Bean 10 Chem 3332

Chapter 22: Alpha Substitutions and Condensations of Enols and Enolate Ions

Review: So far -2 reaction pathways for carbonyl compounds:

- 1. Nucleophilic Addition (aldehydes and ketones)
- 2. Nucleophilic Acyl Substitution (carboxylic acids and derivatives)

In these pathways, a nucleophile attacks the electrophilic carbonyl carbon.

Ch. 22 introduces a third pathway – many reactions, but only one new process (some reactions combine this new process with the old processes)

- 3. Alpha carbon reactions:
 - a. alpha substitutions
 - b. condensations

In these pathways, a carbonyl compound is the nucleophile!

HOW?

A carbonyl compound can become a nucleophile because its alpha hydrogens are slightly acidic – can be deprotonated by strong bases.

Alpha Carbon Reactions:

- I. Alpha Substitutions
 - A. alpha-halogenation of ketones and carboxylic acids
 - B. alkylation of enolate anions of ketones and esters (and nitriles)
 - C. alkylation of enamines (Stork)
 - D. alkylation of beta-dicarbonyl compounds (malonic and acetoacetic ester syn.)
- II. Condensation Reactions
 - A. aldol condensation
 - B. mixed aldol
 - C. intramolecular aldol
 - D. claisen condensation
 - E. mixed claisen
 - F. intramolecular claisen
 - G. Michael reaction
 - H. Robinson annulation

ACIDITY OF CARBONYL COMPOUNDS

KETO - ENOL TAUTOMERIZATION

Base - catalyzed:

If E⁺ is present

Acid Catalyzed:

If E⁺ is present

$$C=C$$
 E^+

We first encountered keto - enol tautomerization in the hydration of alkynes. Which is the major tautomer at EQ?

Example:

Are Chapter 22 reactions important?

- I. Alpha Substitution
- A. Alpha Halogenation of Ketones
 - 1. acidic conditions

$$R - C - CH_2R - X_2 / \text{acetic acid}$$

Example:

a.
$$\frac{Br_2 / \text{acetic acid}}{CH_3 C_{O-H}}$$

$$H O Br - Br$$

2. basic conditions

$$\begin{array}{c|c}
O & H & O \\
\hline
C & C & Br - Br
\end{array}$$

Base promoted halogenation cannot be used to form mono-brominated product:

Haloform Reaction:

$$R - \overset{O}{\overset{\parallel}{\text{C}}} \xrightarrow{\text{CH}_3} \frac{X_2 \text{ (xs)}}{\text{NaOH (xs)}} \qquad R - \overset{O}{\overset{\vdash}{\text{C}}} \xrightarrow{\text{C}} \xrightarrow{\text{C}} X_3$$

B. Alpha - Bromination of Carboxylic Acids (Hell - Volhard - Zelinsky)

Carboxylic acids do not enolize under acidic or basic conditions.

$$\begin{array}{c} O \\ CH_3 \\ \hline \\ C \\ OH \end{array} \xrightarrow{} \begin{array}{c} O \\ CH_3 \\ \hline \\ O \\ OH \end{array} \xrightarrow{} \begin{array}{c} H_3 \\ O^+ \\ \hline \end{array}$$

Convert to acid bromide first.

C. Alkylation of ketones and esters (and nitriles)

- α -hydrogens of ketones (pK_a = 19-20) and esters (pK_a = 24) are only weakly acidic
- if base used is hydroxide EQ lies far to keto tautomer, so enolate anion is produced slowly
- problem: hydroxide attacks R-Y
- solution: use stronger base that gives 100 % enolate

$$N-H$$
 $Bu-Li$
 $N : Li^+$
 $Bu-H$

Examples:

a.
$$H_3C-\ddot{C}-CH_3$$
 1. LDA 2. CH_3CH_2Br

b.
$$\ddot{\ddot{C}}$$
 -OCH₂CH₃ 1. LDA 2. CH₃Br

c.
$$CH_3CH_2-C\equiv N$$
 1. LDA 2. CH_3Br

D. Alkylation of Enamine

Review:

$$\begin{array}{c} O \\ C \\ -C \\ -C \\ -C \\ -C \\ -C \\ + NHR_2 \\ \hline \begin{array}{c} H^+ \\ \hline \end{array}$$

Enamine is similar to enolate anion:

$$C = C$$
 E^{+}
 $H_{3}O^{+}$

Stork Synthesis: enamine serves as Nu in the formation of alpha substituted aldehydes and ketones

- 1. form enamine
- 2. add R Y
- 3. hydrolysis

$$R - Y = Ph - CH_2 - X$$

$$C = C$$

$$CH_2 - X$$

$$R - X$$

$$R - C - CI$$

Examples:

a.
$$H^+$$

$$CH_3 - \ddot{C} - CI$$

$$CH_3 - \ddot{C} - CI$$

b.
$$H_3C - \ddot{C} - CH_2CH_3$$

1. $(CH_3)_2NH$

2. CH_2Br

3. H_3O^+

E. Alkylation of $B\epsilon\tau\alpha$ - Dicarbonyl Compounds

- more acidic than mono carbonyl compounds (and $\gamma,\,\delta,\,$ etc, dicarbonyl cpds.)
- do not need LDA to obtain a good yield of enolate ion

O O CH₃·C-CH₂·C-CH₃ + CH₃CH₂O · Na⁺
$$\longrightarrow$$

1. Malonic Ester Synthesis: a sesuence of reactions that converts an alkyl halide to an α -substituted (or disubstituted) acetic acid

Steps:

- 1) treat malonic ester with base to form enolate ion
- 2) alkylate (add R-X)
- 3) hydrolyze/decarbóxylate

Mechanism:

3)
$$\stackrel{\circ}{\mathbb{C}}$$
 $\stackrel{\circ}{\mathbb{C}}$ $\stackrel{\mathbb{C}}$ $\stackrel{\circ}{\mathbb{C}}$ $\stackrel{\mathbb$

Formation of cyclic carboxylic acids with malonic ester synthesis: (ring size 3 - 6)

2. Acetoacetic Ester Synthesis: similar to malonic ester synthesis, but uses a beta keto ester rather than a beta diester

Steps:

1. treat acetoacetic ester with base to form enolate ion

2. alkylate (add R-X)

3. hydrolyze/decarboxylate

Example:

Synthesis Example:

Il Condensation Reactions: A combination of the old carbonyl pathways (nucleophilic addition or nucleophilic acyl substitution) with the new pathway (alpha substitution)

A. Aldol Condensation - for aldehydes and ketones that have alpha hydrogens

 produces a beta hydroxy aldehyde or ketone
 steric factors are important : ketones and alpha disubstituted aldehydes give poor yields

- strength of base used is important, only necessary to convert small % to enolate ion (do not want 100% enolate!)

Example:

Dehydration of Aldol Products: warming the aldol product readily leads to an alpha, beta unsaturated carbonyl; with dehydration, most aldehydes and ketones can successfully be used in aldol condensations

Example:

Synthesis Practice: From ethanal synthesize the compound below.

B. Crossed (Mixed) Aldol: condesation between two different aldehydes or ketones Consider:

Successful Crossed Aldol: One reactant has NO alpha hydrogens (cannot form enolate)

C. Intramolecular Aldol: enolate anion and the carbonyl attacked are in the same molecule; 5 and 6 membered rings readily form

D. Claisen Condensation: Forms beta-keto esters from esters

E. Crossed (Mixed) Claisen: one reactant must have no alpha-hydrogens

F. Intramolecular Claisen (Dieckmann Cyclization): similar to intramolecular aldol; forms cyclic beta-keto esters

Synthesis of alpha-substituted cyclopentanones and cyclohexanones using Dieckmann followed by acetoacetic ester-like synthesis:

G. The Michael reaction: a conjugate addition to an alpha, beta-unsaturated system (such as an enone); also described as a reaction between a Michael donor and a Michael acceptor (see Table 22-2, page 1046)

Conjugate addition vs direct addition to an enone:

Nucleophiles that give direct addition product:
- Grignard and organolithium reagents
- LiAlH₄

Nucleophiles that give conjugate addition product:

- amines

- cyanide anion

- Michael donors listed in Table 22-2

Examples:

Michael donors: systems that have particularly acidic alpha-hydrogens such as beta-keto esters, beta-diesters, beta-dicarbonyls, beta-keto nitriles, beta-keto nitro

Michael acceptors: alpha, beta unsaturated systems - C=C conjugated with X=Y

Michael Example and Mechanism:

More Michael Examples:

$$\begin{array}{c} O \\ \square \\ CH_3CH_2O\text{-}C\text{-}CH_2\text{-}C\equiv N \\ \end{array} + \begin{array}{c} O \\ \square \\ CH_3CH_2O\text{-}C\text{-}C=CH_2 \\ CH_3 \\ \end{array} \begin{array}{c} \text{NaOEt/EtOH} \\ \end{array}$$

Synthesize:
$$CH_3CH_2$$
- C - CH - CH_2CH_2 - C - CH_3

H. Robinson Annulation: an important ring forming reaction 2 parts: 1. Michael addition, 2. Intramolecular aldol/dehydration