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Abstract

We study a nonlinear, unsteady, moving boundary, fluid-structure interaction (FSI) prob-
lem in which the structure is composed of two layers: a thick layer, and a thin layer which serves
as a fluid-structure interface with mass. The fluid flow, which is driven by the time-dependent
dynamic pressure data, is modeled by the Navier-Stokes equations for an incompressible, vis-
cous fluid, defined on a 2D cylinder. The elastodynamics of the cylinder wall is governed by
the 1D linear wave equation modeling the thin structural layer, and by the 2D equations of
linear elasticity modeling the thick structural layer. We prove existence of a weak solution to
this nonlinear FSI problem as long as the cylinder radius is greater than zero. The spaces of
weak solutions presented in this manuscript reveal a striking new feature: the presence of a
thin fluid-structure interface with mass regularizes solutions of the coupled problem.

1 Introduction

1.1 Problem definition

We consider the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations in
a 2D, time-dependent cylindrical fluid domain ΩF (t), which is not known a priori:

FLUID :
ρF (∂tu + u · ∇u) = ∇ · σ,

∇ · u = 0,

}
in ΩF (t), t ∈ (0, T ), (1.1)

where ρF denotes the fluid density; u the fluid velocity; σ = −pI+2µD(u) is the fluid Cauchy stress
tensor; p is the fluid pressure; µ is the kinematic viscosity coefficient; and D(u) = 1

2
(∇u +∇τu) is

the symmetrized gradient of u.

The cylindrical fluid domain is of length L, with reference radius r = R. The radial (vertical)
displacement of the cylinder radius at time t and position z ∈ (0, L) will be denoted by η(t, z),
giving rise to a deformed domain with radius R + η(t, z). For simplicity, we will be assuming that
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longitudinal displacement of the structure is negligible. This is a common assumption in literature
on FSI in blood flow. Thus, the fluid domain, sketched in Figure 1, is given by

ΩF (t) = {(z, r) ∈ R2 : z ∈ (0, L), r ∈ (0, R + η(t, z)},

where the lateral boundary of the cylinder corresponds to fluid-structure interface, denoted by

Γ(t) = {(z, r) ∈ R2 : z ∈ (0, L), r = R + η(t, z)}.

Without loss of generality we only consider the upper half of the fluid cylinder, with a symmetry
boundary condition prescribed at the axis of symmetry, denoted by Γb in Figure 1.

Figure 1: Domain sketch.

The fluid is in contact with a thin elastic structure, which is located between the fluid and the
thick structural layer. The thin structure thereby serves as a fluid-structure interface with mass.
In this manuscript we will be assuming that the elastodynamics of the thin elastic structure is
governed by the 1D wave equation

THIN STRUCTURE : ρs1h ∂ttη = c2∂zzη + f, z ∈ (0, L), t ∈ (0, T ), (1.2)

where η denotes radial (vertical) displacement. More generally, the wave equation can be viewed
as a special case of the linearly (visco)elastic cylindrical Koiter shell model

ρs1h∂
2
t η + C0η − C1∂

2
zη + C2∂

4
zη +D0∂tη −D1∂t∂

2
zη +D2∂t∂

4
zη = f, (1.3)

with C0 = C2 = D0 = D1 = D2 = 0. Here, ρs1 is structure density, h denotes structure thickness,
and f denotes force density in the radial (vertical) direction acting on the structure. The constants
Ci and Di > 0 are the material constants describing structural elasticity and viscosity, respectively,
which are given in terms of four material parameters: the Young’s modulus of elasticity E, the
Poisson ratio σ, and their viscoelastic couter-parts (for a derivation of this model and the exact
form of the coefficients, please see [6, 9]). The results of the manuscript hold in the case when all
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the coefficients in the Koiter shell model are different from zero. From the analysis point of view,
however, the most difficult case is the case of the wave equation, and for that reason we consider
this case in the present manuscript.

The thick structural layer will be modeled by the equations of linear elasticity

THICK STRUCTURE : ρs2 ∂ttd = ∇ · S in ΩS, t ∈ (0, T ), (1.4)

where d(t, z, r) = (dz(t, z, r), dr(t, z, r)) denotes structural displacement of the thick elastic wall at
point (z, r) ∈ ΩS and time t, S is the first Piola-Kirchhoff stress tensor, and ρs2 is the density of
the thick structure. Equation (1.4) describes the second Newton’s Law of motion for an arbitrary
thick structure. We are interested in linearly elastic structures for which

S = µ (∇d + (∇d)T ) + λ(∇ · d)I, (1.5)

where λ and µ are Lamé constants describing material properties of the structure. Since structural
problems are typically defined in the Lagrangian framework, domain ΩS corresponds to a fixed,
reference domain which is independent of time, and is given by

ΩS = (0, L)× (R,R +H).

A deformation of ΩS at time t is denoted by ΩS(t) in Figure 1.

The coupling between the fluid, the thin structural layer, and the thick structural layer is
achieved via two sets of coupling conditions: the kinematic coupling condition and the dynamic
coupling condition. In the present manuscript the kinematic coupling condition is the no-slip
boundary condition between the fluid and thin structure, as well as between the thin and thick
structural layers. Depending on the application, different kinematic coupling conditions can be
prescribed between the three different physical models.

The dynamic coupling condition describes balance of forces at the fluid-structure interface Γ(t).
Since Γ(t) is a fluid-structure interface with mass, the dynamic coupling condition states that the
mass times the acceleration of the interface is balanced by the sum of total forces acting on Γ(t).
This includes the contribution due to the elastic energy of the structure (∂zzη), and the balance of
contact forces exerted by the fluid and the thick structure onto Γ(t). More precisely, we have the
following set of coupling conditions written in Lagrangian framework, with z ∈ (0, L) and t ∈ (0, T ):

• The kinematic coupling condition:

(0, ∂tη(t, z)) = u(t, z, R + η(t, z)), (continuity of velocity)
(0, η(t, z)) = d(t, z, R), (continuity of displacement)

(1.6)

• The dynamic coupling condition:

ρs1h∂ttη = c2∂zzη − J(t, z)(σn)|(t,z,R+η(t,z)) · er + S(t, z, R)er · er. (1.7)

Here J(t, z) =
√

1 + (∂zη(t, z))2 denotes the Jacobian of the transformation from Eulerian to
Lagrangian coordinates, and er is the unit vector associated with the vertical, r-direction.
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Problem (1.1)-(1.7) is supplemented with initial and boundary conditions. At the inlet and
outlet boundaries to the fluid domain we prescribe zero tangential velocity and a given dynamic
pressure p+

ρf
2
|u|2 (see e.g. [14]):

p+
ρf
2
|u|2 = Pin/out(t),

ur = 0,

}
on Γin/out, (1.8)

where Pin/out ∈ L2
loc(0,∞) are given. Therefore, the fluid flow is driven by a prescribed dynamic

pressure drop, and the flow enters and leaves the fluid domain orthogonally to the inlet and outlet
boundary.

At the bottom boundary we prescribe the symmetry boundary condition:

ur = ∂ruz = 0, on Γb. (1.9)

At the end points of the thin structure we prescribe zero displacement:

η(t, 0) = η(t, L) = 0. (1.10)

For the thick structure, we assume that the external (top) boundary r = H is exposed to
an external ambient pressure Pe:

Ser = −Peer, on Γext, (1.11)

while at the end points of the annular sections of the thick structure, Γsin/out, we assume that the
displacement is zero

d(t, 0, r) = d(t, L, r) = 0, for r ∈ (R,H).

The initial fluid and structural velocities, and the initial displacements are given by

u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0, d(0, .) = d0, ∂td(0, .) = V0, (1.12)

and are assumed to belong to the following spaces: u0 ∈ L2(ΩF (0)), η0 ∈ H1
0 (0, 1), v0 ∈ L2(0, 1),

V 0 ∈ L2(ΩS), d0 ∈ H1(ΩS), satisfying the following compatibility conditions:

∇ · u0 = 0,
u0(z,R + η0(z)) · n0 = v0(z)er · n0,

u0 · n = 0, on Γb,
(0, η0(z)) = d0(z, R),

η0(0) = η0(L) = d0(0, .) = d0(L, .) = 0,
R + η0(z) > 0, z ∈ [0, L].

(1.13)

We study the existence of a weak solution to the nonlinear FSI problem (1.1)-(1.13), in which
the flow is driven by the time-dependent inlet and outlet dynamic pressure data.

For simplicity, in the rest of the manuscript, we will be setting all the parameters in the problem
to be equal to 1. This includes the domain parameters R and L, the Lamé constants λ and µ,
and the structure parameters ρs1 , ρs2 and h. Furthermore, we will be assuming that the external
pressure, given in (1.11), is equal to zero. Correspondingly, we subtract the constant external
pressure data from the inlet and outlet dynamic pressure data to obtain an equivalent problem.
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1.2 Motivation

This work was motivated by blood flow in major human arteries. In medium-to-large human
arteries, such as the aorta or coronary arteries, blood can be modeled as an incompressible, viscous,
Newtonian fluid. Arterial walls of major arteries are composed of several layers, each with different
mechanical characteristics. The main layers are the tunica intima, the tunica media, and the tunica
adventitia. They are separated by the thin elastic laminae, see Figure 2. To this date, there have
been no fluid-structure interaction models or computational solvers of arterial flow that take into
account the multi-layered structure of arterial walls. In this manuscript we take a first step in this
direction by proposing to study a benchmark problem in fluid-multi-layered-structure interaction in
which the structure consists of two layers, a thin and a thick layer, where the thin layer serves as a
fluid-structure interface with mass. The proposed problem is a nonlinear moving-boundary problem
of parabolic-hyperbolic type for which the questions of well-posedness and numerical simulation are
wide open.

Figure 2: Arterial wall layers.

1.3 Literature review

Fluid-structure interaction problems have been extensively studied for the past 20 years by many
authors. The focus has been exclusively on FSI problems with structures consisting of a single
material. The field has evolved from first studying FSI between an incompressible, viscous fluid
and a rigid structure immersed in a fluid, to considering compliant (elastic/viscoelastic) structures
interacting with a fluid. Concerning compliant structures, the coupling between the structure and
the fluid was first assumed to take place along a fixed fluid domain boundary (linear coupling).
This was then extended to FSI problems in which the coupling was evaluated at a deformed fluid-
structure interface, giving rise to an additional nonlinearity in the problem (nonlinear coupling).

Well-posedness results in which the structure was assumed to be a rigid body immersed in a fluid,
or described by a finite number of modal functions, were studied in [5, 15, 18, 20, 21, 24, 27, 50].
FSI problems coupling the Navier-Stokes equations with linear elasticity where the coupling was
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calculated at a fixed fluid domain boundary, were considered in [23], and in [2, 3, 38] where an
additional nonlinear coupling term was added at the interface. A study of well-posedness for
FSI problems between an incompressible, viscous fluid and an elastic/viscoelastic structure with
nonlinear coupling evaluated at a moving interface started with the result by daVeiga [4], where
existence of a strong solution was obtained locally in time for an interaction between a 2D fluid
and a 1D viscoelastic string, assuming periodic boundary conditions. This result was extended by
Lequeurre in [41, 42], where the existence of a unique, local in time, strong solution for any data, and
the existence of a global strong solution for small data, was proved in the case when the structure
was modeled as a clamped viscoelastic beam. D. Coutand and S. Shkoller proved existence, locally
in time, of a unique, regular solution for an interaction between a viscous, incompressible fluid in
3D and a 3D structure, immersed in the fluid, where the structure was modeled by the equations
of linear [16], or quasi-linear [17] elasticity. In the case when the structure (solid) is modeled by a
linear wave equation, I. Kukavica and A. Tufahha proved the existence, locally in time, of a strong
solution, assuming lower regularity for the initial data [34]. A similar result for compressible flows
can be found in [35]. A fluid-structure interaction between a viscous, incompressible fluid in 3D,
and 2D elastic shells was considered in [13, 12] where existence, locally in time, of a unique regular
solution was proved. All the above mentioned existence results for strong solutions are local in
time. We also mention that the works of Shkoller et al., and Kukavica at al. were obtained in the
context of Lagrangian coordinates, which were used for both the structure and fluid problems.

In the context of weak solutions, the following results have been obtained. Continuous depen-
dence of weak solutions on initial data for a fluid structure interaction problem with a free boundary
type coupling condition was studied in [30]. Existence of a weak solution for a FSI problem between
a 3D incompressible, viscous fluid and a 2D viscoelastic plate was considered by Chambolle et al.
in [11], while Grandmont improved this result in [29] to hold for a 2D elastic plate. These results
were extended to a more general geometry in [39], and then to the case of generalized Newtonian
fluids in [40], and to a non-Newtonian shear dependent fluid in [36]. In these works existence of a
weak solution was proved for as long as the elastic boundary does not touch ”the bottom” (rigid)
portion of the fluid domain boundary.

Muha and Čanić recently proved existence of weak solutions to a class of FSI problems modeling
the flow of an incompressible, viscous, Newtonian fluid flowing through a cylinder whose lateral wall
was modeled by either the linearly viscoelastic, or by the linearly elastic Koiter shell equations [45],
assuming nonlinear coupling at the deformed fluid-structure interface. The fluid flow boundary
conditions were not periodic, but rather, the flow was driven by the dynamic pressure drop data.
The methodology of proof in [45] was based on a semi-discrete, operator splitting Lie scheme,
which was used in [31] to design a stable, loosely coupled partitioned numerical scheme, called the
kinematically coupled scheme (see also [6]). Ideas based on the Lie operator splitting scheme were
also used by Temam in [52] to prove the existence of a solution to the nonlinear Carleman equation.

Since the kinematically-coupled scheme is modular, it is particularly suitable for dealing with
problems in which the structure consists of several layers, since modeling each additional layer
can be accomplished by adding a new module to the partitioned scheme. Indeed, in the present
manuscript we use the kinematically coupled scheme to prove the existence of a weak solution to
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a fluid-multi-layered structure interaction problem described in (1.1)-(1.13). The method of proof,
first introduced by the authors in [45], is robust in the sense that it can be extended to the multi-
layered structural case considered in this manuscript. In particular, the method presented in [45] can
be adopted to prove the existence of a FSI solution when the thin structure is modeled as a linearly
elastic Koiter shell, and the elastodynamics of the thick structure is described by the equations of
linear elasticity. In this manuscript we make further progress in this direction by considering the
linear wave equation, and not the full Koiter shell model for our thin structural model. This is a
more difficult case since the fourth-order flexural term ∂4

z , which provides higher regularity of weak
solutions in the Koiter shell problem, is not present in the pure membrane model described by the
linear wave equation. As a result, the analysis is more involved, and a non-standard version of the
Trace Theorem (see [44] and Theorem 6.2) needs to be used to obtain the existence result.

The existence proof presented in this manuscript is constructive. To deal with the motion of
the fluid domain we adopt the Arbitrary Lagrangian Eulerian (ALE) approach. We construct a
sequence of approximate solutions to the problem written in ALE weak formulation by performing
the time-discretization via Lie operator splitting. At each time step, the full FSI problem is split
into a fluid and a structure sub-problem. To achieve stability and convergence of the corresponding
splitting scheme, the splitting is performed in a special way in which the fluid sub-problem includes
structure inertia via a ”Robin-type” boundary condition. The fact that structure inertia are included
implicitly in the fluid sub-problem, enabled us, in the present work, to get appropriate energy
estimates for the approximate solutions, independently of the size of the time discretization. Passing
to the limit, as the size of the time step converges to zero, is achieved by the use of compactness
arguments alla Simon, and by a careful construction of the appropriate test functions associated
with moving domains.

Our analysis revealed a striking new result that concerns solutions of coupled, multi-physics
problems. We found that the presence of a thin structure with mass at the fluid-structure inter-
face, regularizes the FSI solution. In [46] it is shown that this is not just a consequence of our
mathematical approach, but a physical property of the problem.

The partitioned, loosely coupled scheme used in the proof in this manuscript has already been
implemented in the design of several stable computational FSI schemes for simulation of blood
flow in human arteries with thin structural models [6, 25, 31, 37], with a thick structural model
[7], and with a multi-layered structural model [8]. We effectively prove in this manuscript that
this numerical scheme converges to a weak solution of the nonlinear fluid-multi-layered structure
interaction problem.

2 The energy of the coupled problem

We begin by first showing that the coupled FSI problem (1.1)-(1.13) is well-formulated in the sense
that the total energy of the problem is bounded in terms of the prescribed data. More precisely, we
now show that the following energy estimate holds:

d

dt
(Ekin(t) + Eel(t)) +D(t) ≤ C(Pin(t), Pout(t)), (2.1)
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where
Ekin(t) := 1

2

(
‖u‖2

L2(ΩF (t)) + ‖∂tη‖2
L2(Γ) + ‖∂td‖2

L2(ΩS)

)
,

Eel(t) := 1
2

(
‖∂zη‖2

L2(Γ) + 2‖D(d)‖2
L2(ΩS) + ‖∇ · d‖2

L2(ΩS)

)
,

(2.2)

denote the kinetic and elastic energy of the coupled problem, respectively, and the term D(t)
captures viscous dissipation in the fluid:

D(t) := ‖D(u)‖2
L2(ΩF (t)). (2.3)

The constant C(Pin(t), Pout(t))) depends only on the inlet and outlet pressure data, which are
both functions of time. Notice that, due to the presence of an elastic fluid-structure interface
with mass, the kinetic energy term Ekin(t) contains a contribution from the kinetic energy of the
fluid-structure interface ‖∂tη‖2

L2(Γ) incorporating the interface inertia, and the elastic energy Eel(t)

of the FSI problem accounts for the elastic energy ‖∂zη‖2
L2(Γ) of the interface. If a FSI problem

between the fluid and a thick structure was considered without the thin FSI interface with mass,
these terms would not have been present. In fact, the traces of the displacement and velocity at the
fluid-structure interface of that FSI problem would not have been even defined for weak solutions.

To show that (2.1) holds, we first multiply equation (1.1) by u, integrate over ΩF (t), and formally
integrate by parts to obtain:

∫

ΩF (t)

(
∂tu · u + (u · ∇)u · u

)
+ 2

∫

ΩF (t)

|Du|2 −
∫

∂ΩF (t)

(−pI + 2D(u))n(t) · u = 0.

To deal with the inertia term we first recall that ΩF (t) is moving in time and that the velocity of
the lateral boundary is given by u|Γ(t). The transport theorem applied to the first term on the left
hand-side of the above equation then gives:

∫

ΩF (t)

∂tu · u =
1

2

d

dt

∫

ΩF (t)

|u|2 − 1

2

∫

Γ(t)

|u|2u · n(t).

The second term on the left hand side can can be rewritten by using integration by parts, and the
divergence-free condition, to obtain:

∫

ΩF (t)

(u · ∇)u · u =
1

2

∫

∂ΩF (t)

|u|2u · n(t) =
1

2

( ∫

Γ(t)

|u|2u · n(t)

−
∫

Γin

|u|2uz +

∫

Γout

|u|2uz.
)

These two terms added together give

∫

ΩF (t)

∂tu · u +

∫

ΩF (t)

(u · ∇)u · u =
1

2

d

dt

∫

ΩF (t)

|u|2 − 1

2

∫

Γin

|u|2uz +
1

2

∫

Γout

|u|2uz. (2.4)
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Notice the importance of nonlinear advection in canceling the cubic term
∫

Γ(t)
|u|2u · n(t)!

To deal with the boundary integral over ∂ΩF (t), we first notice that on Γin/out the boundary
condition (1.8) implies ur = 0. Combined with the divergence-free condition we obtain ∂zuz =
−∂rur = 0. Now, using the fact that the normal to Γin/out is n = (∓1, 0) we get:

∫

Γin/out

(−pI + 2D(u))n · u =

∫

Γin

Pinuz −
∫

Γout

Poutuz. (2.5)

In a similar way, using the symmetry boundary conditions (1.9), we get:

∫

Γb

(−pI + 2D(u))n · u = 0.

What is left is to calculate the remaining boundary integral over Γ(t). To do this, consider the
wave equation (1.2), multiply it by ∂tη, and integrate by parts to obtain

∫ 1

0

f∂tη =
1

2

d

dt
‖∂tη‖2

L2(0,1) +
1

2
‖∂zη‖2

L2(0,1).

Next, consider the elasticity equation (1.4), multiply it by ∂td and integrate by parts to obtain:

1

2

d

dt

(
‖∂td‖2

L2(ΩS) + 2‖D(d)‖2
L2(ΩS) + ‖∇ · d‖2

L2(ΩS)

)
= −

∫ 1

0

Ser · ∂td. (2.6)

By enforcing the dynamic and kinematic coupling conditions (1.6), (1.7), we obtain

−
∫

Γ(t)

σn(t) · u = −
∫ 1

0

Jσn · u =

∫ 1

0

(f − Ser · er)∂tη. (2.7)

Finally, by combining (2.7) with (2.6), and by adding the remaining contributions to the energy of
the FSI problem calculated in equations (2.4) and (1.8), one obtains the following energy equality:

1

2

d

dt

∫

ΩF (t)

|u|2 +
1

2

d

dt
‖∂tη‖2

L2(0,1) + 2

∫

ΩF (t)

|Du|2 +
1

2

d

dt
‖∂zη‖2

L2(0,1)

+
1

2

d

dt

(
‖∂td‖2

L2(ΩS) + 2‖D(d)‖2
L2(ΩS) + ‖∇ · d‖2

L2(ΩS)

)
= ±Pin/out(t)

∫

Γin/out

uz (2.8)

By using the trace inequality and Korn inequality one can estimate:

|Pin/out(t)
∫

Σin/out

uz| ≤ C|Pin/out|‖u‖H1(ΩF (t)) ≤
C

2ε
|Pin/out|2 +

εC

2
‖D(u)‖2

L2(ΩF (t)).

By choosing ε such that εC
2
≤ 1 we get the energy inequality (2.1).
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3 The ALE formulation and Lie splitting

3.1 First order ALE formulation

Since we consider nonlinear coupling between the fluid and structure, the fluid domain changes in
time. To prove the existence of a weak solution to (1.1)-(1.13) it is convenient to map the fluid
domain onto a fixed domain ΩF . The structural problems are already defined on fixed domains
since they are formulated in the Lagrangian framework. We follow the approach typical of numer-
ical methods for FSI problems and map our fluid domain ΩF (t) onto ΩF by using an Arbitrary
Lagrangian-Eulerian (ALE) mapping [6, 31, 22, 47, 48]. We remark here that in our problem
it is not convenient to use Lagrangian formulation for the fluid sub-problem, as is done in e.g.,
[17, 13, 34], since, in our problem, the fluid domain consists of a fixed, control volume of a cylinder,
with prescribed inlet and outlet pressure data, which does not follow Largangian flow.

We begin by defining a family of ALE mappings Aη parameterized by η:

Aη(t) : ΩF → ΩF (t), Aη(t)(z̃, r̃) :=

(
z̃

(1 + η(t, z̃))r̃

)
, (z̃, r̃) ∈ ΩF , (3.1)

where (z̃, r̃) denote the coordinates in the reference domain ΩF = (0, 1)×(0, 1). The mapping Aη(t)
is a bijection, and its Jacobian is given by

|det∇Aη(t)| = |1 + η(t, z̃)|. (3.2)

Composite functions with the ALE mapping will be denoted by

uη(t, .) = u(t, .) ◦ Aη(t) and pη(t, .) = p(t, .) ◦ Aη(t). (3.3)

The derivatives of composite functions satisfy:

∂tu = ∂tu
η − (wη · ∇η)uη, ∇u = ∇ηuη, (3.4)

where the ALE domain velocity, wη, and the transformed gradient, ∇η, are given by:

wη = ∂tηr̃er, ∇η =




∂z̃ − r̃
∂zη

1 + η
∂r̃

1

1 + η
∂r̃


 . (3.5)

One can see that ∇ηv = ∇v(∇Aη)−1. For the purposes of the existence proof we also introduce the
following notation:

ση = −pηI + 2Dη(uη), Dη(uη) =
1

2
(∇ηuη + (∇η)τuη).

We are now ready to rewrite problem (1.1)-(1.13) in the ALE formulation. However, before we do
that, we will make one more important step in our strategy to prove the existence of a weak solution
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to (1.1)-(1.13). Namely, as mentioned earlier, we would like to “solve” the coupled FSI problem
by approximating the problem using the time-discretization via Lie operator splitting. Since Lie
operator splitting is defined for systems that are first-order in time, see Section 3.2, we have to
replace the second-order time-derivatives of η and d, with the first-order time-derivatives of the
thin and thick structure velocities, respectively. Furthermore, we will use the kinematic coupling
condition (1.6) which implies that the fluid-structure interface velocity is equal to the normal trace
of the fluid velocity on Γη(t). Thus, we will introduce a new variable, v, to denote this trace, and
will replace ∂tη by v everywhere in the structure equation. This has deep consequences both
for the existence proof presented in this manuscript, as well as for the proof of stability of the
underlying numerical scheme, as it enforces the kinematic coupling condition implicitly in all the
steps of the scheme. We also introduce another new variable V = ∂td which denotes the thick
structure velocity. This enables us to rewrite problem (1.1)-(1.13) as a first-order system in time.

Thus, the ALE formulation of problem (1.1)-(1.13), defined on the reference domain ΩF , and
written as a first-order system in time, is given by the following (we drop the superscript η in uη

to simplify notation):

Find u(t, z̃, r̃), p(t, z̃, r̃), η(t, z̃), v(t, z̃), d(t, z̃) and V(t, z̃) such that

∂tu + ((u−wη) · ∇η)u = ∇η · ση,
∇η · u = 0,

}
in (0, T )× ΩF , (3.6)

ur = 0,
∂ruz = 0

}
on (0, T )× Γb, (3.7)

p+ 1
2
|u|2 = Pin/out(t),
ur = 0,

}
on (0, T )× Γin/out, (3.8)

u = ver,
d = ηer,

∂tη = v,
∂tv − ∂2

zη = −Jσn · er + Ser · er





on (0, T )× (0, 1), (3.9)

∂td = V,
∂tV = ∇ · S,

}
on ΩS, (3.10)

η = 0 on (0, T )× ∂Γ,
d = 0 on (0, T )× Γsin/out

(3.11)

Ser = 0 on (0, T )× Γext. (3.12)

u(0, .) = u0, η(0, .) = η0, v(0, .) = v0,d(0, .) = d0,V(0, .) = V0 at t = 0. (3.13)

This defines a parabolic-hyperbolic-hyperbolic nonlinear moving boundary problem. The nonlinear-
ity appears in the equations (3.6), and in the coupling conditions (3.9) where the fluid quantities are
evaluated at the deformed fluid-structure interface η(t, z). Parabolic features are associated with
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the fluid problem (3.6)-(3.8), while hyperbolic features come from the 2D equations of elasticity, and
from the 1D wave equation modeling the fluid-structure interface, described by the last equation in
(3.9).

3.2 The operator splitting scheme

To prove the existence of a weak solution to (3.6)-(3.13) we use the time-discretization via operator
splitting, known as the Lie splitting or the Marchuk-Yanenko splitting scheme. The underlying
multi-physics problem will be split into the fluid and structure sub-problems, following the different
“physics” in the problem, but the splitting will be performed in a particularly clever manner so
that the resulting problem defines a scheme that converges to a weak solution of the continuous
problem. The basic ideas behind the Lie splitting can be summarized as follows.

Let N ∈ N, ∆t = T/N and tn = n∆t. Consider the following initial-value problem:

dφ

dt
+ Aφ = 0 in (0, T ), φ(0) = φ0,

where A is an operator defined on a Hilbert space, and A can be written as A = A1 + A2. Set
φ0 = φ0, and, for n = 0, . . . , N − 1 and i = 1, 2, compute φn+ i

2 by solving

d

dt
φi + Aiφi = 0

φi(tn) = φn+ i−1
2



 in (tn, tn+1),

and then set φn+ i
2 = φi(tn+1), for i = 1, 2. It can be shown that this method is first-order accurate

in time, see e.g., [28].

We apply this approach to split problem (3.6)-(3.13) into two sub-problems: a structure and a
fluid sub-problem defining operators A1 and A2.

Problem A1: The structure elastodynamics problem. In this step we solve an elastody-
namics problem for the location of the multi-layered cylinder wall. The problem is driven only by
the initial data, i.e., the initial boundary velocity, taken from the previous time step as the trace
of the fluid velocity at the fluid-structure interface. The fluid velocity u remains unchanged in this
step. More precisely, the problem reads:
Given (un, ηn, vn,dn,V n) from the previous time step, find (u, v, η,V ,d) such that:

∂tu = 0, in (tn, tn+1)× ΩF ,

∂tV = ∇ · S,
∂td = V

}
in (tn, tn+1)× ΩS,

d = 0 on Γsin/out,

Ser = 0 on (tn, tn+1)× Γext,

(3.14)
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d = ηer on (tn, tn+1)× (0, 1),
∂tv − ∂2

zη = Ser · er,
∂tη = v

}
on (tn, tn+1)× (0, 1),

η(0) = η(1) = 0,

(3.15)

with u(tn) = un, η(tn) = ηn, v(tn) = vn, d(tn) = dn, V(tn) = Vn.

Then set un+ 1
2 = u(tn+1), ηn+ 1

2 = η(tn+1), vn+ 1
2 = v(tn+1), dn+ 1

2 = d(tn+1), Vn+ 1
2 = V(tn+1).

Problem A2: The fluid problem. In this step we solve the Navier-Stokes equations coupled
with structure inertia through a “Robin-type” boundary condition on Γ (lines 5 and 6 in (3.16)
below). The kinematic coupling condition is implicitly satisfied. The structure displacement remains
unchanged. With a slight abuse of notation, the problem can be written as follows:
Find (u, v, η,V ,d) such that:

∂tη = 0 on (tn, tn+1)× (0, 1),

∂td = 0 on (tn, tn+1)× ΩS,

∂tu + ((un −wηn+ 1
2 ) · ∇ηn)u = ∇ηn · σηn
∇ηn · u = 0

}
in (tn, tn+1)× ΩF ,

∂tv = −Jσn · er
u = ver

}
on (tn, tn+1)× (0, 1), (3.16)

ur = 0
∂ruz = 0

}
on (tn, tn+1)× Γb,

p+
ρf
2
|u|2 = Pin/out(t)
ur = 0

}
on (tn, tn+1)× Γin/out,

with u(tn, .) = un+ 1
2 , η(tn, .) = ηn+ 1

2 , v(tn, .) = vn+ 1
2 , d(tn, .) = dn+ 1

2 , V(tn, .) = Vn+ 1
2 .

Then set un+1 = u(tn+1), ηn+1 = η(tn+1), vn+1 = v(tn+1), dn+1 = η(tn+1), Vn+1 = V(tn+1).

Notice that, since in this step η does not change, this problem is linear. Furthermore, it can be
viewed as a stationary Navier-Stokes-like problem on a fixed domain with a Robin-type boundary
condition. In numerical simulations, one can use the ALE transformation Aηn to “transform” the
problem back to domain Ωηn and solve it there, thereby avoiding the un-necessary calculation of
the transformed gradient ∇ηn . The ALE velocity is the only extra term that needs to be included
with that approach. See, e.g., [6] for more details. For the purposes of our proof, we will, however,
remain in the fixed, reference domain ΩF .

It is important to notice that in Problem A2, the problem is “linearized” around the previous
location of the boundary, i.e., we work with the domain determined by ηn, and not by ηn+1/2. This
is in direct relation with the implementation of the numerical scheme studied in [6, 19]. However,

we also notice that ALE velocity, wn+ 1
2 , is taken from the just calculated Problem A1! This choice

is crucial for obtaining a semi-discrete version of an energy inequality, discussed in Section 5.

In the remainder of this paper we use the splitting scheme described above to define approximate
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solutions of (3.6)-(3.13) (or equivalently of problem (1.1)-(1.13) ) and show that the approximate
solutions converge to a weak solution, as ∆t→ 0.

4 Weak solutions

4.1 Notation and function spaces

To define weak solutions of the moving-bounday problem (1.1)-(1.13) and of the moving-boundary
problem (3.6)-(3.13) defined on a fixed domain, we introduce the following notation. We use aS to
denote the bilinear form associated with the elastic energy of the thick structure:

aS(d,ψ) =

∫

ΩS

(
2D(d) : D(ψ) + (∇ · d) · (∇ ·ψ)

)
. (4.1)

Here A : B := tr
[
ABT

]
. Furthermore, we will be using b to denote the following trilinear form

corresponding to the (symmetrized) nonlinear advection term in the Navier-Stokes equations:

b(t,u,v,w) =
1

2

∫

ΩF (t)

(u · ∇)v ·w − 1

2

∫

ΩF (t)

(u · ∇)w · v. (4.2)

Finally, we define a linear functional which associates the inlet and outlet dynamic pressure bound-
ary data to a test function v in the following way:

〈F (t),v〉Γin/out = Pin(t)

∫

Γin

vz − Pout(t)
∫

Γout

vz.

The following functions spaces define our weak solutions. For the fluid velocity we would like to
work with the classical function space associated with weak solutions of the Navier-Stokes equations.
This, however, requires some additional consideration. Namely, since our thin structure is governed
by the linear wave equation, lacking the bending rigidity terms, weak solutions cannot be expected
to be Lipschitz-continuous. Indeed, from the energy inequality (2.1) we only have η ∈ H1(0, 1), and
from Sobolev embedding we get that η ∈ C0,1/2(0, 1), which means that ΩF (t) is not necessarily a
Lipshitz domain. However, ΩF (t) is locally a sub-graph of a Hölder continuous function. In that
case one can define a“Lagrangian” trace

γΓ(t) : C1(ΩF (t))→ C(Γ),

γΓ(t) : v 7→ v(t, z, 1 + η(t, z)).
(4.3)

Furthermore, it was shown in [11, 29, 44] that the trace operator γΓ(t) can be extended by continuity
to a linear operator from H1(ΩF (t)) to Hs(Γ), 0 ≤ s < 1

4
. For a precise statement of the results

about “Lagrangian” trace, we refer the reader to Theorem 6.2 below [44]. Now, we define the
velocity solution space in the following way:

VF (t) = {u = (uz, ur) ∈ C1(ΩF (t))2 : ∇ · u = 0,
uz = 0 on Γ(t), ur = 0 on ∂ΩF (t) \ Γ(t)},

VF (t) = VF (t)
H1(ΩF (t))

.

(4.4)
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Using the fact that ΩF (t) is locally a sub-graph of a Hölder continuous function we can get the
following characterization of the velocity solution space VF (t) (see [11, 29]):

VF (t) = {u = (uz, ur) ∈ H1(Ωη(t))
2 : ∇ · u = 0,

uz = 0 on Γ(t), ur = 0 on ∂Ωη(t) \ Γ(t)}. (4.5)

The function space associated with weak solutions of the 1D linear wave equation and the thick
wall are given, respectively, by

VW = H1
0 (0, 1), (4.6)

VS = {d = (dz, dr) ∈ H1(ΩS)2 : dz = 0 on Γ, d = 0 on Γsin/out}. (4.7)

Motivated by the energy inequality we also define the corresponding evolution spaces for the fluid
and structure sub-problems, respectively:

WF (0, T ) = L∞(0, T ;L2(ΩF (t))) ∩ L2(0, T ;VF (t)), (4.8)

WW (0, T ) = W 1,∞(0, T ;L2(0, 1)) ∩ L2(0, T ;VW ), (4.9)

WS(0, T ) = W 1,∞(0, T ;L2(ΩS)) ∩ L2(0, T ;VS). (4.10)

Finally, we are in a position to define the solution space for the coupled fluid-multi-layered-structure
interaction problem. This space must involve the kinematic coupling condition. The dynamic
coupling condition will be enforced in a weak sense, through the integration by parts in the weak
formulation of the problem. Thus, we define

W(0, T ) = {(u, η,d) ∈ WF (0, T )×WW (0, T )×WS(0, T ) :
u(t, z, 1 + η(t, z)) = ∂tη(t, z)er, d(t, z, 1) = η(t, z)er}. (4.11)

Equality u(t, z, 1 + η(t, z)) = ∂tη(t, z)er is taken in the sense defined in [11, 44]. The corresponding
test space will be denoted by

Q(0, T ) = {(q, ψ,ψ) ∈ C1
c ([0, T );VF × VW × VS) : q(t, z, 1 + η(t, z)) = ψ(t, z)er = ψ(t, z, 1)}.

(4.12)

4.2 Weak solutions for the problem defined on the moving domain

We are now in a position to define weak solutions of fluid-multi-layered structure interaction prob-
lem, defined on the moving domain ΩF (t).

Definition 4.1. We say that (u, η,d) ∈ W(0, T ) is a weak solution of problem (1.1)-(1.13) if for
every (q, ψ,ψ) ∈ Q(0, T ) the following equality holds:

−
∫ T

0

∫

ΩF (t)

u · ∂tq +

∫ T

0

b(t,u,u,q) + 2

∫ T

0

∫

ΩF (t)

D(u) : D(q)− 1

2

∫ T

0

∫ 1

0

(∂tη)2ψ

−
∫ T

0

∫ 1

0

∂tη∂tψ +

∫ T

0

∫ 1

0

∂zη∂zψ −
∫ T

0

∫

ΩS

∂td · ∂tψ +

∫ T

0

aS(d,ψ)

=

∫ T

0

〈F (t),q〉Γin/out +

∫

Ωη0

u0 · q(0) +

∫ 1

0

v0ψ(0) +

∫

ΩS

V0 ·ψ(0).

(4.13)
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In deriving the weak formulation we used integration by parts in a classical way, and the following
equalities which hold for smooth functions:

∫

ΩF (t)

(u · ∇)u · q =
1

2

∫

ΩF (t)

(u · ∇)u · q− 1

2

∫

ΩF (t)

(u · ∇)q · u

+
1

2

∫ 1

0

(∂tη)2ψ ± 1

2

∫

Γout/in

|ur|2vr,

∫ T

0

∫

ΩF (t)

∂tu · q = −
∫ T

0

∫

ΩF (t)

u · ∂tq−
∫

Ωη0

u0 · q(0)−
∫ T

0

∫ 1

0

(∂tη)2ψ.

4.3 Weak solutions for the problem defined on a fixed, reference domain

Since most of the analysis will be performed on the problem mapped to ΩF , we rewrite the above
definition in terms of ΩF using the ALE mapping Aη(t) defined in (3.1). For this purpose, the
following notation will be useful. We define the transformed trilinear functional bη:

bη(u,u,q) :=
1

2

∫

ΩF

(1 + η)((u−wη) · ∇η)u · q− 1

2

∫

ΩF

(1 + η)((u−wη) · ∇η)q · u, (4.14)

where 1 + η is the Jacobian of the ALE mapping, calculated in (3.2). Notice that we have included
the ALE domain velocity wη into bη.

It is important to point out that the transformed fluid velocity uη is not divergence-free anymore.
Rather, it satisfies the transformed divergence-free condition ∇η · uη = 0. Furthermore, since η is
not a Lipschitz function, the ALE mapping is not necessarily a Lipschitz function, and, as a result,
uη is not necessarily an H1 function on ΩF . Therefore we need to redefine the function spaces for
the fluid velocity by introducing

VηF = {uη : u ∈ VF (t)},
where uη is defined in (3.3). Under the assumption 1 + η(z) > 0, z ∈ [0, 1], we can define a scalar
product on VηF in the following way:

(uη,vη)VηF =

∫

ΩF

(1 + η)
(
uη · vη +∇ηuη : ∇ηvη

)
= (u,v)H1(ΩF (t)).

Therefore, u 7→ uη is an isometric isomorphism between VF (t) and VηF , so VηF is also a Hilbert space.
The function spaces Wη

F (0, T ) and Wη(0, T ) are defined the same as before, but with VηF instead
VF (t). More precisely:

Wη
F (0, T ) = L∞(0, T ;L2(ΩF )) ∩ L2(0, T ;VηF (t)), (4.15)

Wη(0, T ) = {(u, η,d) ∈ Wη
F (0, T )×WW (0, T )×WS(0, T ) : u(t, z, 1) = ∂tη(t, z)er, η(t, z) = d(t, z, 1)}.

(4.16)
The corresponding test space is defined by

Qη(0, T ) = {(q, ψ,d) ∈ C1
c ([0, T );VηF × VW × VS) : q(t, z, 1) = ψ(t, z)er = d(t, z, 1)}. (4.17)
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Definition 4.2. We say that (u, η,d) ∈ Wη(0, T ) is a weak solution of problem (3.6)-(3.13) defined
on the reference domain ΩF , if for every (q, ψ,ψ) ∈ Qη(0, T ) the following equality holds:

−
∫ T

0

∫

ΩF

(1 + η)u · ∂tq +

∫ T

0

bη(u,u,q)+2

∫ T

0

∫

ΩF

(1 + η)Dη(u) : Dη(q)

−1

2

∫ T

0

∫

ΩF

(∂tη)u · q−
∫ T

0

∫ 1

0

∂tη∂tψ +

∫ T

0

∫ 1

0

∂zη∂zψ

−
∫ T

0

∫

ΩS

∂td · ∂tψ +

∫ T

0

aS(d,ψ)

=

∫ T

0

〈F (t),q〉Γin/out +

∫

Ωη0

u0 · q(0) +

∫ 1

0

v0ψ(0) +

∫

ΩS

V0 ·ψ(0).

(4.18)

To see that this is consistent with the weak solution defined in Definition 4.1, we present the
main steps in the transformation of the first integral on the left hand-side in (4.13), responsible for
the fluid kinetic energy. Namely, we formally calculate:

−
∫

ΩF (t)

u · ∂tq = −
∫

ΩF

(1 + η)uη · (∂tq− (wη · ∇η)q) = −
∫

ΩF

(1 + η)uη · ∂tq

+
1

2

∫

ΩF

(1 + η)(wη · ∇η)q · uη +
1

2

∫

ΩF

(1 + η)(wη · ∇η)q · uη.

In the last integral on the right hand-side we use the definition of wη and of ∇η, given in (3.5), to
obtain ∫

ΩF

(1 + η)(wη · ∇η)q · uη =

∫

ΩF

∂tη r̃ ∂r̃q · uη.

Using integration by parts with respect to r, keeping in mind that η does not depend on r, we
obtain

−
∫

ΩF (t)

u · ∂tq = −
∫

ΩF

(1 + η)uη · (∂tq− (wη · ∇η)q) = −
∫

ΩF

(1 + η)uη · ∂tq

+
1

2

∫

ΩF

(1 + η)(wη · ∇η)q · uη − 1

2

∫

ΩF

(1 + η)(wη · ∇η)uη · q− 1

2

∫

ΩF

∂tηu
η · q +

1

2

∫ 1

0

(∂tη)2ψ,

By using this identity in (4.13), and by recalling the definitions for b and bη, we obtain exactly the
weak form (4.18).

In the remainder of this manuscript we will be working on the fluid-multi-layered structure
interaction problem defined on the fixed domain ΩF , satisfying the weak formulation presented in
Definition 4.2 For brevity of notation, since no confusion is possible, we omit the superscript “tilde”
which is used to denote the coordinates of points in ΩF .
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5 Approximate solutions

In this section we use the Lie operator splitting scheme and semi-discretization to define a sequence
of approximate solutions of the FSI problem (3.6)-(3.13). Each of the sub-problems defined by the
Lie splitting in Section 3.2 as Problem A1 and Problem A2, will be discretized in time using the
Backward Euler scheme. This approach defines a time step, which will be denoted by ∆t, and a
number of time sub-intervals N ∈ N, so that

(0, T ) = ∪N−1
n=0 (tn, tn+1), tn = n∆t, n = 0, ..., N − 1.

For every subdivision containing N ∈ N sub-intervals, the vector of unknown approximate solutions
will be denoted by

X
n+ i

2
N =

(
u
n+ i

2
N , v

n+ i
2

N , η
n+ i

2
N ,V

n+ i
2

N , d
n+ i

2
N

)T
, n = 0, 1, . . . , N − 1, i = 1, 2, (5.1)

where i = 1, 2 denotes the solution of Problem A1 or A2, respectively. The initial condition will be
denoted by X0 = (u0, v0, η0,V 0,d0)T .

The semi-discretization and the splitting of the problem will be performed in such a way that
the semi-discrete version of the energy inequality (2.1) is preserved at every time step. This is a
crucial ingredient for the existence proof.

The semi-discrete versions of the kinetic and elastic energy (2.2), and of dissipation (2.3) are
defined by the following:

E
n+ i

2
kin,N =

1

2

(∫

ΩF

(1 + ηn−1+i)|un+ i
2

N |2 + ‖vn+ i
2

N ‖2
L2(0,1) + ‖V n+ i

2
N ‖2

L2(ΩS)

)
,

En+1
el,N =

1

2

(
‖∂zηn+ 1

2
N ‖2

L2(0,1) + 2‖D(d
n+ 1

2
N )‖2

L2(ΩS) + ‖∇ · dn+ 1
2

N ‖2
L2(ΩS)

)
,

E
n+ i

2
N = E

n+ i
2

kin,N + En+1
el,N ,

(5.2)

Dn+1
N = ∆t

∫

ΩF

(1 + ηn)|Dηn(un+1
N )|2, n = 0, . . . , N − 1, i = 0, 1. (5.3)

Throughout the rest of this section we fix the time step ∆t, i.e., we keep N ∈ N fixed, and study
the semi-discretized sub-problems defined by the Lie splitting. To simplify notation, we omit the

subscript N and write (un+ i
2 , vn+ i

2 , ηn+ i
2 ,V n+ i

2 ,dn+ i
2 ) instead of (u

n+ i
2

N , v
n+ i

2
N , η

n+ i
2

N ,V
n+ i

2
N ,d

n+ i
2

N ).

5.1 Semi-discretization of Problem A1

A semi-discrete version of Problem A1 (Structure Elastodynamics), defined by the Lie splitting in
(3.14) can be written as follows. First, in this step u does not change, and so

un+ 1
2 = un.
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We define (vn+ 1
2 , ηn+ 1

2 ,Vn+ 1
2 ,Un+ 1

2 ) ∈ V2
W × V2

S as a solution of the following problem, written in
weak form:

dn+ 1
2 (z, 1) = ηn+ 1

2 (z, 1)er, z ∈ (0, 1),

dn+ 1
2 − dn
∆t

= V n+ 1
2 ,

ηn+ 1
2 − ηn
∆t

= vn+ 1
2 ,

∫

ΩS

Vn+ 1
2 −Vn

∆t
·Ψ +

∫ 1

0

vn+ 1
2 − vn
∆t

ψ + aS(dn+ 1
2 ,Ψ) +

∫ 1

0

∂zη
n+ 1

2∂zψ = 0,

(5.4)

which holds for all (ψ,Ψ) ∈ VW ×VS such that Ψ(t, z, 1) = ψ(t, z). The first equation enforces the
kinematic coupling condition, the second row in (5.4) introduces the structure velocities, while the
third equation corresponds to a weak form of the semi-discretized elastodynamics problem. Notice
that we solve the thin and thick structure problems as one coupled problem. The thin structure
enters as a boundary condition for the thick structure problem.

Proposition 5.1. For each fixed ∆t > 0, problem (5.4) has a unique solution (vn+ 1
2 , ηn+ 1

2 ,V n+ 1
2 ,dn+ 1

2 ) ∈
V2
W × V2

S.

Proof. First notice that Korn’s inequality implies that the bilinear form aS is coercive on VS. From
here, the proof is a direct consequence of the Lax-Milgram Lemma applied to the weak form

∫ 1

0

ηn+ 1
2ψ +

∫

ΩS

dn+1 ·Ψ + (∆t)2
( ∫ 1

0

∂zη∂zψ + aS(dn+ 1
2 ,Ψ)

)

=

∫ L

0

(
∆tvn + ηn

)
ψ +

∫

ΩS

(∆tV n + dn) ·Ψ, ∀(ψ,Ψ) ∈ {VW × VS|Ψ(t, z, 1) = ψ(z, 1)},

which is obtained after a substitution of vn+ 1
2 and V n+ 1

2 in the third equation in (5.4), by using
the equations (5.4)2.

Proposition 5.2. For each fixed ∆t > 0, a solution of problem (5.4) satisfies the following discrete
energy equality:

E
n+ 1

2
kin,N + En+1

el,N +
1

2

(
‖vn+ 1

2 − vn‖2
L2(0,1) + ‖V n+ 1

2 − V n‖2
L2(ΩS)

+‖∂z(ηn+ 1
2 − ηn)‖2

L2(0,1) + aS(dn+ 1
2 − dn,dn+ 1

2 − dn)
)

= En
kin,N + En

el,N ,
(5.5)

where the kinetic and elastic energy, En
kin,N , En

el,N , are defined in (5.2).

Proof. From the second row in (5.4) we immediately get

vn+ 1
2 =

ηn+ 1
2 − ηn
∆t

∈ VW , V n+ 1
2 =

dn+ 1
2 − dn
∆t

∈ VS.

Therefore, we can proceed as usual, by substituting the test functions in (5.4) with structure

velocities. More precisely, we replace the test function (ψ,ψ) by (vn+ 1
2 ,V n+ 1

2 ) in the first term on the
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left hand-side, and then replace (ψ,ψ) by ((ηn+ 1
2 − ηn)/∆t, (dn+ 1

2 − dn)/∆t) in the bilinear forms
that correspond to the elastic energy. To deal with the terms (vn+1/2−vn)vn+1/2, (ηn+1/2−ηn)ηn+1/2,
(V n+1/2 − V n) · V n+1/2, and (dn+1/2 − dn) · dn+1/2, we use the algebraic identity (a − b) · a =
1
2
(|a|2 + |a− b|2− |b|2). After multiplying the entire equation by ∆t, the third equation in (5.4) can

be written as:

(‖vn+ 1
2‖2

L2(0,1) + ‖vn+ 1
2 − vn‖2

L2(0,1)) + (‖V n+ 1
2‖2

L2(ΩS) + ‖V n+ 1
2 − V n‖2

L2(ΩS))

‖∂zηn+ 1
2‖2

L2(0,1) + ‖∂z(ηn+ 1
2 − ∂zηn)‖2

L2(0,1) + aS(dn+ 1
2 ,dn+ 1

2 )

+aS(dn+ 1
2 − dn,dn+ 1

2 − dn) = ‖vn‖2
L2(0,1) + ‖V n‖2

L2(ΩS) + ‖∂zηn‖2
L2(0,1) + aS(dn,dn).

Since in this sub-problem un+ 1
2 = un, we can add ρf

∫
ΩF

(1 + ηn)un+1/2 on the left hand-side, and

ρf
∫

ΩF
(1+ηn)un on the right hand-side of the equation. Furthermore, displacements dn+ 1

2 and ηn+ 1
2

do not change in Problem A2 (see (5.6)), and so we can replace dn and ηn on the right hand-side

of the equation with dn−
1
2 and ηn−

1
2 , respectively, to obtain exactly the energy equality (5.5).

5.2 Semi-discretization of Problem A2

In this step η, d and V do not change, and so

ηn+1 = ηn+ 1
2 , dn+1 = dn+ 1

2 , V n+1 = V n+ 1
2 . (5.6)

Then, define (un+1, vn+1) ∈ VηnF ×L2(0, 1) so that the weak formulation of problem (3.16) is satisfied.
Namely, for each (q, ψ) ∈ VηnF × L2(0, 1) such that q|Γ = ψer, velocities (un+1, vn+1) must satisfy:

∫

Ω

(1 + ηn)

(
un+1 − un+ 1

2

∆t
· q +

1

2

[
(un − vn+ 1

2 rer) · ∇ηn
]

un+1 · q

−1

2

[
(un − vn+ 1

2 rer) · ∇ηn
]

q · un+1

)
+

1

2

∫

Ω

vn+ 1
2 un+1 · q

+2
∫

Ω
(1 + ηn)Dηn(u) : Dηn(q)

+ρsh

∫ 1

0

vn+1 − vn+ 1
2

∆t
ψ =

(
P n
in

∫ 1

0

(qz)|z=0 − P n
out

∫ 1

0

(qz)|z=L
)
,

with ∇ηn · un+1 = 0, un+1
|Γ = vn+1er,

(5.7)

where P n
in/out =

1

∆t

∫ (n+1)∆t

n∆t

Pin/out(t)dt.

The existence of a unique weak solution and energy estimate are given by the following propo-
sition.
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Proposition 5.3. Let ∆t > 0, and assume that ηn are such that 1 + ηn ≥ Rmin > 0, n = 0, ..., N .
Then:

1. The fluid sub-problem defined by (5.7) has a unique weak solution (un+1, vn+1) ∈ VηnF ×L2(0, 1);

2. Solution of problem (5.7) satisfies the following discrete energy inequality:

En+1
kin,N +

1

2

∫

ΩF

(1 + ηn)|un+1 − un|2 +
1

2
‖vn+1 − vn+ 1

2‖2
L2(0,1)

+Dn+1
N ≤ E

n+ 1
2

kin,N + C∆t((P n
in)2 + (P n

out)
2),

(5.8)

where the kinetic energy En
N and dissipation Dn

N are defined in (5.2) and (5.3), and the
constant C depends only on the parameters in the problem, and not on ∆t (or N).

The proof of this proposition is identical to the proof presented in [45] which concerns a FSI
problem between an incompressible, viscous fluid and a thin elastic structure modeled by a linearly
elastic Koiter shell model. The fluid sub-problems presented in [45] and in the present manuscript
(Problem A2) are the same, except for the fact that η in this manuscript satisfies the linear wave
equation. As a consequence, the fluid domain boundary in the full, continuous problem, is not
necessarily Lipschitz. This is, however, not the case in the semi-discrete approximations of the
fluid multi-layered structure interaction problem, since the regularity of the approximation ηn+1/2

obtained from the previous step (Problem A1) is H2(0, 1), and so the fluid domain in the semi-
discretized Problem A2 is, in fact, Lipschitz. This is because ηn+1/2 satisfies an elliptic problem for
the Laplace operator with the right hand-side given in terms of approximate velocities vn, vn+1/2 ∈
L2(0, 1) (see equation (5.4)). Therefore, the proof of Proposition 5.3 is the same as the proof of
Proposition 3[45] (for statement 1) and the proof of Proposition 4[45] (for statement 2).

We pause for a second, and summarize what we have accomplished so far. For a given ∆t > 0,
the time interval (0, T ) was divided into N = T/∆t sub-intervals (tn, tn+1), n = 0, ..., N−1. On each
sub-interval (tn, tn+1) we “solved” the coupled FSI problem by applying the Lie splitting scheme.
First, Problem A1 was solved for the structure position and velocity, both thick and thin, and then
Problem A2 was solved to update fluid velocity and fluid-structure interface velocity. We showed
that each sub-problem has a unique solution, provided that 1+ηn ≥ Rmin > 0, n = 0, ..., N , and that
each sub-problem solution satisfies an energy estimate. When combined, the two energy estimates
provide a discrete version of the energy estimate (2.1). Thus, for each ∆t we have designed a
time-marching, splitting scheme, which defines an approximate solution on (0, T ) of our main FSI
problem (3.6)-(3.13). Furthermore, the scheme is designed in such a way that for each ∆t > 0
the approximate FSI solution satisfies a discrete version of an energy estimate for the continuous
problem.

We would like to ultimately show that, as ∆t → 0, the sequence of solutions parameterized by
N (or ∆t), converges to a weak solution of (3.6)-(3.13). Furthermore, we also need to show that
1 + ηn ≥ Rmin > 0 is satisfied for each n = 0, ..., N − 1. In order to obtain this result, it is crucial
to show that the discrete energy of the approximate FSI solutions defined for each ∆t, is uniformly
bounded, independently of ∆t (or N). This result is obtained by the following Lemma.
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Lemma 5.1. (The uniform energy estimates) Let ∆t > 0 and N = T/∆t > 0. Furthermore,

let E
n+ 1

2
N , En+1

N , and Dj
N be the total energy and dissipation given by (5.2) and (5.3), respectively.

There exists a constant C > 0 independent of ∆t (and N) such that the following estimates hold:

1. E
n+ 1

2
N ≤ C, En+1

N ≤ C, for all n = 0, ..., N − 1,

2.
∑N

j=1D
j
N ≤ C,

3.
N−1∑

n=0

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2‖2

L2(0,1)

+‖vn+ 1
2 − vn‖2

L2(0,1) + ‖V n+1 − V n‖2
L2(ΩS)

)
≤ C,

4.
N−1∑

n=0

(
(‖∂z(ηn+1 − ηn)‖2

L2(0,1) + aS
(
dn+1 − dn,dn+1 − dn

))
≤ C.

In fact, C = E0+C̃
(
‖Pin‖2

L2(0,T ) + ‖Pout‖2
L2(0,T )

)
, where C̃ is the constant from (5.8), which depends

only on the parameters in the problem.

Proof. We begin by adding the energy estimates (5.5) and (5.8) to obtain

En+1
N +Dn+1

N +
1

2

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2‖2

L2(0,1)

+‖vn+ 1
2 − vn‖2

L2(0,1) + ‖V n+1 − V n‖2
L2(ΩS) + ‖∂z(ηn+ 1

2 − ηn)‖2
L2(0,1)

+aS
(
dn+1 − dn,dn+1 − dn

))
≤ En

N + C̃∆t((P n
in)2 + (P n

out)
2), n = 0, . . . , N − 1.

Then, we calculate the sum, on both sides, and cancel out like terms in the kinetic energy that
appear on both sides of the inequality to obtain

EN
N +

N−1∑

n=0

Dn+1
N +

1

2

N−1∑

n=0

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2‖2

L2(0,1)

+‖vn+ 1
2 − vn‖2

L2(0,1) + ‖V n+1 − V n‖2
L2(ΩS) + ‖∂z(ηn+ 1

2 − ηn)‖2
L2(0,1)

+aS
(
dn+1 − dn,dn+1 − dn

))
≤ E0 + C̃∆t

N−1∑

n=0

((P n
in)2 + (P n

out)
2).

To estimate the term involving the inlet and outlet pressure, we recall that on every sub-interval
(tn, tn+1) the pressure data is approximated by a constant which is equal to the average value of
pressure over that time interval. Therefore, we have, after using Hölder’s inequality:

∆t
N−1∑

n=0

(P n
in)2 = ∆t

N−1∑

n=0

(
1

∆t

∫ (n+1)∆t

n∆t

Pin(t)dt

)2

≤ ‖Pin‖2
L2(0,T ).
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By using the pressure estimate to bound the right hand-side in the above energy estimate, we have
obtained all the statements in the Lemma, with the constant C given by C = E0 +C̃‖Pin/out‖2

L2(0,T ).

Notice that Statement 1 can be obtained in the same way by summing from 0 to n− 1, for each
n, instead of from 0 to N − 1.

We will use this Lemma in the next section to show convergence of approximate solutions.

6 Convergence of approximate solutions

We define approximate solutions of problem (3.6)-(3.13) on (0, T ) to be the functions which are
piece-wise constant on each sub-interval ((n − 1)∆t, n∆t], n = 1 . . . N of (0, T ), such that for
t ∈ ((n− 1)∆t, n∆t], n = 1 . . . N,

uN(t, .) = unN , ηN(t, .) = ηnN , vN(t, .) = vnN , v
∗
N(t, .) = v

n− 1
2

N , dN(t, .) = dnN , V N(t, .) = V n
N . (6.1)

See Figure 3. Notice that functions v∗N = v
n−1/2
N are determined by Problem A1 (the elastodynamics

Figure 3: A sketch of uN .

sub-problem), while functions vN = vnN are determined by Problem A2 (the fluid sub-problem). As
a consequence, functions vN are equal to the normal trace of the fluid velocity on Γ, i.e., uN = vNer,
which may be different from v∗N . However, we will show later that ‖vN−v∗N‖L2(0,1) → 0, as N →∞.

Using Lemma 5.1 we now show that these sequences are uniformly bounded in the appropriate
solution spaces.

We begin by showing that (ηN)N∈N is uniformly bounded in L∞(0, T ;H1
0 (0, 1)), and that there

exists a T > 0 for which 1 + ηnN > 0 holds independently of N and n.

Proposition 6.4. The sequence (ηN)N∈N is uniformly bounded in

L∞(0, T ;H1
0 (0, 1)).

Moreover, for T small enough, we have

0 < Rmin ≤ 1 + ηN(t, z) ≤ Rmax, ∀N ∈ N, z ∈ (0, 1), t ∈ (0, T ). (6.2)
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Proof. The proof is similar to the corresponding proof in [45], except that our structure displacement
is bounded uniformly in H1

0 -norm, and not in H2-norm, as in [45]. This is, however, still sufficient
to obtain the desired result. More precisely, from the energy estimate in Lemma 5.1 we have

‖ηN(t)‖2
L2(0,1) + ‖∂zηN(t)‖2

L2(0,1),≤ C, ∀t ∈ [0, T ],

which implies
‖ηN‖L∞(0,T ;H1

0 (0,1)) ≤ C.

To show that the radius 1 + ηN is uniformly bounded away from zero for T small enough, we first
notice that the above inequality implies

‖ηnN − η0‖H1
0 (0,1) ≤ 2C, n = 1, . . . , N, N ∈ N.

Furthermore, we calculate

‖ηnN − η0‖L2(0,1) ≤
n−1∑

i=0

‖ηi+1
N − ηiN‖L2(0,1) = ∆t

n−1∑

i=0

‖vi+
1
2

N ‖L2(0,1),

where we recall that η0
N = η0. Lemma 5.1 implies that E

n+ 1
2

N ≤ C, where C is independent of N .
This combined with the above inequality implies

‖ηnN − η0‖L2(0,1) ≤ Cn∆t ≤ CT, n = 1, . . . , N, N ∈ N.

Now, since ‖ηnN−η0‖L2(0,1) and ‖ηnN−η0‖H1
0 (0,1) are uniformly bounded, we can use the interpolation

inequality for Sobolev spaces, Thm. 4.17, p. 79 in [1], to get

‖ηnN − η0‖Hs(0,1) ≤ 2CT 1−s, n = 1, . . . , N, N ∈ N, for 0 < s < 1.

From Lemma 5.1 we see that C depends on T through the norms of the inlet and outlet data in
such a way that C is an increasing function of T . Therefore, by choosing T small, we can make
‖ηnN − η0‖Hs(0,1) arbitrarily small for n = 1, . . . . , N , N ∈ N. Because of the Sobolev embedding
of Hs(0, 1) into C[0, 1], for s > 1/2, we can also make ‖ηnN − η0‖C[0,1] arbitrarily small. Since the
initial data η0 is such that 1 + η0(z) > 0 (due to the conditions listed in (1.13)), we see that for
T > 0 small enough, there exist Rmin, Rmax > 0, such that

0 < Rmin ≤ 1 + ηN(t, z) ≤ Rmax, ∀N ∈ N, z ∈ (0, 1), t ∈ (0, T ).

We will show in the end that our existence result holds not only locally in time, i.e., for small
T > 0, but rather, it can be extended all the way until either T = ∞, or until the lateral walls of
the channel touch each other.

Proposition 6.4 implies, among other things, that the standard L2-norm, and the following
weighted L2-norm are equivalent: for every f ∈ L2(ΩF ), there exist constants C1, C2 > 0, which
depend only on Rmin, Rmax, and not on f or N , such that

C1

∫

ΩF

(1 + ηN)f 2 ≤ ‖f‖2
L2(ΩF ) ≤ C2

∫

ΩF

(1 + ηN)f 2. (6.3)
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We will be using this property in the next section to prove strong convergence of approximate
solutions.

Next we show that the sequences of approximate solutions for the velocity and its trace on the
lateral boundary, as well as the displacement of the thick structure and the thick structure velocity,
are uniformly bounded in the appropriate norms. To do that, we introduce the following notation
which will be useful in the remainder of this manuscript to prove compactness: denote by τh the
translation in time by h of a function f

τhf(t, .) = f(t− h, .), h ∈ R. (6.4)

Proposition 6.5. The following statements hold:

1. (vN)N∈N, (v∗N)N∈N are uniformly bounded in L∞(0, T ;L2(0, 1)).

2. (uN)N∈N is uniformly bounded in L∞(0, T ;L2(ΩF )).

3. (∇τ∆tηNuN)N∈N is uniformly bounded in L2((0, T )× ΩF ).

4. (dN)N∈N is uniformly bounded in L∞(0, T ;H1(ΩS)).

5. (V N)N∈N is uniformly bounded in L∞(0, T ;L2(ΩS)).

Proof. The uniform boundedness of (vN)N∈N, (v∗N)N∈N, (dN)N∈N, (V N)N∈N, and the uniform bound-
edness of (uN)N∈N in L∞(0, T ;L2(ΩF )) follow directly from Statements 1 and 2 of Lemma 5.1, and
from the definition of (vN)n∈N, (v∗N)N∈N, (dN)N∈N, (V N)N∈N and (uN)N∈N as step-functions in t so
that ∫ T

0

‖vN‖2
L2(0,1)dt =

N−1∑

n=0

‖vnN‖2
L2(0,1)∆t.

It remains to show uniform boundedness of (∇τ∆tηNuN)N∈N in L2((0, T ) × ΩF ). From Lemma 5.1
we only know that the symmetrized gradient is bounded in the following way:

N∑

n=1

∫

ΩF

(1 + ηn−1
N )|Dηn−1

N (unN)|2∆t ≤ C. (6.5)

We cannot immediately apply Korn’s inequality since estimate (6.5) is given in terms of the trans-
formed symmetrized gradient. Thus, there are some technical difficulties that need to be overcome
due to the fact that our problem involves moving domains. To get around this difficulty we take the

following approach. We first transform the problem back to the physical fluid domain Ω
ηn−1
N
F which

is defined by the lateral boundary ηn−1
N , on which uN is defined. There, instead of the transformed

gradient, we have the standard gradient, and we can apply Korn’s inequality in the usual way.
However, since the Korn constant depends on the domain, we will need a result which provides
a universal Korn constant, independent of the family of domains under consideration. Indeed, a
result of this kind was obtained in [11, 54, 45], assuming certain domain regularity. In particular,
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in [54] as in our previous work [45], the family of domains Ω
ηn−1
N
F had a uniform Lipschitz constant,

which is not the case in the present paper, since ηN are uniformly bounded in H1
0 (0, 1) and not in

H2(0, 1). This is why we take the approach similar to [11], where the universal Korn constant was
calculated explicitly, by utilizing the precise form of boundary data. We have the following.

For each fixed N ∈ N, and for all n = 1, . . . , N , transform unN back to the physical domain
which is determined by the location of ηn−1

N . We will be using super-script N to denote functions
defined on physical domains:

uN,n := unN ◦ Aηn−1
N

, n = 1, . . . , N, N ∈ N.

By using formula (3.5) we get

∫

ΩF

(1 + ηn−1
N )|Dηn−1

N (unN)|2 =

∫

Ω
ηn−1
N
F

|D(uN,n)|2 = ‖D(uN,n)‖2

L2(Ω
ηn−1
N
F )

.

We now show that the following Korn’s equality holds for the space VF (t):

‖∇uN,n‖2

L2(Ω
ηn−1
N
F )

= 2‖D(uN,n)‖2

L2(Ω
ηn−1
N
F )

. (6.6)

Notice that the Korn constant (the number 2) is domain independent. The proof of this Korn
equality is similar to the proof in Chambolle et al. [11], Lemma 6, pg. 377. However, since our
assumptions are a somewhat different from those in [11], we present a sketch of the proof here. By
writing the symmetrized gradient on the right hand-side of (6.6) in terms of the gradient, and by
calculating the square of the norms on both sides, one can see that it is enough to show that

∫

Ω
ηn−1
N
F

∇unN : ∇τunN = 0.

To simplify notation, in the proof of this equality we omit the subscripts and superscripts, i.e. we
write η and u instead of ηn−1

N and unN , respectively. First, we prove the above equality for smooth
functions u and then the conclusion follows by a density argument. By using integration by parts
and ∇ · u = 0 we get

∫

ΩηF

∇u : ∇τu = −
∫

ΩηF

u · ∇(∇ · u) +

∫

∂ΩηF

(∇τu)n · u =

∫

∂ΩηF

(∇τu)n · u,

where n = (−η′, 1)τ . We now show that (∇τu)n · u = 0 on ∂ΩF . Since ∂ΩF = Γη ∪ Γin/out ∪ Γb we
consider each part of the boundary separately:

1. On Γη we have u = (0, ur), i.e., we have uz(z, 1 + η(z)) = 0. Since u is smooth we can
differentiate this equality w.r.t. z to get ∂zuz + ∂ruzη

′ = 0 on Γ, i.e., for z ∈ (0, L). By using
∇ · u = 0, we get: −∂ruzη′ = ∂zuz = −∂rur. By using n = (−η′, 1)τ we get

(∇τu)n · u = ((∇τu)n)rur = (−∂ruzη′ + ∂rur)ur = 0.
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2. On Γin/out we have u = (uz, 0) and n = (±1, 0). Hence,

(∇τu)n · u = uz((∇τu)n)z = uz(∂zuz) = −uz∂rur = 0.

3. On Γb we have u = (uz, 0), ∂ruz = 0 and n = (0,−1). Hence,

(∇τu)n · u = uz((∇τu)n)z = uz(−∂zur) = 0.

This concludes the proof of Korn’s equality (6.6).

Now, by using (6.6) and by mapping everything back to the fixed domain ΩF , we obtain the
following Korn’s equality on ΩF :

2

∫

ΩF

(1 + ηn−1
N )|Dηn−1

N (unN)|2 =

∫

ΩF

(1 + ηn−1
N )|∇ηn−1

N (unN)|2. (6.7)

By summing equalities (6.7) for n =, 1 . . . , N , and by using (6.3), we get uniform boundedness of
(∇τ∆tηNuN)N∈N in L2((0, T )× ΩF ).

From the uniform boundedness of approximate sequences, the following weak and weak* con-
vergence results follow.

Lemma 6.2. (Weak and weak* convergence results) There exist subsequences (ηN)N∈N,
(vN)N∈N, (v∗N)N∈N, (dN)N∈N, (V N)N∈N and (uN)N∈N, and the functions η ∈ L∞(0, T ;H1

0 (0, 1)),
v, v∗ ∈ L∞(0, T ;L2(0, 1)), d ∈ L∞(0, T ;VS), V ∈ L∞(0, T ;L2(ΩS)), u ∈ L∞(0, T ;L2(ΩF )) and
G ∈ L2((0, T )× ΩF ) such that

ηN ⇀ η weakly∗ in L∞(0, T ;H1
0 (0, 1)),

vN ⇀ v weakly∗ in L∞(0, T ;L2(0, 1)),
v∗N ⇀ v∗ weakly∗ in L∞(0, T ;L2(0, 1)),

dN ⇀ d weakly∗ in L∞(0, T ;H1(ΩS)),
V N ⇀ V weakly∗ in L∞(0, T ;L2(ΩS)),
uN ⇀ u weakly∗ in L∞(0, T ;L2(ΩF )),

∇τ∆tηNuN ⇀ G weakly in L2((0, T )× ΩF ).

(6.8)

Furthermore,
v = v∗. (6.9)

Proof. The only thing left to show is that v = v∗. For this purpose, we multiply the second
statement in Lemma 5.1 by ∆t, and notice again that ‖vN‖2

L2((0,T )×(0,1)) = ∆t
∑N

n=1 ‖vnN‖2
L2(0,1).

This implies ‖vN − v∗N‖L2((0,T )×(0,1)) ≤ C
√

∆t, and we have that in the limit, as ∆t→ 0, v = v∗.

Naturally, our goal is to prove that G = ∇ηu. However, to achieve this goal we will need some
stronger convergence properties of approximate solutions. Therefore, we postpone the proof until
Section 7.
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6.1 Strong convergence of approximate sequences

To show that the limits obtained in the previous Lemma satisfy the weak form of problem (3.6)-
(3.13), we will need to show that our sequences converge strongly in the appropriate function
spaces. The strong convergence results will be achieved by using the following compactness result
by Simon [51]:

Theorem 6.1. [51] Let X be a Banach space and F ↪→ Lq(0, T ;X) with 1 ≤ q <∞. Then F is a
relatively compact set in Lq(0, T ;X) if and only if

(i)
{∫ t2

t1

f(t)dt : f ∈ F
}

is relatively compact in X, 0 < t1 < t2 < T ,

(ii) ‖τhf − f‖Lq(h,T ;X) → 0 as h goes to zero, uniformly with respect to f ∈ F .

We used this result in [45] to show compactness, but the proof was simpler because of the higher
regularity of the lateral boundary of the fluid domain, namely, of the fluid-structure interface. In
the present paper we need to obtain some additional regularity for the fluid velocity uN on ΩF and
its trace vN on the lateral boundary, before we can use Theorem 6.1 to show strong convergence
of our approximate sequences. Notice, we only have that our fluid velocity on ΩF is uniformly
bounded in L2(ΩF ), plus a condition that the transformed gradient ∇τ∆tηNuN is uniformly bounded
in L2. Since η is not Lipschitz, we cannot get that the gradient ∇uN is uniformly bounded in L2

on ΩF . This lower regularity of ηN will give us some trouble when showing regularity of uN on ΩF ,
namely it will imply lower regularity of uN in the sense that u ∈ Hs(ΩF ), for 0 < s < 1/2, and not
H1(ΩF ). Luckily, according to the trace theorem in [44], this will still allow us to make sense of the
trace of uN on Γ. More precisely, we prove the following Lemma.

Lemma 6.3. The following statements hold:

1. (uN)N∈N is uniformly bounded in L2(0, T ;Hs(ΩF )), 0 < s < 1/2;

2. (vN)N∈N is uniformly bounded in L2(0, T ;Hs/2(0, 1)), 0 < s < 1/2.

Proof. We start by mapping the fluid velocity uN defined on ΩF , back to the physical fluid domain
with the lateral boundary τ∆tηN(t, z) = ηN(t −∆t, z). We denote by uN(t, .) the fluid velocity on
the physical domain Ωτ∆tηN :

uN(t, .) = uN(t, .) ◦ A−1
τ∆tηN

(t), N ∈ N.

As before, we use sub-script N to denote fluid velocity defined on the physical space. From (3.4)
we see that

∇uN = ∇τ∆tηNuN .

Proposition 6.5, statement 3, implies that the sequence (∇uN)N∈N is uniformly bounded in L2, and
so we have that ‖uN‖L2(0,T ;H1(Ωτ∆tη)) is uniformly bounded.
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Now, from the fact that the fluid velocities uN defined on the physical domains are uniformly
bounded in H1, we would like to obtain a similar result for the velocities uN defined on the reference
domain ΩF . For this purpose, we recall that the functions ηN , N ∈ N that are involved in the ALE
mappings Aτ∆tηN (t), N ∈ N, are uniformly bounded in H1(0, 1). This is, unfortunately, not sufficient
to obtain uniform boundedness of the gradients (∇uN)N∈N in L2(ΩF ). However, from the Sobolev
embedding H1(0, 1) ↪→ C0,1/2(0, 1) we have that the sequence (ηN)N∈N is uniformly bounded in
L∞(0, T ;C0,1/2(0, 1)). This will help us obtain uniform boundedness of (uN)n∈N in a slightly lower-
regularity space, namely in the space L2(0, T ;Hs(ΩF )), 0 < s < 1/2. To see this, we first notice
that uN on ΩF can be expressed in terms of function uN defined on Ωτ∆tηN as

uN(t, z̃, r̃) = uN(t, z̃, (1 + τ∆tηN)(t, z̃))r̃), (z̃, r̃) ∈ ΩF . (6.10)

Therefore, uN can be written as an H1-function uN composed with a C0,1/2-function ηN , in the way
described in (6.10). The following Lemma, proved in [44], implies that uN belongs to a space with
asymmetric regularity (more regular in r̃ than in z̃) in the sense that uN ∈ L2(0, 1;Hs(0, 1)), 0 <
s < 1/2, and ∂r̃uN ∈ L2(0, 1;L2(0, 1)). We use notation from Lions and Magenes [43], pg. 10, to
denote the corresponding function space by

W (0, 1; s) = {f : f ∈ L2(0, 1;Hs(0, 1))), ∂r̃f ∈ L2(0, 1;L2(0, 1))}.
More precisely, Lemma 3.3 from [44] states the following:

Lemma 6.4. [44] Let η ∈ C0,α, 0 < α < 1, and let u ∈ H1(Ωη). Define

ũ(r̃, z̃) = u(z̃, (1 + η(z̃))r̃), (z̃, r̃) ∈ ΩF . (6.11)

Then ũ ∈ W (0, 1; s) for 0 < s < α.

Thus, Lemma 6.4 implies that uN(t, .) ∈ W (0, 1; s) for 0 < s < 1/2. Now, using the fact
W (0, 1; s) ↪→ Hs(ΩF ) we get

‖uN(t, .)‖2
Hs(ΩF ) ≤ C‖uN(t, .)‖2

H1(Ωη(t−∆t))
, a.a. t ∈ (0, T ), 0 < s < 1/2.

By integrating the above inequality w.r.t. t we get the first statement of Lemma 6.3.

To prove the second statement of Lemma 6.3 we use Theorem 3.1 of [44], which states that the
notion of the trace for the functions of the form (6.10) for which uN ∈ H1 and ηN ∈ C0,1/2, can be
defined in the sense of Hs/2, 0 < s < 1/2. For completeness, we state Theorem 3.2 of [44] here.

Theorem 6.2. [44] Let α < 1 and let η be such that

η ∈ C0,α(0, 1), η(z) ≥ ηmin > −1, z ∈ [0, 1], η(0) = η(1) = 1.

Then, the trace operator
γη : C1(Ωη)→ C(Γ)

that associates to each function u ∈ C1(Ωη) its “Lagrangian trace” u(z̃, 1 + η(z̃)) ∈ C(Γ), defined
via (6.11) for r̃ = 1,

γη : u 7→ u(z̃, 1 + η(z̃)),

can be extended by continuity to a linear operator from H1(Ωη) to Hs(Γ) for 0 ≤ s < α/2.
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By recalling that vN = (uN)|Γ, this proves the second statement of Lemma 6.3.

Notice that the difficulty associated with bounding the gradient of uN is somewhat artificial,
since the gradient of the fluid velocity uN defined on the physical domain is, in fact, uniformly
bounded (by Proposition 6.5). Namely, the difficulty is imposed by the fact that we decided to
work with the problem defined on a fixed domain ΩF , and not on a family of moving domains. This
decision, however, simplifies other parts of the main existence proof. The “expense” that we had
to pay for this decision is embedded in the proof of Lemma 6.3.

We are now ready to use Theorem 6.1 to prove compactness of the sequences (vN)N∈N and
(uN)N∈N.

Theorem 6.3. Sequences (vN)N∈N and (uN)N∈N are relatively compact in L2(0, T ;L2(0, 1)) and
L2(0, T ;L2(ΩF )), respectively.

Proof. We use Theorem 6.1 with q = 2, and X = L2. We verify that both assumptions (i) and (ii)
hold.

Assumption (i): To show that the sequences (vN)N∈N and (uN)N∈N are relatively compact in
L2(0, 1) and L2(ΩF ), respectively, we use Lemma 6.3 and the compactness of the embeddings
Hs(ΩF ) ↪→ L2(ΩF ) and Hs/2(0, 1) ↪→ L2(0, 1), respectively, for 0 < s < 1/2. Namely, from
Lemma 6.3 we know that sequences (uN)N∈N and (vN)N∈N are uniformly bounded in L2(0, T ;Hs(ΩF ))
and L2(0, T ;Hs/2(0, 1)), respectively, for 0 < s < 1/2. The compactness of the embeddings
Hs(ΩF ) ↪→ L2(ΩF ) and Hs/2(0, 1) ↪→ L2(0, 1) verify Assumption (i) of Theorem 6.1.

Assumption (ii): We prove that the “integral equicontinuity”, stated in assumption (ii) of The-
orem 6.1, holds for the sequence (vN)N∈N. Analogous reasoning can be used for (uN)N∈N. Thus, we
want to show that for each ε > 0, there exists a δ > 0 such that

‖τhvN − vN‖2
L2(ω;L2(0,1)) < ε, ∀|h| < δ, independently of N ∈ N, (6.12)

where ω is an arbitrary compact subset of Ω. Indeed, we will show that for each ε > 0, the following
choice of δ:

δ := min{dist(ω, ∂Ω)/2, ε/(2C)}
provides the desired estimate, where C is the constant from Lemma 5.1 (independent of N).

Let h be an arbitrary real number whose absolute value is less than δ. We want to show that
(6.12) holds for all ∆t = T/N . This will be shown in two steps. First, we will show that (6.12)
holds for the case when ∆t ≥ h (Case 1), and then for the case when ∆t < h (Case 2).

A short remark is in order: For a given δ > 0, we will have ∆t < δ for infinitely many N , and
both cases will apply. For a finite number of functions (vN), we will, however, have that ∆t ≥ δ.
For those functions (6.12) needs to be proved for all ∆t such that |h| < δ ≤ ∆t, which falls into
Case 1 bellow. Thus, Cases 1 and 2 cover all the possibilities.

Case 1: ∆t ≥ h. We calculate the shift by h to obtain (see Figure 4, left):

‖τhvN − vN‖2
L2(ω;L2(0,1)) ≤

N−1∑

j=1

∫ j∆t

j∆t−h
‖vjN − vj+1

N ‖2
L2(0,1) =
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= h
N−1∑

j=1

‖vjN − vj+1
N ‖2

L2(0,1) ≤ hC < ε/2 < ε.

The last inequality follows from |h| < δ ≤ ε/(2C).

Figure 4: Left panel–Case 1: ∆t ≥ h. The graph of vN is shown in solid line, while the graph of the
shifted function τhvN is shown in dashed line. The shaded area denotes the non-zero contributions
to the norm ‖τhvN − vN‖2

L2 . Right panel–Case2: ∆t < h = ∆t+ s, 0 < s < ∆t. The graph of vN is
shown in solid line, while the graph of the shifted function τhvN is shown in the dashed line. The
shaded areas denote non-zero contributions to the norm ‖τhvN − vN‖2

L2 . The two colors represent
the contributions to the first and second integral in (6.13) separately.

Case 2: ∆t < h. In this case we can write h = l∆t + s for some l ∈ N, 0 < s ≤ ∆t. Similarly, as
in the first case, we get (see Figure 4, right):

‖τhvN − vN‖2
L2(ω;L2(0,1)) =

N−l−1∑

j=1

( ∫ (j+1)∆t−s

j∆t

‖vjN − vj+lN ‖2
L2(0,1)

+

∫ (j+1)∆t

(j+1)∆t−s
‖vjN − vj+l+1

N ‖2
L2(0,1)

)
.

(6.13)

Now we use the triangle inequality to bound each term under the two integrals from above by∑l+1
i=1 ‖vj+i−1

N − vj+iN ‖2
L2(0,1). After combining the two terms together we obtain

‖τhvN − vN‖2
L2(ω;L2(0,1)) ≤ ∆t

N−l−1∑

j=1

l+1∑

i=1

‖vj+i−1
N − vj+iN ‖2

L2(0,1). (6.14)

Using Lemma 5.1 we get that the right hand-side of (6.14) is bounded by ∆t(l + 1)C. Now, since
h = l∆t+ s we see that ∆t ≤ h/l, and so the right hand-side of (6.14) is bounded by l+1

l
hC. Since

|h| < δ and from the form of δ we get

‖τhvN − vN‖2
L2(ω;L2(0,1)) ≤ ∆t(l + 1)C ≤ l + 1

l
hC ≤ l + 1

l

ε

2
< ε.
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Thus, if we set ω = [δ/2, T − δ/2] we have shown:

‖τδ/2vN − vN‖2
L2(δ/2,T−δ/2;L2(0,1)) < ε, N ∈ N.

To show that condition (ii) from Theorem 6.1 holds it remains to estimate ‖τδ/2vN−vN‖2
L2(T−δ/2,T ;L2(0,1)).

From the first inequality in Lemma 5.1 (boundedness of v
n+ i

2
N , i = 1, 2 in L2(0, 1)) we have

∫ T

T−δ/2
‖τδ/2vN − vN‖2

L2(0,1) ≤
δ

2
2C < ε, N ∈ N.

Thus, we have verified all the assumptions of Theorem 6.1, and so the compactness result for
(vN)N∈N follows from Theorem 6.1. Similar arguments imply compactness of (uN)N∈N.

To show compactness of (ηN)N∈N we use the approach similar to that in [45], except that,
due to the weaker regularity properties of ηN , we will have to use different embedding results
(Hilbert interpolation inequalities). In the end, compactness of the sequence of lateral boundary
approximation will follow due to the Arzelà- Ascoli Theorem.

As in [45], we start by introducing a slightly different set of approximate functions of u, v, η
and V . Namely, for each fixed ∆t (or N ∈ N), define ũN , η̃N , ṽN and Ṽ N to be continuous, linear
on each sub-interval [(n− 1)∆t, n∆t], and such that for n = 0, . . . , N :

ũN(n∆t, .) = uN(n∆t, .), ṽN(n∆t, .) = vN(n∆t, .),

η̃N(n∆t, .) = ηN(n∆t, .), Ṽ N(n∆t, .) = V N(n∆t, .),
(6.15)

See Figure 5. A straightforward calculation gives the following inequalities (see [53], p. 328)

Figure 5: A sketch of ũN .

‖vN − ṽN‖2
L2(0,T ;L2(0,1)) ≤

∆t

3

N∑

n=1

‖vn+1 − vn‖2
L2(0,1),

‖uN − ũN‖2
L2(0,T ;L2(ΩF )) ≤

∆t

3

N∑

n=1

‖un+1 − un‖2
L2(ΩF ),

‖ηN − η̃N‖2
L2(0,T ;L2(0,1)) ≤

∆t

3

N∑

n=1

‖ηn+1 − ηn‖2
L2(0,1),

‖V N − Ṽ N‖2
L2(0,T ;L2(ΩS)) ≤

∆t

3

N∑

n=1

‖V n+1 − V n‖2
L2(ΩS),

(6.16)
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We now observe that

∂tη̃N(t) =
ηn+1 − ηn

∆t
=
ηn+1/2 − ηn

∆t
= vn+ 1

2 , t ∈ (n∆t, (n+ 1)∆t),

and so, since v∗N was defined in (6.1) as a piece-wise constant function defined via v∗N(t, ·) = vn+ 1
2 ,

for t ∈ (n∆t, (n+ 1)∆t], we see that

∂tη̃N = v∗N a.e. on (0, T ). (6.17)

By using Lemma 5.1 (the boundedness of E
n+ i

2
N ), we get

(η̃N)N∈N is bounded in L∞(0, T ;H1
0 (0, 1)) ∩W 1,∞(0, T ;L2(0, 1)).

We now use the following result on continuous embeddings:

L∞(0, T ;H1
0 (0, 1)) ∩W 1,∞(0, T ;L2(0, 1)) ↪→ C0,1−α([0, T ];Hα(0, 1)), (6.18)

for 0 < α < 1. This result follows from the standard Hilbert interpolation inequalities, see [43].
A slightly different result (assuming higher regularity) was also used in [29] to deal with a set of
mollifying functions approximating a solution to a moving-boundary problem between a viscous
fluid and an elastic plate. From (6.18) we see that (η̃N)N∈N is also bounded (uniformly in N) in
C0,1−α([0, T ];Hα(0, 1)). Now, from the continuous embedding of Hα(0, 1) into Hα−ε, and by apply-
ing the Arzelà-Ascoli Theorem, we conclude that sequence (η̃N)N∈N has a convergent subsequence,
which we will again denote by (η̃N)N∈N, such that

η̃N → η̃ in C([0, T ];Hs(0, 1)), 0 < s < 1.

Since (6.16) implies that (η̃N)N∈N and (ηN)N∈N have the same limit, we have η = η̃ ∈ C([0, T ];Hs(0, 1)),
where η is the weak* limit of (ηN)N∈N, discussed in (6.8). Thus, we have

η̃N → η in C([0, T ];Hs(0, 1)), 0 < s < 1.

We can now prove the following Lemma:

Lemma 6.5. ηN → η in L∞(0, T ;Hs(0, 1)), 0 < s < 1.

Proof. The proof is similar to the proof of Lemma 3 in [45]. The result follows from the continuity
in time of η, and from the fact that η̃N → η in C([0, T ];Hs(0, 1)), for 0 < s < 1, applied to the
inequality

‖ηN(t)− η(t)‖Hs(0,1) = ‖ηN(t)− η(n∆t) + η(n∆t)− η(t)‖Hs(0,1)

= ‖ηN(n∆t)− η(n∆t) + η(n∆t)− η(t)‖Hs(0,1)

≤ ‖ηN(n∆t)− η(n∆t)‖+ ‖η(n∆t)− η(t)‖Hs(0,1)

= ‖η̃N(n∆t)− η(n∆t)‖Hs(0,1) + ‖η(n∆t)− η(t)‖Hs(0,1).
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We summarize the strong convergence results obtained in Theorem 6.3 and Lemma 6.5. We
have shown that there exist subsequences (uN)N∈N, (vN)N∈N and (ηN)N∈N such that

uN → u in L2(0, T ;L2(ΩF )),
vN → v in L2(0, T ;L2(0, 1)),

τ∆tuN → u in L2(0, T ;L2(ΩF )),
τ∆tvN → v in L2(0, T ;L2(0, 1)),

ηN → η in L∞(0, T ;Hs(0, 1)), 0 ≤ s < 1.

(6.19)

Because of the uniqueness of derivatives, we also have v = ∂tη in the sense of distributions. The
statements about the convergence of (τ∆tuN)N∈N and (τ∆tvN)N∈N follow directly from

‖τ∆tuN − uN‖2
L2((0,T )×ΩF ) + ‖τ∆tvN − vN‖2

L2((0,T )×(0,1)) ≤ C∆t, (6.20)

which is obtained after multiplying the third equality of Lemma 5.1 by ∆t.

