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ADAPTIVE EDGE ELEMENT APPROXIMATION OF
H(CURL)-ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH

CONTROL CONSTRAINTS

RONALD H. W. HOPPE∗ AND IRWIN YOUSEPT†

Abstract. A three-dimensional H(curl)-elliptic optimal control problem with distributed con-
trol and pointwise constraints on the control is considered. We present a residual-type a posteriori
error analysis with respect to a curl-conforming edge element approximation of the optimal control
problem. Here, the lowest order edge elements of Nédélec’s first family are used for the discretization
of the state and the control with respect to an adaptively generated family of simplicial triangulations
of the computational domain. In particular, the a posteriori error estimator consists of element and
face residuals associated with the state equation and the adjoint state equation. The main results are
the reliability of the estimator and its efficiency up to oscillations in terms of the data of the problem.
In the last part of the paper, numerical results are included which illustrate the performance of the
adaptive approach.
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residual a posteriori error estimator, reliability and efficiency.
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1. Introduction. This paper is devoted to an a posteriori error analysis of
adaptive edge element methods for control constrained distributed optimal control of
H(curl)-elliptic problems in R3. Adaptive edge element methods for H(curl)-elliptic
boundary value problems on the basis of residual-type a posteriori error estimators
have been initiated in [7, 8, 31] and later on considered in [11, 35]. A convergence
analysis has been provided in [24]. For nonstandard discretizations such as Discon-
tinuous Galerkin methods, we refer to [12, 25]. In case of the time-harmonic Maxwell
equations, convergence and quasi-optimality of adaptive edge element approximations
have been established in [42, 46] in the spirit of the results obtained in [13] for linear
second order elliptic boundary value problems.

We refer to [26, 39, 43, 44, 45] for recent results on the mathematical and numerical
analysis of the optimal control of H(curl)-elliptic PDEs. To the best of our knowl-
edge, this paper is the first contribution towards a residual-type a posteriori error
analysis for H(curl)-elliptic optimal control problems. We are not aware of any pre-
vious studies in this direction. On the other hand, both residual-type a posteriori
error estimators and dual weighted residuals for P1 conforming finite element approx-
imations of control constrained H1(Ω)-elliptic optimal control problems have been
developed in [17, 19, 27, 29] and [18, 41].

Adaptive Finite Element Methods (AFEMs) typically consist of successive loops of
the sequence

SOLVE → ESTIMATE → MARK → REFINE . (1.1)
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The first step SOLVE stands for the efficient solution of the finite element discretized
problem with respect to a given triangulation of the computational domain. Efficient
iterative solvers include multilevel techniques and/or domain decomposition methods.
As far as their application to edge element discretizations of H(curl)-elliptic problems
is concerned, we refer to [3, 21] (cf. also the survey articles [4, 22] and the references
therein). The second step ESTIMATE requires the a posteriori estimation of the
global discretization error or some other error functional as a basis for an adaptive
mesh refinement and will be in the focus of our paper. The following step MARK is
devoted to the specification of elements of the triangulation that have to be selected
for refinement in order to achieve a reduction of the error. Within the convergence
analysis of AFEMs [9, 13, 15, 36] a so-called bulk criterion, meanwhile also known as
Dörfler marking, has been investigated which will be adopted here. Finally, the last
step REFINE realizes the refinement of the mesh. Here, we will use the newest vertex
bisection.

This paper is organized as follows: The optimal control problem will be stated in
section 2 with the optimality conditions being given in subsection 2.1 in terms of
the state, the adjoint state, the control, and the Lagrangian multiplier. The control
problem is discretized with respect to a shape regular family of simplicial triangula-
tions of the computational domain using curl-conforming edge elements of Nédélec’s
first family for all relevant variables (see Section 2.2). The a posteriori error anal-
ysis involves a residual-type error estimator consisting of element and face residuals
and oscillations associated with the data of the problem which will be introduced in
subsection 2.3. The marking of elements for refinement by Dörfler marking and the
adaptive refinement by newest vertex bisection will be briefy described in subsection
2.4. The main results, namely the reliability of the residual a posteriori error esti-
mator and its efficiency up to data oscillations, will be established in section 3 and
section 4. Finally, section 5 contains a documentation of numerical results illustrating
the performance of the adaptive approach.

2. The optimal control problem and its edge element approximation.

2.1. The optimal control problem. We adopt standard notation from Lebes-
gue and Sobolev space theory (cf., e.g., [37]). In particular, for a bounded Lipschitz
domain Ω ⊂ R3, we refer to L2(Ω) and Hm(Ω),m ∈ N, as the Hilbert space of Lebes-
gue integrable functions in Ω and the Sobolev space of functions with Lebesgue inte-
grable generalized derivatives up to order m. Likewise, L2(Ω) and Hm(Ω) stand for
the corresponding Hilbert spaces of vector-valued functions. In both cases, the inner
products and associated norms will be denoted by (·, ·)m,Ω and ∥·∥m,Ω,m ≥ 0, respec-
tively. For a function v ∈ H1(Ω), we denote by v|Γ, Γ := ∂Ω, the trace of v on Γ and
define H1

0 (Ω) := {v ∈ H1(Ω) | v|Γ = 0}. Moreover, we denote by H(curl; Ω) := {v ∈
L2(Ω) | curl v ∈ L2(Ω)} and H(div,Ω) := {v ∈ L2(Ω) | div v ∈ L2(Ω)} the Hilbert
spaces of vector-valued functions with the inner products (·, ·)curl,Ω, (·, ·)div,Ω and as-

sociated norms ∥·∥curl,Ω, ∥·∥div,Ω. We refer to H0(curl; Ω) := {v ∈ H(curl; Ω) | πt(v)

= 0 on Γ} as the subspace of vector fields with vanishing tangential trace components
πt(v) := nΓ ∧ (v ∧ nΓ) on Γ, where nΓ stands for the exterior unit normal vector on
Γ. We further denote by γt(v) := v∧nΓ the tangential trace of v on Γ. We note that
for v ∈ H(curl; Ω) there holds πt(v) ∈ H−1/2(curlΓ; Γ) and γt(v) ∈ H−1/2(divΓ; Γ),
where curlΓ and divΓ stand for the tangential curl and the tangential div (cf., e.g.,
[10]).
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We consider the following control constrained H(curl)-elliptic optimal control pro-
blem: Find (y,u) ∈ V × K such that

min
(y,u)∈V×K

J(y,u) :=
1

2
∥curly − yd∥2

0,Ω +
α

2
∥u − ud∥2

0,Ω (2.1a)

subject to the state equation

curlµ−1curly + σy = f + u in Ω, (2.1b)

πt(y) = g on Γ. (2.1c)

Here, Ω ⊂ R3 stands for a bounded Lipschitz polyhedral domain with boundary
Γ = ∂Ω, yd ∈ H0(curl; Ω),ud ∈ L2(Ω), α > 0, f ∈ L2(Ω), and g ∈ H−1/2(curlΓ; Γ).
Moreover, V := {y ∈ H(curl; Ω) | πt(y) = g},V0 := H0(curl; Ω), and K ⊂ L2(Ω)
denotes the closed, convex set

K := {u ∈ L2(Ω) | u(x) ≥ ψ(x) a.e. in Ω},

where ψ : Ω → R3 is a given vector field with componentwise affine functions. The
functions µ, σ ∈ L∞(Ω) are supposed to be piecewise polynomial satisfying µ(x) ≥
µ0 > 0 and σ(x) ≥ σ0 > 0 a.e. in Ω. For the subsequent analysis, we assume vanishing
tangential trace components, i.e., we set g = 0 in (2.1c), and hence V = V0.

Under the above assumptions, it is easy to show that (2.1a)-(2.1c) admits a unique
solution (y∗,u∗) ∈ V × K. The necessary and sufficient optimality conditions in-
voke an adjoint state p∗ ∈ V and a multiplier λ∗ ∈ L2(Ω) such that the quadruple
(y∗,u∗,p∗,λ∗) satisfies the optimality system

a(y∗,q) = ℓ1(q), ∀q ∈ V, (2.2a)

a(p∗,q) = ℓ2(q), ∀q ∈ V, (2.2b)

u∗ − ud = α−1(p∗ − λ∗), (2.2c)

λ∗ ∈ ∂IK(u∗). (2.2d)

Here, a : V × V → R refers to the bilinear form

a(y,q) := (µ−1curly, curlq)0,Ω + (σy,q)0,Ω, y,q ∈ V, (2.3)

and the functionals ℓi ∈ V∗, i = 1, 2, are given according to

ℓ1(q) := (f + u∗,q)0,Ω, q ∈ V, (2.4a)

ℓ2(q) := (yd − curly∗, curlq)0,Ω, q ∈ V. (2.4b)

Furthermore, ∂IK : L2(Ω) → 2L2(Ω) denotes the subdifferential of the indicator func-
tion IK of the constraint set K (cf., e.g., [23]). We note that (2.2d) can be equivalently
written as the variational inequality

(λ∗,u∗ − v)0,Ω ≥ 0, ∀v ∈ K,

and the complementarity problem

−λ∗ ∈ L2
+(Ω) , u∗ −ψ ∈ L2

+(Ω) , (λ∗,u∗ −ψ)0,Ω = 0, (2.5)
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where L2
+(Ω) refers to the nonnegative cone in L2(Ω).

Remark 2.1.
(i) Our a posteriori error analysis can be straightforwardly transferred to the

unconstrained case K = L2(Ω) as well as to the bilateral control-constraint
case

K = {u ∈ L2(Ω) | ψ(x) ≤ u(x) ≤ ϕ(x) a.e. in Ω},

where ϕ : Ω → R3 is a given vector field with componentwise affine functions
satisfying ψ(x) ≤ ϕ(x) a.e. in Ω.

(ii) The state equation (2.1b)-(2.1c) is highly related to the eddy current model,
in which case the magnetic induction is given by the rotation of the state,
i.e., B = curly. Therefore, from the application point of view, it is more
important to optimize the rotation field curly rather than the field y itself.
This is the reason for choosing the tracking-type objective functional (2.1a)
with respect to curly. In this context, the field yd could represent a desired
magnetic induction or a target arising from some measurement.

2.2. Edge element approximation. We assume (hn)n∈N0 to be a strictly de-
creasing null sequence of positive real numbers and (Th(Ω))hn a nested family of
simplicial triangulations of Ω such that µ and σ are elementwise polynomial on
Th0(Ω). For an element T ∈ Th(Ω), we denote by hT the diameter of T and set
h := max{hT | T ∈ Th(Ω)}. For D ⊂ Ω̄, we refer to Eh(D) and Fh(D) as the sets of
edges and faces of T ∈ Th(Ω) in D. For F ∈ Fh(D), we denote by hF the diameter of
F and by ωF :=

∪{T ∈ Th(Ω) | F ⊂ ∂T} as the patch consisting of the union of ele-
ments sharing F as a common face. In the sequel, for two mesh dependent quantities
A and B we use the notation A . B, if there exists a constant C > 0 independent of
h such that A ≤ CB.
For the discrete approximation of (2.1a)-(2.1c), we use the edge elements of Nédélec’s
first family

Nd1(T ) := {q : T → R3 | q(x) = a + b ∧ x, ∀x ∈ T},

which give rise to the curl-conforming edge element space [33]

Nd1,0(Ω; Th(Ω)) := {qh ∈ H0(curl; Ω) | qh|T ∈ Nd1(T ), ∀T ∈ Th(Ω)}. (2.6)

Setting Vh := Nd1,0(Ω; Th(Ω)) and

Kh := {uh ∈ Vh | uh(x) ≥ ψ(x) a.e. in Ω},

the edge element approximation of the distributed optimal control problem (2.1a)-
(2.1c) reads as follows: Find (yh,uh) ∈ Vh × Kh such that

min
(yh,uh)∈Vh×Kh

J(yh,uh) :=
1

2
∥curlyh − yd∥2

0,Ω +
α

2
∥uh − ud

h∥2
0,Ω (2.7a)

subject to a(yh,qh) = (uh,qh)0,Ω, ∀qh ∈ Vh, (2.7b)

where ud
h ∈ Vh is some approximation of ud. The existence and uniqueness of a

solution (y∗
h,u∗

h) ∈ Vh × Vh can be deduced as in the continuous regime. The
discrete optimality system gives rise to a discrete adjoint state p∗

h ∈ Vh and a discrete
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multiplier λ∗
h ∈ Vh such that the quadruple (y∗

h,u∗
h,p∗

h,λ∗
h) satisfies

a(y∗
h,qh) = ℓ1,h(qh), ∀qh ∈ Vh, (2.8a)

a(p∗
h,qh) = ℓ2,h(qh), ∀qh ∈ Vh, (2.8b)

u∗
h − ud

h = α−1(p∗
h − λ∗

h), (2.8c)

λ∗
h ∈ ∂IKh

(u∗
h). (2.8d)

Here, the functionals ℓi,h : Vh → R, 1 ≤ i ≤ 2, are given by

ℓ1,h(qh) := (f + u∗
h,qh)0,Ω, qh ∈ Vh, (2.9a)

ℓ2,h(qh) := (yd − curly∗
h, curlqh)0,Ω, qh ∈ Vh. (2.9b)

Again, (2.8d) can be stated as the complementarity problem

λ∗
h ≤ 0 , ψ − u∗

h ≤ 0 , (λ∗
h,u∗

h −ψ)0,Ω = 0. (2.10)

2.3. The residual-type a posteriori error estimator. The residual-type a
posteriori error estimator ηh consists of element residuals and face residuals associated
with the state equation (2.2a) and the adjoint equation (2.2b) according to

ηh :=
( ∑

T∈Th(Ω)

η2
T +

∑

F∈Fh(Ω)

η2
F

)1/2

, (2.11)

η2
T :=

2∑

i=1

((η
(i)
y,T )2 + (η

(i)
p,T )2), η2

F :=

2∑

i=1

((η
(i)
y,F )2 + (η

(i)
p,F )2).

Here, η
(i)
y,T and η

(i)
p,T , 1 ≤ i ≤ 2, are given by

η
(1)
y,T := hT ∥f + u∗

h − curlµ−1curly∗
h − σy∗

h∥0,T , (2.12a)

η
(2)
y,T := hT ∥div(σy∗

h)∥0,T , (2.12b)

η
(1)
p,T := hT ∥curlyd − curlµ−1curlp∗

h − σp∗
h∥0,T , (2.12c)

η
(2)
p,T := hT ∥div(σp∗

h)∥0,T . (2.12d)

The face residuals η
(i)
y,F and η

(i)
p,F , 1 ≤ i ≤ 2, read as follows

η
(1)
y,F := h

1/2
F ∥[γt(µ

−1curly∗
h)]F ∥0,F , (2.13a)

η
(2)
y,F := h

1/2
F ∥nF · [(f + u∗

h − σy∗
h)]F ∥0,F , (2.13b)

η
(1)
p,F := h

1/2
F ∥[γt(µ

−1curlp∗
h + curly∗

h)]F ∥0,F , (2.13c)

η
(2)
p,F := h

1/2
F ∥nF · [(σp∗

h)]F ∥0,F , (2.13d)

where [γt(µ
−1curlqh)]F and [qh]F ,qh ∈ Vh, denote the jumps of γt(µ

−1curlqh) and
qh across F = T+ ∩ T−, T± ∈ Th(Ω).

We will show reliability of ηh and its efficiency up to data oscillations osch(yd), osch(ud),
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and osch(f) as given by

osch(yd) :=
( ∑

T∈Th(Ω)

osc2
T (yd)

)1/2

, (2.14a)

oscT (yd) := hT ∥curl(yd − yd
h)∥0,T , T ∈ Th(Ω),

osch(ud) :=
( ∑

T∈Th(Ω)

osc2
T (ud)

)1/2

, (2.14b)

oscT (ud) := hT ∥ud − ud
h∥0,T , T ∈ Th(Ω),

osch(f) :=
( ∑

T∈Th(Ω)

osc2
T (f)

)1/2

, (2.14c)

oscT (f) := hT ∥f − fh∥0,T , T ∈ Th(Ω), (2.14d)

where yd
h,ud

h ∈ Vh are approximations of yd and ud. Furthermore, fh is an element-
wise polynomial approximation of f satisfying div fh|T = 0 for all T ∈ Th(Ω).

2.4. Dörfler marking and refinement. In the step MARK of the adaptive
cycle (1.1), elements of the simplicial triangulation Th(Ω) are marked for refinement
according to the information provided by the a posteriori error estimator. With regard
to convergence and quasi-optimality of AFEMs, the bulk criterion from [15], now also
known as Dörfler marking, is a convenient choice. Here, we select a set M of elements
such that for some θ ∈ (0, 1) there holds

∑

T∈M

(
η2

T +
1

2

∑

F∈Fh(T )

η2
F

)
≥ θ

∑

T∈Th(Ω)

(
η2

T +
1

2

∑

F∈Fh(T )

η2
F

)
. (2.15)

Elements of the triangulation Th(Ω) that have been marked for refinement are subdi-
vided by the newest vertex bisection.

3. Reliability of the error estimator. In this section, we prove reliability of
the residual a posteriori error estimator ηh in the sense that it provides an upper
bound for the global discretization error.

Theorem 3.1. Let (y∗,u∗,p∗,λ∗) and (y∗
h,u∗

h,p∗
h,λ∗

h) be the unique solutions
of (2.2a)-(2.2d) and (2.8a)-(2.8d), respectively. Further, let ηh and osch(ud) be the
residual error estimator and the data oscillation as given by (2.11) and (2.14b). Then,
there holds

∥y∗ − y∗
h∥curl,Ω + ∥p∗ − p∗

h∥curl,Ω + ∥u∗ − u∗
h∥0,Ω + ∥λ∗ − λ∗

h∥0,Ω . ηh + osch(ud).
(3.1)

The proof of (3.1) will be given by a series of lemmas. Here, our strategy to deal with
the lack of Galerkin orthogonality is to introduce an intermediate state y(u∗

h) ∈ V
and an intermediate adjoint state p(u∗

h) ∈ V as follows: Find (y(u∗
h),p(u∗

h)) ∈ V×V
such that

a(y(u∗
h),q) = (u∗

h,q)0,Ω, ∀q ∈ V, (3.2a)

a(p(u∗
h),q) = (yd − curly(u∗

h), curlq)0,Ω, ∀q ∈ V. (3.2b)
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Choosing q = p(u∗
h) − p∗ in (3.2a) and q = y(u∗

h) − y∗ in (3.2b) and then using
(2.2a)-(2.2b), it follows that

(p∗ − p(u∗
h),u∗ − u∗

h)0,Ω = −∥curl(y∗ − y(u∗
h))∥2

0,Ω, (3.3)

and hence

(p∗ − p(u∗
h),u∗ − u∗

h)0,Ω ≤ 0. (3.4)

In order to establish the reliability of the a posteriori error estimator ηh, we split the
discretization error y∗ − y∗

h and p∗ − p∗
h according to

y∗ − y∗
h = (y∗ − y(u∗

h)) + (y(u∗
h) − y∗

h),

p∗ − p∗
h = (p∗ − p(u∗

h)) + (p(u∗
h) − p∗

h),

and estimate the terms on the right-hand sides separately.

Lemma 3.2. Let (y∗,u∗,p∗,λ∗) and (y∗
h,u∗

h,p∗
h,λ∗

h) be the unique solutions of
(2.2a)-(2.2d) and (2.8a)-(2.8d), respectively. Further, let y(u∗

h) ∈ V and p(u∗
h) ∈ V

be the intermediate state and intermediate adjoint state as given by (3.2a)-(3.2b).
Then, there holds

∥y(u∗
h) − y∗∥curl,Ω . ∥u∗ − u∗

h∥0,Ω, (3.5a)

∥p(u∗
h) − p∗∥curl,Ω . ∥y∗ − y(u∗

h)∥0,Ω. (3.5b)

Proof. The results are immediate consequences of the V-ellipticity and bounded-
ness of a(·, ·).
Our goal now is to estimate the terms ∥y(u∗

h) − y∗
h∥curl,Ω and ∥p(u∗

h) − p∗
h∥curl,Ω,

where the main key tool for the estimate is the Schöberl quasi-interpolation operator
Πh : V → Vh. In view of [35, Theorem 1], for every v ∈ V, we can decompose
v − Πhv into

v − Πhv = ∇φ + z, (3.6)

where φ ∈ H1
0 (Ω) and z ∈ V satisfy

h−1
T ∥φ∥0,T + ∥∇φ∥0,T . ∥v∥0,ωT

, (3.7a)

h−1
T ∥z∥0,T + ∥curlz∥0,T . ∥curlv∥0,ωT

. (3.7b)

Here, the element patches ωT , T ∈ Th(Ω), are given by

ωT := ∪{T ′ ∈ Th | T ′ ∩ ω̃T ̸= ∅}, ω̃T := ∪{T ′ ∈ Th | Nh(T ′) ∩ Nh(T ) ̸= ∅}.

Lemma 3.3. Let (y∗
h,u∗

h,p∗
h,λ∗

h) be the unique solution of (2.8a)-(2.8d), and let
y(u∗

h) ∈ V and p(u∗
h) ∈ V be the intermediate state and intermediate adjoint state

as given by (3.2a)-(3.2b). Then, there holds

∥y(u∗
h) − y∗

h∥curl,Ω + ∥p(u∗
h) − p∗

h∥curl,Ω . ηh. (3.8)
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Proof. In view of (2.2a) and (3.2a), for ẽy := y(u∗
h) − y∗

h, the Galerkin orthogo-
nality

a(ẽy,qh) = 0, ∀qh ∈ Vh,

holds true, from which we deduce

∥ẽy∥2
curl,Ω . a(ẽy, ẽy − Πhẽy)

= a(y(u∗
h), ẽy − Πhẽy) − a(y∗

h, ẽy − Πhẽy)

= (u∗
h, ẽy − Πhẽy)0,Ω − a(y∗

h, ẽy − Πhẽy)

= (f + u∗
h − σy∗

h, ẽy − Πhẽy)0,Ω − (µ−1curly∗
h, curl(ẽy − Πhẽy))0,Ω,

(3.9)

Using the decomposition (3.6) with v = ẽy in (3.9) along with (3.7a)-(3.7b) and the
finite overlap of the element patches ωT , T ∈ Th(Ω), results in

∥y(u∗
h) − y∗

h∥2
curl,Ω .

∑

T∈Th(Ω)

η2
y,T +

∑

F∈Fh(Ω)

η2
y,F . (3.10)

On the other hand, in view of (2.8b) and (3.2b), for ẽp := p(u∗
h) − p∗

h we obtain

∥ẽp∥2
curl,Ω . a(ẽp, ẽp) = a(ẽp,Πhẽp) + a(ẽp, ẽp − Πhẽp) =

= (curl(y∗
h − y(u∗

h)), curlΠhẽp)0,Ω + (yd − curly(u∗
h), curl(ẽp − Πhẽp))0,Ω

− a(p∗
h, ẽp − Πhẽp)

= (curl(y∗
h − y(u∗

h)), curl(Πhẽp − ẽp))0,Ω + (curl(y∗
h − y(u∗

h)), curlẽp)0,Ω

+ (yd − curly(u∗
h), curl(ẽp − Πhẽp))0,Ω − a(p∗

h, ẽp − Πhẽp)

= (curl(y∗
h − y(u∗

h)), curlẽp)0,Ω + (yd − curly∗
h, curl(ẽp − Πhẽp))0,Ω

− a(p∗
h, ẽp − Πhẽp)

= (curl(y∗
h − y(u∗

h)), curlẽp)0,Ω + (yd − µ−1curlp∗
h − curly∗

h, curl(ẽp − Πhẽp))0,Ω

− (σp∗
h, ẽp − Πhẽp)0,Ω. (3.11)

Then, using again the decomposition (3.6) with v = ẽp in (3.11) along with (3.7a)-
(3.7b) and the finite overlap of the element patches ωT , T ∈ Th(Ω), it follows that

∥p(u∗
h) − p∗

h∥2
curl,Ω . ∥y(u∗

h) − y∗
h∥2

curl,Ω +
∑

T∈Th(Ω)

η2
p,T +

∑

F∈Fh(Ω)

η2
p,F . (3.12)

Finally, combining (3.10) and (3.12) allows to conclude (3.8).

Lemma 3.4. Let (y∗,u∗,p∗,λ∗) and (y∗
h,u∗

h,p∗
h,λ∗

h) be the unique solutions of
(2.2a)-(2.2d) and (2.8a)-(2.8d), respectively. Furthermore, let ηh as well as osch(ud)
be the residual-type a posteriori error estimator and data oscillation as given by (2.11)
and (2.14b). Then, there holds

∥u∗ − u∗
h∥0,Ω + ∥λ∗ − λ∗

h∥0,Ω . ηh + osch(ud). (3.13)

Proof. Taking (2.2c) and (2.8c) into account, we find

α∥u∗ − u∗
h∥2

0,Ω = (λ∗
h − λ∗,u∗ − u∗

h)0,Ω (3.14)

+ (p∗ − p∗
h,u∗ − u∗

h)0,Ω + α(ud − ud
h,u∗ − u∗

h)0,Ω.
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Using (2.5) and (2.10), for the first term on the right-hand side in (3.14) it follows
that

(λ∗
h − λ∗,u∗ − u∗

h)0,Ω = (λ∗
h,u∗ −ψ)0,Ω︸ ︷︷ ︸

≤ 0

+(λ∗
h,ψ − u∗

h)0,Ω︸ ︷︷ ︸
= 0

(3.15)

− (λ∗,u∗ −ψ)0,Ω︸ ︷︷ ︸
= 0

− (λ∗,ψ − u∗
h)0,Ω︸ ︷︷ ︸

≥ 0

≤ 0.

For the second and third term on the right-hand side in (3.14), in view of (3.4) and
(3.8), an application of Young’s inequality yields

(p∗ − p∗
h,u∗ − u∗

h)0,Ω = (p∗ − p(u∗
h),u∗ − u∗

h)0,Ω︸ ︷︷ ︸
≤ 0

+(p(u∗
h) − p∗

h,u∗ − u∗
h)0,Ω

≤ α

4
∥u∗ − u∗

h∥2
0,Ω +

1

α
∥p(u∗

h) − p∗
h∥2

0,Ω ≤ α

4
∥u∗ − u∗

h∥2
0,Ω +

1

α
η2

h, (3.16a)

α(ud − ud
h,u∗ − u∗

h)0,Ω ≤ α

4
∥u∗ − u∗

h∥2
0,Ω + α∥ud − ud

h∥2
0,Ω. (3.16b)

Using (3.15) and (3.16a),(3.16b) in (3.14) gives

∥u∗ − u∗
h∥2

0,Ω ≤ 2

α2
η2

h + 2osc2
h(ud). (3.17)

On the other hand, observing (2.2c) and (2.8c) as well as (3.5a),(3.5b),(3.8), and
(3.17), for λ∗ − λ∗

h we obtain

∥λ∗ − λ∗
h∥2

0,Ω ≤ 3∥p∗ − p∗
h∥2

0,Ω + 3α2∥u∗ − u∗
h∥2

0,Ω + 3α2∥ud − ud
h∥2

0,Ω (3.18)

≤ 3
(
∥u∗ − u∗

h∥0,Ω + ∥p(u∗
h) − p∗

h∥0,Ω

)2

+ 3α2∥u∗ − u∗
h∥2

0,Ω + 3α2∥ud − ud
h∥2

0,Ω

≤ (6 + 3α2)∥u∗ − u∗
h∥2

0,Ω + 6η2
h + 3α2osc2

h(ud)

≤
(

2(6 + 3α2)

α2
+ 6

)
η2

h + 3(4 + 3α2)osc2
h(ud).

The assertion now follows from (3.17) and (3.18).

4. Efficiency of the error estimator. We establish the efficiency of ηh by
means of the local bubble functions

bT := 256

4∏

i=1

λT
i , bF := 27

3∏

i=1

λT
Fi

.

Here, λT
i , 1 ≤ i ≤ 4, are the barycentric coordinates of T ∈ Th(Ω) associated with the

vertices of T , and λT
Fi

, 1 ≤ i ≤ 3, are the barycentric coordinates associated with the
vertices of F ∈ Fh(Ω). The norm equivalences

∥b
1/2
T ph∥0,T ≤ ∥ph∥0,T . ∥b

1/2
T ph∥0,T , ph ∈ Pk(T ), k ∈ N, (4.1a)

∥b
1/2
F ph∥0,F ≤ ∥ph∥0,F . ∥b

1/2
F ph∥0,F , ph ∈ Pk(F ), k ∈ N, (4.1b)

can be easily verified by an affine invariance argument.
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Theorem 4.1. Let (y∗,u∗,p∗,λ∗) and (y∗
h,u∗

h,p∗
h,λ∗

h) be the unique solutions of
(2.2a)-(2.2d) and (2.8a)-(2.8d), respectively. Furthermore, let ηh and osch(yd), osch(f)
be the residual-type a posteriori error estimator and data oscillations as given in
(2.11), (2.14a), and (2.14c). Then, there holds

ηh . ∥y∗ − y∗
h∥curl,Ω + ∥p∗ − p∗

h∥curl,Ω + ∥u∗ − u∗
h∥0,Ω + osch(yd) + osch(f). (4.2)

The proof of the theorem will be given by a series of lemmas where we show local
efficiency in the sense that - up to data oscillations - the element and face residuals
can be bounded from above by the elementwise or patchwise discretization error.

Lemma 4.2. Under the assumptions of Theorem 4.1, there holds

η
(1)
y,T . ∥y∗ − y∗

h∥curl,T + hT ∥u∗ − u∗
h∥0,T + oscT (f), (4.3a)

η
(1)
p,T . ∥y∗ − y∗

h∥curl,T + ∥p∗ − p∗
h∥curl,T + oscT (yd), (4.3b)

for every T ∈ Th(Ω).
Proof. Obviously, for every T ∈ Th(Ω), we have

(η
(1)
y,T )2 ≤ 2

(
h2

T ∥fh + u∗
h − curlµ−1curly∗

h − σy∗
h∥2

0,T + osc2
h(f)

)
. (4.4)

The function zh := (fh +u∗
h − curlµ−1curly∗

h −σy∗
h)bT is an admissible test function

in (2.2a), and hence, applying (4.1a) and Stokes’ theorem results in

h2
T ∥fh + u∗

h − curlµ−1curly∗
h − σy∗

h∥2
0,T

. h2
T (fh + u∗

h − curlµ−1curly∗
h − σy∗

h, zh)0,T

= h2
T

(
(f + u∗, zh)0,T − a(y∗

h, zh) + (u∗
h − u∗, zh)0,T + (fh − f , zh)0,T

)

= h2
T

(
a(y∗ − y∗

h, zh) + (u∗
h − u∗, zh)0,T + (fh − f , zh)0,T

)

≤ h2
T

(
∥y∗ − y∗

h∥curl,T ∥zh∥curl,T + (∥u∗ − u∗
h∥0,T + ∥fh − f∥0,T )∥zh∥0,T

)
.

Finally, using Young’s inequality, the inverse inequality

∥zh∥curl,T . h−1
T ∥zh∥0,T , (4.5)

and (4.1a) as well as (4.4) give (4.3a).

Likewise, choosing zh := (curlyd
h − curlµ−1curlp∗

h − σp∗
h)bT in (2.2b), we find

(η
(1)
p,T )2 ≤ 2h2

T

(
∥curlyd

h − curlµ−1curlp∗
h − σp∗

h∥0,T + ∥curl(yd − yd
h)∥0,T

)

. 2h2
T

(
(curl(yd

h − curly∗
h) − curlµ−1curlp∗

h − σp∗
h, zh)0,T + ∥curl(yd − yd

h)∥0,T

)
.

For the first term on the right-hand side we find

h2
T (curl(yd

h − curly∗
h) − curlµ−1curlp∗

h − σp∗
h, zh)0,T

= h2
T (yd

h − curly∗
h, curlzh)0,T − a(p∗

h, zh)

= h2
T

(
a(p∗ − p∗

h, zh) + (curl(yd
h − yd), zh)0,T + (curl(y∗

h − y∗), curlzh)0,T

)

. h2
T

(
∥p∗ − p∗

h∥curl,T ∥zh∥curl,T + ∥curl(yd − yd
h)∥0,T ∥zh∥0,T

+ ∥curl(y∗ − y∗
h)∥0,T ∥curlzh∥0,T

)
.
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Using again Young’s inequality, (4.1a), and (4.5) allows to deduce (4.3b).

Lemma 4.3. Under the assumptions of Theorem 4.1, there holds

η
(2)
y,T . ∥y∗ − y∗

h∥0,T + ∥u∗ − u∗
h∥0,T + osch(f), (4.6a)

η
(2)
p,T . ∥p∗ − p∗

h∥0,T , (4.6b)

for every T ∈ Th(Ω).
Proof. For the proof of (4.6a) we choose ∇zh, where zh := div(σy∗

h)|T bT , as an
admissible test function in (2.2a). Taking advantage of div(u∗

h|T ) = 0 and (4.1a), we
find

(η
(2)
y,T )2 . h2

T (div(u∗
h − σy∗

h), zh)0,T = h2
T (u∗

h − σy∗
h,∇zh)0,T

= h2
T

(
(fh + u∗

h − (f + u∗), ∇zh)0,T + (σ(y∗ − y∗
h), ∇zh)0,T + (f − fh, ∇zh)0,T

)

. h2
T

(
∥u − u∗

h∥0,T + ∥y∗ − y∗
h∥0,T + ∥f − fh∥0,T

)
∥∇zh∥0,T .

Then, an application of Young’s inequality, the inverse inequality

∥∇zh∥0,T . h−1
T ∥zh∥0,T ,

and (4.1a) results in (4.6a).
On the other hand ∇zh, where zh := div(σp∗

h)|T bT , is an admissible test function in
(2.2b) whence

(η
(2)
p,T )2 . h2

T (div(σp∗
h), zh)0,T = h2

T (σp∗
h, ∇zh)0,T

= h2
T (σ(p∗

h − p∗), ∇zh)0,T . h2
T ∥p∗ − p∗

h∥0,T ∥∇zh∥0,T ,

and we deduce (4.6b) by the same arguments as before.

Lemma 4.4. Under the assumptions of Theorem 4.1, there holds

η
(1)
y,F . ∥y∗ − y∗

h∥curl,T+∪T− + ∥u∗ − u∗
h∥0,T+∪T− + η

(1)
y,T+

+ η
(1)
y,T− , (4.7a)

η
(1)
p,F . ∥p∗ − p∗

h∥0,T+∪T− + η
(1)
p,T+

+ η
(1)
p,T− , (4.7b)

for every F ∈ Fh(Ω), F = T+ ∩ T−, T± ∈ Th(Ω).
Proof. We extend [γt(µ

−1curly∗
h)]F to a polynomial function [γt(µ

−1curly∗
h)]T±

on T± such that

∥[γt(µ
−1curly∗

h)]T±∥0,T± . hT±∥[γt(µ
−1curly∗

h)]F ∥0,F . (4.8)

Using (4.1b), Stokes’ theorem, and the fact that the associated extension z̃h of zh :=
[γt(µ

−1curly∗
h)]F bF is an admissible test function in (2.2a), we obtain

(η
(1)
y,F )2 . hF ([γt(µ

−1curly∗
h)]F , zh)0,F = hF

(
(−curlµ−1curly∗

h, z̃h)0,T+∪T−

+ (µ−1curly∗
h, curlz̃h)0,T+∪T−

)
= hF

(
(f + u∗

h − curlµ−1curly∗
h − σy∗

h, z̃h)0,T+∪T−

+ (µ−1curl(y∗
h − y∗), curlz̃h)0,T+∪T− + (σ(y∗

h − y∗), z̃h)0,T+∪T−

+ (u∗ − u∗
h, z̃h)0,T+∪T−

)
.

(
hF ∥curl(y∗ − y∗

h)∥0,T+∪T−∥curlz̃h∥0,T+∪T−

+ hF ∥y∗ − y∗
h∥0,T+∪T−∥z̃h∥0,T+∪T− + hF ∥u∗ − u∗

h∥0,T+∪T−∥z̃h∥0,T+∪T−

+ (ηy,T+ + ηy,T−)∥z̃h∥0,T+∪T−

)
.
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We deduce (4.7a) by Young’s inequality, (4.1b), and (4.8). The proof of (4.7b) follows
the same lines.

Lemma 4.5. Under the assumptions of Theorem 4.1, there holds

η
(2)
y,F . ∥y∗ − y∗

h∥0,T+∪T− + ∥u∗ − u∗
h∥0,T+∪T− + η

(2)
y,T+

+ η
(2)
y,T− + osch(f), (4.9a)

η
(2)
p,F . ∥p∗ − p∗

h∥0,T+∪T− + η
(1)
p,T+

+ η
(1)
p,T− , (4.9b)

for every F ∈ Fh(Ω), F = T+ ∩ T−, T± ∈ Th(Ω).
Proof. For every F ∈ Fh(Ω), F = T+ ∩ T−, T± ∈ Th(Ω), we have

(η
(2)
y,F )2 ≤ 2hF

(
∥nF · [fh + u∗

h − σy∗
h]F ∥2

0,F + ∥nF · [f − fh]F ∥2
0,F

)
. (4.10)

As in the proof of (4.7a), we extend nF · [fh + u∗
h − σy∗

h]F to a polynomial function
nF · [fh + u∗

h − σy∗
h]T± on T± such that

∥nF · [fh + u∗
h − σy∗

h]T±∥0,T± . hT±∥nF · [fh + u∗
h − σy∗

h]F ∥0,F (4.11)

and take advantage of the fact that ∇z̃h, where z̃h stands for the associated extension
of zh := nF · [fh +u∗

h −σy∗
h]F bF , is an admissible test function in (2.2a). Using (4.1b),

Green’s formula as well as (fh, ∇z̃h)0,T± = 0 due to divfh|T± = 0 and divu∗
h|T± = 0,

it follows that

hF ∥nF · [fh + u∗
h − σyh∗]F ∥2

0,F

. hF (nF · (fh + u∗
h − σy∗

h), zh)0,F = hF

(
(div(σy∗

h), z̃h)0,T+∪T−

+ (u∗
h − u∗ − σ(y∗

h − y∗), ∇z̃h)0,T+∪T−

)
. hF

(
∥y∗ − y∗

h∥0,T+∪T−∥∇z̃h∥0,T+∪T−

+ ∥u∗ − u∗
h∥0,T+∪T−∥∇z̃h∥0,T+∪T− + (η

(2)
y,T+

+ η
(2)
y,T−)∥z̃h∥0,T+∪T−

)
.

Young’s inequality, (4.1b), and (4.10),(4.11) give rise to (4.9a). The proof of (4.9b)
can be accomplished in a similar way.

5. Numerics. We consider two examples for the optimal control problem (2.1)
with exact solutions featuring jump discontinuities and nonempty active sets. In the
first example, we use a convex domain, whereas a nonconvex L-shaped domain is
considered in the second one. All the numerical results presented below were im-
plemented by a Python script using the Dolphin Finite Element Library [30] and a
projected gradient algorithm (see [38]) for solving the optimal control problem (2.1).

5.1. Convex domain. We consider a rather simple convex domain

Ω = (−0.5, 0.5)3.

However, the material parameters σ and µ−1 are chosen to be discontinuous as follows:

σ =

{
100 in Ωc,
1 in Ω \ Ωc,

µ−1 =

{
0.1 in Ωc,
1 in Ω \ Ωc,

with Ωc := {x ∈ R3 | x2
1 + x2

2 + x2
3 < 0.42}. Furthermore, the data involved in (P)

are given by




α = 1,

yd ≡ ψ ≡ (0, 0, 0)T ,

ud(x) = 100(χΩc
(x), 0, 0)T ,

f(x) = σ∇ϕ(x) − 100(χΩc
(x), 0, 0)T ,
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where χΩc
denotes the characteristic function of Ωc, and the scalar function ϕ is

defined by

ϕ(x) :=
1

2π
sin(2πx1) sin(2πx2) sin(2πx3).

Then, using the identity curl∇ ≡ 0, we infer that the unique solution for the optimal
control problem (2.1) is given by

y∗ = ∇ϕ and u∗ = ud = 100(χΩc
, 0, 0)T .

We underline that the optimal control u∗ features strong jump discontinuities across
the interface ∂Ωc. Also, note that the lower bound ψ is active in Ω \ Ωc since

u∗(x) = ψ(x) in Ω \ Ωc.

Fig. 5.1. Total error for uniform (straight line) and adaptive mesh refinement (dash line).

In Figure 5.1, we report on the computed total error

∥y∗ − y∗
h∥curl,Ω + ∥p∗ − p∗

h∥curl,Ω + ∥u∗ − u∗
h∥0,Ω

resulting from the uniform mesh refinement compared with the one based on the
adaptive mesh refinement using the proposed error estimator ηh. Here, DoF denotes
the degrees of freedom in the finite element space Vh. We conclude a better numerical
performance of the adaptive method over the standard uniform mesh refinement.
Note that the value θ = 0.8 was used for the bulk criterion in the Dörfler marking.
Furthermore, as plotted in Figure 5.2, the adaptive mesh refinement is concentrated
around the interface ∂Ωc. This behavior is expected as the optimal control u∗ is
constructed to have jump discontinuities across the interface ∂Ωc. Table 5.1 presents
the convergence history of the adaptive method and the computed effectivity index

Ih =
ηh

∥y∗ − y∗
h∥curl,Ω + ∥p∗ − p∗

h∥curl,Ω + ∥u∗ − u∗
h∥0,Ω

.

It is noticeable that the effectivity index Ih is close to 2.8.
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Table 5.1
Convergence history and effectivity index.

DoF ∥u∗ − u∗
h∥0,Ω ∥y∗ − y∗

h∥curl,Ω ∥p∗ − p∗
h∥curl,Ω Ih

4184 13.342150 0.528396 1.547311 3.356047
5836 12.498939 0.613629 2.958597 3.051588
9072 10.587719 0.938416 0.352197 2.880237
16558 9.5027395 0.258851 0.829658 2.800450
27284 8.5995375 0.259084 1.360146 2.948251
47117 7.0834963 0.221773 0.978173 2.759841
83418 6.6135089 0.173759 0.334979 2.740255
135384 6.0651628 0.165448 0.400274 2.971874
218436 5.0086653 0.155864 0.486012 2.855683
362023 4.6907126 0.146354 0.392389 2.651461
577660 4.2936061 0.138599 0.194457 2.895985
884678 3.5363979 0.132519 0.122733 2.837530
1445806 3.3179560 0.113817 0.121641 2.708253

Fig. 5.2. Adaptive mesh.

Fig. 5.3. Computed optimal control on the finest adaptive mesh.

5.2. Nonconvex L-shaped domain. We consider now a nonconvex L-shaped
computational domain

Ω = (−0.5, 0.5)3 \ {(0, 0.5) × (−0.125, 0.5) × (−0.5, 0.5)}.
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Similarly to the first example, the material parameters σ and µ−1 are chosen to be
discontinuous

σ =

{
100 in Ωc := (−0.5, 0)2 × (0, 0.5),
1 otherwise,

µ−1 =

{
0.1 in Ωc,
1 otherwise.

All other data are set as in the previous example. Due to the nonconvex structure of
the computational domain, the convergence of the uniform mesh refinement method,
compared with the previous example, becomes slower. This slow convergence is some-
what expected from the analysis, since solutions of curl-curl problems on nonconvex
polyhedral domains feature singularities at reentrant corners (see [14]). In this case,
the performance of the adaptive method turns out to be more favorable in comparison
with the previous example. Also, the adaptive method is able to capture the region
where jump discontinuities and singularities are present in the solution (see Figure
5.5). The convergence history of the adaptive method is presented in Table 5.2. Here,
the effectivity index is close to 3.

Fig. 5.4. Total error for uniform (straight line) and adaptive mesh refinement (dash line).

Fig. 5.5. Adaptive mesh.
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Table 5.2
Convergence history and effectivity index.

DoF ∥u∗ − u∗
h∥0,Ω ∥y∗ − y∗

h∥curl,Ω ∥p∗ − p∗
h∥curl,Ω Ih

3004 6.199012 0.376819 0.820630 3.327702
3452 6.342518 0.400929 1.538389 3.171178
4583 5.547472 0.306768 0.842476 2.966337
7146 4.941834 0.286111 0.932936 2.871339
10584 4.844246 0.261587 0.872780 3.081036
17160 4.026743 0.241329 0.760033 2.920655
29926 3.635188 0.225424 0.500370 2.843312
49801 3.528143 0.217976 0.361220 3.008300
77056 2.887235 0.214939 0.325443 3.025875
135229 2.621580 0.213087 0.298890 2.843035
214402 2.534843 0.210963 0.179470 2.918438
321668 2.056567 0.204488 0.122065 2.938735
562580 1.872029 0.180525 0.109425 2.882065
853701 1.807420 0.165857 0.095384 3.018933
1300641 1.460198 0.157659 0.084676 2.941755

Fig. 5.6. Computed optimal control on the finest adaptive mesh.
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[23] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms.
Springer, Berlin-Heidelberg-New York, 1993.

[24] R.H.W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D
eddy currents equations. J. Comp. Math. 27, 657–676, 2009.
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