Br_2 / FeBr_3$
 $1 eq.$
 $Br_2 / FeBr_3$
 $1 eq.$
 $Br_2 / FeBr_3$
 $1 eq.$

[&]quot;Something" gives benzene a special resistance to addition, a special stability:

1866 - Friedrich Kekule proposes cyclic structure of alternating double and single bonds

Problem: structure would predict the existence of two 1,2 - dibromobenzene isomers

Solution: To explain the observation, Kekule adjusts the proposal:

Problem solved? If the cyclic structure of alternating double and single bonds observed in benzene is the key to aromaticity, should find other evidence.

Consider cyclooctatetraene:

Kekule's mistake:

The Stability of Benzene

Aromaticity is not the result of conjugation alone OR benzene is not 1,3,5-cyclohexatriene

Bond lengths:

$$CH_2 = CH - CH = CH - CH = CH_2$$

1,3,5-hexatriene

Heats of Hydrogenation:

 $\Delta H_{hydrog} = 28.6 \text{ kcal/mol}$

$$2H_2/Pt$$

Expected:

Observed:

Expected:

Observed:

Molecular Orbital Descriptions:

Huckel Rule

The Huckel Rule is applied to molecules	that meet the	e following:
---	---------------	--------------

- 1. Cyclic
- 2. Planar
- 3. Each atom in the "cycle" has a p orbital.

If each of the above is true and the cycle has $4n + 2\pi$ electrons, where $n = 0, 1, 2, 3, \ldots$, the molecule is aromatic -

Example:

If each of the above is true and the cycle has 4n π electrons, where $n=0,\,1,\,2,\,3,\,\ldots$, the molecule is antiaromatic -

Example:

If one or more of the above is not true, the molecule is **nonaromatic**, regardless of the number π electrons.

Examples:

Polygon Rule - inscribe the molecule in a circle with one vertex at the bottom of the circle; each point at which the molecule touches the circle represents the energy level of a molecular orbital

Annulenes - monocyclic compounds with alternating double an single bonds - aromatic / antiaromatic / nonaromatic?

Examples:

nonplanar annulenes:

planar annulenes:

Aromatic Ions

Heterocyclic Aromatic Compounds

Example: aromatic / antiaromatic / nonaromatic? (Do we count the lone pair?)

VS

Polynuclear Aromatic Hydrocarbons (PNA's or PAH's) - fused benzene rings

Nomenclature of Benzene Derivatives:

I. Monosubstituted

A. IUPAC - named as abenzene derivative

B. Common Names - You MUST know the common names on p. 716 of Wade (p. 736 of 3rd ed)

II. Disubstituted

A. Number substituents

B. Ortho, para, meta system

III. Trisubstituted - must use numbers

IV. Benzene ring as a substituent : General Guide - larger portion is parent

Spectroscopy Summary (Benzene and Derivatives)

IR:

1. ring "skeletal" vibrations C===C

2 regions:

1600 - 1585 cm⁻¹ 2 - 4 peaks; peaks at 1500 and 1600 cm⁻¹ are usually the most intense; often appear as doublets

2. CH stretching 3100 - 3000 cm⁻¹ : C==-C—H

3. CH out of plane bending 900 - 675 cm⁻¹: C==-C—H

characteristic of ring substitution:

¹³C NMR: