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Chapter 1

Fluid-Structure Interaction
Involving Multiple Structural
Layers: Theory and Numerics

S. Čanić, B. Muha, M. Bukač

Fluid-structure interaction (FSI) problems arise in many applications. They
include multi-physics problems in engineering such as aeroelasticity and propeller
turbines, as well as biofluidic application such as self-propulsion organisms, fluid-
cell interactions, and the interaction between blood flow and cardiovascular tissue.
A comprehensive study of these problems remains to be a challenge due to their
strong nonlinearity and multi-physics nature. To make things worse, in many bio-
logical applications the structure is composed of several layers, each with different
mechanical characteristics. This is, for example, the case with arterial walls, which
are composed of three main layers: the intima, media and adventitia, separated by
thin elastic laminae. A stable and efficient FSI solver that simulates the interac-
tion between an incompressible, viscous fluid and a multi-layered structure would
be an indispensable tool for the computational studies of solutions.

The multi-physics nature of this class of problems suggests the use of parti-
tioned, modular algorithms based on an operator splitting approach that would
separate the different physics in the problem. This chapter presents such a scheme,
which can be used not only in computations, but also to prove existence of weak
solutions to this class of problems. Particular attention will be payed to multi-
physics FSI problems involving structures consisting of multiple layers.
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1.1 Introduction

Fluid-structure interaction (FSI) problems arise in many applications. The widely
known examples are aeroelasticity and biofluids. In aeroelasticity, where the struc-
ture (wing of an airplane) is much heavier than the fluid (air), it is sometimes of
interest to study small vibrations of the structure in which case linear coupling
between the fluid and the structure may be sufficient to capture the main features
of the solutions. In that case the fluid domain remains fixed in the FSI model, and
only the location of the structure is computed based on the fluid loading (one-way
coupling). In biofluidic applications, such as the interaction between blood flow and
cardiovascular tissue where the density of the structure (arterial walls) is roughly
equal to the density of the fluid (blood), the coupling between the fluid and the rel-
atively light structure is highly nonlinear. In that case the fluid domain is not fixed
in the FSI model, and its location is determined by the location of the structure.
The elastodynamics of the structure influences the motion of the fluid through
the contact force exerted by the structure onto the fluid, while the structure loca-
tion is computed based on the fluid loading expressed through the contact force
exerted by the fluid onto the structure (two-way coupling). It has recently been
shown that classical “partitioned” time-marching numerical algorithms, which are
based on subsequent solutions of the fluid and structure sub-problems, are uncon-
ditionally unstable in problems in which the density of the structure and of the
fluid are comparable [30]. The exchange of energy between the moving fluid and
structure is so significant, that a mismatch between the energy of the discretized
problem and the energy of the continuous problem causes instabilities in classical
“loosely coupled” partitioned schemes. The difficulties associated with the signif-
icant energy exchange and the high geometric nonlinearity of the fluid-structure
interface are reflected not only in the design of numerical schemes, but also in the
theoretical studies of existence and stability of solutions to this class of problems.
A comprehensive study of these problems remains to be a challenge due to their
strong nonlinearity and multi-physics nature.

In the blood flow application, the problems are further exacerbated by the
fact that arterial walls of major arteries are composed of several layers, each with
different mechanical characteristics. The main layers are the tunica intima, media,
and adventitia. They are separated by the thin elastic laminae, see Figure 1. Recent
developments in ultrasound speckle tracking methods revealed significant shear
strain between the different layers in high adrenaline situations [2, 41, 42]. It was
noted that the consequences of this phenomenon on cardiovascular disease are yet
to be explored! An example of a disease which is associated with a pathophysiology
of the aortic wall layers is aortic dissection: tears in the intimal layer result in
separation of the aortic wall layers causing blood to flow within the aortic wall.

Until recently, there have been no fluid-structure interaction models or com-
putational solvers of arterial flow that take into account the multi-layered structure
of arterial walls. In this chapter we take a first step in this direction by studying a
benchmark problem in fluid-multi-layered-structure interaction in which the struc-
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Figure 1.1: Arterial wall layers.

ture consists of two layers, a thin and a thick layer. See Figure 2. The fluid flow will
be modeled by the Navier-Stokes equations for an incompressible, viscous, New-
tonian fluid. This is a good approximation for blood flow in major arteries, such
as the aorta or coronary arteries. The thin structural layer will be modeled by the
cylindrical Koiter shell equations, and the thick structural layer will be modeled
by the equations of linear elasticity. The thin structural layer located between the

Figure 1.2: Left: Reference Domain. Right: Deformed Domain.

fluid and the thick structure, serves as a fluid-structure interface with mass. The
proposed problem is a nonlinear moving-boundary problem of parabolic-hyperbolic
type.

The Benchmark Problem

Fluid: Navier-Stokes equations for an incompressible, viscous fluid;

Thin Structure: Cylindrical Koiter shell equations;

Thick Structure: Classical equations of linear elasticity.

This is a multi-physics problem which constists of three different physical
models: a model for fluid flow, a model describing the elastodynamics of the thin
structure, and a model describing the elastodynamics of the thick structural layer.
The multi-physics nature of the problem strongly suggests the use of a partitioned
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algorithm that would solve the underlying coupled problem by splitting the prob-
lem into sub-problems determined by the different physics. This has the advantage
of allowing modular implementations in both the numerical method development
as well as in constructing the proof of existence for this class of problems. In
this chapter we present a stable, convergent, modular scheme with precisely these
properties, called the Kinematically-Coupled β-Scheme. This scheme was origi-
nally constructed to study fluid-structure interaction problems with a single struc-
tural layer modeled by the cylindrical Koiter shell equations in [85, 86], and then
recently improved for higher accuracy in [19] (Kinematically-Coupled β-Scheme).
Modifications of this scheme can be applied to a much larger class of multi-physics
problems associated with FSI, such as FSI involving stent-artery-fluid interaction
[123], FSI involving a multi-layered elastic porous medium [23], and FSI involving
a non-Newtonian fluid [94, 95].

In this chapter we present a general “recipe” describing the construction of
the main steps of such a scheme that can be used to:

• prove existence of weak solutions, and/or

• construct a numerical solver

to study a class of FSI problems that include:

• problems with viscoelastic and/or purely elastic structural models,

• problems with different coupling conditions (no-slip, slip),

• problems with nonlinear thin structure models,

• 2D and 3D scenarios.

An interesting new feature of the class of problems studied in this chapter is
the fact that the presence of a thin fluid-structure interface with mass regularizes
solutions of this class of FSI problems. More precisely, the energy estimates pre-
sented in this chapter will show that the thin structure inertia regularizes evolution
of the thin structure, which affects the solution of the entire coupled FSI prob-
lem. Namely, if we were considering a problem in which the structure consisted
of only one layer, modeled by the equations of linear elasticity, from the energy
estimates we would not be able to conclude that the fluid-structure interface is
even continuous. With the presence of a thin elastic fluid-structure interface with
mass (modeled, e.g., by the linear wave equation), the energy estimates imply
that the displacement of the thin interface is in H1(Γ), which, due to the Sobolev
embeddings, implies that the interface is Hölder continuous C0,1/2(Γ). The inertia
of the fluid-structure interface with mass serves as a regularizing mechanism for
the entire FSI problem. It will be shown in Section 0.7 that numerical simulations
confirm this behavior.

This is reminiscent of the results by Hansen and Zuazua [89] in which the
presence of a point mass at the interface between two linearly elastic strings with
solutions in asymmetric spaces (different regularity on each side) allowed the proof
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of well-posedness due to the regularizing effects by the point mass. More precisely,
they considered two elastic strings modeled by the linear wave equations, con-
nected by a point mass, with initial data of different regularity on the left or
right side of the point mass. They showed that the rough waves traveling through
the point mass, which served as an interface with mass between the two elastic
strings, were regularized due to the inertia effects of the point mass. See Sec-
tion 0.7.7 for more details. For a reader with further interest in this area we also
mention [90, 132, 143]. Further research in this direction, directly relevant to the
FSI with multiple layers, is under way by the authors.

We begin by a review of models used in FSI studies to describe mechanical
properties of arterial walls.

1.2 Mathematical Models of Arterial Walls

The walls of blood vessels are composed of three layers: the intima, media and
adventitia. They are separated by thin elastic laminae. See Figure 1. The intima
is the innermost layer and it is mainly composed of endothelial cells. The media
is the middle layer and it is mainly composed of elongated smooth muscle cells,
and also elastin and collagen. Most blood vessels contain smooth muscle arranged
in either circular or spiral layers. The media gives rise to the majority of the
vessel’s viscoelastic behavior. The adventitia is the outermost layer, and it is manly
composed of collagen fibrils, elastic sheets and elastic fibrils. The layers of smooth
muscle and connective tissue surrounding the intima vary in thickness in different
vessels.

The aorta and major arteries are characterized by walls that have a thick
smooth muscle layer and large amounts of elastic and fibrous tissue. Because of the
stiffness of the fibrous tissue, substantial amounts of energy are required to stretch
the walls of an artery outward. This energy comes from the high blood pressure
exerted onto the arterial walls during the systolic part of cardiac cycle, when the
left ventricle of the heart contracts, and squeezes blood through the aortic valve on
to the aorta. Once the artery is distended with blood, energy stored by stretching
elastic fibers is released through elastic recoil. Elastic recoil takes place during the
diastolic part of cardiac cycle, when the left ventricle relaxes and gets refilled by
blood. During that time the elastic recoil of arteries helps propel blood to the far
most parts of the cardiovascular system.

Downstream from the arteries, small vessels called arterioles create a high-
resistance outlet for arterial blood flow. Arterioles direct distribution of blood flow
to individual tissues by selectively constricting and dilating. Arteriolar diameter is
regulated by both local factors, such as tissue oxygen, and by homeostatic control.

Downstream from the arterioles are capillaries. A leaky epithelium in the
capillaries allows exchange of materials between the blood plasma, the interstitial
fluid, and the cells of the body. At the distal end of the capillaries, blood flows
into the venous side of the circulation and from there back to the right heart.
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Depending on the types of questions one is trying to answer, and depending
on the thickness of the vessel wall with respect to the diameter of the correspond-
ing vessel, different arterial wall models can be used to describe the mechanical
properties of arterial walls [72, 73, 87, 140]. Table 1 summarizes the mean diameter
and wall thickness for arteries, arterioles, and capillaries [?].

Artery Arteriole Capillary

Mean Diameter 4.0 mm 30.0 µm 8.0 µm
Mean Wall Thickness 1.0 mm 6.0 µm 0.5 µm

Table 1.1: Mean diameter and wall thickness for human vasculature.

In fluid-structure interaction studies, the coupling between blood flow and
vascular tissue is so complicated that several simplifying assumptions have to be
taken into account to make the computer simulations feasible. A common set
of simplifying assumptions that captures only the most important physics in the
description of the mechanical properties of arterial walls includes homogeneity and
isotropy, capturing the average mechanical properties of arterial walls. Further
simplifying assumptions that are often used in hemodynamics FSI literature are
“small” displacements and “small” deformation gradients leading to the hypothesis
of linear elasticity.

Depending on the relative thickness of the structure (arterial walls) with re-
spect to the diameter of the cylindrical fluid domain (arterial lumen), different
modes have been used to approximate the overall (average) mechanical behavior
of arterial walls. Three-dimensional equations of elasticity have been used under
the assumption that the thickness of arterial walls is comparable to the diameter
of the vessel lumen, while reduced shell or membrane models have been used under
the assumption that the ratio between the thickness of the vessel wall and the ves-
sel radius is small (ε << 1). In the latter case, most FSI hemodynamics literature
assumes that only the radial component of displacement of the thin structural
wall is non-negligible. Recent developments in ultrasound speckle tracking meth-
ods revealed, however, that the axial (longitudinal) component of displacement of
arterial walls may be significant in certain situations. Moreover, it was revealed
that there is significant axial shear strain between the different layers (the intima-
media complex and the adventitia) in high adrenaline situations [41, 42, 129, 135].
It was noted that the consequences of this phenomenon on cardiovascular disease
is yet to be explored. Motivated by these experimental findings, recent progress in
designing a FSI solver capturing both longitudinal as well as radial displacement
of a thin Koiter shell modeling arterial walls, was reported in [19, 20].

Finally, a further simplification that can be utilized in certain situations is
axial symmetry of the loading exerted by the blood flow to the vessel walls in
the approximately straight cylindrical sections, leading to the axially symmetric
models with a potential of further reduction to 1D FSI models.
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We give a brief review of these models next.

1.2.1 Elastodynamics of Thin Structures

The equations of shell theory have been derived by many authors, see [53] and
the references therein. Due to variations in approach and rigor the variety of
equations occurring in literature is overwhelming. Among all the equations of
shell theory the Koiter shell equations appear to be the simplest consistent first
approximation in the general theory of thin elastic shells, [97, 96]. In addition, they
have been mathematically justified using asymptotic methods to be consistent with
three-dimensional elasticity, [39]. Ciarlet and Lods showed in [39] that the Koiter
shell model has the same asymptotic behavior as the three-dimensional membrane
model, the bending model and the generalized membrane model in the respective
regimes in which each of them holds. Motivated by these remarkable properties of
the Koiter shell model, in [26, 27] Čanić et al. derived the Koiter shell equations
for the cylindrical geometry with the purpose of using the equations as a model
to study the mechanical behavior of arterial walls. The models in [26, 27], and a
portion of the text presented in this section, were based on the derivations of the
cylindrical Koiter shell equations, obtained by Tambača in [136]. The cylindrical
Koiter shell equations are a generalization of several classes of models that have
been used in modeling of arterial walls. They include the linear string model
proposed by Quarteroni et al. in [140, 25] as a benchmark problem for testing
numerical schemes for FSI in blood flow, the independent ring model [140], and
the cylindrical membrane model.

In [26, 27] Čanić et al. have extended the linearly elastic cylindrical Koiter
model to include the viscous effects of Kelvin-Voigt type, observed in the mea-
surements of the mechanical properties of vessel walls, [3, 4, 11]. It was shown
in [3, 4, 11] that the Kelvin-Voigt model approximates well the experimentally
measured viscoelastic properties of the canine aorta and of the human femoral and
carotid arteries. In [26, 27] it was shown that a reduced FSI model between the
linearly elastic cylindrical Koiter shell and the flow of an incompressible, viscous
fluid, approximates well the experimentally measured data presented in [3, 4, 11].
The Kelvin-Voight model was also used in [130] to model the arterial walls as a
linearly viscoelastic membrane. We summarize the derivation of the Koiter shell
model next.

The Cylindrical Koiter Shell Equations - General Framework

Consider a clamped cylindrical shell of thickness h, length L, and reference radius
of the middle surface equal to R. See Figure 3. This reference configuration, which
we denote by Γ, can be defined via the parameterization

ϕ : ω → R3, ϕ(z, θ) = (R cos θ,R sin θ, z)t,
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Figure 1.3: Left: Cylindrical shell in reference configuration with middle surface
radius R and shell thickness h. Right: Deformed shell.

where ω = (0, L)× (0, 2π) and R > 0. Therefore, the reference configuration is

Γ = {x = (R cos θ,R sin θ, z) ∈ R3 : θ ∈ (0, 2π), z ∈ (0, L)}. (1.1)

The associated covariant Ac and contravariant Ac metric tensors of this (non-
deformed) cylinder are given by:

Ac =

(
1 0
0 R2

)
, Ac =

(
1 0
0 1

R2

)
, (1.2)

and the area element along cylinder Γ is dS =
√
ady :=

√
detAcdy = Rdy. The

corresponding curvature tensor in covariant components is given by

Bc =

(
0 0
0 R

)
.

We define the elasticity properties of this cylindrical shell by the following elasticity
tensor A:

AE =
4λµ

λ+ 2µ
(Ac ·E)Ac + 4µAcEAc, E ∈ Sym(M2), (1.3)

where µ and λ are the Lamé coefficients.
Using the following relationships between the Lamé constants and the Young’s

modulus of elasticity E and Poisson ratio σ:

2µλ

λ+ 2µ
+ 2µ = 4µ

λ+ µ

λ+ 2µ
=

E

1− σ2
,

2µλ

λ+ 2µ
= 4µ

λ+ µ

λ+ 2µ

1

2

λ

λ+ µ
=

E

1− σ2
σ,

(1.4)
the elasticity tensor A can also be written as:

AE =
2Eσ

1− σ2
(Ac ·E)Ac +

2E

1 + σ
AcEAc, E ∈ Sym (R2).

A Koiter shell can undergo stretching of the middle surface, and flexure
(bending). Namely, the Koiter shell model accounts for both the membrane effects
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(stretching) and shell effects (flexure). Stretching of the middle surface is measured
by the change of metric tensor, while flexure is measured by the change of curvature
tensor. Consider an arbitrary displacement field η = (ηz, ηθ, ηr) from the reference
configuration Γ. Then, the corresponding change of metric, and change of curvature
tensors for the deformed shell, in covariant components, are defined by:

G(η) =
1

2
(Ac(η)−Ac) ,

︸ ︷︷ ︸
The Change of Metric Tensor

and R(η) =
1

2
(Bc(η)−Bc) ,

︸ ︷︷ ︸
The Change of Curvature Tensor

(1.5)

where Ac(η) and Bc(η) are the covariant metric and curvature tensors, respec-
tively, of the deformed shell. These will be specified below for the problem we
consider in this chapter.

With the corresponding change of metric and change of curvature tensors
we can now write formally the corresponding elastic energy of the deformed shell.
The elastic energy of the cylindrical Koiter shell is given by [35, 36, 37, 97]:

Eel(η) =
h

4

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a, (1.6)

where : denotes the scalar product

A : B := Tr
(
ABT

)
A,B ∈M2(R) ∼= R4. (1.7)

Given a force with surface force density f , the loaded shell deforms and the
corresponding displacement η of the deformed shell is a minimizer of the energy
functional [35, 36, 37, 97]:

J(η) =
h

4

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a−

∫

ω

f · η√a. (1.8)

The corresponding weak formulation can be written as:

h

2

∫

ω

AG(η) : G′(η)ψ
√
a+

h3

48

∫

ω

AR(η) : R′(η)ψ
√
a =

∫

ω

f ·ψ√a, ∀ψ ∈ C∞c ,
(1.9)

where G′ is the Gateux derivative of G.
The weak formulation of the corresponding elastodynamics problem is given

by the following:

ρKh

∫

ω

∂2
t ηψ
√
a+

h

2

∫

ω

AG(η) : G′(η)ψ
√
a+

h3

48

∫

ω

AR(η) : R′(η)ψ
√
a

=

∫

ω

f ·ψ√a, ∀ψ ∈ C∞c ,
(1.10)

where ρK and h are the Koiter shell density and thickness.
Associated with this problem are the following physical quantities:
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• Stress Resultant (Internal Force), which relates the internal force with the
change of metric tensor, and is defined by

N :=
h

2
AG(η), (1.11)

and

• Stress Couples (Bending Moment), which describe the bending moments in
terms of the change of curvature tensor, and are defined by

M :=
h3

24
AR(η).

At this point we also introduce the effects of prestress by defining the stress
resultant N ref that relates the reference pressure pref with circumferential strain
[47, 113, 114]

h

2
N ref = hRAc

[
0 0

0 pref
R

h
ηr

]
Ac (1.12)

so that the total stress resultant, including the effects of prestress, reads

• Stress Resultant for a prestressed elastic Koiter shell

N =
h

2
AG(η) +

h

2
N ref . (1.13)

In what follows, we will be providing more specific details on a few concrete
examples of the general framework described above.

Example1: The linearly elastic cylindrical Koiter shell with radial displacement.

We present the cylindrical Koiter shell equations without the assumption of axial
symmetry. This means that the displacement η can be written as:

η(t, z, θ) = (ηz(t, z, θ), ηθ(t, z, θ), ηr(t, z, θ)).

However, as is common in the blood flow literature, we will be assuming that the
azimuthal and longitudinal components of the displacement are negligible ηθ ≈
0, ηz ≈ 0, i.e., only the radial component of the displacement is different from
zero, so that:

η(t, z, θ) = (0, 0, ηr(t, z, θ), ) = η(t, z, θ)er(θ),

where er(θ) is the unit vector pointing in the radial direction. Notice that this
does not mean that the flow is axially symmetric, since the radial displacement is
a function of both θ and z.
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In this case, the corresponding linearized change of metric, and change of
curvature tensors (5) take the following form:

G(η) =

[
0 0
0 Rηr

]
, R(η) =

[
−∂2

zη −∂2
zθη

−∂2
zθη −∂2

θη + η

]
. (1.14)

The elastic energy of the shell is defined by:

Eel(η) =
h

4

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a, (1.15)

where η is the scalar displacement function. We will be assuming that the shell is
clamped at the end points, satisfying the following boundary conditions:

η =
∂η

∂n
= 0 on ∂ω.

The dynamics of the linearly elastic cylindrical Koiter shell is given by the following
weak formulation: find η ∈ H2

0 (ω) such that

ρKh

∫

ω

∂2
t ηψ
√
a+

h

2

∫

ω

AG(η) : G(ψ)
√
a+

h3

24

∫

ω

AR(η) : R(ψ)
√
a =

∫

ω

fψ
√
a

(1.16)
for all ψ ∈ H2

0 (ω), where f is the radial component of the surface force density
applied to the shell. Here, we have used the fact that for linear problems:

G′(η)ψ = G(ψ).

We define the corresponding linear elasticity operator Lel:

〈Lelη, ψ〉 =
h

2

∫

ω

AG(η) : G(ψ)
√
a+

h3

24

∫

ω

AR(η) : R(ψ)
√
a, ∀ψ ∈ H2

0 (ω).

A calculation shows that the operator Lel in differential form reads:

Lelη =
h3µ

3R4(λ+ 2µ)

(
(λ+ µ)∂4

θη +R4(λ+ µ)∂4
zη + 2R2(λ+ µ)∂2

z∂
2
θη

−R2λ∂2
zη − 2(λ+ µ)∂2

θη + (λ+ µ)η
)

+
4h

R2

(λ+ µ)µ

λ+ 2µ
η.

By using the relationships between the Lamé constants and Young’s modulus of
elasticity E and Poisson ratio σ, given by (4), operator Lel can be written as:

Lelη =
h3E

12R4(1− σ2)

(
∂4
θη +R4∂4

zη + 2R2∂2
z∂

2
θη − 2∂2

θη + η
)

+
h3Eσ

6R2(1− σ2)
∂2
zη +

hE

R2(1− σ2)
η.

(1.17)
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Example 2: The axially-symmetric Koiter shell allowing both radial and longitu-
dinal displacement.

Here, we assume that nothing in the problem depends on θ. The problem is axially
symmetric, and the displacement η is given by

η(t, z) = (ηz(r, z), ηr(t, z)).

The linearized change of metric tensor and the linearized change of curvature
tensor are given, respectively by:

G(η) =

[
∂zηz 0

0 Rηr

]
, R(η) =

[
−∂zzηr 0

0 ηr

]
. (1.18)

The elastic energy of the problem is given by:

Eel(η) =
h

2

∫ L

0

AG(η) : G(η)Rdz +
h3

24

∫ L

0

AR(η) : R(η)Rdz. (1.19)

To define a weak formulation of the problem, introduce the following function
space:

Vc = H1
0 (0, L)×H2

0 (0, L) =
{

(ψz, ψr) ∈ H1(0, L)×H2(0, L) :

ψz(0) = ψz(L) = ψr(0) = ψr(L) = 0, ∂zψr(0) = ∂zψr(L) = 0} .

Then the weak formulation of the linearly elastic cylindrical Koiter shell is given
by the following: find η = (ηz, ηr) ∈ Vc such that

h

2

∫ L

0

AG(η) : G(ψ)Rdz+
h3

24

∫ L

0

AR(η) : R(ψ)Rdz =

∫ L

0

f ·ψRdz, ∀ψ ∈ Vc,
(1.20)

Here f is the surface density of the force applied to the shell, and A is the elasticity
tensor given by (3).

The weak formulation of the associated elastodynamics problem is given by:

ρKh

∫ L

0

∂2
t ηψRdz +

h

2

∫ L

0

AG(η) : G(ψ)Rdz +
h3

24

∫ L

0

AR(η) : R(ψ)Rdz

=

∫ L

0

f ·ψRdz, ∀ψ ∈ Vc,
(1.21)

To write the weak form explicitly in terms of displacement, we introduce
a simpler notation for the spatial derivative with respect to z, and for the time
derivative. Namely, in this section we will be using ′ to denote the partial derivative
with respect to z, and ˙ to denote the partial derivative with respect to time.
Namely, for an arbitrary function f :

f ′ :=
∂f

∂z
, ḟ :=

∂f

∂t
.



1.2. Mathematical Models of Arterial Walls 13

Using this notation, the weak formulation written explicitly in terms of the dis-
placement now reads:

ρKh

∫ L

0

η̈zψz + η̈rψr

+
h

2

∫ L

0

(
4µλ

λ+ 2µ

(
η′z +

1

R
ηr

)
·
(
ξ′z +

1

R
ξr

)
+ 4µ

(
η′zξ
′
z +

1

R2
ηrξr

))
dz

+
h3

24

∫ L

0

(
4µλ

λ+ 2µ

(
−η′′r +

1

R2
ηr

)
·
(
−ξ′′r +

1

R2
ξr

)
+ 4µ

(
η′′r ξ
′′
r +

1

R4
ηrξr

))
dz

=

∫ L

0

(fzξz + frξr)dz, ∀(ξz, ξr) ∈ Vc.

By using the relationships between λ, µ and E, σ, given by (4), the weak formula-
tion in terms of E and σ reads:

ρKh

∫ L

0

η̈zψz + η̈rψr

+h

∫ L

0

(
Eσ

1− σ2

(
η′z +

1

R
ηr

)(
ξ′z +

1

R
ξr

)
+

E

1 + σ

(
η′zξ
′
z +

1

R2
ηrξr

))
dz (1.22)

+
h3

12

∫ L

0

(
Eσ

1− σ2

(
−η′′r +

1

R2
ηr

)(
−ξ′′r +

1

R2
ξr

)
+

E

1 + σ

(
η′′r ξ
′′
r +

1

R4
ηrξr

))
dz

=

∫ L

0

(fzξz + frξr)dz, (ξz, ξr) ∈ Vc. (1.23)

The terms multiplying h/2 account for the stored energy density due to stretching
(membrane effects) and the terms multiplying h3/12 account for the stored energy
density due to bending (flexural shell effects). Integration by parts gives rise to
the following dynamics equilibrium equations in differential form:

Linearly Elastic, Axially Symmetric Cylindrical Koiter Shell

ρKh η̈z −
hE

1− σ2

(
η′′z + σ

1

R
η′r

)
= fz,

ρKh η̈r +
hE

R(1− σ2)

(
ση′z +

ηr
R

)
+

h3E

12(1− σ2)

(
η′′′′r − 2σ

1

R2
η′′r +

1

R4
ηr

)
= fr.

(1.24)

By ignoring the terms accounting for the bending energy (shell effects), the
resulting equations representing a model for the linearly elastic, axially symmetric
cylindrical Koiter membrane take the following form:
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Linearly Elastic, Axially Symmetric
Cylindrical Koiter Membrane

ρKh η̈z −
hE

1− σ2

(
η′′z + σ

1

R
η′r

)
= fz,

ρKh η̈r +
hE

R(1− σ2)

(
ση′z +

ηr
R

)
= fr.

(1.25)

Example 3: A Nonlinearly Elastic, Axially Symmetric Koiter Membrane with Only
Radial Displacement.

As in the previous example, we assume that nothing in the problem depends on
θ. Also, for simplicity, we will be assuming that only the radial component of the
displacement is different from zero, so that

η = η(t, z) = ηer.

Therefore, we consider axially symmetric deformations of a nonlinearly elastic Koi-
ter membrane from the reference configuration Γ given by (1), with only the radial
component of displacement different from zero. See Figure 4. The corresponding

Figure 1.4: A sketch of an axially-symmetric fluid domain with radial displacement
η.

change of metric tensor capturing membrane effects is given by

G(η) =
1

2

(
(∂zη)2 0

0 2Rη + η2

)
. (1.26)

The elastic energy of the Koiter membrane is given by the following:

Ememel (η) =
h

2

∫ L

0

AG(η) ·G(η) Rdz (1.27)

We consider the dynamics of the Koiter membrane with fixed end points, modeled
by the boundary conditions

η(0) = η(L) = 0.
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Following (10), the variational formulation for the nonlinearly elastic Koiter mem-
brane problem is given by the following:

∫ L

0

ρKh∂
2
t ηξ Rdz +

h

2

∫ L

0

AG(η) ·G′(η)ξ Rdz =

∫ L

0

fξ Rdz, ∀ξ ∈ H2
0 (0, L),

(1.28)
where G′ is Gateux derivative of G given by:

G′(η)ξ =

(
∂zη∂zξ 0

0 (R+ η)ξ

)
.

This defines the following (nonlinear) differential operator Lmemel :

〈Lmemel (η), ξ〉 :=
h

2

∫ L

0

AG(η) ·G′(η)ξ Rdz, ∀ξ ∈ C∞c (0, L).

Integration by parts yields the following formula:

Lmemel (η) = −∂z
[( hE

2(1− ν2)
(∂zη)2 +

hEν

1− ν2

( 1

R
η +

1

2R2
η2
))
∂zη
]

+
( hE

1− ν2

( 1

R
η +

1

2R2
η2
)

+
hEν

2(1− ν2)
(∂zη)2

)( 1

R
+

1

R2
η
)
, η ∈W 2,4

0 (0, L).

(1.29)
With this notation, the corresponding differential formulation of (28) can be writ-
ten as:

ρKh ∂
2
t η + Lmemel (η) = f. (1.30)

Here, ρK is the structure density, h is the structure thickness, and f is the force
density in the radial (vertical) er direction acting on the structure.

Example 4: A linearly viscoelastic Koiter shell

We introduce the viscoelastic effects to the linearly elastic Koiter shell by consider-
ing viscoelasticity of Kelvin-Voigt type in which the stress is linearly proportional
to strain plus the time derivative of strain. For this purpose we introduce the
following equivalent of the elasticity tensor A given by (3), which we denote by B:

BE =
4λvµv
λv + 2µv

(Ac ·E)Ac + 4µvA
cEAc, E ∈ Sym(M2), (1.31)

where λv and µv are the viscoelastic counterparts of the Lamé constants of elas-
ticity. Here Ac is the contra variant metric tensor of the reference configuration
Γ, given in (2).

Given the force density f , the displacement of the deformed linearly viscoelas-
tic Koiter shell can be found by solving the following variational formulation for
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η:

h

2

∫

ω

(AG(η) + BG(η̇)) : G(ψ)
√
a+

h3

48

∫

ω

(AR(η) + BR(η̇)) : R(ψ)
√
a

=

∫

ω

f ·ψ√a, ∀ψ ∈ C∞c ,
(1.32)

where ρK and h are the Koiter shell density and thickness, respectively.
The energy of this problem is given by:

E(η) =
h

2

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a

+
h

4

d

dt

∫

ω

BG(η) : G(η)
√
a+

h3

96

d

dt

∫

ω

BR(η) : R(η)
√
a

= Eel(η) +
1

2

d

dt
Evis(η),

(1.33)

where

Eel(η) =
h

2

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a (1.34)

Evis(η) =
h

2

∫

ω

BG(η) : G(η)
√
a+

h3

48

∫

ω

BR(η) : R(η)
√
a (1.35)

The corresponding elastodynamics problem is given by:

ρKh

∫

ω

∂2
t ηψ
√
a+

h

2

∫

ω

(AG(η) + BG(η̇)) : G(ψ)
√
a

+
h3

48

∫

ω

(AR(η) + BR(η̇)) : R(ψ)
√
a =

∫

ω

f ·ψ√a, ∀ψ ∈ C∞c ,
(1.36)

Introduce the following notation for the corresponding elastic and viscoelastic
operators:

〈Lelη,ψ〉 :=
h

2

∫

ω

AG(η) : G(ψ)
√
a+

h3

48

∫

ω

AR(η) : R(ψ)
√
a. (1.37)

〈Lvisη̇,ψ〉 :=
h

2

∫

ω

BG(η̇) : G(ψ)
√
a+

h3

48

∫

ω

BR(η̇) : R(ψ)
√
a. (1.38)

Then, we can write (36) as

ρKh

∫

ω

∂2
t ηψ
√
a+ 〈Lelη,ψ〉+ 〈Lvisη̇,ψ〉 =

∫

ω

f ·ψ√a, ∀ψ ∈ C∞c .

We now write the explicit form of these equations for the case when the
structure displacement is independent on θ so that:

η(t, z) = (ηz(t, z), ηr(t, z)),
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and with the boundary conditions corresponding to a clamped shell

η(0) = ∂zη(0) = η(L) = ∂zη(L) = 0.

Therefore, to simplify the form of the explicit equations, we assume axial symmetry
of the problem. In this case, we look for a weak solution which is in the space

Vc = H1
0 (0, L)×H2

0 (0, L) =
{

(ψz, ψr) ∈ H1(0, L)×H2(0, L) :

ψz(0) = ψz(L) = ψr(0) = ψr(L) = 0, ∂zψr(0) = ∂zψr(L) = 0} .

The corresponding weak formulation is given by (36), where we can replace the test
space C∞c by the space Vc. We write the differential form of the elastodynamics
equations in terms of the Young’s modulus of elasticity E and Poisson ratio σ, and
the corresponding viscoelastic equivalents, which we denote be Ev and σv. The
relationship between λ, µ and E, σ is given by (4). The same relationship holds
between the corresponding viscoelastic constants λv, µv and Ev, σv.

After writing out the weak form (36), and after performing integration by
parts, the corresponding dynamic equilibrium equations for the linearly viscoelas-
tic Koiter shell in differential form are given by:

ρKh
∂2ηz
∂t2

− C2
∂ηr
∂z
− C3

∂2ηz
∂z2

−D2
∂2ηr
∂t∂z

−D3
∂3ηz
∂t∂z2

= fz, (1.39)

ρKh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

+D0
∂ηr
∂t
−D1

∂3ηr
∂t∂z2

+D2
∂2ηz
∂t∂z

+D4
∂5ηr
∂t∂z4

= fr, (1.40)

where

C0 = hE
R2(1−σ2) (1 + h2

12R2 ), C1 = h3

6
Eσ

R2(1−σ2) , C2 = h
R

Eσ
1−σ2 ,

C3 = hE
1−σ2 , C4 = h3

12
E

1−σ2 ,

D0 = h
R2Cv(1 + h2

12R2 ), D1 = h3

6
Dv
R2 , D2 = hDv

R ,

D3 = hCv, D4 = h3

12Cv,

(1.41)

and

Cv :=
Ev

1− σ2
v

, Dv :=
Evσv
1− σ2

v

.

We can write this problem using the operators Lel and Lvis as:

ρKh
∂2η

∂t2
+ Lelη + Lvis

∂η

∂t
= f , (1.42)

where

Lelη =




−C2
∂ηr
∂z
− C3

∂2ηz
∂z2

C0ηr − C1
∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4


 , (1.43)
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and

Lvis
∂η

∂t
=




−D2
∂2ηr
∂t∂z

−D3
∂3ηz
∂t∂z2

D0
∂ηr
∂t
−D1

∂3ηr
∂t∂z2

+D2
∂2ηz
∂t∂z

+D4
∂5ηr
∂t∂z4


 . (1.44)

The typical values of the model parameters for the aorta and iliac arteries
are given in Table 2

PARAMETERS AORTA/ILIACS

Char. radius R(m) 0.006-0.012 [140]
Wall thickness h(m) 1− 2× 10−3[140]
Wall density ρK(kg/m3) 1.1× 103[140]
Young’s modulus E(Pa) 105 − 106[140, 3, 11]
Wall viscosity coef. hCv/R(Pa · s) 103 − 8× 103[3, 4, 11]
Poisson’s ratio σ 0.5

Table 1.2: Table with typical wall parameter values for the aorta and iliac arteries.

Example 5: The Linearly Elastic String Model

We present here a model which has been used by several authors to test numerical
solvers for FSI in blood flow [9, 126, 8, 139, 85, 19]. This model problem was first
introduced by Formaggia et al. in [71]. The structure model for this benchmark
problem is of the form

ρsh
∂2ηr
∂t2

− kGh∂
2ηr
∂z2

+
Eh

1− σ2

ηr
R2
− γ ∂

3ηr
∂z2∂t

= f. (1.45)

Here G = E
2(1+σ) is the shear modulus and k is the Timoshenko shear correction

factor. The values of the model parameters used in [71] are given in Table 3.

PARAMETERS VALUES FOR MODEL PROBLEM

Shear mod. G(dynes/cm2) 0.25× 106

Timoshenko factor k 1
Viscoelasticity γ (poise cm) 0.01
Radius R (cm) 0.5
Wall density ρs (g/cm3) 1.1
Wall thickness hs (cm) 0.1
Young’s mod. E(dynes/cm2) 0.75× 106

Poisson’s ratio σ 0.5

Table 1.3: Structure parameters for Example 5.
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Notice that this model can be recovered from the linearly viscoelastic Koiter shell
model (42) by taking the longitudinal component of displacement to be equal to
zero, and by choosing the following values for the coefficients in (43), (44):

C0 =
Eh

R2(1− σ2)
, C1 = −kGh, D2 = −γ,

with all the other coefficients equal to zero. The typical values of the parameters in
this model are given in Table 3 [71]. The Young’s modulus E and viscoelasticity γ
are smaller than the physiological values. This means that the arterial wall in this
example is rather elastic. The relatively large value of the coefficient in front of the
second-order derivative with respect to z (describing bending rigidity), minimizes
the oscillations that would normally appear in such structures. For the typical
physiological values of these parameters see Table 2.

Example 6: The Independent Ring Model

The independent ring model has been extensively used in modeling elastic prop-
erties of arterial walls. See e.g., [140, 25], and the references therein. The model
is particularly suitable to study blood flow in compliant arteries using a reduced,
1D model, studied in, e.g., [25].

The independent ring model reads

p− pref =
hE

R2(1− σ2)
η, (1.46)

where pref is the reference pressure, i.e., the pressure at which the displacement
from the reference configuration is equal to zero.

Notice that this model is included in the Koiter shell equations (182), (183).
Indeed, if we ignore the longitudinal displacement and take only the terms that
follow from the membrane effects (h2

∫
AG(η) : G(η)) we obtain exactly the Inde-

pendent Ring Model:

fr = C0ηr =
hE

R2(1− σ2)
η. (1.47)

We conclude this example by proposing a Nonlinear Independent Ring model
consistent with the Koiter membrane theory. To obtain this model, consider the
nonlinearly elastic Koiter membrane model (29), (30), which assumes axial sym-
metry, and only the radial component of displacement to be different from zero.
By assuming, additionally, that the gradient of the radial displacement ∂zη is
negligible, one obtains the following Nonlinear Independent Ring Model:

p− pref =
hE

(1− σ2)R

(
η

R
+

3

2

η2

R2
+

1

2

η3

R3

)
. (1.48)

For the parameter values given in Table 2, we calculated the pressure-displacement
relationship for this model, which is depicted in Figure 5. This figure also shows
the pressure-displacement relationship for the Linear Independent Ring model.
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Figure 1.5: The pressure-displacement relationship for the nonlinear Independent
Ring Model (48), and the linear Independent Ring Model (46).

We conclude this section by a remark on the nonlinearly elastic independent
ring model of the form

p− pref =
hE

R(1− σ2)

((
R+ η

R

)β
− 1

)
, (1.49)

which was used by certain authors to model the nonlinearly elastic properties
of arterial walls. For β > 1, this model is not consistent with the linearly elas-

Figure 1.6: The pressure-displacement relationship for the nonlinear Independent
Ring Model (49), shown in dashed line, superimposed over the plots of the linearly
elastic and nonlinearly elastic Independent Ring models (46) and (48). Notice how
the slope at zero for the nonlinear Independent beta-model (49) does not coincide
with that of (46) and (48).

tic Independent Ring model, since its linearization does not coincide with the
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linearly elastic Independent Ring model. Figure 6 shows the plot of the pressure-
displacement relationship given by (49) with β = 3, for the same values of the
parameter, given in Table 2 as the plot shown in Figure 5. Notice how the slope
of the pressure-displacement curve for model (49), evaluated at η = 0, differs from
the slope of the linearly elastic and nonlinearly elastic Independent Ring models
given by (46) and (48). This means, in particular, that the leading-order coeffi-
cient modeling the stiffness of arterial walls for small displacements, is different
for the β-model (49), and cannot be approximated for small displacements by the
physically reasonable one stated in the linearly elastic Independent Ring model.

Example 6: A Koiter shell model with prestress

We follow the general description provided in (13) and calculate the differential
form of the linearly elastic Koiter shell. The only difference with the examples
presented above is in the coefficient multiplying the non-differentiated term, which
will now have an extra term pref/R. Therefore, in Example 1, the linear operator
Lel given by equation (17) now becomes

Lelη =
h3E

12R4(1− σ2)

(
∂4
θη +R4∂4

zη + 2R2∂2
z∂

2
θη − 2∂2

θη + η
)

+
h3Eσ

6R2(1− σ2)
∂2
zη +

(
hE

R2(1− σ2)
+
pref
R

)
η.

In Example 2, this gives rise to the following linearly elastic Koiter membrane
equations with prestress:

ρKh η̈z −
hE

1− σ2

(
η′′z + σ

1

R
η′r

)
= fz,

ρKh η̈z +
hEσ

R(1− σ2)
η′z +

(
hE

R(1− σ2)
+ pref

)
ηr
R

= fr.
(1.50)

In Example 4, the prestress changes the constant C0 in (41) , which now becomes

C0 =
hE

R2(1− σ2)
(1 +

h2

12R2
) +

pref
R

.

1.2.2 Elastodynamics of Structures with Finite Thickness
(“Thick Structures”)

The equations modeling elastodynamics of a structure are typically given in terms
of the displacement vector field d = d(t,x). Vector field d denotes the displacement
from a given reference configuration ΩS . We will be assuming that the reference
configuration of the thick structure is given by a straight cylinder of radius R,
length L and thickness H. See Figure 2. The elastodynamics equations describe
the second Newton’s law of motion

ρs ∂ttd = ∇ · S in ΩS , t ∈ (0, T ), (1.51)
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where ρs denotes density of the thick structure, and S is the first Piola-Kirchhoff
stress tensor.

To close the system, we need to specify the dependence of S on d. The
relationship between S and d depends on the material under consideration. In
this chapter will be assuming that our thick elastic structure is

• homogeneous, i.e., the material properties do not depend on x, and

• isotropic, i.e., the response of the material deformation is the same in all
directions.

Additionally, we will be assuming that

• the displacement gradient is small (i.e., ∇d << 1).

Under these assumptions, one of the simplest constitutive models for the me-
chanical behavior of linearly elastic structures, called the linearized Saint-Venant
Kirchhoff model, takes the following form:

S = µ (∇d + (∇d)T ) + λ(∇ · d)I, (1.52)

Here, λ and µ are the Lamé constants, accounting the compression and distortion
of the structure, respectively,

Writing a constitutive model for the behavior or elastic structures in general
is a bit more involving. Arterial walls are, in fact, nonlinear. The linear approxima-
tion written above is good as long as the displacement gradient and displacement
are not too large, which in the blood flow application means displacement not
larger than roughly 5% of the reference radius of an artery. A typical displace-
ment in a healthy artery under normal physiological conditions is between 5%
and 10%. Thus, many physiological and pathophysiological situations can exceed
the linearly elastic regime. Depending on what types of questions is one trying to
answer, linear or nonlinear models may be appropriate.

A typical assumption in biomedical literature on soft tissue mechanics is that
arterial walls behave as a hyperelastic material. This means that the relationship
between stress and strain in the structure can be written as the derivative of the
energy density function with respect to strain. More precisely, if we denote by

• Π– the second Piola-Kirchhoff stress tensor,

• E– the Green-Lagrange strain tensor, and

• W– the energy density function,

then, for a hyperelastic material

Π(E) =
∂W

∂E
(E).

What is the relationship between the first and second Piola-Kirchhoff stress
tensors S and Π, and between the Green-Lagrange strain tensor E and displace-
ment d? To explain these relationships we need to recall the notion of deforma-
tion. For each point x ∈ ΩS belonging to an undeformed, reference configuration
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ΩS , deformation is a mapping ϕ which to each point x ∈ ΩS associates a point
ϕ(x) = x + d(x), where d denotes the displacement of x. Deformation gradient
will be denoted by F = ∇ϕ. Namely,

F = ∇ϕ =
∂ϕi
∂xj

= I +∇d = I +
∂di
∂xj

. (1.53)

F plays a key role in specifying the relationship between the first and second Piola-
Kirchhoff stress tensors, and in the relationship between strain and displacement.
The first and second Piola-Kirchhoff stress tensors are related through the gradient
of deformation as follows:

S = FΠ. (1.54)

While the first Piola-Kirchhoff stress tensor is not generally symmetric, the
second Piola-Kirchoff stress tensor is, and is, therefore, more suited for the de-
scription of physical properties of materials in terms of constitutive relations.

Constitutive relations, which specify the material properties of a structure,
typically express a relationship between stress and strain, more precisely, between
the second Piola-Kirchhoff stress tensor Π and the Green-Lagrange strain tensor
E:

Π = Π(E),

where the Green-Lagrange strain tensor is defined via deformation gradient as

E :=
1

2

(
F TF − I

)
. (1.55)

A calculation shows that in terms of the displacement gradient, E is given by:

E :=
1

2

(
∇d+∇dT +∇d∇dT

)
. (1.56)

Therefore, a general relationship between strain and displacement gradient is
quadratic. For small displacement gradients, the quadratic term can be neglected,
and the relationship becomes linear:

E ≈ ε :=
1

2

(
∇d+∇dT

)
= D(d), (1.57)

where D is known as the symmetrized gradient of displacement.
Therefore, in summary, the elastodynamics of elastic structures is described

by the second Newton’s law of motion

ρs ∂ttd = ∇ · S in ΩS × (0, T ),

where

• S = FΠ is the first Piola-Kirchhoff stress tensor,
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• Π is the second Piola-Kirchhoff stress tensor,

• F = ∇ϕ = I +∇d is the deformation gradient,

• ϕ(x) = x+ d(x),x ∈ ΩS is deformation of ΩS , and

• d is displacement from the reference configuration.

To close the system, a constitutive relation needs to be specified:

Π = Π(E) ,

where

• E = 1
2

(
F TF − I

)
is the Green-Lagrange strain tensor, also expressed as

• E = 1
2

(
∇d+∇dT +∇d∇dT

)
in terms of displacement gradient.

Therefore, the elastodynamics equations in closed form can be written as

ρs ∂ttd = ∇ · [(I +∇d)Π((∇d+∇dT )/2 +∇d∇dT /2︸ ︷︷ ︸
E

)],

where Π is a given function via a constitutive relation.
For hyperelastic materials we have

Π(E) = ∂W/∂E.

Examples of hyperelastic materials include:

• The Saint-Venant Kirchhoff model for which

W (E) =
λ

2
[trE]2 + µ[tr(E2)], and so Π(E) = λ[trE]I + 2µE.

• The linearized Saint-Venant Kirchhoff model for which

E ≈D(d) = (∇d+∇dT )/2

and so

Π ≈ Π(D(d)) = λ[trD(d)]I+2µD(d), and S ≈ µ (∇d+(∇d)T )+λ(∇·d)I,

where D(d) is the symmetrized gradient of displacement.

• The exponential stiffening stress-strain law of Fung [72, 73], providing a more
realistic model of the mechanical properties of arterial walls, for which

W (E) = Cexp(a1E
2
θθ + a2E

2
zz + a3EθθEzz),

where Eθθ and Ezz are strains in the circumferential direction (θ) and longi-
tudinal direction (z), respectively, and C, a1, a2, a3 are constants.

In the rest of this chapter we will be working with the linearized Saint-Venant
Kirchhoff model.
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1.3 The Benchmark Problem

In this section we focus on a benchmark problem in fluid-multi-layered structure
interaction. The problem consists of studying FSI between an incompressible, vis-
cous fluid, and a structure consisting of two layers: a thin layer modeled by the
Koiter shell equations, and a thick layer modeled by the equations of linear elas-
ticity. The methods presented in this chapter work for an entire class of problems
in which the thin structural layer can be described by either the full cylindrical
linearly elastic Koiter shell model, described in Examples 1 and 2 of Section 92,
the linearly elastic membrane equations, presented in Example 2 of Section 92,
the nonlinearly elastic Koiter membrane/shell model, described in Example 3 of
Section 92, the cylindrical linearly viscoelastic Koiter shell model, presented in
Example 4 of Section 92, or the elastic string model described in Example 5 of
Section 92,

1.3.1 The Model Equations

The thin structural layer is modeled by the reduced equations of linear (visco)elasticity,
discussed in Section 0.2.1, which take the general form:

THIN STRUCTURE : ρKh
∂2η

∂t2
+ Lel(η) + Lvis

∂η

∂t
= f , on Γ× (0, T ),

(1.58)
These equations are defined on the reference domain which is a cylinder of radius
R:

Γ = {(R cos θ,R sin θ, z) ∈ R3 : z ∈ (0, L), θ ∈ (0, 2π)}.
As discussed in Section 92, Lel may be a linear or a non-linear operator modeling
the elastic properties of shells or membranes, and Lvisc denotes a linear operator
modeling their viscoelastic properties. Operator Lvis may be equal to the zero
operator. The methodology presented in this chapter is robust in the sense that
it can be applied to solving both the viscoelastic and purely elastic thin structure
models.

The thick structural layer is modeled by the equations of linear elasticity,
discussed in Section 0.2.2:

THICK STRUCTURE :

{
ρs ∂ttd = ∇ · S, on ΩS × (0, T ), where

S = µ (∇d + (∇d)T ) + λ(∇ · d)I.
(1.59)

These equations are defined on the reference domain

ΩS = {(x, y, z) ∈ R3 : z ∈ (0, L), R <
√
x2 + y2 < R+H)}.

The flow of an incompressible, viscous fluid is modeled by the Navier-Stokes
equations. They are defined on a time-dependent cylindrical fluid domain ΩF (t),
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which is not known a priori:

FLUID :
ρF (∂tu + u · ∇u) = ∇ · σ,

∇ · u = 0,

}
in ΩF (t), t ∈ (0, T ), (1.60)

where ρF denotes the fluid density; u the fluid velocity; σ = −pI + 2µFD(u) is
the fluid Cauchy stress tensor; p is the fluid pressure; µF is the dynamic viscosity
coefficient; and D(u) = 1

2 (∇u + ∇τu) is the symmetrized gradient of u. The
typical values of the parameters ρF and µF for blood are given in Table 4.

Blood density ρF ( kg
m3 ) 1.1× 103[140]

Blood dynamic viscosity µF ( kg
ms

) 1050 [140]

Table 1.4: Blood density and dynamics viscosity coefficients.

We will be working with the fluid equations written in Cartesian coordinates
(x, y, z), while the structure equations will be written in cylindrical coordinates
(r, θ, z). For any function f given in Cartesian coordinates, we define f̃ to be the
corresponding function given in cylindrical coordinates:

f̃(r, θ, z) := f(x, y, z).

For simplicity, in the rest of this chapter, we drop the tilde notation.

Figure 1.7: Domain sketch and notation.

The cylindrical fluid domain is of length L, with reference radius r = R. See
Figure 7. The thin structure, described by equation (58), serves as a fluid-structure
interface. The non-zero inertia term ρKh∂

2η/∂t2 indicates that our fluid-structure
interface has mass. This has important implications for the analysis and numerical
simulation of FSI problems, discussed in Section 0.7.7.

For simplicity, in the rest of this chapter, we will be assuming that only the
radial component of the displacement of the thin structure is different from zero,
i.e., we will be assuming

ASSUMPTION : η = (ηr, ηθ, ηz) = (ηr, 0, 0) =: ηer, (1.61)
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where er = er(θ, z) is the unit vector in the r-direction. This is a common as-
sumption in the literature on FSI in blood flow. For problems with non-zero radial
and longitudinal displacement ηr, ηz 6= 0, please see [19, 20].

The radius of the deformed domain is equal to R+ η(t, θ, z). Thus, the fluid
domain, sketched in Figure 7, is given by

ΩF (t) = {(x, y, z) ∈ R3 : z ∈ (0, L),
√
x2 + y2 < (0, R+ η(t, θ, z))},

where the lateral boundary of the cylinder corresponds to fluid-structure interface,
denoted by

Γ(t) = {(x, y, z) ∈ R3 : z ∈ (0, L),
√
x2 + y2 < (0, R+ η(t, θ, z))}.

The inlet and outlet boundary of the fluid domain will be denoted by Γin
and Γout, respectively.

1.3.2 The Coupling Conditions

Since we have three different physical models describing three different physical
processes which are coupled, we need to describe the physics of the coupling be-
tween all of them. This includes prescribing coupling conditions between the fluid
and structure, and prescribing coupling conditions between the thin and thick
structure.

The coupling between the fluid, the thin structural layer, and the thick struc-
tural layer is achieved via two sets of coupling conditions: the kinematic coupling
condition and the dynamic coupling condition. The kinematic coupling condition
addresses the coupling of kinematic quantities, such as velocity. The dynamic cou-
pling condition describes balance of forces that occurs at the interface between
different physical models. These two sets of conditions give rise to a well-defined
mathematical problem, while, at the same time, they capture the basic physical
laws of the coupling.

In our problem, the thin structure serves both as a fluid-structure interface,
and as a structure-structure interface. In this chapter we will be assuming that the
kinematic coupling condition is the no-slip boundary condition between both the
fluid and thin structure, as well as between the thin and thick structural layers.

Concerning the dynamic coupling condition, since Γ(t) is a fluid-structure
interface with mass, the dynamic coupling condition is simply the second Newton’s
Law of motion. It states that mass times acceleration of the interface is balanced
by the sum of total forces acting on, or within, Γ(t). This includes the contribution
due to the elastic energy of the structure, and the balance of contact forces exerted
by the fluid and the thick structure onto Γ(t). More precisely, we have the following
set of coupling conditions written in Lagrangian framework:
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• KINEMATIC COUPLING CONDITION:

∂tη(t, θ, z)er(θ, z) = u(t, R+ η(t, θ, z), θ, z), (continuity of velocity)
η(t, θ, z)er(θ, z) = d(t, R, θ, z), (continuity of displacement)

(1.62)
where er(θ, z) is the unit vector in the r-direction.

• DYNAMIC COUPLING CONDITION:

ρKh∂ttη+Lel(η)+Lvis
∂η

∂t
= −J(σn)|(t,R+η,θ,z)·er+RS|(t,R,θ,z)er ·er. (1.63)

Here J = J(t, θ, z) =
√

[1 + (∂zη)2][R+ η]2 + ∂θη2 denotes the Jacobian of
the composit function which includes the transformation from Eulerian to La-
grangian coordinates, and the transformation from cylindrical to Cartesian
coordinates; the R in front of S in (63) denotes the Jacobian of the transfor-
mation from cylindrical to Cartesian coordinates evaluated at r = R, and n
evaluated at (t, R+η, θ, z) is the outward unit normal vector to the deformed
fluid-structure interface Γ(t). As before, η = η(t, θ, z), and er = er(θ, z) is
the unit vector in the r-direction.

If we did not have the thin structure with mass present, i.e., if we only had
the fluid and thick structure interacting with each other, the dynamic coupling
condition would look slightly different. The balance of contact forces at the fluid-
structure interface would be given by the following:

−J(σn)|(t,R+η,θ,z) · er +RS|(t,R,θ,z)er · er = 0, on Γ× (0, T ).

Namely, the dynamic coupling condition in this case reads that the normal stress
exerted by the fluid onto the thick structure is balanced the normal stress exerted
by the thick structure onto the fluid.

1.3.3 The Boundary and Initial Conditions

To get to a well-defined mathematical problem, equations (58)-(63) need to be
supplemented with initial and boundary conditions.

Fluid inlet and outlet boundary conditions: Examples of the inlet and outlet
boundary conditions for the fluid include the following:

• Dynamic pressure data: In the existence proof presented later in the chapter,
we will be working with the following inlet/outlet data:

p+
ρF
2
|u|2 = Pin/out(t),

u = uzez,

}
on Γin/out, (1.64)

where Pin/out ∈ L2
loc(0,∞) are given, and ez is the outer unit normal to

Γin/out. Therefore, the fluid flow is driven by a prescribed dynamic pressure
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drop, and the flow enters and leaves the fluid domain orthogonally to the
inlet and outlet boundary.

• Normal stress data: In the section on numerical simulations, presented later
in this chapter, we will be using the following inlet/outlet data:

σn|Γin = Pin(t),
σn|Γout = Pout(T ).

(1.65)

Structure inlet and outlet boundary conditions: Examples of the boundary condi-
tions for the structure at the inlet and outlet ends of the tube include the following:

• The thin structure data. At the end points of the thin structure we prescribe
zero displacement:

η(t, r, θ, 0) = η(t, r, θ, L) = 0, r ∈ (0, R), θ ∈ (0, 2π), t ∈ (0, T ). (1.66)

If 4-th order derivative terms with respect to z appear in the model (i.e.,
if bending rigidity is included in the model), we consider a clamped Kotier
shell with the additional boundary conditions

ηz(t, r, θ, 0) = ηz(t, r, θ, L) = 0, r ∈ (0, R), θ ∈ (0, 2π), t ∈ (0, T ). (1.67)

• The thick structure data. At the end points of the annular sections of the
thick structure we prescribe zero displacement:

d(t, r, θ, 0) = d(t, r, θ, L) = 0, for r ∈ (R,R+H), θ ∈ (0, 2π).

The external boundary condition. We will be assuming that the external boundary
of the thick structure

Γext = {(x, y, z) ∈ R3 : z ∈ (0, L), x2 + y2 = (R+H)2}

is exposed to an external ambient pressure Pe:

Ser = −Peer, on Γext. (1.68)

Initial data. The initial fluid and structure velocities, and the initial displacements,
are given by

u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0, d(0, .) = d0, ∂td(0, .) = V0, (1.69)

and are assumed to belong to the following spaces: u0 ∈ L2(ΩF (0)), η0 ∈ H1
0 (0, 1),

v0 ∈ L2(0, 1), V 0 ∈ L2(ΩS), d0 ∈ H1(ΩS).
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A summary of the benchmark problem. The benchmark problem in fluid-multi-
layered-structure interaction that we are interested in studying is given by the
following:

Find u, p, η and d such that:

ρF (∂tu + (u · ∇)u) = ∇ · σ
∇ · u = 0

}
in ΩF (t), t ∈ (0, T ),

ρS∂ttd = ∇ · S in ΩS × (0, T ),

∂tηer = u|R+η,
ηer = d|R,
ρKh∂ttη + Lel(η) + Lvis ∂η∂t = −J(σn)|R+η · er +RS|Rer · er



 on Γ× (0, T ).

where σ, S, Lel and Lvis are defined above. In this formulation, the fluid and thick
structure equations are defined in Cartesian coordinates, while the thin structure
model is given in cylindrical coordinates. Furthermore, the fluid equations are
given in Eulerian framework, while the structure equations are given in Lagrangian
framework. To account for the different coordinates, J in the dynamic coupling
condition denotes the Jacobian of the transformation from the Eulerian to the
Lagrangian framework, and from Cartesian to cylindrical coordinates. Similarly,
the factor R in front of the first Piola-Kirchhoff stress tensor S is the Jacobian of
the transformation between the Cartesian and cylindrical coordinates. While the
coupling conditions are calculated at the deformed interface Γ(t), they are written
in terms of the reference configuration of the fluid-structure interface, namely, they
are written in terms of points on Γ.

Supplemented with initial and boundary conditions, this problem defines a
nonlinear, moving boundary problem of mixed, parabolic-hyperbolic type. Hyper-
bolicity is associated with the thick structure problem and with the thin structure
problem when no viscoelastic effects are taken into account, i.e., when Lvis = 0.
Parabolicity describes the properties of the fluid problem.

We will be studying this class of problems from both numerical, as well as
theoretical point of view. Numerical method development for this class of problems
will be presented in Section 0.7, while existence of solutions will be studied in
Section 0.6. In those sections, concrete examples of this class of problems will
be presented and studied. A simplified version of these equations in 2D will be
presented.

1.4 FSI Literature Review

Fluid-structure interaction problems have been extensively studied for the past
20 years by many authors. The focus has been exclusively on FSI problems with
structures consisting of a single material, except for the numerical simulations us-
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ing the Immersted Boundary Method which is particularly suitable to deal with
structures composed of fibers. The field has evolved from first studying FSI be-
tween an incompressible, viscous fluid and a rigid structure immersed in a fluid,
to considering compliant (elastic/viscoelastic) structures interacting with a fluid.
Concerning compliant structures, the coupling between the structure and fluid was
first assumed to take place along a fixed fluid domain boundary (linear coupling).
This was then extended to FSI problems in which the coupling was evaluated at a
deformed fluid-structure interface, giving rise to an additional nonlinearity in the
problem (nonlinear coupling).

1.4.1 Analysis Literature

Well-posedness results in which the structure was assumed to be a rigid body
immersed in a fluid, or described by a finite number of modal functions, were
studied in [18, 43, 48, 51, 52, 61, 74, 133]. FSI problems coupling the Navier-Stokes
equations with linear elasticity where the coupling was calculated at a fixed fluid
domain boundary, were considered in [55], and in [12, 13, 100] where an additional
nonlinear coupling term was added at the interface. A study of well-posedness for
FSI problems between an incompressible, viscous fluid and an elastic/viscoelastic
structure with nonlinear coupling evaluated at a moving interface started with the
result by daVeiga [17], where existence of a strong solution was obtained locally in
time for an interaction between a 2D fluid and a 1D viscoelastic string, assuming
periodic boundary conditions. This result was extended by Lequeurre in [109, 110],
where the existence of a unique, local in time, strong solution for any data, and the
existence of a global strong solution for small data, was proved in the case when the
structure was modeled as a clamped viscoelastic beam. D. Coutand and S. Shkoller
proved existence, locally in time, of a unique, regular solution for an interaction
between a viscous, incompressible fluid in 3D and a 3D structure, immersed in the
fluid, where the structure was modeled by the equations of linear [45], or quasi-
linear [46] elasticity. In the case when the structure (solid) is modeled by a linear
wave equation, I. Kukavica and A. Tufahha proved the existence, locally in time,
of a strong solution, assuming lower regularity for the initial data [101]. A similar
result for compressible flows can be found in [102]. A fluid-structure interaction
between a viscous, incompressible fluid in 3D, and 2D elastic shells was considered
in [34, 33] where existence, locally in time, of a unique regular solution was proved.
All the above mentioned existence results for strong solutions are local in time. We
also mention that the works of Shkoller et al., and Kukavica at al. were obtained
in the context of Lagrangian coordinates, which were used for both the structure
and fluid problems.

In the context of weak solutions, the following results have been obtained.
Continuous dependence of weak solutions on initial data for a fluid structure in-
teraction problem with a free boundary type coupling condition was studied in
[84]. Existence of a weak solution for a FSI problem between a 3D incompressible,
viscous fluid and a 2D viscoelastic plate was considered by Chambolle et al. in
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[32], while Grandmont improved this result in [78] to hold for a 2D elastic plate.
These results were extended to a more general geometry in [103], and then to
the case of generalized Newtonian fluids in [104], and to a non-Newtonian shear
dependent fluid in [92, 94]. In these works existence of a weak solution was proved
for as long as the elastic boundary does not touch ”the bottom” (rigid) portion of
the fluid domain boundary.

Muha and Čanić recently proved existence of weak solutions to a class of
FSI problems modeling the flow of an incompressible, viscous, Newtonian fluid
flowing through a cylinder whose lateral wall was modeled by either the linearly
viscoelastic, or by the linearly elastic Koiter shell equations [119], assuming non-
linear coupling at the deformed fluid-structure interface. The fluid flow boundary
conditions were not periodic, but rather, the flow was driven by the dynamic pres-
sure drop data. The methodology of proof in [119] was based on a semi-discrete,
operator splitting Lie scheme which we discuss later in this chapter, and which was
also used in [85] to design a stable, loosely coupled partitioned numerical scheme,
called the kinematically coupled scheme (see also [19]). Ideas based on the Lie
operator splitting scheme were also used by Temam in [137] to prove the existence
of a solution to the nonlinear Carleman equation.

1.4.2 Numerical Simulation Literature

The development of numerical solvers for fluid-structure interaction problems has
become particularly active since the 1980’s. Among the most popular techniques
are the Immersed Boundary Method [127, 128, 60, 70, 111, 117, 79, 80, 81, 82, 83]
and the Arbitrary Lagrangian Eulerian (ALE) method [54, 93, 91, 107, 108, 140,
131]. We further mention the Fictitious Domain Method in combination with
the mortar element method or ALE approach [7, 106], and the methods recently
proposed for the use in the blood flow application such as the Lattice Boltzmann
method [59, 62, 98, 99], the Level Set Method [44] and the Coupled Momentum
Method [69].

Until recently, only monolithic algorithms seemed applicable to blood flow
simulations [49, 69, 76, 125, 142, 15, 16]. These algorithms are based on solv-
ing the entire nonlinear coupled problem as one monolithic system. They are,
however, generally quite expensive in terms of the computational time, program-
ming time and memory requirements, since they require solving a sequence of
strongly coupled problems using, e.g., the fixed point and Newton’s methods
[31, 125, 49, 64, 91, 115], or the Steklov-Poincaré based domain decomposition
methods [50].

The multi-physics features of the blood flow problem strongly suggest to
employ partitioned (or staggered) numerical algorithms, where the coupled fluid-
structure problem is separated into a pure fluid sub-problem and a pure structure
sub-problem. The fluid and structure sub-problems are integrated in time in an al-
ternating way, and the coupling conditions are enforced asynchronously. When the
density of the structure is much larger than the density of the fluid, as is the case in
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aeroelasticity, it is sufficient to solve, at every time step, just one fluid sub-problem
and one structure sub-problem to obtain a solution. The classical loosely-coupled
partitioned schemes of this kind typically use the structure velocity in the fluid
sub-problem as Dirichlet data for the fluid velocity (enforcing the no-slip boundary
condition at the fluid-structure interface), while in the structure sub-problem the
structure is loaded by the fluid normal stress calculated in the fluid sub-problem.
These Dirichlet-Neumann loosely-coupled schemes work well for problems in which
the structure is much heavier than the fluid. Unfortunately, when fluid and struc-
ture have comparable densities, which is the case in the blood flow application,
the simple strategy of separating the fluid from the structure suffers from severe
stability issues [30, 116]. This is because the energy of the discretized problem in
Dirichlet-Neumann loosely-coupled schemes does not approximate well the energy
of the continuous problem. A partial solution to this problem is to iterate sev-
eral times between the fluid and structure sub-solvers at every time step until the
energy of the continuous problem is well approximated. These strongly-coupled
partitioned schemes, however, are computationally expensive and may suffer from
convergence issues for certain parameter values [30].

To get around these difficulties, and to retain the main advantages of loosely-
coupled partitioned schemes such as modularity, simple implementation, and low
computational costs, several new loosely-coupled algorithms have been proposed
recently. The method proposed in [9] uses a simple membrane model for the struc-
ture which can be easily embedded into the fluid problem where it appears as a
generalized Robin boundary condition. In this way the original problem reduces to
a sequence of fluid problems. A similar approach was proposed in [125] where the
fluid and structure were split in the classical way, but the fluid and structure sub-
problems were linked via novel transmission (coupling) conditions that improve the
convergence rate. A different approach to stabilization of loosely coupled schemes
was proposed in [24] where a stabilization based on Nitsche’s method [88] was
used. We further mention the scheme proposed in [10] where a Robin-Robin type
preconditioner was combined with Krylov iterations for a solution of an interface
system. For completeness, we also mention several semi-implicit FSI schemes. The
schemes proposed in [65, 5, 6] separate the computation of fluid velocity from the
coupled pressure-structure velocity system, thereby reducing the computational
costs. Similar schemes, derived from algebraic splitting, were proposed in [8, 131].
We also mention [118] where an optimization problem was solved at each time-step
to enforce the coupling conditions.

Recently, a novel loosely coupled partitioned scheme, called the “kinemat-
ically coupled β-scheme”, was introduced by Bukač, Čanić et al. in [19], and
applied to FSI problem with thin elastic and viscoelastic structures, modeled by
the membrane or shell equations. This scheme successfully deals with stability
problems associated with loosely-coupled schemes in a way different from those
reported above. Stability is achieved by combining the structure inertia with the
fluid sub-problem to mimic the energy balance of the continuous problem. It was
shown in [29] that the scheme is unconditionally stable even for the parameters
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associated with the blood flow applications. Additionally, Čanić and Muha showed
that a version of this scheme with β = 0 converges to a weak solution of the fully
nonlinear FSI problem [119]. This result uses energy estimates combined with com-
pactness arguments to show that the approximate solutions converge to a weak
solution of the problem as the time discretization tends to zero. This is a signif-
icant result since it proves the existence of a (weak) solution to a nonlinear FSI
problem in a constructive way, by using a computational scheme to construct a
solution. See [56, 57] for the related results concerning linear FSI problems.

The case β = 0 considered in [119] corresponds to the classical kinematically-
coupled scheme, first introduced in [85]. Parameter β was introduced in [19]
to increase the accuracy of the scheme. It was shown in [19] that the accu-
racy of the kinematically-coupled β-scheme with β = 1 was comparable to that
of monolithic scheme by Badia, Quaini, and Quarteroni in [8] when applied to
the nonlinear benchmark FSI problem in hemodynamics, introduced by Formag-
gia et al. in [71]. A different approach to increasing the accuracy of the clas-
sical kinematically-coupled scheme was recently proposed by Fernández et al.
[66, 67, 68]. Their modified kinematically-coupled scheme, called “the incremental
displacement-correction scheme” threats the structure displacement explicitly in
the fluid sub-step and then corrects it in the structure sub-step. Fernández et al.
showed that the accuracy of the incremental displacement-correction scheme is
first-order in time. The results were obtained for a FSI problem involving a thin
elastic structure.

These recent results indicate that the kinematically-coupled scheme and its
modifications provide an appealing way to solve FSI problems using partitioned ap-
proach. This scheme it is particularly suitable for problems in which the structure
consists of several layers, since modeling each additional layer can be accomplished
by adding a new module to the partitioned scheme. Indeed, in the sections that
follow, we present the kinematically coupled scheme, discuss the numerical results,
and show the main steps in the proof of the existence of a weak solution to the
class of fluid-multi-layered structure interaction problems discussed in Section 0.3.

1.5 Solution Framework

To study numerical simulation and existence of solutions to the class of problems
(58)-(63) we present here a stable, partitioned approach that splits the fluid from
the structure problem by using the Lie splitting, also known as the Marchuk-
Yanenko scheme. The Lie splitting scheme has been widely used in numerical
computations, see [77] and the references therein. Here we discuss an extension
of this approach to study fluid-multi-layered structure interaction problems via
the Kinematically-Coupled Scheme, which is based on the time-discretization via
Lie splitting. The time-dependent coupled problem is discretized in time (semi-
discretization) in such a way that at each time step the coupled problem is split
into a fluid and a structure subproblem in a particular way so that the energy of
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the discretized problem mimics the energy of the continuous problem. As we shall
see later, this guarantees stability of the scheme.

1.5.1 The Energy of the Coupled Problem

We present here a general approach to deriving an energy estimate of the coupled
FSI benchmark problem, described in Section 0.3, for the class of problems in
which the Koiter shell is linear. Thus, we consider a clamped linearly (visco)elastic
Koiter shell (58), coupled with the equations of linear elasticity (59), and the flow
of an incompressible, viscous fluid modeled by the Navier-Stokes equations (60).
The inlet and outlet data are given by the dynamic pressure data, specified in
(64).

We first recall from Section 92 that the linear operators Lel and Lvis are
defined as follows:

〈Lelη,ψ〉 :=
h

2

∫

ω

AG(η) : G(ψ)
√
a+

h3

48

∫

ω

AR(η) : R(ψ)
√
a, ∀ψ ∈ C∞c .

(1.70)

〈Lelη̇,ψ〉 :=
h

2

∫

ω

BG(η̇) : G(ψ)
√
a+

h3

48

∫

ω

BR(η̇) : R(ψ)
√
a, ∀ψ ∈ C∞c , (1.71)

where G and R are the change of metric, and change of curvature tensors, re-
spectively, and A and B are the elasticity tensor and the viscoelasticity tensor,
respectively, defined in Example 4 of Section 92. This will be used to obtain the
following energy estimate for the coupled problem:

Proposition 1.5.1. The coupled FSI benchmark problem (58)-(69) with multiple
structural layers satisfies the following energy estimate:

d

dt
(Ekin(t) + Eel(t)) +D(t) ≤ C(Pin(t), Pout(t)), (1.72)

where

Ekin(t) := 1
2

(
ρF ‖u‖2L2(ΩF (t)) + ρKh‖∂tη‖2L2(Γ) + ρS‖∂td‖2L2(ΩS)

)
,

Eel(t) := 1
2

(
Eel(η) + 2µ‖D(d)‖2L2(ΩS) + λ‖∇ · d‖2L2(ΩS)

)
,

(1.73)

denote the kinetic and elastic (internal) energy of the coupled problem, respectively,
and the term D(t) captures viscous dissipation:

D(t) := Evis(∂tη) + µF ‖D(u)‖2L2(ΩF (t)). (1.74)

The constant C(Pin(t), Pout(t))) depends only on the inlet and outlet pressure data,
which are both functions of time.
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The expressions for the energy associated with the Koiter shell are given by:

Eel(η) =
h

2

∫

ω

AG(η) : G(η)R+
h3

48

∫

ω

AR(η) : R(η)R,

Evis(∂tη) =
h

2

∫

ω

BG(∂tη) : G(∂tη)R+
h3

48

∫

ω

BR(∂tη) : R(∂tη)R.

Notice that, due to the presence of an elastic fluid-structure interface with
mass, the kinetic energy term Ekin(t) contains a contribution from the kinetic en-
ergy of the fluid-structure interface ‖∂tη‖2L2(Γ) incorporating the interface inertia.

Furthermore, the elastic energy Eel(t) of the FSI problem accounts for the elastic
energy ‖∂zη‖2L2(Γ) of the interface. If a FSI problem between the fluid and a thick
structure was considered without the thin FSI interface with mass, these terms
would not be present. In fact, the traces of the displacement and velocity at the
fluid-structure interface of that FSI problem would not have been even defined for
weak solutions.

Proof. A formal calculation of the energy estimate for this class of problems typ-
ically entails multiplying the fluid and structure equations in differential form
by the fluid and structure velocities, respectively, and performing integration by
parts. Integration by parts of the fluid equations takes into account the bound-
ary conditions, which are the conditions at the inlet and outlet boundary of the
fluid domain, and the conditions at the lateral boundary of the fluid domain. At
the lateral boundary of the fluid domain, the normal fluid stress is coupled with
the structure equations, and here is where the dynamic and kinematic coupling
conditions come into play. By taking these coupling conditions into account, the
energy of the fluid and the energy of the structure are coupled together into the
total energy of the coupled FSI problem.

More precisely, we first multiply equation (60) by u, integrate over ΩF (t),
and formally integrate by parts to obtain:
∫

ΩF (t)

ρF
(
∂tu·u+(u·∇)u·u

)
+2µF

∫

ΩF (t)

|D(u)|2−
∫

∂ΩF (t)

(−pI+2µFD(u))n(t)·u = 0.

(1.75)
To deal with the inertia term we first recall that ΩF (t) is moving in time and
that the velocity of the lateral boundary is given by u|Γ(t). The transport theorem
applied to the first term on the left hand-side of the above equation then gives:

∫

ΩF (t)

∂tu · u =
1

2

d

dt

∫

ΩF (t)

|u|2 − 1

2

∫

Γ(t)

|u|2u · n(t).

The second term on the left hand side can can be rewritten by using integration
by parts, and the divergence-free condition, to obtain:

∫

ΩF (t)

(u · ∇)u · u =
1

2

∫

∂ΩF (t)

|u|2u · n(t) =
1

2

( ∫

Γ(t)

|u|2u · n(t)
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−
∫

Γin

|u|2uz +

∫

Γout

|u|2uz.
)

These two terms added together give

ρF

∫

ΩF (t)

(∂tu · u + (u · ∇)u · u) =
ρF
2

d

dt

∫

ΩF (t)

|u|2−ρF
2

∫

Γin

|u|2uz+
ρF
2

∫

Γout

|u|2uz.
(1.76)

Notice the importance of nonlinear advection in canceling the cubic term
∫

Γ(t)
|u|2u·

n(t)!
To deal with the boundary integral over ∂ΩF (t), first notice

∫

∂ΩF (t)

(−pI + 2µFD(u))n · u =

∫

Γin/out∪Γ(t)

(−pI + 2µFD(u))n · u. (1.77)

To calculate the contribution of the integral over Γin/out, notice that on Γin/out
the outward unit normal is given by ±ez. Furthermore, the boundary condition
(64) implies ur = uθ = 0, or, in Cartesian coordinates ux = uy = 0. Combined
with the divergence-free condition one obtains ∂zuz = 0. This implies D(u) = 0
on Γin/out. Therefore,

∫

Γin/out

(−pI + 2µFD(u))n · u =

∫

Γin

p uz −
∫

Γout

p uz. (1.78)

What is left is to calculate the remaining boundary integral over Γ(t), namely

−
∫

Γ(t)

(−pI + 2µFD(u))n(t) · u = −
∫

Γ(t)

σn(t) · u.

By enforcing the dynamic and kinematic coupling conditions (62), (63), we obtain

−
∫

Γ(t)

σn(t) · u = −
∫

Γ

Jσn · u =

∫

ω

R(f − Ser · er)∂tη, (1.79)

where f is the function appearing on the right hand-side of the Koiter shell equa-
tion (58).

The rest of the proof entails calculating the right hand-side of (79) in terms
of the energy of the thin and thick structure problems. We begin with the Koiter
shell problem:

ρKh∂ttη + Lelη + Lvis∂tη = f .

Multiply this equation by ∂tη and formally integrate by parts, using, on the way,
the definition of operators Lel and Lvis, given in (70), and (71), respectively. The
resulting equation is given by the following:

1

2

d

dt

∫

ω

ρKh (ηt)
2
R+ < Lelη, ∂tη > + < Lvis∂tη, ∂tη >=

∫

ω

f∂tηR,
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or, by expanding the operators Lel and Lvis, and using η̇ to denote ∂tη:

1

2

d

dt

∫

ω

ρKh (ηt)
2
R+

h

2

∫

ω

AG(η) : G(η̇)R+
h3

48

∫

ω

AR(η̇) : R(η̇)R

h

2

∫

ω

BG(η̇) : G(η̇)R+
h3

48

∫

ω

BR(η̇) : R(η̇)R =

∫

ω

f∂tηR. (1.80)

By recalling the definitions of the elastic and viscous energy of the Koiter shell:

Eel(η) =
h

2

∫

ω

AG(η) : G(η)
√
a+

h3

48

∫

ω

AR(η) : R(η)
√
a,

Evis(η) =
h

2

∫

ω

BG(η) : G(η)
√
a+

h3

48

∫

ω

BR(η) : R(η)
√
a,

equation (80) can be written as

ρKh

2

d

dt
‖∂tη‖2L2(ω) +

1

2

d

dt
Eel(η) + Evis(∂tη) =

∫

ω

R f∂tη. (1.81)

Next, consider the elasticity equation (59), multiply it by ∂td and integrate
by parts to obtain:

1

2

d

dt

(
ρS‖∂td‖2L2(ΩS) + 2µ‖D(d)‖2L2(ΩS) + λ‖∇ · d‖2L2(ΩS)

)
= −

∫

Γ

Ser · ∂td

= −
∫

ω

R Ser · ∂td. (1.82)

Now, the right hand-side of equation (79) can be calculated by combining
(81) and (82) to obtain

−
∫

Γ(t)

σn(t) · u =
ρKh

2

d

dt
‖∂tη‖2L2(ω) +

1

2

d

dt
Eel(η) + Evis(∂tη)

1

2

d

dt

(
ρs‖∂td‖2L2(ΩS) + 2µ‖D(d)‖2L2(ΩS) + λ‖∇ · d‖2L2(ΩS)

)
. (1.83)

By combining (75) with (76), (77), (78), and (83), one obtains the following
energy equality:

1

2

d

dt

{
ρF ‖u‖2ΩF (t) + ρKh‖∂tη‖2L2(Γ) + ρS‖∂td‖2L2(ΩS) + Eel(η) + 2µ‖D(d)‖2L2(ΩS)

+ λ‖∇ · d‖2L2(ΩS)

}
+ 2µF ‖D(u)‖2ΩF (t) + Evis(∂tη) = ±Pin/out(t)

∫

Γin/out

uz

Finally, by using the trace inequality and Korn inequality one can estimate:

|Pin/out(t)
∫

Γin/out

uz| ≤ C|Pin/out|‖u‖H1(ΩF (t)) ≤
C

2ε
|Pin/out|2+

εC

2
‖D(u)‖2L2(ΩF (t)).
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By choosing ε such that εC
2 ≤ µF we get the energy inequality

1

2

d

dt

{
ρF ‖u‖2ΩF (t) + ρKh‖∂tη‖2L2(Γ) + ρS‖∂td‖2L2(ΩS) + Eel(η) + 2µ‖D(d)‖2L2(ΩS)

+ λ‖∇ · d‖2L2(ΩS)

}
+ µF ‖D(u)‖2ΩF (t) + Evis(∂tη) ≤ C(Pin(t), Pout(t)).

�

1.5.2 ALE Formulation

Since the fluid-structure coupling studied in this chapter is preformed along the
moving fluid-structure interface, the fluid domain Ω(t) is not fixed. This is a prob-
lem from many points of view. In particular, defining the time discretization of
the time derivative ∂u/∂t, for example ∂u/∂t ≈ (u(tn+1, .)−u(tn, .))/(tn+1− tn),
is not well-defined since u(tn+1, .) and u(tn, .) are not defined on the same domain
at two different time-steps. To resolve this difficulty, often times the fluid domain
is mapped onto a fixed, reference domain via a smooth, invertible ALE mapping
[54]:

A : ΩF → ΩF (t).

An example of such a mapping is the harmonic extension of the boundary ∂ΩF (t)
onto the fluid domain. See Section 0.7. Another example is a mapping particu-
larly convenient for the existence proof, presented in Section 0.6. This introduces
additional nonlinearities into the equations, reflecting the geometric nonlinearities
of the moving interface. The transformed gradient, which we denote by ∇η, will
depend on the fluid-structure interface η. Furthermore, by using the chain rule,
one can see that the the time derivative of the transformed fluid velocity will have
an additional advection term with the coefficient given by the domain velocity
w := At ◦ A−1, where At denotes the time derivative of A. Finally, the mapped
fluid equations in ΩF read:

ρF (∂tu + ((u−w) · ∇η)u) = ∇η · ση
∇η · u = 0

}
in ΩF × (0, T ). (1.84)

Here, the notation ση reflects the dependence of Dη(u) = 1
2 (∇ηu +∇ηTu) on η.

Therefore, our problem in ALE formulation reads as follows:
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The Coupled Problem in ALE Form defined on ΩF

Find u, p, η and d such that:

ρF (∂tu + ((u−w) · ∇η)u) = ∇η · ση
∇η · u = 0

}
in ΩF × (0, T ),

ρS∂ttd = ∇ · S in ΩS × (0, T ),

∂tηer = u|R+η,
ηer = d,
ρKh∂ttη + Lel(η) + Lvis∂tη = −J(σn)|R+η · er +R Ser · er



 on Γ× (0, T ).

As we shall see in Section 0.7, the actual numerical simulations at each time
step are typically performed on the current (fixed) domain ΩnF (t), with only the
time-derivative calculated on ΩF , thereby avoiding the need to calculate the trans-
formed gradients ∇η. The corresponding continuous problem in ALE form can be
written as follows:

The Coupled Problem in ALE Form defined on ΩF (t)

Find u, p, η and d such that:

ρF (∂tu|ΩF + ((u−w) · ∇)u) = ∇ · σ
∇ · u = 0

}
in ΩF (t)× (0, T ),

ρS∂ttd = ∇ · S in ΩS × (0, T ),

∂tηer = u|R+η,
ηer = d,
ρKh∂ttη + Lel(η) + Lvis∂tη = −J(σn)|R+η · er +R Ser · er



 on Γ× (0, T ).

Here, ∂tu|ΩF denotes the time derivative calculated on ΩF . This approach is
standard in ALE methods applied to partitioned schemes. In our existence proof,
and in our definition of the splitting scheme, however, it will be convenient to use
the fully mapped problem onto the fixed reference domain ΩF .

1.5.3 The Splitting Scheme – General Framework

To apply the Lie splitting scheme the problem must first be written as a first-order
system in time:

∂φ

∂t
+A(φ) = 0, in (0, T ), (1.85)

φ(0) = φ0, (1.86)
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where A is an operator from a Hilbert space into itself. Operator A is then split,
in a non-trivial decomposition, as

A =
I∑

i=1

Ai. (1.87)

The Lie scheme consists of the following. Let 4t > 0 be a time discretization step.
Denote tn = n4t and let φn be an approximation of φ(tn). Set φ0 = φ0. Then,
for n ≥ 0 compute φn+1 by solving

∂φi
∂t

+Ai(φi) = 0 in (tn, tn+1), (1.88)

φi(t
n) = φn+(i−1)/I , (1.89)

and then set φn+i/I = φi(t
n+1), for i = 1, . . . .I. Thus, the value at t = tn+1 of the

solution of the i-th problem is taken as the initial data for the (i+ 1)-st problem
on (tn, tn+1).

This method is first-order accurate in time. More precisely, if (85) is defined
on a finite-dimensional space, and if operators Ai are smooth enough, then ‖φ(tn)−
φn‖ = O(∆t) [77].

To solve the class of problems (58)-(63), we split the fluid from the structure
subproblem to separate the different physics in the coupled problem. Thus, the
coupled problem, which defines operator A, is split into a sum of two operators:

1. An elastodynamics problem for the thick structure, and

2. A fluid problem with suitable boundary conditions involving structure veloc-
ity and fluid stress at the boundary.

The thin-structure problem will enter through the boundary conditions, enforcing
the dynamic coupling condition between the fluid and thick structure.

Thus, this scheme works as follows: first the structure problem is solved on
the time-interval (tn, tn+1) with the initial data obtained from the previous time-
step. Then, the fluid problem is solved on the same-time interval (tn, tn+1), but
with the initial data obtained from the just calculated solution in the first step.

Not every splitting of this kind would lead to a stable, convergent scheme.
Our strategy is to split the fluid from the structure subproblem in such a way
that the energy of the discretized problem approximates well the energy of the
continuous problem. To achieve this goal, a key role is played by the kinematic
coupling condition, which will be enforced implicitly in both steps of the splitting
scheme, keeping the two sub-problems tightly coupled at all times.

Before we apply the Lie splitting, we rewrite our coupled problem in first-
order form with respect to time. For this purpose we introduce the following
notation:
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• the trace of the fluid velocity at the moving interface Γ(t) will be denoted by
v, i.e.,

ver := u|Γ(t).

Namely, v, which is defined on Γ, is equal to the trace of u evaluated at R+η.
The kinematic coupling condition (no-slip) then reads ∂tη = v.

• the thick structure velocity will be denoted by:

V :=
∂d

∂t
.

The system in ALE form is now rewritten by using the above-mentioned notation,
and by employing the kinematic coupling condition in the thin structure model.
This way the kinematic coupling condition will be enforced everywhere, in all the
steps of the splitting scheme. The resulting coupled problem in first-order ALE
form is given by the following:

The Coupled Problem in First-Order ALE Form

Find u, p, η, d, v, and V such that:

ρF (∂tu + ((u−w) · ∇η)u) = ∇η · ση
∇η · u = 0

}
in ΩF × (0, T ),

ρS∂tV = ∇ · S
dt = V,

}
in ΩS × (0, T ),

∂tη = v,
ver = u,
ηer = d,
ρKh∂tv + Lel(η) + Lvisv = −J σηn · er +R Ser · er





on Γ× (0, T ).

Notice that we have enforced the kinematic coupling condition both in the
thin structure acceleration term, and in the viscous part of the thin structure
equation.

We are now ready to split the problem. For this purpose, observe that the
portion ρKh ∂tv+Lvisv = −Jσn·er of the dynamic coupling condition is all given
in terms of the trace v of the fluid velocity on Γ (recall, σ depends on v.) We can,
therefore, use this as a lateral boundary condition on Γ for the fluid sub-problem.
This observation is crucial because keeping the structure inertia term ρKh∂tv
together with the inertia of the fluid in the fluid sub-problem is of paramount
importance for designing a stable and convergence scheme.

This is different from the classical loosely coupled schemes. In classical Dirichlet-
Neumann loosely coupled scheme, the boundary condition for the fluid subproblem
is the Dirichlet condition for the fluid velocity v on Γ given in terms of the struc-
ture velocity ∂η/∂t, namely v = ∂η/∂t, where ∂η/∂t is calculated at the previous
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time step! This inclusion of the structure inertia from the previous time step (ex-
plicitly) makes the fluid subproblem unstable for certain parameters values [30].
The main reason for this is that the kinetic energy at this time step, includes only
the fluid kinetic energy from the current time step, and not the thin structure
kinetic energy, since the thin structure velocity enters from the previously calcu-
lated time step. For strong geometric nonlinearities, which often happen when the
fluid and structure densities are comparable, this miss-match between the kinetic
energy of the discretized problem (where only the fluid kinetic energy appears in
the current time-step), and the kinetic energy of the continuous problem (where
both the fluid and structure kinetic energy are tied together in a strongly coupled
FSI problem) gives rise to an unstable numerical scheme [30].

Therefore, the strategy of our splitting, mentioned above, to keep the thin
structure inertia together with the fluid inertia in the fluid sub-step, will give rise
to the kinetic energy of the discretized problem that approximates well the kinetic
energy of the continuous problem, giving rise to a scheme that is unconditionally
stable for all the parameters in the problem [29]. In Section 0.6 we prove that the
scheme converges to a weak solution to the underlying FSI problem.

We therefore define the operators A1 and A2 as follows:

Problem A1 : STRUCTURE
ρS∂tV = ∇ · S, in ΩS

∂td = V, in ΩS
d = ηer, on Γ

∂tη = v, on Γ
ρKh∂tv = Lel(η) +R Ser · er on Γ

Here, of course, the PDE system in ΩS can be solved just as a single second-order
PDE for d: ρSdtt = ∇ · S. Problem A1 is solved with the initial data (d,V, η, v)
given by the solution from the previous time-step. This means, in particular, that
the thin structure velocity v is set to be equal to the trace of the fluid velocity on
Γ, calculated in the previous time-step. Thus, we are solving the elastodynamics
problem for the linearly elastic thick structure in ΩS , with the boundary condition
at the lateral boundary Γ given by a PDE that determines the motion of the lateral
boundary. The motion of the lateral boundary in this sub-problem is driven by the
normal component of the first Piola-Kirchhoff stress tensor S, and by the initial
data for the velocity of the thin structure, which is given by the trace of the fluid
velocity, just calculated in the previous time-step. In this step we also calculate
the domain velocity w, which is given by the time-derivative of the ALE mapping,
associated with Problem A1.



44 Chapter 1. Fluid-Multi-Layered Structure Interaction

Problem A2 : FLUID
∂tu + ((û−w) · ∇η)u = ∇η · ση, in ΩF

∇η · u = 0, in ΩF
u = ver, on Γ

ρKh∂tv + Lvisv = −Jσηn · er on Γ

Here û is the value of u from the previous time step, and w, which is the domain
velocity (the time derivative of the ALE mapping), is obtained from the just
calculated Problem A1. Furthermore, ∇η is the transformed gradient, which is
based on the value of η from the previous time-step. The initial data for u is given
from the previous time step, while the initial data for the trace of the fluid velocity
v is given by the just calculated velocity of the thin structure ∂tη.

This concludes our description of the general framework based on the Lie
splitting scheme for solving the class of fluid-structure interaction problems (58)-
(63) with multiple structural layers.

Before we continue, several remarks are in order:

• The splitting works as well when the thin structure is purely elastic, i.e.,
when Lvis = 0.

• Switching the order of solution (fluid step first, structure second) works as
well. The corresponding algorithm is explicitly shown below in the corre-
sponding block-diagram.

• The symmetrized Lie splitting obtained by solving the structure problem,
followed by the fluid problem, and then the structure problem, increases the
accuracy of the scheme to second-order in time.

• A version of Strang splitting for this problem was performed by Lukačova et
al. in [95, 94] achieving second-order accuracy in time.

• Adding additional modules to capture different physics in a given multi-
physics problem can be accomplished in a similar way. See [23] for an appli-
cation of this scheme to a FSI problem with multiple poroelastic structural
layers. Also, see [123] for an application of this scheme to a FSI between a
vascular device called stent, elastic arterial wall, and the flow of an incom-
pressible, viscous fluid.

• A modification of this scheme to achieve higher accuracy within the class
of first-order schemes, was introduced in [19, 20]. Details of this modified
scheme, called the Kinematically-Coupled β-scheme, are presented next.
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1.5.4 A Modified Splitting Scheme achieving Higher Accuracy

To increase the accuracy, the kinematically-coupled β-scheme is based on addi-
tionally splitting the normal fluid stress as follows:

σn = σn + βpn︸ ︷︷ ︸
(I)

−βpn︸ ︷︷ ︸
(II)

,

where β ∈ [0, 1]. Part I of the fluid stress is treated with the fluid sub-problem,
while Part II with the structure sub-problem. The new boundary condition for the
fluid sub-problem, written in the framework in which the entire fluid sub-problem
is considered on the fixed, reference domain ΩF , becomes

ρSh∂tv + Lvisv = −J (σηn + βp̂n) · er on Γ,

where p̂ denotes the explicit use of the pressure calculated from the previous step.
Part II of the fluid stress is then used to load the structure so that the new
boundary condition for the structure sub-problem becomes

ρKh∂tv = Lel(η) + (R Ser − βJpn) · er on Γ. (1.90)

A block diagram shown in Figure 8 below summarizes the splitting in each itera-
tion.

The main reason for the increase in accuracy of the β-scheme is the inclusion
of the pressure loading βJpn by the fluid onto the structure in the structure sub-
problem. This way the structure “feels” the fluid not only through the kinematic
coupling condition enforced via the initial condition for the structure sub-problem
(∂tη = v), but also through the leading contribution of the normal stress, i.e. the
pressure, exerted by the fluid onto the structure. Typically, the highest accuracy
is achieved for β = 1. The accuracy of this modified scheme is still first-order, but
the error is closer to the error of a monolithic scheme, as we shall see in Section 0.7.

Numerical Implementation. Typically, numerical implementation of the fluid sub-
problem entails solving the fluid equations on the “current domain”. Namely,
numerical implementation is performed for the ALE problem written on ΩF (t),
and not ΩF , as was discussed at the end of Section 0.5.2. In this case, the fluid
sub-problem written above takes the following form:

Problem A2 (FLUID)

∂tu|ΩF + ((un −wn+1) · ∇)u = ∇ · σ, in Ωn
F

∇ · u = 0, in Ωn
F

(ρKh∂tu|R+η + Lvisu|R+η) · er = −J (σn + βpnn) |R+η · er on Γn
F
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Domain Update: Ωn
F ,Γ

n
F

Problem A1 (STRUCTURE)

ρS∂ttd = ∇ · S in ΩS
d = ηer

ρKh∂ttη = Lel(η) + (R Ser − βJpnn) · er
∂tη = v



 on Γ

dn+1 = d(tn+1), ηn+1 = η(tn+1)
vn+1/2 = v(tn+1)

Calculate ALE mapping An+1 and
domain velocity wn+1 = ∂tAn+1

Problem A2 (FLUID)

∂tu + (un −wn+1) · ∇ηn)u = ∇ηn · σηn

∇ηn · u = 0

}
in ΩF

(ρKh∂tu + Lvisu) · er = −J
(
ση

n

n + βpnn
)
· er

u = ver

}
on Γ

un+1 = u(tn+1), pn+1 = p(tn+1)
vn+1 = v(tn+1)

n = n+1

Start:
un, pn, ηn,dn

Figure 1.8: A block diagram showing the main steps of the Kinematically Coupled
β-Scheme.
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1.6 Existence of a Weak Solution

In this section we present details of the analysis of the existence of a weak solution
to a previously discussed FSI problem with a multi-layered structure in two space
dimensions. For related results in 3D, please see [121]. The most difficult case
from the analysis point of view, is the case when the viscoelastic effects in the
thin structure model are ignored, and the highest order spatial derivatives (the
4-th order spatial derivatives) in the Koiter shell have the coefficients equal to
zero. The resulting thin-structure model is the linear wave equation. Thus, in this
section we study fluid-structure interaction between an incompressible, viscous
fluid flowing through a 2D cylinder with compliant walls, consisting of a thin and
a thick layer, modeled by the linear wave equation, and the equations of linear
elasticity, respectively. As before, we will also be assuming that only the radial
displacement in the thin structure is different from zero.

The existence result for the FSI problem in which the thin structure is mod-
eled by the full linearly elastic/viscoelastic Koiter shell equations, and the thick
structure is modeled by the equations of linear elasticity, can be obtained by com-
bining the results of [119] and the results of [122].

1.6.1 Problem definition

We consider the flow of an incompressible, viscous fluid modeled by the Navier-
Stokes equations in a 2D, time-dependent cylindrical fluid domain ΩF (t), which
is not known a priori:

FLUID :
ρF (∂tu + u · ∇u) = ∇ · σ,

∇ · u = 0,

}
in ΩF (t), t ∈ (0, T ), (1.91)

where ρF denotes the fluid density; u the fluid velocity; σ = −pI + 2µFD(u) is
the fluid Cauchy stress tensor; p is the fluid pressure; µ is the kinematic viscosity
coefficient; and D(u) = 1

2 (∇u +∇τu) is the symmetrized gradient of u.
The cylindrical fluid domain is of length L, with reference radius r = R.

The radial (vertical) displacement of the cylinder radius at time t and position
z ∈ (0, L) will be denoted by η(t, z), giving rise to a deformed domain with radius
R+ η(t, z). Thus, the fluid domain, sketched in Figure 9, is given by

ΩF (t) = {(z, r) ∈ R2 : z ∈ (0, L), r ∈ (0, R+ η(t, z)},

where the lateral boundary of the cylinder corresponds to the fluid-structure in-
terface, denoted by

Γ(t) = {(z, r) ∈ R2 : z ∈ (0, L), r = R+ η(t, z)}.

Without loss of generality we only consider the upper half of the fluid cylinder,
with a symmetry boundary condition prescribed at the axis of symmetry, denoted
by Γb in Figure 9.
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Figure 1.9: 2D Domain sketch.

The fluid is in contact with a thin elastic structure, which is located between
the fluid and the thick structural layer. The thin structure thereby serves as a
fluid-structure interface with mass. We will be assuming that the elastodynamics
of the thin elastic structure is governed by the 1D wave equation

THIN STRUCTURE : ρKh ∂ttη = c2∂zzη + f, z ∈ (0, L), t ∈ (0, T ),
(1.92)

where η denotes radial (vertical) displacement. Here, ρK is the structure density,
h denotes structure thickness, and f denotes force density in the radial (vertical)
direction acting on the structure. The wave equation can be viewed as a special
case of the linearly (visco)elastic cylindrical Koiter shell model

ρKh∂
2
t η + C0η − C1∂

2
zη + C2∂

4
zη +D0∂tη −D1∂t∂

2
zη +D2∂t∂

4
zη = f, (1.93)

with C0 = C2 = D0 = D1 = D2 = 0. See Section 92.

The thick structural layer will be modeled by the equations of linear elasticity

THICK STRUCTURE : ρS ∂ttd = ∇ · S in ΩS , t ∈ (0, T ), (1.94)

where d(t, z, r) = (dz(t, z, r), dr(t, z, r)) denotes structural displacement of the
thick elastic wall at point (z, r) ∈ ΩS and time t, S is the first Piola-Kirchhoff
stress tensor given by S = µ (∇d + (∇d)T ) + λ(∇ · d)I, where λ and µ are the
Lamé constants, and ρS is density of the thick structure. Domain ΩS corresponds
to a fixed, reference domain which is independent of time, and is given by

ΩS = (0, L)× (R,R+H).

A deformation of ΩS at time t is denoted by ΩS(t) in Figure 9.

THE COUPLING between the fluid, the thin structural layer, and the thick struc-
tural layer is achieved via
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• the kinematic coupling condition:

(∂tη(t, z), 0) = u(t, z, R+ η(t, z)), (continuity of velocity)
(η(t, z), 0) = d(t, z, R), (continuity of displacement)

(1.95)

• the dynamic coupling condition:

ρs1h∂ttη = c2∂zzη − J(t, z)(σn)|(t,z,R+η(t,z)) · er + S(t, z, R)er · er. (1.96)

Here J(t, z) =
√

1 + (∂zη(t, z))2 denotes the Jacobian of the transformation
from Eulerian to Lagrangian coordinates, and er is the unit vector associated
with the vertical, r-direction.

Notice that in this 2D problem both the structure and fluid equations are written
in Cartesian coordinates, and so the Jacobian of the transformation between the
cylindrical and Cartesian coordinates does not appear in these equations. This
means, in particular, that the factor R that appears in equation (63) does not
appear in (96).

THE BOUNDARY AND INITIAL CONDITIONS:
At the inlet and outlet boundaries to the fluid domain we prescribe zero

tangential velocity and a given dynamic pressure p+
ρf
2 |u|2:

p+
ρf
2
|u|2 = Pin/out(t),

ur = 0,

}
on Γin/out, (1.97)

where Pin/out ∈ L2
loc(0,∞) are given. Therefore, the fluid flow is driven by a

prescribed dynamic pressure drop, and the flow enters and leaves the fluid domain
orthogonally to the inlet and outlet boundary.

At the bottom boundary we prescribe the symmetry boundary condition:

ur = ∂ruz = 0, on Γb. (1.98)

At the end points of the thin structure we prescribe zero displacement:

η(t, 0) = η(t, L) = 0. (1.99)

For the thick structure, we assume that the external (top) boundary r = H
is exposed to an external ambient pressure Pe:

Ser = −Peer, on Γext, (1.100)

while at the end points of the annular sections of the thick structure, Γsin/out, we
assume that the displacement is zero

d(t, 0, r) = d(t, L, r) = 0, for r ∈ (R,H).
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The initial fluid and structural velocities, and the initial displacements are
given by

u(0, .) = u0, η(0, .) = η0, ∂tη(0, .) = v0, d(0, .) = d0, ∂td(0, .) = V0, (1.101)

and are assumed to belong to the following spaces: u0 ∈ L2(ΩF (0)), η0 ∈ H1
0 (0, 1),

v0 ∈ L2(0, 1), V 0 ∈ L2(ΩS), d0 ∈ H1(ΩS), satisfying the following compatibility
conditions:

(η0(z), 0) = d0(z,R),
η0(0) = η0(L) = v0(0) = v0(L) = 0 = d0(0, .) = d0(L, .) = V0(0, .) = V0(L, .),

R+ η0(z) > 0, z ∈ [0, L].
(1.102)

We study the existence of a weak solution to the nonlinear FSI problem (91)-
(102), in which the flow is driven by the time-dependent inlet and outlet dynamic
pressure data.

For simplicity, in the rest of this section, we will be setting all the parameters
in the problem to be equal to 1. This includes the domain parameters R and L, the
Lamé constants λ and µ, and the structure parameters ρK , ρS and h. Furthermore,
we will be assuming that the external pressure, given in (100), is equal to zero.
Alternatively, we subtract the constant external pressure data from the inlet and
outlet dynamic pressure data to obtain an equivalent problem.

1.6.2 The energy of the coupled problem

By using the same approach as described in Section 0.5.1, one can now show that
the following energy estimate holds:

d

dt
(Ekin(t) + Eel(t)) +D(t) ≤ C(Pin(t), Pout(t)), (1.103)

where

Ekin(t) := 1
2

(
‖u‖2L2(ΩF (t)) + ‖∂tη‖2L2(Γ) + ‖∂td‖2L2(ΩS)

)
,

Eel(t) := 1
2

(
‖∂zη‖2L2(Γ) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS)

)
,

(1.104)

denote the kinetic and elastic energy of the coupled problem, respectively, and the
term D(t) captures viscous dissipation in the fluid:

D(t) := ‖D(u)‖2L2(ΩF (t)). (1.105)

The constant C(Pin(t), Pout(t))) depends only on the inlet and outlet pressure
data, which are both functions of time.



1.6. Existence of a Weak Solution 51

1.6.3 The ALE formulation and Lie splitting

First order ALE formulation

As mentioned earlier, since we consider nonlinear coupling between the fluid and
structure, the fluid domain changes in time. To prove the existence of a weak
solution to (91)-(102) it is convenient to map the fluid domain onto a fixed domain
ΩF . The structural problems are already defined on fixed domains since they are
formulated in the Lagrangian framework. We map our fluid domain ΩF (t) onto
ΩF by using an Arbitrary Lagrangian-Eulerian (ALE) mapping [19, 85, 54, 131,
140]. We remark here that in our problem it is not convenient to use Lagrangian
formulation for the fluid sub-problem, as is done in e.g., [46, 34, 101], since, in our
problem, the fluid domain consists of a fixed, control volume of a cylinder, with
prescribed inlet and outlet pressure data, which does not follow Largangian flow.

We begin by defining a family of ALE mappings Aη parameterized by η:

Aη(t) : ΩF → ΩF (t), Aη(t)(z̃, r̃) :=

(
z̃

(1 + η(t, z̃))r̃

)
, (z̃, r̃) ∈ ΩF , (1.106)

where (z̃, r̃) denote the coordinates in the reference domain ΩF = (0, 1) × (0, 1).
The mapping Aη(t) is a bijection, and its Jacobian is given by

|det∇Aη(t)| = |1 + η(t, z̃)|. (1.107)

Composite functions with the ALE mapping will be denoted by

uη(t, .) = u(t, .) ◦Aη(t) and pη(t, .) = p(t, .) ◦Aη(t). (1.108)

The derivatives of composite functions satisfy:

∂tu = ∂tu
η − (wη · ∇η)uη, ∇u = ∇ηuη, (1.109)

where the ALE domain velocity, wη, and the transformed gradient, ∇η, are given
by:

wη = ∂tηr̃er, ∇η =




∂z̃ − r̃
∂zη

1 + η
∂r̃

1

1 + η
∂r̃


 . (1.110)

One can see that ∇ηv = ∇v(∇Aη)−1. For the purposes of the existence proof we
also introduce the following notation:

ση = −pηI + 2Dη(uη), Dη(uη) =
1

2
(∇ηuη + (∇η)τuη).

We are now ready to rewrite problem (91)-(102) in ALE formulation. However,
before we do that, we will make one more important step in our strategy to prove
the existence of a weak solution to (91)-(102). Namely, as mentioned earlier, we
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would like to “solve” the coupled FSI problem by approximating the problem using
the time-discretization via Lie operator splitting. Since Lie operator splitting is
defined for systems that are first-order in time, see Section 0.5.3, we have to replace
the second-order time-derivatives of η and d, with the first-order time-derivatives
of the thin and thick structure velocities, respectively. In Section 0.5.3 we use the
kinematic coupling condition (62) to achieve this goal. The kinematic coupling
condition states that the fluid-structure interface velocity is equal to the normal
trace of the fluid velocity on Γη(t), and so we will introduce a new variable, v, to
denote this trace, and replace ∂tη by v everywhere in the structure equation. We
also introduce another new variable V = ∂td which denotes the thick structure
velocity. This enables us to rewrite problem (91)-(102) as a first-order system in
time.

Thus, the ALE formulation of problem (91)-(102), defined on the reference
domain ΩF , and written as a first-order system in time, is given by the following
(we drop the superscript η in uη to simplify notation):

Find u(t, z̃, r̃), p(t, z̃, r̃), η(t, z̃), v(t, z̃), d(t, z̃) and V(t, z̃) such that

∂tu + ((u−wη) · ∇η)u = ∇η · ση,
∇η · u = 0,

}
in (0, T )× ΩF , (1.111)

ur = 0,
∂ruz = 0

}
on (0, T )× Γb, (1.112)

p+ 1
2 |u|2 = Pin/out(t),
ur = 0,

}
on (0, T )× Γin/out, (1.113)

u = ver,
d = ηer,

∂tη = v,
∂tv − ∂2

zη = −Jσn · er + Ser · er





on (0, T )× (0, 1), (1.114)

∂td = V,
∂tV = ∇ · S,

}
on ΩS , (1.115)

η = 0 on (0, T )× ∂Γ,
d = 0 on (0, T )× Γsin/out

(1.116)

Ser = 0 on (0, T )× Γext. (1.117)

u(0, .) = u0, η(0, .) = η0, v(0, .) = v0,d(0, .) = d0,V(0, .) = V0 at t = 0.
(1.118)

This defines a parabolic-hyperbolic-hyperbolic nonlinear moving boundary prob-
lem. The nonlinearity appears in the equations (111), and in the coupling condi-
tions (114) where the fluid quantities are evaluated at the deformed fluid-structure
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interface η(t, z). Parabolic features are associated with the fluid problem (111)-
(113), while hyperbolic features come from the 2D equations of elasticity, and from
the 1D wave equation modeling the fluid-structure interface, described by the last
equation in (114).

The operator splitting scheme

To prove the existence of a weak solution to (111)-(118) we use the time-discretization
via operator splitting, see Section 0.5.3. We apply the splitting strategy, described
in Section 0.5.3, to separate the fluid sub-problem from the structure sub-problem.

Problem A1: The structure elastodynamics problem. In this step we solve an
elastodynamics problem for the location of the multi-layered cylindrical wall. The
problem is driven only by the initial data, i.e., the initial boundary velocity, taken
from the previous time step as the trace of the fluid velocity at the fluid-structure
interface. The fluid velocity u remains unchanged in this step. More precisely, the
problem reads:
Given (un, ηn, vn,dn,V n) from the previous time step, find (u, v, η,V ,d) such
that:

∂tu = 0, in (tn, tn+1)× ΩF ,

∂tV = ∇ · S,
∂td = V

}
in (tn, tn+1)× ΩS ,

d = 0 on Γsin/out,

Ser = 0 on (tn, tn+1)× Γext,

(1.119)

d = ηer on (tn, tn+1)× (0, 1),
∂tv − ∂2

zη = Ser · er,
∂tη = v

}
on (tn, tn+1)× (0, 1),

η(0) = η(1) = 0,

(1.120)

with u(tn) = un, η(tn) = ηn, v(tn) = vn, d(tn) = dn, V(tn) = Vn.

Then set un+ 1
2 = u(tn+1), ηn+ 1

2 = η(tn+1), vn+ 1
2 = v(tn+1), dn+ 1

2 = d(tn+1),

Vn+ 1
2 = V(tn+1).

Problem A2: The fluid problem. In this step we solve the Navier-Stokes equa-
tions coupled with structure inertia through a “Robin-type” boundary condition
on Γ (lines 5 and 6 in (121) below). The kinematic coupling condition is implicitly
satisfied. The structure displacement remains unchanged. With a slight abuse of
notation, the problem can be written as follows:
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Find (u, v, η,V ,d) such that:

∂tη = 0 on (tn, tn+1)× (0, 1),

∂td = 0 on (tn, tn+1)× ΩS ,

∂tu + ((un −wηn+ 1
2 ) · ∇ηn)u = ∇ηn · σηn
∇ηn · u = 0

}
in (tn, tn+1)× ΩF ,

∂tv = −Jσn · er
u = ver

}
on (tn, tn+1)× (0, 1),(1.121)

ur = 0
∂ruz = 0

}
on (tn, tn+1)× Γb,

p+
ρf
2 |u|2 = Pin/out(t)

ur = 0

}
on (tn, tn+1)× Γin/out,

with u(tn, .) = un+ 1
2 , η(tn, .) = ηn+ 1

2 , v(tn, .) = vn+ 1
2 , d(tn, .) = dn+ 1

2 , V(tn, .) = Vn+ 1
2 .

Then set un+1 = u(tn+1), ηn+1 = η(tn+1), vn+1 = v(tn+1), dn+1 = η(tn+1), Vn+1 =
V(tn+1).

Notice that, since in this step η does not change, this problem is linear.
In numerical simulations, one can use the ALE mapping Aηn to “transform”

only the time derivative term ∂tu onto the fixed domain ΩF while the rest of the
PDE is discretized on the current domain ΩF (tn). This gives rise to the domain
velocity term w in the equations, but avoids the un-necessary calculation of the
transformed gradient ∇ηn . See equation (195a) in Section 0.7.3, and Problem
A2(b) in Section 0.7.5. For the purposes of our proof, we will, however, remain
working on the fixed, reference domain ΩF .

It is important to notice that in Problem A2, the problem is “linearized”
around the previous location of the boundary, i.e., we work with the domain de-
termined by ηn, and not by ηn+1/2. This is in direct relation with the implemen-
tation of the numerical scheme studied in [19, 29]. However, we also notice that

ALE velocity, wn+ 1
2 , is taken from the just calculated Problem A1! This choice is

crucial for obtaining a semi-discrete version of an energy inequality, which will be
discussed in Section 0.6.5.

Next we use the splitting scheme described above to define approximate
solutions of (111)-(118) (or equivalently of problem (91)-(102) ) and show that
the approximate solutions converge to a weak solution, as ∆t→ 0.

1.6.4 Weak solutions

Notation and function spaces

Notation. To define weak solutions of the moving-bounday problem (91)-(102)
and of the moving-boundary problem (111)-(118) defined on a fixed domain, the
following notation will be useful:
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• aS will denote the bilinear form associated with the elastic energy of the
thick structure:

aS(d,ψ) =

∫

ΩS

(
2D(d) : D(ψ) + (∇ · d) · (∇ ·ψ)

)
. (1.122)

Here “:” denotes the scalar product defined in (7).

• b will denote the following trilinear form corresponding to the (symmetrized)
nonlinear advection term in the Navier-Stokes equations:

b(t,u,v,w) =
1

2

∫

ΩF (t)

(u · ∇)v ·w − 1

2

∫

ΩF (t)

(u · ∇)w · v. (1.123)

• The linear functional which associates the inlet and outlet dynamic pressure
boundary data to a test function v will be denoted by:

〈F (t),v〉Γin/out = Pin(t)

∫

Γin

vz − Pout(t)
∫

Γout

vz.

Function spaces. For the fluid velocity we would like to work with the classical
function space associated with weak solutions of the Navier-Stokes equations. This,
however, requires some additional consideration. Namely, since our thin structure
is governed by the linear wave equation, lacking the bending rigidity terms, weak
solutions cannot be expected to be Lipschitz-continuous. Indeed, from the energy
inequality (103) we only have η ∈ H1(0, 1), and from Sobolev embedding we get
that η ∈ C0,1/2(0, 1), which means that ΩF (t) is not necessarily a Lipshitz domain.
However, ΩF (t) is locally a sub-graph of a Hölder continuous function. In that case
one can define “Lagrangian” trace

γΓ(t) : C1(ΩF (t))→ C(Γ),

γΓ(t) : v 7→ v(t, z, r + η(t, z)).
(1.124)

Furthermore, it was shown in [32, 78, 120] that the trace operator γΓ(t) can be

extended by continuity to a linear operator from H1(ΩF (t)) to Hs(Γ), 0 ≤ s < 1
4 .

For a precise statement of the results about “Lagrangian” trace, see Theorem
0.6.2. Now, the velocity solution space can be defined in the following way:

VF (t) = {u = (uz, ur) ∈ C1(ΩF (t))2 : ∇ · u = 0,
uz = 0 on Γ(t), ur = 0 on ∂ΩF (t) \ Γ(t)},

VF (t) = VF (t)
H1(ΩF (t))

.

(1.125)

Using the fact that ΩF (t) is locally a sub-graph of a Hölder continuous function
we can get the following characterization of the velocity solution space VF (t) (see
[32, 78]):

VF (t) = {u = (uz, ur) ∈ H1(Ωη(t))2 : ∇ · u = 0,
uz = 0 on Γ(t), ur = 0 on ∂Ωη(t) \ Γ(t)}. (1.126)
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The function space associated with weak solutions of the 1D linear wave equation
and the thick wall are given, respectively, by

VW = H1
0 (0, 1), (1.127)

VS = {ψ = (ψz, ψr) ∈ H1(ΩS)2 : ψz = 0 on Γ, ψ = 0 on Γsin/out}. (1.128)

Motivated by the energy inequality we also define the corresponding evolution
spaces for the fluid and structure sub-problems, respectively:

WF (0, T ) = L∞(0, T ;L2(ΩF (t))) ∩ L2(0, T ;VF (t)), (1.129)

WW (0, T ) = W 1,∞(0, T ;L2(0, 1)) ∩ L2(0, T ;VW ), (1.130)

WS(0, T ) = W 1,∞(0, T ;L2(ΩS)) ∩ L2(0, T ;VS). (1.131)

Finally, we are in a position to define the solution space for the coupled fluid-multi-
layered-structure interaction problem. This space involves the kinematic coupling
condition, which is enforced in strong sense. The dynamic coupling condition will
be enforced in weak sense, through integration by parts in the weak formulation
of the problem. Thus, we define

W(0, T ) = {(u, η,d) ∈ WF (0, T )×WW (0, T )×WS(0, T ) :
u(t, z, 1 + η(t, z)) = ∂tη(t, z)er, d(t, z, 1) = η(t, z)er}. (1.132)

Equality u(t, z, 1 + η(t, z)) = ∂tη(t, z)er is taken in the sense defined in [32, 120].
The corresponding test space will be denoted by

Q(0, T ) = {(q, ψ,ψ) ∈ C1
c ([0, T );VF × VW × VS) :

q(t, z, 1 + η(t, z)) = ψ(t, z)er,ψ(t, z, 1) = ψ(t, z)er}. (1.133)

Notice the coupling conditions in the test space that are enforced at the
fluid-structure interface.

Weak solutions for the problem defined on the moving domain

We are now in a position to define weak solutions of fluid-multi-layered structure
interaction problem, defined on the moving domain ΩF (t).

Definition 1.6.1. We say that (u, η,d) ∈ W(0, T ) is a weak solution of problem
(91)-(102) if for every (q, ψ,ψ) ∈ Q(0, T ) the following equality holds:

−
∫ T

0

∫

ΩF (t)

u · ∂tq +

∫ T

0

b(t,u,u,q) + 2

∫ T

0

∫

ΩF (t)

D(u) : D(q)− 1

2

∫ T

0

∫ 1

0

(∂tη)2ψ

−
∫ T

0

∫ 1

0

∂tη∂tψ +

∫ T

0

∫ 1

0

∂zη∂zψ −
∫ T

0

∫

ΩS

∂td · ∂tψ +

∫ T

0

aS(d,ψ)

=

∫ T

0

〈F (t),q〉Γin/out +

∫

Ωη0

u0 · q(0) +

∫ 1

0

v0ψ(0) +

∫

ΩS

V0 ·ψ(0).

(1.134)
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In deriving the weak formulation we used integration by parts, and the fol-
lowing equalities which hold for smooth functions:

∫

ΩF (t)

(u · ∇)u · q =
1

2

∫

ΩF (t)

(u · ∇)u · q− 1

2

∫

ΩF (t)

(u · ∇)q · u

+
1

2

∫ 1

0

(∂tη)2ψ ± 1

2

∫

Γout/in

|ur|2vr,

∫ T

0

∫

ΩF (t)

∂tu · q = −
∫ T

0

∫

ΩF (t)

u · ∂tq−
∫

Ωη0

u0 · q(0)−
∫ T

0

∫ 1

0

(∂tη)2ψ.

Weak solutions for the problem defined on a fixed, reference domain

Since most of the analysis will be performed on the problem mapped to ΩF , we
rewrite the above definition in terms of ΩF using the ALE mapping Aη(t) defined
in (106). For this purpose, the following notation will be useful. We define the
transformed trilinear functional bη:

bη(u,u,q) :=
1

2

∫

ΩF

(1 + η)((u−wη) · ∇η)u ·q− 1

2

∫

ΩF

(1 + η)((u−wη) · ∇η)q ·u,
(1.135)

where 1 + η is the Jacobian of the ALE mapping, calculated in (107). Notice that
we have included the ALE domain velocity wη into bη.

It is important to point out that the transformed fluid velocity uη is not
divergence-free anymore. Rather, it satisfies the transformed divergence-free con-
dition ∇η · uη = 0. Furthermore, since η is not a Lipschitz function, the ALE
mapping is not necessarily a Lipschitz function either, and, as a result, uη is not
necessarily an H1 function on ΩF . Therefore we need to redefine the function
spaces for the fluid velocity by introducing

VηF = {uη : u ∈ VF (t)},

where uη is defined in (108). Under the assumption 1 + η(z) > 0, z ∈ [0, 1], the
following defines a scalar product on VηF :

(uη,vη)VηF =

∫

ΩF

(1 + η)
(
uη · vη +∇ηuη : ∇ηvη

)
= (u,v)H1(ΩF (t)).

Therefore, u 7→ uη is an isometric isomorphism between VF (t) and VηF , so VηF is
also a Hilbert space. The function spaces Wη

F (0, T ) and Wη(0, T ) are defined as
before, but with VηF instead VF (t). More precisely:

Wη
F (0, T ) = L∞(0, T ;L2(ΩF )) ∩ L2(0, T ;VηF (t)), (1.136)

Wη(0, T ) = {(u, η,d) ∈ Wη
F (0, T )×WW (0, T )×WS(0, T ) :

u(t, z, 1) = ∂tη(t, z)er, η(t, z) = d(t, z, 1)}. (1.137)
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The corresponding test space is defined by

Qη(0, T ) = {(q, ψ,ψ) ∈ C1
c ([0, T );VηF × VW × VS) :

q(t, z, 1) = ψ(t, z)er,ψ(t, z, 1) = ψ(t, z)er}. (1.138)

Definition 1.6.2. We say that (u, η,d) ∈ Wη(0, T ) is a weak solution of problem
(111)-(118) defined on the reference domain ΩF , if for every (q, ψ,ψ) ∈ Qη(0, T )
the following equality holds:

−
∫ T

0

∫

ΩF

(1 + η)u · ∂tq +

∫ T

0

bη(u,u,q)+2

∫ T

0

∫

ΩF

(1 + η)Dη(u) : Dη(q)

−1

2

∫ T

0

∫

ΩF

(∂tη)u · q−
∫ T

0

∫ 1

0

∂tη∂tψ +

∫ T

0

∫ 1

0

∂zη∂zψ

−
∫ T

0

∫

ΩS

∂td · ∂tψ +

∫ T

0

aS(d,ψ)

=

∫ T

0

〈F (t),q〉Γin/out +

∫

Ωη0

u0 · q(0) +

∫ 1

0

v0ψ(0) +

∫

ΩS

V0 ·ψ(0).

(1.139)

To see that this is consistent with the weak solution defined in Definition 0.6.1,
we present the main steps in the transformation of the first integral on the left
hand-side in (134), responsible for the fluid kinetic energy. Namely, we formally
calculate:

−
∫

ΩF (t)

u · ∂tq = −
∫

ΩF

(1 + η)uη · (∂tq− (wη · ∇η)q) = −
∫

ΩF

(1 + η)uη · ∂tq

+
1

2

∫

ΩF

(1 + η)(wη · ∇η)q · uη +
1

2

∫

ΩF

(1 + η)(wη · ∇η)q · uη.

In the last integral on the right hand-side we use the definition of wη and of ∇η,
given in (110), to obtain

∫

ΩF

(1 + η)(wη · ∇η)q · uη =

∫

ΩF

∂tη r̃ ∂r̃q · uη.

Using integration by parts with respect to r, keeping in mind that η does not
depend on r, we obtain

−
∫

ΩF (t)

u · ∂tq = −
∫

ΩF

(1 + η)uη · (∂tq− (wη · ∇η)q) = −
∫

ΩF

(1 + η)uη · ∂tq

+
1

2

∫

ΩF

(1+η)(wη·∇η)q·uη−1

2

∫

ΩF

(1+η)(wη·∇η)uη·q−1

2

∫

ΩF

∂tηu
η·q+

1

2

∫ 1

0

(∂tη)2ψ,
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By using this identity in (134), and by recalling the definitions for b and bη, we
obtain exactly the weak form (139).

In the remainder of this Section we will be working on the fluid-multi-layered
structure interaction problem defined on the fixed domain ΩF , satisfying the weak
formulation presented in Definition 0.6.2. For brevity of notation, since no con-
fusion is possible, we omit the superscript “tilde” which is used to denote the
coordinates of points in ΩF .

1.6.5 Approximate solutions

In this section we use the Lie operator splitting scheme and semi-discretization to
define a sequence of approximate solutions of the FSI problem (111)-(118). Each
of the sub-problems defined by the Lie splitting in Section 0.6.3 as Problem A1
and Problem A2, will be discretized in time using the Backward Euler scheme.
This approach defines a time step, which will be denoted by ∆t, and a number of
time sub-intervals N ∈ N, so that

(0, T ) = ∪N−1
n=0 (tn, tn+1), tn = n∆t, n = 0, ..., N − 1.

For every subdivision containing N ∈ N sub-intervals, the vector of unknown
approximate solutions will be denoted by

X
n+ i

2

N =
(
u
n+ i

2

N , v
n+ i

2

N , η
n+ i

2

N ,V
n+ i

2

N , d
n+ i

2

N

)T
, n = 0, 1, . . . , N − 1, i = 1, 2,

(1.140)
where i = 1, 2 denotes the solution of Problem A1 or A2, respectively. The initial
condition will be denoted by X0 = (u0, v0, η0,V 0,d0)

T
.

The semi-discretization and the splitting of the problem will be performed in
such a way that the semi-discrete version of the energy inequality (103) is preserved
at every time step. This is a crucial ingredient for the existence proof.

The semi-discrete versions of the kinetic and elastic energy (104), and of
dissipation (105) are defined by the following:

E
n+ i

2

kin,N =
1

2

(∫

ΩF

(1 + ηn−1+i)|un+ i
2

N |2 + ‖vn+ i
2

N ‖2L2(0,1) + ‖V n+ i
2

N ‖2L2(ΩS)

)
,

En+1
el,N =

1

2

(
‖∂zηn+ 1

2

N ‖2L2(0,1) + 2‖D(d
n+ 1

2

N )‖2L2(ΩS) + ‖∇ · dn+ 1
2

N ‖2L2(ΩS)

)
,

E
n+ i

2

N = E
n+ i

2

kin,N + En+1
el,N ,

(1.141)

Dn+1
N = ∆t

∫

ΩF

(1 + ηn)|Dηn(un+1
N )|2, n = 0, . . . , N − 1, i = 0, 1. (1.142)

Throughout the rest of this section we fix the time step ∆t, i.e., we keep N ∈ N
fixed, and study the semi-discretized sub-problems defined by the Lie splitting. To

simplify notation, we omit the subscriptN and write (un+ i
2 , vn+ i

2 , ηn+ i
2 ,V n+ i

2 ,dn+ i
2 )

instead of (u
n+ i

2

N , v
n+ i

2

N , η
n+ i

2

N ,V
n+ i

2

N ,d
n+ i

2

N ).
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Semi-discretization of Problem A1

In this step u does not change, and so

un+ 1
2 = un.

Functions (vn+ 1
2 , ηn+ 1

2 ,Vn+ 1
2 ,Un+ 1

2 ) ∈ V2
W × V2

S define a weak solution of the
semi-discretized Problem A1 if the following holds:

dn+ 1
2 (z, 1) = ηn+ 1

2 (z, 1)er, z ∈ (0, 1),

dn+ 1
2 − dn
∆t

= V n+ 1
2 ,

ηn+ 1
2 − ηn
∆t

= vn+ 1
2 ,

∫

ΩS

Vn+ 1
2 −Vn

∆t
·Ψ +

∫ 1

0

vn+ 1
2 − vn
∆t

ψ + aS(dn+ 1
2 ,Ψ) +

∫ 1

0

∂zη
n+ 1

2 ∂zψ = 0,

(1.143)
for all (ψ,Ψ) ∈ VW × VS such that Ψ(t, z, 1) = ψ(t, z). The first equation en-
forces the kinematic coupling condition, the second row in (143) introduces the
structure velocities, while the third equation corresponds to a weak form of the
semi-discretized elastodynamics problem. Notice that we solve the thin and thick
structure problems as one problem. The thin structure enters as a boundary con-
dition for the thick structure problem.

Proposition 1.6.2. For each fixed ∆t > 0, problem (143) has a unique solution

(vn+ 1
2 , ηn+ 1

2 ,V n+ 1
2 ,dn+ 1

2 ) ∈ V2
W × V2

S.

Proof. First notice that Korn’s inequality implies that the bilinear form aS is
coercive on VS . From here, the proof is a direct consequence of the Lax-Milgram
Lemma applied to the weak form

∫ 1

0

ηn+ 1
2ψ +

∫

ΩS

dn+1 ·Ψ + (∆t)2
( ∫ 1

0

∂zη∂zψ + aS(dn+ 1
2 ,Ψ)

)

=

∫ L

0

(
∆tvn + ηn

)
ψ +

∫

ΩS

(∆tV n + dn) ·Ψ, ∀(ψ,Ψ) ∈ {VW × VS |Ψ(t, z, 1) = ψ(z, 1)},

which is obtained after a substitution of vn+ 1
2 and V n+ 1

2 in the third equation in
(143), by using the equations (143)2. �

Proposition 1.6.3. For each fixed ∆t > 0, solution of problem (143) satisfies the
following discrete energy equality:

E
n+ 1

2

kin,N + En+1
el,N +

1

2

(
‖vn+ 1

2 − vn‖2L2(0,1) + ‖V n+ 1
2 − V n‖2L2(ΩS)

+‖∂z(ηn+ 1
2 − ηn)‖2L2(0,1) + aS(dn+ 1

2 − dn,dn+ 1
2 − dn)

)
= Enkin,N + Enel,N ,

(1.144)
where the kinetic and elastic energy, Enkin,N , Enel,N , are defined in (141).
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Proof. From the second row in (143) we immediately get

vn+ 1
2 =

ηn+ 1
2 − ηn
∆t

∈ VW , V n+ 1
2 =

dn+ 1
2 − dn
∆t

∈ VS .

Therefore, we can proceed as usual, by substituting the test functions in (143)
with structure velocities. More precisely, we replace the test function (ψ,ψ) by

(vn+ 1
2 ,V n+ 1

2 ) in the first term on the left hand-side, and then replace (ψ,ψ) by

((ηn+ 1
2 − ηn)/∆t, (dn+ 1

2 − dn)/∆t) in the bilinear forms that correspond to the
elastic energy. To deal with the terms (vn+1/2 − vn)vn+1/2, (ηn+1/2 − ηn)ηn+1/2,

(V n+1/2−V n) ·V n+1/2, and (dn+1/2−dn) ·dn+1/2, we use the algebraic identity
(a− b) · a = 1

2 (|a|2 + |a− b|2 − |b|2). After multiplying the entire equation by ∆t,
the third equation in (143) can be written as:

(‖vn+ 1
2 ‖2L2(0,1) + ‖vn+ 1

2 − vn‖2L2(0,1)) + (‖V n+ 1
2 ‖2L2(ΩS) + ‖V n+ 1

2 − V n‖2L2(ΩS))

‖∂zηn+ 1
2 ‖2L2(0,1) + ‖∂z(ηn+ 1

2 − ∂zηn)‖2L2(0,1) + aS(dn+ 1
2 ,dn+ 1

2 )

+aS(dn+ 1
2−dn,dn+ 1

2−dn) = ‖vn‖2L2(0,1)+‖V n‖2L2(ΩS)+‖∂zηn‖2L2(0,1)+aS(dn,dn).

Since in this sub-problem un+ 1
2 = un, we can add ρf

∫
ΩF

(1+ηn)un+1/2 on the left

hand-side, and ρf
∫

ΩF
(1 + ηn)un on the right hand-side of the equation. Further-

more, displacements dn+ 1
2 and ηn+ 1

2 do not change in Problem A2 (see (145)),

and so we can replace dn and ηn on the right hand-side of the equation with dn−
1
2

and ηn−
1
2 , respectively, to obtain exactly the energy equality (144). �

Semi-discretization of Problem A2

In this step η, d and V do not change, and so

ηn+1 = ηn+ 1
2 , dn+1 = dn+ 1

2 , V n+1 = V n+ 1
2 . (1.145)

Then, define (un+1, vn+1) ∈ Vη
n

F × L2(0, 1) to be a weak solution of Problem A2

(121) if the following holds for each (q, ψ) ∈ Vη
n

F × L2(0, 1) such that q|Γ = ψer,
velocities (un+1, vn+1):

∫

Ω

(1 + ηn)

(
un+1 − un+ 1

2

∆t
· q +

1

2

[
(un − vn+ 1

2 rer) · ∇η
n
]

un+1 · q

−1

2

[
(un − vn+ 1

2 rer) · ∇η
n
]

q · un+1

)
+

1

2

∫

Ω

vn+ 1
2 un+1 · q

+2
∫

Ω
(1 + ηn)Dηn(u) : Dηn(q)

+ρsh

∫ 1

0

vn+1 − vn+ 1
2

∆t
ψ =

(
Pnin

∫ 1

0

(qz)|z=0 − Pnout
∫ 1

0

(qz)|z=L
)
,

with ∇ηn · un+1 = 0, un+1
|Γ = vn+1er,

(1.146)
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where Pnin/out =
1

∆t

∫ (n+1)∆t

n∆t

Pin/out(t)dt.

The existence of a unique weak solution and energy estimate are given by
the following proposition.

Proposition 1.6.4. Let ∆t > 0, and assume that ηn are such that 1 + ηn ≥ Rmin >
0, n = 0, ..., N . Then:

1. The fluid sub-problem defined by (146) has a unique weak solution (un+1, vn+1) ∈
Vη

n

F × L2(0, 1);

2. Solution of problem (146) satisfies the following discrete energy inequality:

En+1
kin,N +

1

2

∫

ΩF

(1 + ηn)|un+1 − un|2 +
1

2
‖vn+1 − vn+ 1

2 ‖2L2(0,1)

+Dn+1
N ≤ En+ 1

2

kin,N + C∆t((Pnin)2 + (Pnout)
2),

(1.147)

where the kinetic energy EnN and dissipation Dn
N are defined in (141) and

(142), and the constant C depends only on the parameters in the problem,
and not on ∆t (or N).

The proof of this proposition is identical to the proof presented in [119]
which concerns a FSI problem between an incompressible, viscous fluid and a
thin elastic structure modeled by a linearly elastic Koiter shell model. The fluid
sub-problems presented in [119] and in the present manuscript (Problem A2) are
the same, except for the fact that η in this manuscript satisfies the linear wave
equation. Since ηn+1/2 satisfies an elliptic problem for the Laplace operator with
the right hand-side given in terms of approximate velocities vn, vn+1/2 ∈ L2(0, 1)
(see equation (143)), the approximation ηn+1/2 is H2(0, 1), and so the fluid domain
in the semi-discretized Problem A2 is, in fact, Lipschitz. Therefore, the proof of
Proposition 0.6.4 is the same as the proof of Proposition 3 [119] (for statement 1)
and the proof of Proposition 4 [119] (for statement 2).

We pause for a second, and summarize what we have accomplished so far.
For a given ∆t > 0, the time interval (0, T ) was divided into N = T/∆t sub-
intervals (tn, tn+1), n = 0, ..., N − 1. On each sub-interval (tn, tn+1) we “solved”
the coupled FSI problem by applying the Lie splitting scheme. First, Problem
A1 was solved for the structure position and velocity, both thick and thin, and
then Problem A2 was solved to update fluid velocity and fluid-structure interface
velocity. We showed that each sub-problem has a unique solution, provided that
1 + ηn ≥ Rmin > 0, n = 0, ..., N , and that each sub-problem solution satisfies
an energy estimate. When combined, the two energy estimates provide a discrete
version of the energy estimate (103). Thus, for each ∆t we have designed a time-
marching, splitting scheme, which defines an approximate solution on (0, T ) of our
main FSI problem (111)-(118). Furthermore, the scheme is designed in such a way
that for each ∆t > 0 the approximate FSI solution satisfies a discrete version of
an energy estimate for the continuous problem.
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We would like to ultimately show that, as ∆t → 0, the sequence of solu-
tions parameterized by N (or ∆t), converges to a weak solution of (111)-(118).
Furthermore, we also need to show that 1 + ηn ≥ Rmin > 0 is satisfied for each
n = 0, ..., N − 1. In order to obtain this result, it is crucial to show that the dis-
crete energy of the approximate FSI solutions defined for each ∆t, is uniformly
bounded, independently of ∆t (or N). This result is obtained by the following
Lemma.

Lemma 1.6.1. (The uniform energy estimates) Let ∆t > 0 and N = T/∆t > 0.

Furthermore, let E
n+ 1

2

N , En+1
N , and Dj

N be the total energy and dissipation given
by (141) and (142), respectively.

There exists a constant C > 0 independent of ∆t (and N) such that the
following estimates hold:

1. E
n+ 1

2

N ≤ C, En+1
N ≤ C, for all n = 0, ..., N − 1,

2.
∑N
j=1D

j
N ≤ C,

3.
N−1∑

n=0

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2 ‖2L2(0,1)

+‖vn+ 1
2 − vn‖2L2(0,1) + ‖V n+1 − V n‖2L2(ΩS)

)
≤ C,

4.

N−1∑

n=0

(
(‖∂z(ηn+1 − ηn)‖2L2(0,1) + aS

(
dn+1 − dn,dn+1 − dn

))
≤ C.

In fact, C = E0 + C̃
(
‖Pin‖2L2(0,T ) + ‖Pout‖2L2(0,T )

)
, where C̃ is the constant from

(147), which depends only on the parameters in the problem.

Proof. We begin by adding the energy estimates (144) and (147) to obtain

En+1
N +Dn+1

N +
1

2

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2 ‖2L2(0,1)

+‖vn+ 1
2 − vn‖2L2(0,1) + ‖V n+1 − V n‖2L2(ΩS) + ‖∂z(ηn+ 1

2 − ηn)‖2L2(0,1)

+aS
(
dn+1 − dn,dn+1 − dn

))
≤ EnN + C̃∆t((Pnin)2 + (Pnout)

2), n = 0, . . . , N − 1.

Then, we calculate the sum, on both sides, and cancel out like terms in the kinetic
energy that appear on both sides of the inequality to obtain

ENN +

N−1∑

n=0

Dn+1
N +

1

2

N−1∑

n=0

(∫

ΩF

(1 + ηn)|un+1 − un|2 + ‖vn+1 − vn+ 1
2 ‖2L2(0,1)

+‖vn+ 1
2 − vn‖2L2(0,1) + ‖V n+1 − V n‖2L2(ΩS) + ‖∂z(ηn+ 1

2 − ηn)‖2L2(0,1)
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+aS
(
dn+1 − dn,dn+1 − dn

))
≤ E0 + C̃∆t

N−1∑

n=0

((Pnin)2 + (Pnout)
2).

To estimate the term involving the inlet and outlet pressure, we recall that on every
sub-interval (tn, tn+1) the pressure data is approximated by a constant which is
equal to the average value of the pressure over that time interval. Therefore, we
have, after using Hölder’s inequality:

∆t
N−1∑

n=0

(Pnin)2 = ∆t
N−1∑

n=0

(
1

∆t

∫ (n+1)∆t

n∆t

Pin(t)dt

)2

≤ ‖Pin‖2L2(0,T ).

By using the pressure estimate to bound the right hand-side in the above energy
estimate, we have obtained all the statements in the Lemma, with the constant C
given by C = E0 + C̃‖Pin/out‖2L2(0,T ).

Notice that Statement 1 can be obtained in the same way by summing from
0 to n− 1, for each n, instead of from 0 to N − 1. �

We will use this Lemma in the next section to show convergence of approxi-
mate solutions.

1.6.6 Convergence of approximate solutions

We define approximate solutions of problem (111)-(118) on (0, T ) to be the func-
tions which are piece-wise constant on each sub-interval ((n − 1)∆t, n∆t], n =
1 . . . N of (0, T ), such that for t ∈ ((n− 1)∆t, n∆t], n = 1 . . . N,

uN (t, .) = unN , ηN (t, .) = ηnN , vN (t, .) = vnN , v
∗
N (t, .) = v

n− 1
2

N , dN (t, .) = dnN , V N (t, .) = V n
N .

(1.148)

See Figure 10. Notice that functions v∗N = v
n−1/2
N are determined by Problem A1

Figure 1.10: A sketch of uN .

(the elastodynamics sub-problem), while functions vN = vnN are determined by
Problem A2 (the fluid sub-problem). As a consequence, functions vN are equal to
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the normal trace of the fluid velocity on Γ, i.e., uN = vNer, which may be different
from v∗N . However, we will show later that ‖vN − v∗N‖L2(0,1) → 0, as N →∞.

Using Lemma 0.6.1 we now show that these sequences are uniformly bounded
in the appropriate solution spaces.

We begin by showing that (ηN )N∈N is uniformly bounded in L∞(0, T ;H1
0 (0, 1)),

and that there exists a T > 0 for which 1 + ηnN > 0 holds independently of N and
n.

Proposition 1.6.5. The sequence (ηN )N∈N is uniformly bounded in

L∞(0, T ;H1
0 (0, 1)).

Moreover, for T small enough, we have

0 < Rmin ≤ 1 + ηN (t, z) ≤ Rmax, ∀N ∈ N, z ∈ (0, 1), t ∈ (0, T ). (1.149)

Proof. From the energy estimate in Lemma 0.6.1 we have

‖ηN (t)‖2L2(0,1) + ‖∂zηN (t)‖2L2(0,1),≤ C, ∀t ∈ [0, T ],

which implies
‖ηN‖L∞(0,T ;H1

0 (0,1)) ≤ C.
To show that the radius 1 + ηN is uniformly bounded away from zero for T small
enough, we first notice that the above inequality implies

‖ηnN − η0‖H1
0 (0,1) ≤ 2C, n = 1, . . . , N, N ∈ N.

Furthermore,

‖ηnN − η0‖L2(0,1) ≤
n−1∑

i=0

‖ηi+1
N − ηiN‖L2(0,1) = ∆t

n−1∑

i=0

‖vi+
1
2

N ‖L2(0,1),

where we recall that η0
N = η0. Lemma 0.6.1 implies that E

n+ 1
2

N ≤ C, where C is
independent of N . Combined with the above inequality this implies

‖ηnN − η0‖L2(0,1) ≤ Cn∆t ≤ CT, n = 1, . . . , N, N ∈ N.

Now, since ‖ηnN − η0‖L2(0,1) and ‖ηnN − η0‖H1
0 (0,1) are uniformly bounded, we can

use the interpolation inequality for Sobolev spaces, Thm. 4.17, p. 79 in [1], to get

‖ηnN − η0‖Hs(0,1) ≤ 2CT 1−s, n = 1, . . . , N, N ∈ N, for 0 < s < 1.

From Lemma 0.6.1 we see that C depends on T through the norms of the inlet
and outlet data in such a way that C is an increasing function of T . Therefore, by
choosing T small, we can make ‖ηnN−η0‖Hs(0,1) arbitrarily small for n = 1, . . . . , N ,
N ∈ N. Because of the Sobolev embedding of Hs(0, 1) into C[0, 1], for s > 1/2, we
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can also make ‖ηnN − η0‖C[0,1] arbitrarily small. Since the initial data η0 is such
that 1 + η0(z) > 0 (due to the conditions listed in (102)), we see that for T > 0
small enough, there exist Rmin, Rmax > 0, such that

0 < Rmin ≤ 1 + ηN (t, z) ≤ Rmax, ∀N ∈ N, z ∈ (0, 1), t ∈ (0, T ).

�
We will show in the end that our existence result holds not only locally in

time, i.e., for small T > 0, but rather, it can be extended all the way until either
T =∞, or until the lateral walls of the channel touch each other.

Proposition 0.6.5 implies, among other things, that the standard L2-norm,
and the following weighted L2-norm are equivalent: for every f ∈ L2(ΩF ), there
exist constants C1, C2 > 0, which depend only on Rmin, Rmax, and not on f or N ,
such that

C1

∫

ΩF

(1 + ηN )f2 ≤ ‖f‖2L2(ΩF ) ≤ C2

∫

ΩF

(1 + ηN )f2. (1.150)

We will be using this property in the next section to prove strong convergence of
approximate solutions.

Next we show that the sequences of approximate solutions for the velocity
and its trace on the lateral boundary, as well as the displacement of the thick
structure and the thick structure velocity, are uniformly bounded in the appropri-
ate norms. To do that, we introduce the following notation which will be useful in
the remainder of this section to prove compactness: denote by τh the translation
in time by h of a function f

τhf(t, .) = f(t− h, .), h ∈ R. (1.151)

Proposition 1.6.6. The following statements hold:

1. (vN )N∈N, (v∗N )N∈N are uniformly bounded in L∞(0, T ;L2(0, 1)).

2. (uN )N∈N is uniformly bounded in L∞(0, T ;L2(ΩF )).

3. (∇τ∆tηNuN )N∈N is uniformly bounded in L2((0, T )× ΩF ).

4. (dN )N∈N is uniformly bounded in L∞(0, T ;H1(ΩS)).

5. (V N )N∈N is uniformly bounded in L∞(0, T ;L2(ΩS)).

Proof. The uniform boundedness of (vN )N∈N, (v∗N )N∈N, (dN )N∈N, (V N )N∈N, and
the uniform boundedness of (uN )N∈N in L∞(0, T ;L2(ΩF )) follow directly from
Statements 1 and 2 of Lemma 0.6.1, and from the definition of (vN )n∈N, (v∗N )N∈N,
(dN )N∈N, (V N )N∈N and (uN )N∈N as step-functions in t so that

∫ T

0

‖vN‖2L2(0,1)dt =
N−1∑

n=0

‖vnN‖2L2(0,1)∆t.
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It remains to show uniform boundedness of (∇τ∆tηNuN )N∈N in L2((0, T ) × ΩF ).
From Lemma 0.6.1 we only know that the symmetrized gradient is bounded in the
following way:

N∑

n=1

∫

ΩF

(1 + ηn−1
N )|Dηn−1

N (unN )|2∆t ≤ C. (1.152)

We cannot immediately apply Korn’s inequality since estimate (152) is given in
terms of the transformed symmetrized gradient. Thus, there are some technical
difficulties that need to be overcome due to the fact that our problem involves
moving domains. To get around this difficulty we take the following approach.

We first transform the problem back to the physical fluid domain Ω
ηn−1
N

F which
is defined by the lateral boundary ηn−1

N , on which uN is defined. There, instead
of the transformed gradient, we have the standard gradient, and we can apply
Korn’s inequality in the usual way. However, since the Korn constant depends
on the domain, we will need a result which provides a universal Korn constant,
independent of the family of domains under consideration. Indeed, a result of this
kind was obtained in [32, 141, 119, 122], assuming certain domain regularity. In
particular, a calculation in [122] showed that the following Korn’s equality holds
for the space VF (t):

‖∇uN,n‖2
L2(Ω

η
n−1
N
F )

= 2‖D(uN,n)‖2
L2(Ω

η
n−1
N
F )

. (1.153)

Notice that the Korn constant (the number 2) is, indeed, domain independent. The
proof of this Korn equality, presented in [122], is similar to the proof in Chambolle
et al. [32], Lemma 6, pg. 377, with the slightly different assumptions. By using
(153) and by mapping everything back to the fixed domain ΩF , one recovers the
following Korn’s equality on ΩF :

2

∫

ΩF

(1 + ηn−1
N )|Dηn−1

N (unN )|2 =

∫

ΩF

(1 + ηn−1
N )|∇η

n−1

N (unN )|2. (1.154)

By summing equalities (154) for n =, 1 . . . , N , and by using (150), we get uniform
boundedness of (∇τ∆tηNuN )N∈N in L2((0, T )× ΩF ). �

From the uniform boundedness of approximate sequences, the following weak
and weak* convergence results follow.

Lemma 1.6.2. (Weak and weak* convergence results) There exist subsequences
(ηN )N∈N, (vN )N∈N, (v∗N )N∈N, (dN )N∈N, (V N )N∈N and (uN )N∈N, and the func-
tions η ∈ L∞(0, T ;H1

0 (0, 1)), v, v∗ ∈ L∞(0, T ;L2(0, 1)), d ∈ L∞(0, T ;VS), V ∈
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L∞(0, T ;L2(ΩS)), u ∈ L∞(0, T ;L2(ΩF )) and G ∈ L2((0, T )× ΩF ) such that

ηN ⇀ η weakly∗ in L∞(0, T ;H1
0 (0, 1)),

vN ⇀ v weakly∗ in L∞(0, T ;L2(0, 1)),
v∗N ⇀ v∗ weakly∗ in L∞(0, T ;L2(0, 1)),

dN ⇀ d weakly∗ in L∞(0, T ;H1(ΩS)),
V N ⇀ V weakly∗ in L∞(0, T ;L2(ΩS)),
uN ⇀ u weakly∗ in L∞(0, T ;L2(ΩF )),

∇τ∆tηNuN ⇀ G weakly in L2((0, T )× ΩF ).

(1.155)

Furthermore,

v = v∗. (1.156)

Proof. The only thing left to show is that v = v∗. For this purpose, we multiply the
second statement in Lemma 0.6.1 by ∆t, and notice again that ‖vN‖2L2((0,T )×(0,1)) =

∆t
∑N
n=1 ‖vnN‖2L2(0,1). This implies ‖vN −v∗N‖L2((0,T )×(0,1)) ≤ C

√
∆t, and we have

that in the limit, as ∆t→ 0, v = v∗. �
Naturally, our goal is to prove that G = ∇ηu. However, to achieve this

goal we will need some stronger convergence properties of approximate solutions.
Therefore, we postpone the proof until Section 0.6.7.

Strong convergence of approximate sequences

Due to the nonlinearity of our FSI problem, to show that the limits obtained in
the previous Lemma satisfy the weak form of problem (111)-(118), we will need to
show that the approximate sequences converge strongly in the appropriate function
spaces. The strong convergence results will be achieved by using the following
compactness result by Simon [134]:

Theorem 1.6.1. [134] Let X be a Banach space and F ↪→ Lq(0, T ;X) with 1 ≤ q <
∞. Then F is a relatively compact set in Lq(0, T ;X) if and only if

(i)
{∫ t2

t1

f(t)dt : f ∈ F
}

is relatively compact in X, 0 < t1 < t2 < T ,

(ii) ‖τhf − f‖Lq(h,T ;X) → 0 as h goes to zero, uniformly with respect to f ∈ F .

This result was used in [119] to show compactness, but the proof was sim-
pler because of the higher regularity of the lateral boundary of the fluid domain,
namely, of the fluid-structure interface. In the present case we need to obtain some
additional regularity for the fluid velocity uN on ΩF and its trace vN on the lateral
boundary, before we can use Theorem 0.6.1 to show strong convergence of approx-
imate sequences. Notice, we only have that our fluid velocity on ΩF is uniformly
bounded in L2(ΩF ), plus a condition that the transformed gradient ∇τ∆tηNuN is
uniformly bounded in L2. Since η is not Lipschitz, we cannot get that the gradient
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∇uN is uniformly bounded in L2 on ΩF . This lower regularity of ηN causes addi-
tional problems in obtaining regularity of uN on ΩF , namely it will imply lower
regularity of uN in the sense that u ∈ Hs(ΩF ), for 0 < s < 1/2, and not H1(ΩF ).
Luckily, according to the trace theorem in [120], this will still allow us to make
sense of the trace of uN on Γ. More precisely, we prove the following Lemma.

Lemma 1.6.3. The following statements hold:

1. (uN )N∈N is uniformly bounded in L2(0, T ;Hs(ΩF )), 0 < s < 1/2;

2. (vN )N∈N is uniformly bounded in L2(0, T ;Hs/2(0, 1)), 0 < s < 1/2.

Proof. We start by mapping the fluid velocity uN defined on ΩF , back to the
physical fluid domain with the lateral boundary τ∆tηN (t, z) = ηN (t −∆t, z). We
denote by uN (t, .) the fluid velocity on the physical domain Ωτ∆tηN :

uN (t, .) = uN (t, .) ◦A−1
τ∆tηN (t), N ∈ N.

As before, we use sub-script N to denote fluid velocity defined on the physical
space. From (109) we see that

∇uN = ∇τ∆tηNuN .

Proposition 0.6.6, statement 3, implies that the sequence (∇uN )N∈N is uniformly
bounded in L2, and so we have that ‖uN‖L2(0,T ;H1(Ωτ∆tη)) is uniformly bounded.

Now, from the fact that the fluid velocities uN defined on the physical do-
mains are uniformly bounded in H1, we would like to obtain a similar result for
the velocities uN defined on the reference domain ΩF . For this purpose, we recall
that the functions ηN , N ∈ N that are involved in the ALE mappings Aτ∆tηN (t),
N ∈ N, are uniformly bounded in H1(0, 1). This is, unfortunately, not sufficient
to obtain uniform boundedness of the gradients (∇uN )N∈N in L2(ΩF ). However,
from the Sobolev embedding H1(0, 1) ↪→ C0,1/2(0, 1) we have that the sequence
(ηN )N∈N is uniformly bounded in L∞(0, T ;C0,1/2(0, 1)). This will help us obtain
uniform boundedness of (uN )n∈N in a slightly lower-regularity space, namely in
the space L2(0, T ;Hs(ΩF )), 0 < s < 1/2. To see this, we first notice that uN on
ΩF can be expressed in terms of function uN defined on Ωτ∆tηN as

uN (t, z̃, r̃) = uN (t, z̃, (1 + τ∆tηN )(t, z̃))r̃), (z̃, r̃) ∈ ΩF . (1.157)

Therefore, uN can be written as an H1-function uN composed with a C0,1/2-
function ηN , in the way described in (157). The following Lemma, proved in [120],
implies that uN belongs to a space with asymmetric regularity (more regular in
r̃ than in z̃) in the sense that uN ∈ L2(0, 1;Hs(0, 1)), 0 < s < 1/2, and ∂r̃uN ∈
L2(0, 1;L2(0, 1)). We use notation from Lions and Magenes [112], pg. 10, to denote
the corresponding function space by

W (0, 1; s) = {f : f ∈ L2(0, 1;Hs(0, 1))), ∂r̃f ∈ L2(0, 1;L2(0, 1))}.

More precisely, Lemma 3.3 from [120] states the following:
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Lemma 1.6.4. [120] Let η ∈ C0,α, 0 < α < 1, and let u ∈ H1(Ωη). Define

ũ(r̃, z̃) = u(z̃, (1 + η(z̃))r̃), (z̃, r̃) ∈ ΩF . (1.158)

Then ũ ∈W (0, 1; s) for 0 < s < α.

Thus, Lemma 0.6.4 implies that uN (t, .) ∈ W (0, 1; s) for 0 < s < 1/2. Now,
using the fact W (0, 1; s) ↪→ Hs(ΩF ) we get

‖uN (t, .)‖2Hs(ΩF ) ≤ C‖uN (t, .)‖2H1(Ωη(t−∆t))
, a.a. t ∈ (0, T ), 0 < s < 1/2.

By integrating the above inequality w.r.t. t we get the first statement of Lemma 0.6.3.
To prove the second statement of Lemma 0.6.3 we use Theorem 3.1 of [120],

which states that the notion of trace for the functions of the form (157) for which
uN ∈ H1 and ηN ∈ C0,1/2, can be defined in the sense of Hs/2, 0 < s < 1/2. For
completeness, we state Theorem 3.2 of [120] here.

Theorem 1.6.2. [120] Let α < 1 and let η be such that

η ∈ C0,α(0, 1), η(z) ≥ ηmin > −1, z ∈ [0, 1], η(0) = η(1) = 1.

Then, the trace operator

γη : C1(Ωη)→ C(Γ)

that associates to each function u ∈ C1(Ωη) its “Lagrangian trace” u(z̃, 1+η(z̃)) ∈
C(Γ), defined via (158) for r̃ = 1,

γη : u 7→ u(z̃, 1 + η(z̃)),

can be extended by continuity to a linear operator from H1(Ωη) to Hs(Γ) for
0 ≤ s < α/2.

By recalling that vN = (uN )|Γ, this proves the second statement of Lemma 0.6.3.
�

Notice that the difficulty associated with bounding the gradient of uN is
somewhat artificial, since the gradient of the fluid velocity uN defined on the
physical domain is, in fact, uniformly bounded (by Proposition 0.6.6). Namely,
the difficulty is imposed by the fact that we decided to work with the problem
defined on a fixed domain ΩF , and not on the family of moving domains. This
decision, however, simplifies other parts of the main existence proof. The “expense”
that we had to pay for this decision is embedded in the proof of Lemma 0.6.3.

We are now ready to use Theorem 0.6.1 to prove compactness of the sequences
(vN )N∈N and (uN )N∈N.

Theorem 1.6.3. Sequences (vN )N∈N and (uN )N∈N are relatively compact in L2(0, T ;L2(0, 1))
and L2(0, T ;L2(ΩF )), respectively.
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Proof. We use Theorem 0.6.1 with q = 2, and X = L2. We verify that both
assumptions (i) and (ii) hold.

Assumption (i): To show that the sequences (vN )N∈N and (uN )N∈N are rela-
tively compact in L2(0, 1) and L2(ΩF ), respectively, we use Lemma 0.6.3 and the
compactness of the embeddings Hs(ΩF ) ↪→ L2(ΩF ) and Hs/2(0, 1) ↪→ L2(0, 1),
respectively, for 0 < s < 1/2. Namely, from Lemma 0.6.3 we know that se-
quences (uN )N∈N and (vN )N∈N are uniformly bounded in L2(0, T ;Hs(ΩF )) and
L2(0, T ;Hs/2(0, 1)), respectively, for 0 < s < 1/2. The compactness of the em-
beddings Hs(ΩF ) ↪→ L2(ΩF ) and Hs/2(0, 1) ↪→ L2(0, 1) verify Assumption (i) of
Theorem 0.6.1.

Assumption (ii): We prove that the “integral equicontinuity”, stated in as-
sumption (ii) of Theorem 0.6.1, holds for the sequence (vN )N∈N. Analogous rea-
soning can be used for (uN )N∈N. Thus, we want to show that for each ε > 0, there
exists a δ > 0 such that

‖τhvN − vN‖2L2(ω;L2(0,1)) < ε, ∀|h| < δ, independently of N ∈ N, (1.159)

where ω is an arbitrary compact subset of Ω. Indeed, we will show that for each
ε > 0, the following choice of δ:

δ := min{dist(ω, ∂Ω)/2, ε/(2C)}

provides the desired estimate, where C is the constant from Lemma 0.6.1 (inde-
pendent of N).

Let h be an arbitrary real number whose absolute value is less than δ. We
want to show that (159) holds for all ∆t = T/N . This will be shown in two steps.
First, we will show that (159) holds for the case when ∆t ≥ h (Case 1), and then
for the case when ∆t < h (Case 2).

A short remark is in order: For a given δ > 0, we will have ∆t < δ for
infinitely many N , and both cases will apply. For a finite number of functions
(vN ), we will, however, have that ∆t ≥ δ. For those functions (159) needs to be
proved for all ∆t such that |h| < δ ≤ ∆t, which falls into Case 1 bellow. Thus,
Cases 1 and 2 cover all the possibilities.

Case 1: ∆t ≥ h. We calculate the shift by h to obtain (see Figure 11, left):

‖τhvN − vN‖2L2(ω;L2(0,1)) ≤
N−1∑

j=1

∫ j∆t

j∆t−h
‖vjN − vj+1

N ‖2L2(0,1) =

= h
N−1∑

j=1

‖vjN − vj+1
N ‖2L2(0,1) ≤ hC < ε/2 < ε.

The last inequality follows from |h| < δ ≤ ε/(2C).



72 Chapter 1. Fluid-Multi-Layered Structure Interaction

Figure 1.11: Left panel–Case 1: ∆t ≥ h. The graph of vN is shown in solid line,
while the graph of the shifted function τhvN is shown in dashed line. The shaded
area denotes the non-zero contributions to the norm ‖τhvN −vN‖2L2 . Right panel–
Case2: ∆t < h = ∆t+ s, 0 < s < ∆t. The graph of vN is shown in solid line, while
the graph of the shifted function τhvN is shown in the dashed line. The shaded
areas denote non-zero contributions to the norm ‖τhvN − vN‖2L2 . The two colors
represent the contributions to the first and second integral in (160) separately.

Case 2: ∆t < h. In this case we can write h = l∆t+ s for some l ∈ N, 0 < s ≤ ∆t.
Similarly, as in the first case, we get (see Figure 11, right):

‖τhvN − vN‖2L2(ω;L2(0,1)) =

N−l−1∑

j=1

( ∫ (j+1)∆t−s

j∆t

‖vjN − vj+lN ‖2L2(0,1)

+

∫ (j+1)∆t

(j+1)∆t−s
‖vjN − vj+l+1

N ‖2L2(0,1)

)
.

(1.160)

Now we use the triangle inequality to bound each term under the two integrals
from above by

∑l+1
i=1 ‖v

j+i−1
N −vj+iN ‖2L2(0,1). After combining the two terms together

one obtains

‖τhvN − vN‖2L2(ω;L2(0,1)) ≤ ∆t
N−l−1∑

j=1

l+1∑

i=1

‖vj+i−1
N − vj+iN ‖2L2(0,1). (1.161)

Lemma 0.6.1 now impies that the right hand-side of (161) is bounded by ∆t(l+1)C.
Now, since h = l∆t+ s we see that ∆t ≤ h/l, and so the right hand-side of (161)
is bounded by l+1

l hC. Since |h| < δ and from the form of δ we get

‖τhvN − vN‖2L2(ω;L2(0,1)) ≤ ∆t(l + 1)C ≤ l + 1

l
hC ≤ l + 1

l

ε

2
< ε.

Thus, if we set ω = [δ/2, T − δ/2] we have shown:

‖τδ/2vN − vN‖2L2(δ/2,T−δ/2;L2(0,1)) < ε, N ∈ N.
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To show that condition (ii) from Theorem 0.6.1 holds it remains to estimate
‖τδ/2vN−vN‖2L2(T−δ/2,T ;L2(0,1)). From the first inequality in Lemma 0.6.1 (bound-

edness of v
n+ i

2

N , i = 1, 2 in L2(0, 1)) we have

∫ T

T−δ/2
‖τδ/2vN − vN‖2L2(0,1) ≤

δ

2
2C < ε, N ∈ N.

Thus, we have verified all the assumptions of Theorem 0.6.1, and so the
compactness result for (vN )N∈N follows from Theorem 0.6.1. Similar arguments
imply compactness of (uN )N∈N. �

To show compactness of (ηN )N∈N we use the approach similar to that in
[119], except that, due to the weaker regularity properties of ηN , we will have
to use different embedding results (Hilbert interpolation inequalities). In the end,
compactness of the sequence of lateral boundary approximation will follow due to
the Arzelà- Ascoli Theorem.

As in [119], we start by introducing a slightly different set of approximate
functions of u, v, η and V . Namely, for each fixed ∆t (or N ∈ N), define ũN , η̃N ,
ṽN and Ṽ N to be continuous, linear on each sub-interval [(n − 1)∆t, n∆t], and
such that for n = 0, . . . , N :

ũN (n∆t, .) = uN (n∆t, .), ṽN (n∆t, .) = vN (n∆t, .),

η̃N (n∆t, .) = ηN (n∆t, .), Ṽ N (n∆t, .) = V N (n∆t, .),
(1.162)

See Figure 12. A straightforward calculation gives the following inequalities (see

Figure 1.12: A sketch of ũN .
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[138], p. 328)

‖vN − ṽN‖2L2(0,T ;L2(0,1)) ≤
∆t

3

N∑

n=1

‖vn+1 − vn‖2L2(0,1),

‖uN − ũN‖2L2(0,T ;L2(ΩF )) ≤
∆t

3

N∑

n=1

‖un+1 − un‖2L2(ΩF ),

‖ηN − η̃N‖2L2(0,T ;L2(0,1)) ≤
∆t

3

N∑

n=1

‖ηn+1 − ηn‖2L2(0,1),

‖V N − Ṽ N‖2L2(0,T ;L2(ΩS)) ≤
∆t

3

N∑

n=1

‖V n+1 − V n‖2L2(ΩS),

(1.163)

Now from

∂tη̃N (t) =
ηn+1 − ηn

∆t
=
ηn+1/2 − ηn

∆t
= vn+ 1

2 , t ∈ (n∆t, (n+ 1)∆t),

since v∗N was defined in (148) as a piece-wise constant function defined via v∗N (t, ·) =

vn+ 1
2 , for t ∈ (n∆t, (n+ 1)∆t], we see that

∂tη̃N = v∗N a.e. on (0, T ). (1.164)

Lemma 0.6.1 (the boundedness of E
n+ i

2

N ) then implies

(η̃N )N∈N is bounded in L∞(0, T ;H1
0 (0, 1)) ∩W 1,∞(0, T ;L2(0, 1)).

We now use the following result on continuous embeddings:

L∞(0, T ;H1
0 (0, 1)) ∩W 1,∞(0, T ;L2(0, 1)) ↪→ C0,1−α([0, T ];Hα(0, 1)), (1.165)

for 0 < α < 1. This result follows from the standard Hilbert interpolation inequal-
ities, see [112]. A slightly different result (assuming higher regularity) was also
used in [78] to deal with a set of mollifying functions approximating a solution to a
moving-boundary problem between a viscous fluid and an elastic plate. From (165)
we see that (η̃N )N∈N is also bounded (uniformly in N) in C0,1−α([0, T ];Hα(0, 1)).
Now, from the continuous embedding of Hα(0, 1) into Hα−ε, and by applying
the Arzelà-Ascoli Theorem, we conclude that sequence (η̃N )N∈N has a convergent
subsequence, which we will again denote by (η̃N )N∈N, such that

η̃N → η̃ in C([0, T ];Hs(0, 1)), 0 < s < 1.

Since (163) implies that (η̃N )N∈N and (ηN )N∈N have the same limit, we have
η = η̃ ∈ C([0, T ];Hs(0, 1)), where η is the weak* limit of (ηN )N∈N, discussed in
(155). Thus, we have

η̃N → η in C([0, T ];Hs(0, 1)), 0 < s < 1.

We can now prove the following Lemma:
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Lemma 1.6.5. ηN → η in L∞(0, T ;Hs(0, 1)), 0 < s < 1.

Proof. The proof is similar to the proof of Lemma 3 in [119]. The result follows
from the continuity in time of η, and from the fact that η̃N → η in C([0, T ];Hs(0, 1)),
for 0 < s < 1, applied to the inequality

‖ηN (t)− η(t)‖Hs(0,1) = ‖ηN (t)− η(n∆t) + η(n∆t)− η(t)‖Hs(0,1)

= ‖ηN (n∆t)− η(n∆t) + η(n∆t)− η(t)‖Hs(0,1)

≤ ‖ηN (n∆t)− η(n∆t)‖+ ‖η(n∆t)− η(t)‖Hs(0,1)

= ‖η̃N (n∆t)− η(n∆t)‖Hs(0,1) + ‖η(n∆t)− η(t)‖Hs(0,1).

�

The strong convergence results obtained in Theorem 0.6.3 and Lemma 0.6.5
can be summarized as follows: there exist subsequences (uN )N∈N, (vN )N∈N and
(ηN )N∈N such that

uN → u in L2(0, T ;L2(ΩF )),
vN → v in L2(0, T ;L2(0, 1)),

τ∆tuN → u in L2(0, T ;L2(ΩF )),
τ∆tvN → v in L2(0, T ;L2(0, 1)),

ηN → η in L∞(0, T ;Hs(0, 1)), 0 ≤ s < 1.

(1.166)

Because of the uniqueness of derivatives, we also have v = ∂tη in the sense of dis-
tributions. The statements about the convergence of (τ∆tuN )N∈N and (τ∆tvN )N∈N
follow directly from

‖τ∆tuN − uN‖2L2((0,T )×ΩF ) + ‖τ∆tvN − vN‖2L2((0,T )×(0,1)) ≤ C∆t, (1.167)

which is obtained after multiplying the third equality of Lemma 0.6.1 by ∆t.
Furthermore, one can also show that subsequences (ṽN )N , (ũN )N and (Ṽ N )N

also converge to v, u and V respectively. More precisely,

ũN → u in L2(0, T ;L2(ΩF )),
ṽN → v in L2(0, T ;L2(0, 1)),

Ṽ N ⇀ V weakly∗ in L∞(0, T ;L2(ΩS))
(1.168)

This statement follows directly from the inequalities (163) and Lemma 0.6.1, which
provides uniform boundedness of the sums on the right hand-sides of the inequal-
ities.

We conclude this section by showing one last convergence result that will be
used in the next section to prove that the limiting functions satisfy weak formu-
lation of the FSI problem. Namely, we want to show that

ηN → η in L∞(0, T ;C[0, 1]),
τ∆tηN → η in L∞(0, T ;C[0, 1]).

(1.169)
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The first statement is a direct consequence of Lemma 0.6.5 in which we proved
that ηN → η in L∞(0, T ;Hs(0, 1)), 0 < s < 1. For s > 1

2 this implies

ηN → η in L∞(0, T ;C[0, 1]). (1.170)

To show convergence of the shifted displacements τ∆tηN to the same limiting
function η, we recall that

η̃N → η in C([0, T ];Hs[0, L]), 0 < s < 1,

and that (η̃N )N∈N is uniformly bounded in C0,1−α([0, T ];Hα(0, 1)), 0 < α <
1. Uniform boundeness of (η̃N )N∈N in C0,1−α([0, T ];Hα(0, 1)) implies that there
exists a constant C > 0, independent of N , such that

‖η̃N ((n− 1)∆t)− η̃N (n∆t)‖Hα(0,1) ≤ C|∆t|1−α.

This means that for each ε > 0, there exists an N1 > 0 such that

‖η̃N ((n− 1)∆t)− η̃N (n∆t)‖Hα(0,1) ≤
ε

2
, for all N ≥ N1.

Here, N1 is chosen by recalling that ∆t = T/N , and so the right hand-side implies
that we want an N1 such that

C

(
T

N

)1−α
<
ε

2
for all N ≥ N1.

Now, convergence η̃N → η in C([0, T ];Hs[0, 1]), 0 < s < 1, implies that for each
ε > 0, there exists an N2 > 0 such that

‖η̃N (n∆t)− η(t)‖Hs(0,1) <
ε

2
, for all N ≥ N2.

We will use this to show that for each ε > 0 there exists an N∗ ≥ max{N1, N2},
such that

‖τ∆tη̃N (t)− η(t)‖Hs(0,1) < ε, for all N ≥ N∗.
Indeed, let t ∈ (0, T ). Then there exists an n such that t ∈ ((n − 1)∆t, n∆t]. We
calculate

‖τ∆tη̃N (t)− η(t)‖Hs(0,1) = ‖τ∆tη̃N (t)− η̃N (n∆t) + η̃N (n∆t)− η(t)‖Hs(0,1)

= ‖η̃N ((n− 1)∆t)− η̃N (n∆t) + η̃N (n∆t)− η(t)‖Hs(0,1)

≤ ‖η̃N ((n− 1)∆t)− η̃N (n∆t)‖Hs(0,1) + ‖η̃N (n∆t)− η(t)‖Hs(0,1).

The first term is less than ε/2 by the uniform boundeness of (η̃N )N∈N in C0,1−α([0, T ];Hα(0, 1)),
while the second term is less than ε/2 by the convergence of η̃N to η in C([0, T ];Hs[0, 1]), 0 <
s < 1.

Now, since τ∆tη̃N = ˜(τ∆tηN ), we can use the same argument as in Lemma 0.6.5

to show that sequences ˜(τ∆tηN ) and τ∆tηN both converge to the same limit η in
L∞(0, T ;Hs(0, 1)), for 0 < s < 1.
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1.6.7 The limiting problem and weak solution

Next we want to show that the limiting functions satisfy the weak form (139) of
the full fluid-structure iteration problem. In this vein, one of the things that needs
to be considered is what happens in the limit as N → ∞, i.e., as ∆t → 0, of the
weak form of the fluid sub-problem (146). Before we pass to the limit we must
observe that, unfortunately, the velocity test functions in (146) depend of N ! More
precisely, they depend on ηnN because of the requirement that the transformed
divergence-free condition ∇ηnN · q = 0 must be satisfied. This is a consequence of
the fact that we mapped our fluid sub-problem onto a fixed domain ΩF . Therefore,
we need to take special care when constructing suitable velocity test functions and
passing to the limit in (146).

1.6.8 Construction of the appropriate test functions

We begin by recalling that test functions (q, ψ,ψ) for the limiting problem are
defined by the space Q, given in (133), which depends on η. Similarly, the test
spaces for the approximate problems depend on N through the dependence on ηN .

To deal with the dependence of test functions on N , we follow the same ideas
as those presented in [32, 119]. We restrict ourselves to a dense subset X of all test
functions in Q that is independent of ηN even for the approximate problems. We
construct the set X to consist of the test functions (q, ψ,ψ) ∈ X = XF ×XW ×XS ,
such that the velocity components q ∈ XF are smooth, independent of N , and
∇ · q = 0. Such functions can be constructed as an algebraic sum of the functions
q0 that have compact support in Ωη ∪ Γin ∪ Γout ∪ Γb, plus a function q1, which
captures the behavior of the solution at the boundary Γη. More precisely, let Ωmin
and Ωmax denote the fluid domains associated with the radii Rmin and Rmax,
respectively.

1. Definition of test functions (q0, 0,0) on (0, T ) × Ωmax × ΩS : Consider all
smooth functions q with compact support in Ωη ∪ Γin ∪ Γout ∪ Γb, and such
that ∇ · q = 0. Then we can extend q by 0 to a divergence-free vector field
on (0, T )× Ωmax. This defines q0.

Notice that since ηN converge uniformly to η, there exists an Nq > 0
such that supp(q0) ⊂ Ωτ∆tηN , ∀N ≥ Nq. Therefore, q0 is well defined on
infinitely many approximate domains Ωτ∆tηN .

2. Definition of test functions (q1, ψ,ψ) on (0, T ) × Ωmax × ΩS : Consider ψ ∈
C1
c ([0, T );H2

0 (0, 1)). Define

q1 :=





A constant extension in the vertical
direction of ψer on Γη : q1 := (0, ψ(z))T ;
Notice divq1 = 0.



 on Ωmax \ Ωmin,

A divergence− free extension to Ωmin
(see, e.g. [75], p. 127).

}
on Ωmin.
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From the construction it is clear that q1 is also defined on Ωτ∆tηN for each N ,
and so it can be mapped onto the reference domain Ω by the transformation
Aτ∆tηN . We take ψ ∈ H1(ΩS) such that ψ(t, z, 1) = ψ(t, z).

For any test function (q, ψ,ψ) ∈ Q it is easy to see that the velocity component
q can then be written as q = q− q1 + q1, where q− q1 can be approximated by
divergence-free functions q0 that have compact support in Ωη ∪ Γin ∪ Γout ∪ Γb.
Therefore, one can easily see that functions (q, ψ) = (q0 + q1, ψ) in X satisfy the
following properties:

• X is dense in the space Q of all test functions defined on the physical, moving
domain Ωη, defined by (133); furthermore, ∇ · q = 0,∀q ∈ XF .

• For each q ∈ XF , define
q̃ = q ◦Aη.

The set {(q̃, ψ,ψ)|q̃ = q ◦ Aη,q ∈ XF , ψ ∈ XS , ψ ∈ XS} is dense in the
space Qη of all test functions defined on the fixed, reference domain ΩF ,
defined by (138).

• For each q ∈ XF , define
qN := q ◦Aτ∆tηN .

Functions qN are defined on the fixed domain ΩF , and they satisfy ∇τ∆tηN ·
qN = 0.

Functions qN will serve as test functions for approximate problems associated
with the sequence of domains Ωτ∆tηN , while functions q̃ will serve as test functions
associated with the domain Ωη. Both sets of test functions are defined on ΩF .

Lemma 1.6.6. For every (q, ψ,ψ) ∈ X we have qN → q̃ uniformly in L∞(0, T ;C(ΩF )).

Proof. By the Mean-Value Theorem we get:

|qN (t, z, r)− q̃(t, z, r)| = |q(t, z, (1 + τ∆tηN )r)− q(t, z, (1 + η)r)|
= |∂rq(t, z, ζ)r| |η(t, z)− ηN (t−∆t, z)|.

The uniform convergence of qN follows from the uniform convergence of ηN , since
q are smooth. �

We are now ready to identify the weak limit G from Lemma 0.6.2.

Proposition 1.6.7. G = ∇ηu, where G, u and η are the weak and weak* limits
given by Lemma 0.6.2.

Proof. As in Lemma 0.6.3, it will be helpful to map the approximate fluid velocities
and the limiting fluid velocity onto the physical domains. For this purpose, we
introduce the following functions

uN (t, .) = uN (t, .) ◦A−1
τ∆tηN (t), ũ(t, .) = u(t, .) ◦A−1

η (t),

χN f(t,x) =

{
f , x ∈ Ωτ∆tηN (t)
0, x /∈ Ωτ∆tηN (t)

, χf(t,x) =

{
f , x ∈ Ωη(t)
0, x /∈ Ωη(t)

,
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where A is the ALE mapping defined by (106), η is the weak* limit ηN ⇀
η in L∞(0, T ;H1

0 (0, 1)) satisfying the uniform convergence property (169), and
f is an arbitrary function defined on the physical domain. Notice, again, that su-
perscript N is used to denote a function defined on the physical domain, while
subscript N is used denote a function defined on the fixed domain ΩF .

The proof consists of three main steps: (1) we will first show that χNuN → χũ
strongly in L2((0, T )×Ωmax), then, by using step (1), we will show (2) χN∇uN →
χ∇ũ weakly in L2((0, T ) × Ωmax), and, finally by using (2) we will show (3)∫ T

0

∫
ΩF

G : q̃ =
∫ T

0

∫
ΩF
∇ηu : q̃ for every test function q̃ = q ◦Aη.

STEP 1. We will show that ‖χNuN −χũ‖L2((0,T )×Ωmax) → 0. To achieve this
goal, we introduce the following auxiliary functions

ũN (t, .) = uN (t, .) ◦A−1
η (t),

which will be used in the following estimate

‖χNuN−χũ‖L2((0,T )×Ωmax) ≤ ‖χNuN−χũN‖L2((0,T )×Ωmax)+‖χũN−χũ‖L2((0,T )×Ωmax).

The second term on the right-hand side converges to zero because of the strong
convergence of uN to u on the reference domain ΩF , namely,

‖χũN − χũ‖2L2(Ωmax) =

∫

ΩF

(1 + η)|uN − u|2 → 0.

Figure 1.13: A sketch of the fluid domains in STEP 1.

To show that the first term on the right-hand side converges to zero, first
notice that

∫ T

0

∫

Ωmax

|χũN−χNuN |2 = (

∫ T

0

∫

Ωη(t)4Ωτ∆tηN (t)

+

∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

)|χũN−χNuN |2.

Here A∆B := (A∪B)\(A∩B). See Figure 13. Because of the uniform convergence
(169) we can make the measure |Ωη(t)4Ωτ∆tηN (t)| arbitrary small. Furthermore,
by Propostions 0.6.5 and 0.6.6 we have that the sequence (χũN − χNuN )N∈N is
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uniformly bounded in L2((0, T ) × Ωmax). Therefore, for every ε > 0, there exists
an N0 ∈ N such that for every N ≥ N0 we have

∫ T

0

∫

Ωη(t)4Ωτ∆tηN (t)

|χũN − χNuN |2 < ε

2
. (1.171)

To estimate the second term, we need to measure the relative difference between
the function uN composed with A−1

η (t), denoted by ũN , and the same function

uN composed with A−1
τ∆tηN (t), denoted by uN . We will map them both on the

same domain and work with one function uN , while the convergence of the L2-
integral will be obtained by estimating the difference in the ALE mappings. More
precisely, we introduce the set ω = A−1

η (Ωη(t) ∩ Ωτ∆tηN (t)) ⊂ ΩF . Now, we use

the properties of the ALE mapping Aη and the definitions of ũN , uN to get

∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

|χũN −χNuN |2 =

∫ T

0

∫

ω

1

1 + η
|uN −uN ◦A−1

τ∆tηN (t) ◦Aη(t)|2

=

∫ T

0

∫

ω

1

1 + η(t, z)
|uN (t, z, r)− uN (t, z,

1 + η(t, z)

1 + τ∆tηN (t, z)
r)|2

=

∫ T

0

∫

ω

∣∣∣∣∂ruN (t, z, ζ)r

(
1− 1 + η(t, z)

1 + τ∆tηN (t, z)

)∣∣∣∣
2

Now because of the uniform convergence (169) of the sequence (τ∆tηN )N∈N, and
the uniform boundedness of (‖∂ruN‖L2(ΩF ))N∈N, which is consequence of Propo-
sition 0.6.6, we can take N1 ≥ N0 such that

∫ T

0

∫

Ωη(t)∩Ωτ∆tηN (t)

|χũN − χNuN |2 < ε

2
, N ≥ N1.

This inequality, together with (171) proofs that χNuN → χũ strongly in L2((0, T )×
Ωmax).

STEP 2. We will now show that χN∇uN ⇀ χ∇ũ weakly in L2((0, T )× Ωmax).
First notice that from

∇uN = ∇τ∆tηNuN

and from uniform boundedness of (∇τ∆tηNuN )N∈N in L2((0, T )×ΩF ), established
in Proposition 0.6.6, we get that the sequence (χN∇uN )N∈N converges weakly in
L2((0, T )×Ωmax). Let us denote the weak limit of (χN∇uN )N∈N by G̃. Therefore,

∫ T

0

∫

Ωmax

G̃ · φ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN · φ, φ ∈ C∞c ((0, T )× Ωmax).

We want to show that G̃ = χ∇ũ.
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For this purpose, we first consider the set (Ωmax\Ωη(t)) and show that G̃ = 0

there, and then the set Ωη(t) and show that G̃ = ∇ũ there.

Let φ be a test function such that suppφ ⊂ (0, T )×
(

Ωmax \ Ωη(t)
)

. Using

the uniform convergence of the sequence τ∆tηN , obtained in (169), there exists an
Nφ such that χN (x) = 0, N ≥ Nφ, x ∈ suppφ. Therefore, we have

∫ T

0

∫

Ωmax

G̃ · φ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN · φ = 0.

Thus, G̃ = 0 on (0, T )×
(

Ωmax \ Ωη(t)
)

.

Now, let us take a test function ψ such that suppψ ⊂ (0, T )× Ωη(t). Again
using the same argument as before, as well as the uniform convergence of the
sequence τ∆tηN , obtained in (169), we conclude that there exists an Nψ such that
χN (x) = 1, N ≥ Nψ, x ∈ suppψ. Therefore, we have

∫ T

0

∫

Ωmax

G̃ ·ψ = lim
N→∞

∫ T

0

∫

Ωmax

χN∇uN ·ψ = lim
N→∞

∫ T

0

∫

Ωη(t)

∇uN ·ψ.

From the strong convergence χNuN → χũ obtained in STEP 1, we have that on
the set suppψ, uN → ũ in the sense of distributions, and so, on the same set
suppψ, ∇uN → ∇ũ in the sense of distributions. Therefore we have

∫ T

0

∫

Ωmax

G̃ ·ψ = lim
N→∞

∫ T

0

∫

Ωη(t)

∇uN ·ψ =

∫ T

0

∫

Ωη(t)

∇ũ ·ψ.

Since this conclusion holds for all the test functions ψ supported in (0, T )×Ωη(t),

from the uniqueness of the limit, we conclude G̃ = ∇ũ in (0, T )× Ωη(t).
Therefore, we have shown that

χN∇uN ⇀ χ∇ũ weakly in L2((0, T )× Ωmax).

STEP 3. We want to show that
∫ T

0

∫
ΩF

G : q̃ =
∫ T

0

∫
ΩF
∇ηu : q̃ for every test

function q̃ = q◦Aη, q ∈ XF . This will follow from STEP 2, the uniform bounded-
ness and convergence of the gradients ∇τ∆tηN ũN provided by Lemma 0.6.2, and
from the strong convergence of the test functions qN → q̃ provided by Lemma
0.6.6. More precisely, we have that for every q̃ = q ◦Aη, q ∈ XF

∫ T

0

∫

ΩF

G : q̃ = lim
N→∞

∫ T

0

∫

ΩF

∇τ∆tηNuN : qN

= lim
N→∞

∫ T

0

∫

Ωmax

1

1 + τ∆tηN
χN∇uN : q =

∫ T

0

∫

Ωη

1

1 + η
∇ũ : q =

∫ T

0

∫

ΩF

∇ηu : q̃.

Here, we have used from (110) that ∇uN = ∇τ∆tηNuN , and ∇ũ = ∇ηu. This
completes proof. �
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Corollary 1.6.1. For every (q, ψ,ψ) ∈ X we have

∇τ∆tηNqN → ∇ηq̃, in L2((0, T )× ΩF ).

Proof. Since τ∆tηNqN and q̃ are the test functions for the velocity fields, the same
arguments as in Proposition 0.6.7 provide weak convergence of (∇τ∆tηNqN )N∈N.
To prove strong convergence it is sufficient to prove the convergence of norms
‖∇τ∆tηNqN‖L2(ΩF ) → ‖∇ηq̃‖L2(ΩF ). This can be done, by using the uniform con-
vergence of (τ∆tηN )N∈N, in the following way:

‖∇τ∆tηNqN‖2L2(ΩF ) =

∫ T

0

∫

Ωmax

χN
1

1 + τ∆tηN
|∇q|2 →

∫ T

0

∫

Ωmax

χ
1

1 + η
|∇q|2

=

∫ T

0

∫

ΩF

|∇ηq̃|2 = ‖∇ηq̃‖2L2(ΩF ).

The notation used here is analogous to that used in the proof of Proposition 0.6.7.
�

Before we can pass to the limit in the weak formulation of the approximate
problems, there is one more useful observation that we need. Namely, notice that
although q are smooth functions both in the spatial variables and in time, the
functions qN are discontinuous at n∆t because τ∆tηN is a step function in time.
As we shall see below, it will be useful to approximate each discontinuous function
qN in time by a piece-wise constant function, q̄N , so that

q̄N (t, .) = q(n∆t−, .), t ∈ [(n− 1)∆t, n∆t), n = 1, . . . , N,

where qN (n∆t−) is the limit from the left of qN at n∆t, n = 1, . . . , N . By using
Lemma 0.6.6, and by applying the same arguments in the proof of Lemma 0.6.5,
we get

q̄N → q̃ uniformly on [0, T ]× Ω.

Passing to the limit

To get to the weak formulation of the coupled problem, take the test functions
(ψ(t),ψ(t)) ∈ XW × XS as the test functions in the weak formulation of the
structure sub-problem (143) and integrate the weak formulation (143) with respect
to t from n∆t to (n + 1)∆t. Notice that the construction of the test functions is
done in such a way that (ψ(t),ψ(t)) do not depend on N , and are continuous.
Then, consider the weak formulation (146) of the fluid sub-problem and take the
test functions (qN (t), ψ(t)) (where qN = q ◦Aτ∆tηN , q ∈ XF ). Integrate the fluid
sub-problem (146) with respect to t from n∆t to (n + 1)∆t. Add the two weak
formulations together, and take the sum from n = 0, . . . , N − 1 to get the time



1.6. Existence of a Weak Solution 83

integrals over (0, T ) as follows:

∫ T

0

∫

ΩF

(1 + τ∆t ηN )
(
∂tũN · qN +

1

2
(τ∆tuN −wN ) · ∇τ∆tηNuN · qN

−1

2
(τ∆tuN −wN ) · ∇τ∆tηNqN · uN

)
+

1

2

∫ T

0

∫

ΩF

v∗NuN · qN

+

∫ T

0

∫

ΩF

(1 + τ∆tηN )2Dτ∆tηN (uN) : Dτ∆tηN (qN ) +

∫ T

0

∫ 1

0

∂tṽNψ

+

∫ T

0

∫ 1

0

∂zηN∂zψ +

∫ T

0

∫

ΩS

∂tṼ N ·ψ +

∫ T

0

∫

ΩS

aS(dN ,ψ)

=

∫ T

0

PNindt

∫ 1

0

qz(t, 0, r)dr −
∫ T

0

PNoutdt

∫ 1

0

qz(t, L, r)dr,

(1.172)

with
∇τ∆tη · uN = 0, vN = ((ur)N )|Γ, ηN = (dN )|Γ,

uN (0, .) = u0, η(0, .)N = η0, vN (0, .) = v0.
(1.173)

Here ũN , ṽN and Ṽ N are the piecewise linear functions defined in (162), τ∆t is
the shift in time by ∆t to the left, defined in (151), ∇τ∆tηN is the transformed
gradient via the ALE mapping Aτ∆tηN , defined in (110), and v∗N , uN , vN , ηN , dN
and V N are defined in (148).