Furthermore, one can also show that subsequences (ṽN)N , (ũN)N and (Ṽ N)N also converge to
v, u and V respectively. More precisely,

ũN → u in L2(0, T ;L2(ΩF )),
ṽN → v in L2(0, T ;L2(0, 1)),

Ṽ N ⇀ V weakly∗ in L∞(0, T ;L2(ΩS))
(6.21)

This statement follows directly from the inequalities (6.16) and Lemma 5.1, which provides uniform
boundedness of the sums on the right hand-sides of the inequalities.

We conclude this section by showing one last convergence result that will be used in the next
section to prove that the limiting functions satisfy weak formulation of the FSI problem. Namely,
we want to show that

ηN → η in L∞(0, T ;C[0, 1]),
τ∆tηN → η in L∞(0, T ;C[0, 1]).

(6.22)

The first statement is a direct consequence of Lemma 6.5 in which we proved that ηN → η in
L∞(0, T ;Hs(0, 1)), 0 < s < 1. For s > 1

2
we immediately have

ηN → η in L∞(0, T ;C[0, 1]). (6.23)

To show convergence of the shifted displacements τ∆tηN to the same limiting function η, we recall
that

η̃N → η in C([0, T ];Hs[0, L]), 0 < s < 1,

and that (η̃N)N∈N is uniformly bounded in C0,1−α([0, T ];Hα(0, 1)), 0 < α < 1. Uniform boundeness
of (η̃N)N∈N in C0,1−α([0, T ];Hα(0, 1)) implies that there exists a constant C > 0, independent of N ,
such that

‖η̃N((n− 1)∆t)− η̃N(n∆t)‖Hα(0,1) ≤ C|∆t|1−α.
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This means that for each ε > 0, there exists an N1 > 0 such that

‖η̃N((n− 1)∆t)− η̃N(n∆t)‖Hα(0,1) ≤
ε

2
, for all N ≥ N1.

Here, N1 is chosen by recalling that ∆t = T/N , and so the right hand-side implies that we want an
N1 such that

C

(
T

N

)1−α
<
ε

2
for all N ≥ N1.

Now, convergence η̃N → η in C([0, T ];Hs[0, 1]), 0 < s < 1, implies that for each ε > 0, there exists
an N2 > 0 such that

‖η̃N(n∆t)− η(t)‖Hs(0,1) <
ε

2
, for all N ≥ N2.

We will use this to show that for each ε > 0 there exists an N∗ ≥ max{N1, N2}, such that

‖τ∆tη̃N(t)− η(t)‖Hs(0,1) < ε, for all N ≥ N∗.

Indeed, let t ∈ (0, T ). Then there exists an n such that t ∈ ((n− 1)∆t, n∆t]. We calculate

‖τ∆tη̃N(t)− η(t)‖Hs(0,1) = ‖τ∆tη̃N(t)− η̃N(n∆t) + η̃N(n∆t)− η(t)‖Hs(0,1)

= ‖η̃N((n− 1)∆t)− η̃N(n∆t) + η̃N(n∆t)− η(t)‖Hs(0,1)

≤ ‖η̃N((n− 1)∆t)− η̃N(n∆t)‖Hs(0,1) + ‖η̃N(n∆t)− η(t)‖Hs(0,1).

The first term is less than ε/2 by the uniform boundeness of (η̃N)N∈N in C0,1−α([0, T ];Hα(0, 1)),
while the second term is less than ε/2 by the convergence of η̃N to η in C([0, T ];Hs[0, 1]), 0 < s < 1.

Now, since τ∆tη̃N = ˜(τ∆tηN), we can use the same argument as in Lemma 6.5 to show that

sequences ˜(τ∆tηN) and τ∆tηN both converge to the same limit η in L∞(0, T ;Hs(0, 1)), for 0 < s < 1.

7 The limiting problem and weak solution

Next we want to show that the limiting functions satisfy the weak form (4.18) of the full fluid-
structure iteration problem. In this vein, one of the things that needs to be considered is what
happens in the limit as N → ∞, i.e., as ∆t → 0, of the weak form of the fluid sub-problem (5.7).
Before we pass to the limit we must observe that, unfortunately, the velocity test functions in (5.7)
depend of N ! More precisely, they depend on ηnN because of the requirement that the transformed
divergence-free condition ∇ηnN · q = 0 must be satisfied. This is a consequence of the fact that we
mapped our fluid sub-problem onto a fixed domain ΩF . Therefore, we need to take special care
when constructing suitable velocity test functions and passing to the limit in (5.7).

7.1 Construction of the appropriate test functions

We begin by recalling that test functions (q, ψ,ψ) for the limiting problem are defined by the space
Q, given in (4.12), which depends on η. Similarly, the test spaces for the approximate problems
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depend on N through the dependence on ηN . We had to deal with the same difficulty in [45] where a
FSI problem with a thin structure modeled by the full Koiter shell equations was studied. The only
difference is that, due to the lower regularity of the fluid-structure interface in the present paper we
also need to additionally show that the sequence of gradients of the fluid velocity converges weakly
to the gradient of the limiting velocity, and pay special attention when taking the limits in the weak
formulation of the FSI problem.

To deal with the dependence of test functions on N , we follow the same ideas as those presented
in [11, 45]. We restrict ourselves to a dense subset X of all test functions in Q that is independent
of ηN even for the approximate problems. We construct the set X to consist of the test functions
(q, ψ,ψ) ∈ X = XF×XW×XS, such that the velocity components q ∈ XF are smooth, independent
of N , and ∇ · q = 0. Such functions can be constructed as an algebraic sum of the functions q0

that have compact support in Ωη ∪ Γin ∪ Γout ∪ Γb, plus a function q1, which captures the behavior
of the solution at the boundary Γη. More precisely, let Ωmin and Ωmax denote the fluid domains
associated with the radii Rmin and Rmax, respectively.

1. Definition of test functions (q0, 0,0) on (0, T )×Ωmax×ΩS: Consider all smooth functions
q with compact support in Ωη ∪Γin ∪Γout ∪Γb, and such that ∇ ·q = 0. Then we can extend
q by 0 to a divergence-free vector field on (0, T )× Ωmax. This defines q0.

Notice that since ηN converge uniformly to η, there exists an Nq > 0 such that supp(q0) ⊂
Ωτ∆tηN , ∀N ≥ Nq. Therefore, q0 is well defined on infinitely many approximate domains
Ωτ∆tηN .

2. Definition of test functions (q1, ψ,ψ) on (0, T )×Ωmax×ΩS: Consider ψ ∈ C1
c ([0, T );H2

0 (0, 1)).
Define

q1 :=





A constant extension in the vertical
direction of ψer on Γη : q1 := (0, ψ(z))T ;
Notice divq1 = 0.



 on Ωmax \ Ωmin,

A divergence− free extension to Ωmin

(see, e.g. [26], p. 127).

}
on Ωmin.

From the construction it is clear that q1 is also defined on Ωτ∆tηN for each N , and so it can
be mapped onto the reference domain Ω by the transformation Aτ∆tηN . We take ψ ∈ H1(ΩS)
such that ψ(t, z, 1) = ψ(t, z).

For any test function (q, ψ,ψ) ∈ Q it is easy to see that the velocity component q can then be
written as q = q − q1 + q1, where q − q1 can be approximated by divergence-free functions q0

that have compact support in Ωη ∪ Γin ∪ Γout ∪ Γb. Therefore, one can easily see that functions
(q, ψ) = (q0 + q1, ψ) in X satisfy the following properties:

• X is dense in the space Q of all test functions defined on the physical, moving domain Ωη,
defined by (4.12); furthermore, ∇ · q = 0,∀q ∈ XF .
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• For each q ∈ XF , define
q̃ = q ◦ Aη.

The set {(q̃, ψ,ψ)|q̃ = q ◦ Aη,q ∈ XF , ψ ∈ XS, ψ ∈ XS} is dense in the space Qη of all test
functions defined on the fixed, reference domain ΩF , defined by (4.17).

• For each q ∈ XF , define
qN := q ◦ Aτ∆tηN .

Functions qN are defined on the fixed domain ΩF , and they satisfy ∇τ∆tηN · qN = 0.

Functions qN will serve as test functions for approximate problems associated with the sequence
of domains Ωτ∆tηN , while functions q̃ will serve as test functions associated with the domain Ωη.
Both sets of test functions are defined on ΩF .

Lemma 7.6. For every (q, ψ,ψ) ∈ X we have qN → q̃ uniformly in L∞(0, T ;C(ΩF )).

Proof. By the Mean-Value Theorem we get:

|qN(t, z, r)− q̃(t, z, r)| = |q(t, z, (1 + τ∆tηN)r)− q(t, z, (1 + η)r)|
= |∂rq(t, z, ζ)r| |η(t, z)− ηN(t−∆t, z)|.

The uniform convergence of qN follows from the uniform convergence of ηN , since q are smooth.

We are now ready to identify the weak limit G from Lemma 6.2.

Proposition 7.6. G = ∇ηu, where G, u and η are the weak and weak* limits given by Lemma
6.2.

Proof. As in Lemma 6.3, it will be helpful to map the approximate fluid velocities and the limiting
fluid velocity onto the physical domains. For this purpose, we introduce the following functions

uN(t, .) = uN(t, .) ◦ A−1
τ∆tηN

(t), ũ(t, .) = u(t, .) ◦ A−1
η (t),

χN f(t,x) =

{
f , x ∈ Ωτ∆tηN (t)
0, x /∈ Ωτ∆tηN (t)

, χf(t,x) =

{
f , x ∈ Ωη(t)
0, x /∈ Ωη(t)

,

where A is the ALE mapping defined by (3.1), η is the weak* limit ηN ⇀ η in L∞(0, T ;H1
0 (0, 1))

satisfying the uniform convergence property (6.22), and f is an arbitrary function defined on the
physical domain. Notice, again, that superscript N is used to denote a function defined on the
physical domain, while subscript N is used denote a function defined on the fixed domain ΩF .

The proof consists of three main steps: (1) we will first show that χNuN → χũ strongly in
L2((0, T )×Ωmax), then, by using step (1), we will show (2) χN∇uN → χ∇ũ weakly in L2((0, T )×
Ωmax), and, finally by using (2) we will show (3)

∫ T
0

∫
ΩF

G : q̃ =
∫ T

0

∫
ΩF
∇ηu : q̃ for every test

function q̃ = q ◦ Aη.
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STEP 1. We will show that ‖χNuN −χũ‖L2((0,T )×Ωmax) → 0. To achieve this goal, we introduce
the following auxiliary functions

ũN(t, .) = uN(t, .) ◦ A−1
η (t),

which will be used in the following estimate

‖χNuN − χũ‖L2((0,T )×Ωmax) ≤ ‖χNuN − χũN‖L2((0,T )×Ωmax) + ‖χũN − χũ‖L2((0,T )×Ωmax).

The second term on the right-hand side converges to zero because of the strong convergence of uN
to u on the reference domain ΩF , namely,

‖χũN − χũ‖2
L2(Ωmax) =

∫

ΩF

(1 + η)|uN − u|2 → 0.

Figure 6: A sketch of the fluid domains in STEP 1.

To show that the first term on the right-hand side converges to zero, first notice that

∫ T

0

∫

Ωmax

|χũN − χNuN |2 = (

∫ T

0

∫

Ωη(t)4Ωτ∆tηN (t)

+

∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

)|χũN − χNuN |2.

Here A∆B := (A ∪ B) \ (A ∩ B). See Figure 6. Because of the uniform convergence (6.22) we can
make the measure |Ωη(t)4Ωτ∆tηN (t)| arbitrary small. Furthermore, by Propostions 6.4 and 6.5 we
have that the sequence (χũN − χNuN)N∈N is uniformly bounded in L2((0, T ) × Ωmax). Therefore,
for every ε > 0, there exists an N0 ∈ N such that for every N ≥ N0 we have

∫ T

0

∫

Ωη(t)4Ωτ∆tηN (t)

|χũN − χNuN |2 < ε

2
. (7.1)

To estimate the second term, we need to measure the relative difference between the function uN
composed with A−1

η (t), denoted by ũN , and the same function uN composed with A−1
τ∆tηN (t), denoted

by uN . We will map them both on the same domain and work with one function uN , while the
convergence of the L2-integral will be obtained by estimating the difference in the ALE mappings.
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More precisely, we introduce the set ω = A−1
η (Ωη(t)∩Ωτ∆tηN (t)) ⊂ ΩF . Now, we use the properties

of the ALE mapping Aη and the definitions of ũN , uN to get

∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

|χũN − χNuN |2 =

∫ T

0

∫

ω

1

1 + η
|uN − uN ◦ A−1

τ∆tηN (t) ◦ Aη(t)|2

=

∫ T

0

∫

ω

1

1 + η(t, z)
|uN(t, z, r)− uN(t, z,

1 + η(t, z)

1 + τ∆tηN(t, z)
r)|2

=

∫ T

0

∫

ω

∣∣∣∣∂ruN(t, z, ζ)r

(
1− 1 + η(t, z)

1 + τ∆tηN(t, z)

)∣∣∣∣
2

Now because of the uniform convergence (6.22) of the sequence (τ∆tηN)N∈N, and the uniform bound-
edness of (‖∂ruN‖L2(ΩF ))N∈N, which is consequence of Proposition 6.5, we can take N1 ≥ N0 such
that ∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

|χũN − χNuN |2 < ε

2
, N ≥ N1.

This inequality, together with (7.1) proofs that χNuN → χũ strongly in L2((0, T )× Ωmax).

STEP 2. We will now show that χN∇uN ⇀ χ∇ũ weakly in L2((0, T )× Ωmax). First notice
that from

∇uN = ∇τ∆tηNuN

and from uniform boundedness of (∇τ∆tηNuN)N∈N in L2((0, T )×ΩF ), established in Proposition 6.5,
we get that the sequence (χN∇uN)N∈N converges weakly in L2((0, T ) × Ωmax). Let us denote the
weak limit of (χN∇uN)N∈N by G̃. Therefore,

∫ T

0

∫

Ωmax

G̃ · φ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN · φ, φ ∈ C∞c ((0, T )× Ωmax).

We want to show that G̃ = χ∇ũ.

For this purpose, we first consider the set (Ωmax \ Ωη(t)) and show that G̃ = 0 there, and then
the set Ωη(t) and show that G̃ = ∇ũ there.

Let φ be a test function such that suppφ ⊂ (0, T ) ×
(

Ωmax \ Ωη(t)
)

. Using the uniform

convergence of the sequence τ∆tηN , obtained in (6.22), there exists an Nφ such that χN(x) = 0,
N ≥ Nφ, x ∈ suppφ. Therefore, we have

∫ T

0

∫

Ωmax

G̃ · φ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN · φ = 0.

Thus, G̃ = 0 on (0, T )×
(

Ωmax \ Ωη(t)
)

.

Now, let us take a test function ψ such that suppψ ⊂ (0, T ) × Ωη(t). Again using the same
argument as before, as well as the uniform convergence of the sequence τ∆tηN , obtained in (6.22),
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we conclude that there exists an Nψ such that χN(x) = 1, N ≥ Nψ, x ∈ suppψ. Therefore, we
have ∫ T

0

∫

Ωmax

G̃ ·ψ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN ·ψ = lim
N→∞

∫ T

0

∫

Ωη(t)

∇uN ·ψ.

From the strong convergence χNuN → χũ obtained in STEP 1, we have that on the set suppψ,
uN → ũ in the sense of distributions, and so, on the same set suppψ, ∇uN → ∇ũ in the sense of
distributions. Therefore we have

∫ T

0

∫

Ωmax

G̃ ·ψ = lim
N→∞

∫ T

0

∫

Ωη(t)

∇uN ·ψ =

∫ T

0

∫

Ωη(t)

∇ũ ·ψ.

Since this conclusion holds for all the test functionsψ supported in (0, T )×Ωη(t), from the uniqueness

of the limit, we conclude G̃ = ∇ũ in (0, T )× Ωη(t).

Therefore, we have shown that

χN∇uN ⇀ χ∇ũ weakly in L2((0, T )× Ωmax).

STEP 3. We want to show that
∫ T

0

∫
ΩF

G : q̃ =
∫ T

0

∫
ΩF
∇ηu : q̃ for every test function

q̃ = q ◦ Aη, q ∈ XF . This will follow from STEP 2, the uniform boundedness and convergence
of the gradients ∇τ∆tηN ũN provided by Lemma 6.2, and from the strong convergence of the test
functions qN → q̃ provided by Lemma 7.6. More precisely, we have that for every q̃ = q ◦ Aη,
q ∈ XF ∫ T

0

∫

ΩF

G : q̃ = lim
N→∞

∫ T

0

∫

ΩF

∇τ∆tηNuN : qN

= lim
N→∞

∫ T

0

∫

Ωmax

1

1 + τ∆tηN
χN∇uN : q =

∫ T

0

∫

Ωη

1

1 + η
∇ũ : q =

∫ T

0

∫

ΩF

∇ηu : q̃.

Here, we have used from (3.5) that ∇uN = ∇τ∆tηNuN , and ∇ũ = ∇ηu. This completes proof.

Corollary 7.1. For every (q, ψ,ψ) ∈ X we have

∇τ∆tηNqN → ∇ηq̃, in L2((0, T )× ΩF ).

Proof. Since τ∆tηNqN and q̃ are the test functions for the velocity fields, the same arguments as
in Proposition 7.6 provide weak convergence of (∇τ∆tηNqN)N∈N. To prove strong convergence it is
sufficient to prove the convergence of norms ‖∇τ∆tηNqN‖L2(ΩF ) → ‖∇ηq̃‖L2(ΩF ). This can be done,
by using the uniform convergence of (τ∆tηN)N∈N, in the following way:

‖∇τ∆tηNqN‖2
L2(ΩF ) =

∫ T

0

∫

Ωmax

χN
1

1 + τ∆tηN
|∇q|2 →

∫ T

0

∫

Ωmax

χ
1

1 + η
|∇q|2

=

∫ T

0

∫

ΩF

|∇ηq̃|2 = ‖∇ηq̃‖2
L2(ΩF ).
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The notation used here is analogous to that used in the proof of Proposition 7.6.

Before we can pass to the limit in the weak formulation of the approximate problems, there is
one more useful observation that we need. Namely, notice that although q are smooth functions
both in the spatial variables and in time, the functions qN are discontinuous at n∆t because τ∆tηN
is a step function in time. As we shall see below, it will be useful to approximate each discontinuous
function qN in time by a piece-wise constant function, q̄N , so that

q̄N(t, .) = q(n∆t−, .), t ∈ [(n− 1)∆t, n∆t), n = 1, . . . , N,

where qN(n∆t−) is the limit from the left of qN at n∆t, n = 1, . . . , N . By using Lemma 7.6, and
by applying the same arguments in the proof of Lemma 6.5, we get

q̄N → q̃ uniformly on [0, T ]× Ω.

7.2 Passing to the limit

To get to the weak formulation of the coupled problem, take the test functions (ψ(t),ψ(t)) ∈
XW × XS as the test functions in the weak formulation of the structure sub-problem (5.4) and
integrate the weak formulation (5.4) with respect to t from n∆t to (n + 1)∆t. Notice that the
construction of the test functions is done in such a way that (ψ(t),ψ(t)) do not depend on N , and
are continuous. Then, consider the weak formulation (5.7) of the fluid sub-problem and take the
test functions (qN(t), ψ(t)) (where qN = q ◦Aτ∆tηN , q ∈ XF ). Integrate the fluid sub-problem (5.7)
with respect to t from n∆t to (n + 1)∆t. Add the two weak formulations together, and take the
sum from n = 0, . . . , N − 1 to get the time integrals over (0, T ) as follows:

∫ T

0

∫

ΩF

(1 + τ∆t ηN)
(
∂tũN · qN +

1

2
(τ∆tuN −wN) · ∇τ∆tηNuN · qN

−1

2
(τ∆tuN −wN) · ∇τ∆tηNqN · uN

)
+

1

2

∫ T

0

∫

ΩF

v∗NuN · qN

+

∫ T

0

∫

ΩF

(1 + τ∆tηN)2Dτ∆tηN (uN) : Dτ∆tηN (qN) +

∫ T

0

∫ 1

0

∂tṽNψ

+

∫ T

0

∫ 1

0

∂zηN∂zψ +

∫ T

0

∫

ΩS

∂tṼ N ·ψ +

∫ T

0

∫

ΩS

aS(dN ,ψ)

=

∫ T

0

PN
indt

∫ 1

0

qz(t, 0, r)dr −
∫ T

0

PN
outdt

∫ 1

0

qz(t, L, r)dr,

(7.2)

with
∇τ∆tη · uN = 0, vN = ((ur)N)|Γ, ηN = (dN)|Γ,

uN(0, .) = u0, η(0, .)N = η0, vN(0, .) = v0.
(7.3)
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Here ũN , ṽN and Ṽ N are the piecewise linear functions defined in (6.15), τ∆t is the shift in time by
∆t to the left, defined in (6.4), ∇τ∆tηN is the transformed gradient via the ALE mapping Aτ∆tηN ,
defined in (3.5), and v∗N , uN , vN , ηN , dN and V N are defined in (6.1).

Using the convergence results obtained for the approximate solutions in Section 6, and the
convergence results just obtained for the test functions qN , we can pass to the limit directly in all
the terms except in the term that contains ∂tũN . To deal with this term we notice that, since qN
are smooth on sub-intervals (j∆t, (j+ 1)∆t), we can use integration by parts on these sub-intervals
to obtain: ∫ T

0

∫

ΩF

(1 + τ∆tηN)∂tũN · qN =
N−1∑

j=0

∫ (j+1)∆t

j∆t

∫

ΩF

(1 + ηjN)∂tũN · qN

=
N−1∑

j=0

(
−
∫ (j+1)∆t

j∆t

∫

ΩF

(1 + τ∆tηN)ũN · ∂tqN

+

∫

ΩF

(1 + ηj+1 − ηj+1 + ηj)uj+1
N · qN((j + 1)∆t−)−

∫

ΩF

(1 + ηj)ujN · qN(j∆t+)
)
. (7.4)

Here, we have denoted by qN((j+ 1)∆t−) and qN(j∆t+) the limits from the left and right, respec-
tively, of qN at the appropriate points.

The integral involving ∂tqN can be simplified by recalling that qN = q ◦ AηN , where ηN are
constant on each sub-interval (j∆t, (j + 1)∆t). Thus, by the chain rule, we see that ∂tqN = ∂tq on
(j∆t, (j + 1)∆t). After summing over all j = 0, ..., N − 1 we obtain

−
N−1∑

j=0

∫ (j+1)∆t

j∆t

∫

ΩF

(1 + τ∆tηN)ũN · ∂tqN = −
∫ T

0

∫

ΩF

(1 + τ∆tηN)ũN · ∂tq.

To deal with the last two terms in (7.4) we calculate

N−1∑

j=0

(∫

ΩF

(1 + ηj+1
N − ηj+1

N + ηjN)uj+1
N · qN((j + 1)∆t−)−

∫

ΩF

(1 + ηjN)ujN · qN(j∆t+)
)

=
N−1∑

j=0

∫

ΩF

(
(1 + ηj+1

N )uj+1
N · qN((j + 1)∆t−)− (ηj+1

N − ηjN)uj+1
N · qN((j + 1)∆t−)

)

−
∫

Ω

(1 + η0)u0 · q(0)−
N−1∑

j=1

∫

ΩF

(1 + ηjN)ujN · qN(j∆t+)
)

Now, we can write (ηj+1 − ηj) as vj+
1
2 ∆t, and rewrite the summation indexes in the first term to

obtain that the above expression is equal to

=
N∑

j=1

∫

ΩF

(1+ηjN)ujN ·qN(j∆t−)−
∫ T

0

∫

ΩF

v∗NuN ·q̄N−
∫

ΩF

(1+η0)u0·q(0)−
N−1∑

j=1

∫

ΩF

(1+ηjN)ujN ·qN(j∆t+).
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Since the test functions have compact support in [0, T ), the value of the first term at j = N is zero,
and so we can combine the two sums to obtain

=
N∑

j=1

∫

ΩF

(1 + ηjN)ujN · (qN(j∆t−)− qN(j∆t+))−
∫

ΩF

(1 + η0)u0 · q(0)−
∫ T

0

∫

ΩF

v∗NuN · q̄N .

Now we know how to pass to the limit in all the terms expect the first one. We continue to rewrite
the first expression by using the Mean Value Theorem to obtain:

qN(j∆t−, z, r)− qN(j∆t+, z, r) = q(j∆t, z, (1 + ηjN)r)− q(j∆t, z, (1 + ηj+1
N )r) =

= ∂rq(j∆t, z, ζ)r(ηjN − ηj+1
N ) = −∆t∂rq(j∆t, z, ζ)v

j+ 1
2

N r.

Therefore we have:

N−1∑

j=1

∫

ΩF

(1 + ηjN)ujN
(
q(j∆t−)− q(j∆t+)) = −

∫ T−∆t

0

∫

ΩF

(1 + ηN)uNrτ−∆tv
∗
N∂rq̄.

We can now pass to the limit in this last term to obtain:

∫ T−∆t

0

∫

ΩF

(1 + ηN)uNrτ−∆tv
∗
N∂rq̄→

∫ T

0

∫

ΩF

(1 + η)ur∂tη∂rq.

Therefore, by noticing that ∂tq̃ = ∂tq + r∂tη∂rq we have finally obtained

∫ T

0

∫

ΩF

(1 + τ∆tηN)∂tũN · qN → −
∫ T

0

∫

ΩF

(1 + η)u · ∂tq̃−
∫ T

0

∫

ΩF

∂tηu · q̃

−
∫

ΩF

(1 + η0)u0 · q̃(0),

where we recall that q̃ = q ◦ Aη.
Thus, we have shown that the limiting functions u, η and d satisfy the weak form of problem

(3.6)-(3.13) in the sense of Definition 4.2, for all test functions that belong to a dense subset of Qη.
By density arguments, we have, therefore, shown the main result of this manuscript:

Theorem 7.4. (Main Theorem) Suppose that the initial data v0 ∈ L2(0, 1), u0 ∈ L2(Ωη0),
V 0 ∈ L2(ΩS), d0 ∈ H1(ΩS), and η0 ∈ H1

0 (0, 1) are such that 1 + η0(z) > 0, z ∈ [0, 1] and
compatibility conditions (1.13) are satisfied. Furthermore, let Pin, Pout ∈ L2

loc(0,∞).

Then, there exist a T > 0 and a weak solution (u, η,d) of problem (3.6)-(3.13) (or equivalently
problem (1.1)-(1.13)) on (0, T ) in the sense of Definition 4.2 (or equivalently Definition 4.1), such
that the following energy estimate is satisfied:

E(t) +

∫ t

0

D(τ)dτ ≤ E0 + C(‖Pin‖2
L2(0,t) + ‖Pout‖2

L2(0,t)), t ∈ [0, T ], (7.5)
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where C depends only on the coefficients in the problem, E0 is the kinetic energy of initial data, and
E(t) and D(t) are given by

E(t) =
1

2
‖u‖2

L2(ΩF ) +
1

2
‖∂tη‖2

L2(0,1) +
1

2
‖d‖2

L2(ΩS) +
1

2

(
‖∂zη‖2

L2(0,1) + aS(d,d)
)
,

D(t) = ‖D(u)‖2
L2(Ωη(t))).

Furthermore, one of the following is true:

either T =∞ or lim
t→T

min
z∈[0,1]

(1 + η(z)) = 0. (7.6)

Proof. It only remains to prove the last assertion, which states that our result is either global in
time, or, in case the walls of the cylinder touch each other, our existence result holds until the time
of touching. However, the proof of this argument follows the same reasoning as the proof of the
Main Theorem in [45], and the proof of the main result in [11], p. 397-398. We avoid repeating
those arguments here, and refer the reader to references [45, 11].

8 Conclusions

In this manuscript we proved the existence of a weak solution to a FSI problem in which the structure
consists of two layers: a thin layer modeled by the linear wave equation, and a thick layer modeled
by the equations of linear elasticity. The thin layer acts as a fluid-structure interface with mass.
An interesting new feature of this problem is the fact that the presence of a thin structure with
mass regularizes the solution of this FSI problem. More precisely, the energy estimates presented
in this work show that the thin structure inertia regularizes the evolution of the thin structure,
which affects the solution of the entire coupled FSI problem. Namely, if we were considering a
problem in which the structure consisted of only one layer, modeled by the equations of linear
elasticity, from the energy estimates we would not be able to conclude that the fluid-structure
interface is even continuous, since the displacement d of the thick structure would be in H1/2(Γ)
at the interface. With the presence of a thin elastic fluid-structure interface with mass (modeled
by the wave equation), the energy estimates imply that the displacement of the thin interface is
in H1(Γ), which, due to the Sobolev embeddings, implies that the interface is Hölder continuous
C0,1/2(Γ).

This is reminiscent of the results by Hansen and Zuazua [32] in which the presence of a point mass
at the interface between two linearly elastic strings with solutions in asymmetric spaces (different
regularity on each side) allowed the proof of well-posedness due to the regularizing effects by the
point mass. For a reader with further interest in the area of simplified coupled problems, we also
mention [33, 49, 55].

Further research by the authors in the direction of simplified coupled problems that shed light
on the physics of parabolic-hyperbolic coupling with point mass, is under way [10, 46]. Our prelim-
inary results in [46] indicate that the regularizing feature of the interface with mass is not only a
consequence of our mathematical methodology, but a physical property of this complex system.
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[3] V. Barbu, Z. Grujić, I. Lasiecka, and A. Tuffaha. Smoothness of weak solutions to a nonlinear
fluid-structure interaction model. Indiana Univ. Math. J., 57(3):1173–1207, 2008.

[4] H. Beirão da Veiga. On the existence of strong solutions to a coupled fluid-structure evolution
problem. J. Math. Fluid Mech., 6(1):21–52, 2004.

[5] M. Boulakia. Existence of weak solutions for the motion of an elastic structure in an incom-
pressible viscous fluid. C. R. Math. Acad. Sci. Paris, 336(12):985–990, 2003.
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