Using the convergence results obtained for the approximate solutions in Sec-
tion 0.6.6, and the convergence results just obtained for the test functions qN , we
can pass to the limit directly in all the terms except in the term that contains
∂tũN . To deal with this term we notice that, since qN are smooth on sub-intervals
(j∆t, (j + 1)∆t), we can use integration by parts on these sub-intervals to obtain:

∫ T

0

∫

ΩF

(1 + τ∆tηN )∂tũN · qN =

N−1∑

j=0

∫ (j+1)∆t

j∆t

∫

ΩF

(1 + ηjN )∂tũN · qN

=

N−1∑

j=0

(
−
∫ (j+1)∆t

j∆t

∫

ΩF

(1 + τ∆tηN )ũN · ∂tqN

+

∫

ΩF

(1 + ηj+1− ηj+1 + ηj)uj+1
N ·qN ((j+ 1)∆t−)−

∫

ΩF

(1 + ηj)ujN ·qN (j∆t+)
)
.

(1.174)
Here, we have denoted by qN ((j + 1)∆t−) and qN (j∆t+) the limits from the left
and right, respectively, of qN at the appropriate points.
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The integral involving ∂tqN can be simplified by recalling that qN = q◦AηN ,
where ηN are constant on each sub-interval (j∆t, (j + 1)∆t). Thus, by the chain
rule, we see that ∂tqN = ∂tq on (j∆t, (j + 1)∆t). After summing over all j =
0, ..., N − 1 we obtain

−
N−1∑

j=0

∫ (j+1)∆t

j∆t

∫

ΩF

(1 + τ∆tηN )ũN · ∂tqN = −
∫ T

0

∫

ΩF

(1 + τ∆tηN )ũN · ∂tq.

To deal with the last two terms in (174) we calculate

N−1∑

j=0

(∫

ΩF

(1+ηj+1
N −ηj+1

N +ηjN )uj+1
N ·qN ((j+1)∆t−)−

∫

ΩF

(1+ηjN )ujN ·qN (j∆t+)
)

=
N−1∑

j=0

∫

ΩF

(
(1 + ηj+1

N )uj+1
N · qN ((j + 1)∆t−)− (ηj+1

N − ηjN )uj+1
N · qN ((j + 1)∆t−)

)

−
∫

Ω

(1 + η0)u0 · q(0)−
N−1∑

j=1

∫

ΩF

(1 + ηjN )ujN · qN (j∆t+)
)

Now, we can write (ηj+1 − ηj) as vj+
1
2 ∆t, and rewrite the summation indexes in

the first term to obtain that the above expression is equal to

=
N∑

j=1

∫

ΩF

(1+ηjN )ujN ·qN (j∆t−)−
∫ T

0

∫

ΩF

v∗NuN ·q̄N−
∫

ΩF

(1+η0)u0·q(0)−
N−1∑

j=1

∫

ΩF

(1+ηjN )ujN ·qN (j∆t+).

Since the test functions have compact support in [0, T ), the value of the first term
at j = N is zero, and so we can combine the two sums to obtain

=
N∑

j=1

∫

ΩF

(1+ηjN )ujN ·(qN (j∆t−)− qN (j∆t+))−
∫

ΩF

(1+η0)u0·q(0)−
∫ T

0

∫

ΩF

v∗NuN ·q̄N .

Now we know how to pass to the limit in all the terms expect the first one.
We continue to rewrite the first expression by using the Mean Value Theorem to
obtain:

qN (j∆t−, z, r)−qN (j∆t+, z, r) = q(j∆t, z, (1 + ηjN )r)−q(j∆t, z, (1 + ηj+1
N )r) =

= ∂rq(j∆t, z, ζ)r(ηjN − ηj+1
N ) = −∆t∂rq(j∆t, z, ζ)v

j+ 1
2

N r.

Therefore we have:

N−1∑

j=1

∫

ΩF

(1+ηjN )ujN
(
q(j∆t−)−q(j∆t+)) = −

∫ T−∆t

0

∫

ΩF

(1+ηN )uNrτ−∆tv
∗
N∂rq̄.



1.6. Existence of a Weak Solution 85

We can now pass to the limit in this last term to obtain:

∫ T−∆t

0

∫

ΩF

(1 + ηN )uNrτ−∆tv
∗
N∂rq̄→

∫ T

0

∫

ΩF

(1 + η)ur∂tη∂rq.

Therefore, by noticing that ∂tq̃ = ∂tq + r∂tη∂rq we have finally obtained

∫ T

0

∫

ΩF

(1 + τ∆tηN )∂tũN · qN → −
∫ T

0

∫

ΩF

(1 + η)u · ∂tq̃−
∫ T

0

∫

ΩF

∂tηu · q̃

−
∫

ΩF

(1 + η0)u0 · q̃(0),

where we recall that q̃ = q ◦Aη.
Thus, we have shown that the limiting functions u, η and d satisfy the weak

form of problem (111)-(118) in the sense of Definition 0.6.2, for all test functions
that belong to a dense subset of Qη. By density arguments, we have, therefore,
shown the main result of this manuscript:

Theorem 1.6.4. (Main Theorem) Suppose that the initial data v0 ∈ L2(0, 1), u0 ∈
L2(Ωη0), V 0 ∈ L2(ΩS), d0 ∈ H1(ΩS), and η0 ∈ H1

0 (0, 1) are such that 1+η0(z) >
0, z ∈ [0, 1] and compatibility conditions (102) are satisfied. Furthermore, let Pin,
Pout ∈ L2

loc(0,∞).
Then, there exist a T > 0 and a weak solution (u, η,d) of problem (111)-(118)

(or equivalently problem (91)-(102)) on (0, T ) in the sense of Definition 0.6.2 (or
equivalently Definition 0.6.1), such that the following energy estimate is satisfied:

E(t) +

∫ t

0

D(τ)dτ ≤ E0 + C(‖Pin‖2L2(0,t) + ‖Pout‖2L2(0,t)), t ∈ [0, T ], (1.175)

where C depends only on the coefficients in the problem, E0 is the kinetic energy
of initial data, and E(t) and D(t) are given by

E(t) =
1

2
‖u‖2L2(ΩF ) +

1

2
‖∂tη‖2L2(0,1) +

1

2
‖d‖2L2(ΩS) +

1

2

(
‖∂zη‖2L2(0,1) + aS(d,d)

)
,

D(t) = ‖D(u)‖2L2(Ωη(t))).

Furthermore, one of the following is true:

either T =∞ or lim
t→T

min
z∈[0,1]

(1 + η(z)) = 0. (1.176)

Proof. It only remains to prove the last assertion, which states that our result
is either global in time, or, in case the walls of the cylinder touch each other,
our existence result holds until the time of touching. However, the proof of this
argument follows the same reasoning as the proof of the Main Theorem in [119],
and the proof of the main result in [32], p. 397-398. We avoid repeating those
arguments here, and refer the reader to references [119, 32]. �
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1.7 Numerical Simulation

In this section we show how the Kinematically-Coupled β-Scheme can be applied to
FSI problems with multiple structural layers. We also present numerical arguments
showing that the presence of a thin fluid-structure interface with mass, regularizes
solutions of the related FSI problems.

We first summarize the FSI problem that will be solved numerically, then
present the numerical algorithm, and finally show the numerical results. The prob-
lem, the numerical method, and the results will be shown on an example in 2D.

1.7.1 Problem Definition

We consider the flow of an incompressible, viscous fluid in a two-dimensional
channel of reference length L, and reference width 2R, see Figure 9. The channel
is bounded by a two-layered deformable wall, which consists of a thin elastic layer
with thickness h, and a thick elastic layer with thickness H. The thin structural
layer serves as a fluid-structure interface with mass.

We are interested in simulating the normal stress-driven fluid flow through
a deformable 2D channel with two-way coupling between the fluid and structure.
Without loss of generality, we consider only the upper half of the fluid domain
supplemented by a symmetry condition at the axis of symmetry. Thus, as before,
the reference fluid and structure domains in our problem are given, respectively,
by

ΩF := {(z, r)|0 < z < L, 0 < r < R},
ΩS := {(z, r)|0 < z < L,R < r < R+H}.

Here z and r denote the horizontal and vertical Cartesian coordinates, respectively
(see Figure 9).

The flow of an incompressible, viscous fluid is modeled by the Navier-Stokes
equations:

ρF

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ(u, p) in ΩF (t)× (0, T ), (1.177)

∇ · u = 0 in ΩF (t)× (0, T ), (1.178)

where u = (uz, ur) is the fluid velocity, p is the fluid pressure, ρF is the fluid
density, and σ is the fluid Cauchy stress tensor. For a Newtonian fluid the Cauchy
stress tensor is given by σ(u, p) = −pI+2µFD(u), where µF is the fluid viscosity
and D(u) = (∇u + (∇u)τ )/2 is the rate-of-strain tensor.

Denote the inlet and outlet fluid boundaries by Γin = {0} × (0, R) and
Γout = {L} × (0, R), respectively. At the inlet and outlet boundary we prescribe
the normal stress:

σnin = −pin(t)nin on Γin × (0, T ), (1.179)

σnout = −pout(t)nout on Γout × (0, T ), (1.180)
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where nin and nout are the outward normals to the inlet and outlet fluid bound-
aries, respectively. Even though not physiologically optimal, these boundary con-
ditions are common in blood flow modeling [9, 126].

At the bottom fluid boundary r = 0 we impose the symmetry conditions:

∂uz
∂r

(z, 0, t) = 0, ur(z, 0, t) = 0 on (0, L)× (0, T ). (1.181)

The lateral fluid boundary is bounded by a deformable, thin wall. We assume
that the wall is linearly elastic, whose dynamics is modeled by the linearly elastic
Koiter membrane model, specified in (25), Section 92:

ρKh
∂2ηz
∂t2

− C2
∂ηr
∂z
− C1

∂2ηz
∂z2

= fz on Γ× (0, T ), (1.182)

ρKh
∂2ηr
∂t2

+ C0ηr + C2
∂ηz
∂z

= fr on Γ× (0, T ), (1.183)

where η(z, t) = (ηx(z, t), ηr(z, t)) denotes the axial and radial displacement, f =
(fz, fr) is the force surface density, ρK denotes the shell density and (see (25))

C0 =
hE

R2(1− σ2)
, C1 =

hE

1− σ2
, C2 =

hEσ

R(1− σ2)
.

The thick layer of the wall will be modeled by the equations of linear elasticity
(59), with an added extra term γd to account for circumferential strain whose
effects are lost in the transition from 3D to 2D. This term corresponds to the
non-differentiated term in the Koiter membrane equations (183) containing the
coefficient C0, which appears in these equations due to the cylindrical geometry of
the domain. Adding the non-differentiated term γd to the thick structure problem
in 2D has been done by several authors, see [8, 9, 114, 14]. If the structure is not
fixed at the end points, this term helps keep the top and bottom portions of the
structure domain together. The model reads:

ρS
∂2d

∂t2
+ γd = ∇ · S(d) in ΩS × (0, T ), (1.184)

with the first Piola-Kirschhoff stress tensort S given by

S(d) = 2µD(d) + λ(∇ · d)I,

where d = (dz, dr) is the structure displacement and ρS is the structure density.
As before, the structure is assumed to be fixed at the inlet and outlet bound-

aries:
d(0, r, t) = d(L, r, t) = 0 on [R,R+H]× (0, T ), (1.185)

and the external structure boundary Γext = {R + H} × (0, L) is exposed to zero
external ambient pressure, while the axial displacement remains fixed:

Snext · next = 0 on Γext × (0, T ), (1.186)

dz = 0 on Γext × (0, T ), (1.187)
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where next is the outward unit normal vector on Γext.
Initially, the fluid and the structure are assumed to be at rest, with zero

displacement from the reference configuration

v = 0, η = 0,
∂η

∂t
= 0, d = 0,

∂d

∂t
= 0, at t = 0. (1.188)

The fluid and the multilayered structure are coupled via the kinematic and
dynamic boundary conditions (62), (63):
Continuity of the velocity:

u(z + ηz(z, t), R+ ηr(z, t), t) =
∂η

∂t
(z, t) on (0, L)× (0, T ), (1.189)

Continuity of displacement:

η(z, t) = d(z,R, t) on (0, L)× (0, T ). (1.190)

Balance of forces:




ρKh
∂2ηz
∂t2

− C2
∂ηr
∂z
− C1

∂2ηz
∂z2

ρKh
∂2ηr
∂t2

+ C0ηr + C2
∂ηz
∂z


 = Ser|Γ − J σn|Γ(t) on (0, L)× (0, T ),

(1.191)
where J is the Jacobian of the transformation from the Eulerian to Lagrangian
framework, n is the outward unit normal to the deformed fluid domain, and er is
the unit vector pointing in the vertical direction.

1.7.2 The Energy of the Coupled Problem

The coupled problem (177)-(191) satisfies the following energy equality:

1

2

d

dt

{
ρF ‖u‖2ΩF (t) + ρKh‖∂tη‖2L2(Γ) + ρS‖∂td‖2L2(ΩS) + Ememel (η)

+ γ‖d‖2L2(ΩS) + 2µ‖D(d)‖2L2(ΩS) + λ‖∇ · d‖2L2(ΩS)

}
+ µF ‖D(u)‖2ΩF (t)

=

∫ R

0

pin(t)uz|z=0 −
∫ R

0

pout(t)uz|z=L

where

Ememel (η) =
h

2

∫ L

0

AG(η) : G(η)

=
h

2

[
4E

1 + σ

∣∣∣∣
∣∣∣∣
ηr
R

∣∣∣∣
∣∣∣∣
2

L2(0,L)

+
4E

1 + σ

∣∣∣∣
∣∣∣∣
∂ηz
∂z

∣∣∣∣
∣∣∣∣
2

L2(0,L)

+
4Eσ

1− σ2

∣∣∣∣
∣∣∣∣
∂ηz
∂z

+
ηr
R

∣∣∣∣
∣∣∣∣
2

L2(0,L)

]
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If the inlet and outlet data are the dynamic pressure data (64), then the
following energy estimate holds:

1

2

d

dt

{
ρF ‖u‖2ΩF (t) + ρKh‖∂tη‖2L2(Γ) + ρS‖∂td‖2L2(ΩS) + Ememel (η)

+ γ‖d‖2L2(ΩS) + 2µ‖D(d)‖2L2(ΩS) + λ‖∇ · d‖2L2(ΩS)

}
+ µF ‖D(u)‖2ΩF (t)

≤ C(Pin(t), Pout(t)).

1.7.3 The ALE Formulation

As mentioned in Section 0.3, to deal with the motion of the fluid domain we use
the ALE approach. An ALE mapping A maps the reference domain ΩF into the
current domain ΩF (t):

A : ΩF → ΩF (t) ⊂ R2, x = A(x) ∈ ΩF (t), for x ∈ ΩF .

We will use ALE mapping to deal with the deformation of the mesh, and to
resolve the issues related to the approximation of the time-derivative ∂v/∂t ≈
(v(tn+1) − v(tn))/∆t,, which due to the fact that ΩF (t) depends on time, is not
well defined. In particular, we will be using the ALE mapping which is defined as
the harmonic extension of the boundary, determined by the current position of η,
to the entire fluid domain:

∆A = 0, in ΩF,

A|Γ = η,

A|∂ΩF \Γ = 0.

To solve the Navier-Stokes equations numerically on a moving domain, we trans-
form the time derivative of the fluid velocity using the chain rule

∂u

∂t

∣∣∣∣
ΩF

=
∂u

∂t
+ w · ∇u, (1.192)

where w =
∂A
∂t

denotes the domain velocity, and consider the rest of the problem

defined on the moving domain ΩF (t). See Section 0.5.2. Therefore, with a slight
abuse of notation, the Navier-Stokes problem (177)-(178) that will be solved nu-
merically, can be written in ALE formulation as follows: find u = (uz, ur) and p
such that

ρF

(
∂u

∂t

∣∣∣∣
ΩF

+ (u−w) · ∇u

)
= ∇ · σ(v, p), in ΩF (t)× (0, T ), (1.193)

∇ · u = 0 in ΩF (t)× (0, T ), (1.194)

satisfying the corresponding initial and boundary conditions.
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The structure problems remain the same since the equations are defined on
the reference, fixed domains ΩS and Γ.

To perform the Lie splitting, described in Section 0.5.3, the coupled problem
is re-written as a first order system in time. For this purpose, the trace of the
fluid velocity on Γ(t) will be denoted by v := u|Γ(t), while the trace of the thick
structure velocity on Γ will be denoted by V = ∂d/∂t. The kinematic coupling
condition ∂η/∂t = v is then used to rewrite the system.

Notice again that u|Γ(t) is defined on Γ(t), namely, at R + η(z, t). More
precisely, u|Γ(t) = u(R + η(z, t), z, t). Therefore, v, which is defined on Γ is equal
to

v(z, t) := u(R+ η(z, t), z, t).

The resulting problem is given by the following:

ρf

(
∂u

∂t

∣∣∣∣
ΩF

+ (u−w) · ∇u

)
= ∇ · σ in ΩF (t)× (0, T ), (1.195a)

∇ · u = 0 in ΩF (t)× (0, T ), (1.195b)

ρKh
∂vz
∂t
− C2

∂ηr
∂z
− C1

∂2ηz
∂z2

= fz on Γ× (0, T ), (1.195c)

ρKh
∂vr
∂t

+ C0ηr + C2
∂ηz
∂z

= fr on Γ× (0, T ), (1.195d)

∂η

∂t
= v on Γ× (0, T ), (1.195e)

ρS
∂V

∂t
+ γd = ∇ · S(d) in ΩS × (0, T ), (1.195f)

∂d

∂t
= V in ΩS × (0, T ), (1.195g)

with the coupling conditions at the fluid-structure interface

v = u|Γ(t), η = d|Γ, (1.196)

ρKh
∂vz
∂t
− C2

∂ηr
∂z
− C1

∂2ηz
∂z2

+ J σn|Γ(t) · ez + Sez|Γ · ez = 0, (1.197)

ρKh
∂vr
∂t

+ C0ηr + C2
∂ηz
∂z

+ J σn|Γ(t) · er + Ser|Γ · er = 0. (1.198)

Notice, again, that v = u|Γ(t) means v(z, t) = u(R+η(z, t), z, t) on (0, L)× (0, T ).
This problem is supplemented with the boundary and initial conditions presented
in Section 0.7.1.

Before we continue with the Lie splitting algorithm applied to the problem
in ALE form (195a)-(198), we introduce the notion of weak solutions for the prob-
lem studied in this section, namely, for problem (177)-(191). The corresponding
function spaces on domains ΩF (t) will be defined in terms of the functions defined
on the fixed, reference domain ΩF , where the association between the two is done
via the ALE mapping, defined above.
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1.7.4 Weak Formulation of FSI Problem (177)-(191)

For t ∈ [0, T ) introduce the following test function spaces: the fluid velocity space
is defined by

VF (t) = {ϕ : ΩF (t)→ R2| ϕ = ϕ̂ ◦ (A)−1, ϕ̂ ∈ (H1(ΩF ))2,

ϕr|r=0 = 0, ϕ|z=0,L = 0}, ,

the fluid pressure:

Q(t) = {q : ΩF (t)→ R| q = q̂ ◦ (A)−1, q̂ ∈ L2(ΩF )}, ,

the test space for the thin structure problem:

VK = {ζ : (0, L)→ R2| ζ ∈ (H1
0 (Γ))2},

and the test space for the thick structure problem

VS = {ψ : ΩS → R2| ψ ∈ (H1(ΩS))2,ψ|z=0,L = 0, ψz|ΓSext = 0}.

The test space for the coupled FSI problem is given by:

Q(t) = {(ϕ, ζ,ψ) ∈ VF (t)× VK × VS | ϕ|Γ(t) = ζ, ζ = ψ|Γ}, (1.199)

The variational formulation of the coupled fluid-structure interaction problem
now reads: for t ∈ (0, T ), find (u, p,η,d) ∈ VF (t) × Q(t) × VK × VS such that
the kinematic coupling conditions (189) and (190) hold, and such that for all
(ϕ, ζ,ψ, q) ∈ Q(t)×Q(t) the following equations are satisfied:

ρF

∫

ΩF (t)

∂u

∂t
·ϕ+

∫

ΩF (t)

(u · ∇)u ·ϕ+ 2µF

∫

ΩF (t)

D(u) : D(ϕ)

−
∫

ΩF (t)

p∇ ·ϕ
∫

ΩF (t)

q∇ · u + ρKh

∫ L

0

∂2ηz
∂t2

ζz + ρKh

∫ L

0

∂2ηr
∂t2

ζr

−C2

∫ L

0

∂ηr
∂z

ζz + C1

∫ L

0

∂ηz
∂z

∂ζz
∂z

+ C0

∫ L

0

ηrζr + C2

∫ L

0

∂ηz
∂z

ζr

+ρS

∫

ΩS

∂2d

∂t2
·ψ + 2µ

∫

ΩS

D(d) : D(ψ) + λ

∫

ΩS

(∇ · d)(∇ ·ψ) (1.200)

+γ

∫

ΩS

d ·ψ =

∫ R

0

pin(t)ϕz|z=0dr −
∫ R

0

pout(t)ϕz|z=Ldr.
∫

ΩF

q∇ · u = 0.
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1.7.5 Numerical Implementation of the Splitting Scheme

The splitting is performed on the first-order system written in ALE form (195a)-
(198). System (195a)-(198) is split into two sub-problems, the fluid and the struc-
ture sub-problem, as described in Section 0.5.4. We notice that in this splitting,
we also separated the viscous part of the structure problem from the purely elastic
part of the structure problem, so that in the final structure sub-problem, denoted
by Problem A1 in Section 0.5.4, we only solve non-dissipative, hyperbolic part of
the structure problem using appropriate solvers. Namely, it has been our experi-
ence that for the stability and accuracy of the splitting scheme, it is beneficial to
separate the parabolic from the hyperbolic features of the coupled FSI problem,
and apply non-dissipative solvers to the non-dissipative, hyperbolic sub-problems.
While in the example studied in this section we do not have viscous dissipation in
the structure problem, we, however, use the same logic to numerically solve the
fluid sub-problem, which contains, in itself, dissipative and non-dissipative fea-
tures. More precisely, we will split the fluid sub-problem into the pure advection
sub-problem (non-dissipative), and the remaining, time-dependent Stokes problem
capturing viscous dissipation. This will give rise to a splitting algorithm with three
main steps:

A1. An elastodynamics sub-problem for the structure;

A2(a). A time-dependent Stokes problem for the fluid;

A2(b). A fluid and ALE advection problem.

To achieve higher accuracy, we implement the Kinematically-Coupled β-
Scheme, described in Section 0.5.4, in which the normal fluid stress is further
split into two parts:

σn = σn+ βpn︸ ︷︷ ︸
(Part I)

−βpn︸ ︷︷ ︸
(Part II)

,

where β ∈ [0, 1]. It was shown in [19] that the accuracy of the scheme increases as
the value of β increases from 0 to 1. Part I of the fluid stress will be taken into
account in the fluid sub-problem, while Part II of the fluid stress will be used as
loading to the structure in the structure sub-problem, and will appear as a Robin
boundary condition for the thick structure equations. Details of the scheme are as
follows:

Problem A1: The Elastodynamics Problem.
This step involves solving the thick structure problem together with mem-

brane elastodynamics. The membrane elastodynamics problem appears in this step
as a Robin boundary condition on Γ for the thick structure problem defined on
ΩS , where we have used continuity of displacement (kinematic coupling condition)
to write the problem this way. The Robin boundary condition also includes Part
II of the normal fluid stress, which enters explicitly in the sense that the pres-
sure is taken from the fluid sub-problem at the time step n (Problem A1(a)). The
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Jacobian of the transformation from the Eulerian to Lagrangian framework J is
calculated based on the data obtained in the previous time step.

In this step we also compute the domain velocity w and use it in Problem
A2(b) below to solve the fluid and ALE advection problem. The initial data for the
structure velocity on Γ is taken to be the trace of the fluid velocity v calculated
in the previous time step. Thus, the structure communicates with the fluid sub-
problem through this initial data and through the pressure exerted by the fluid
onto the fluid-structure interface. In turn, the updated structure velocity is then
taken in Problem A2(a) as the initial data for the trace of the fluid velocity on
Γ(t).

In this step the fluid velocity u and fluid pressure p remain unchanged, and
so

un+1/3 = un, pn+1/3 = pn.

The structure sub-problem reads: Find η,d,v, and V , such that for t ∈ (tn, tn+1)

ρS
∂V

∂t
+ γd = ∇ · S(d) in ΩS × (tn, tn+1),

∂d

∂t
= V in ΩS × (tn, tn+1),

ρKh
∂vz
∂t
− C2

∂ηr
∂z
− C1

∂2ηz
∂z2

+ Ser · ez = Jnβpnn|Γ(t) · ez on Γ× (tn, tn+1),

ρKh
∂vr
∂t

+ C0ηr + C2
∂ηz
∂z

+ Ser · er = Jnβpnn|Γ(t) · er on Γ× (tn, tn+1),

∂η

∂t
= v on Γ× (tn, tn+1),

η = d|Γ on Γ× (tn, tn+1),

V |Γ = v on Γ× (tn, tn+1),

with the following boundary conditions:

d|z=0,L = 0, and dz = 0, nsext · Snsext = 0 on Γext × (tn, tn+1).

The initial conditions are given by:

d(tn) = dn,η(tn) = ηn, v(tn) = vn, V (tn) = V n.

Then set

dn+1/3 = d(tn+1),ηn+1/3 = η(tn+1),vn+1/3 = v(tn+1), V n+1/3 = V (tn+1).

After the new position of the structure has been calculated, and the new fluid
domain updated, we calculate the ALE mapping An+1 as the harmonic extension
of the structure displacement ηn+1 onto the whole domain ΩF

∆An+1 = 0 in ΩF,

An+1|Γ = ηn+1,

An+1|∂ΩF \Γ = 0.
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From here we calculate the domain velocity wn+1 =
∂An+1

∂t
, based on the updated

location of the structure, and use it in the advection problem, Problem A2(b)
below.

Remark 1. Note that in Problem A1, we can rewrite the membrane equations by
using the kinematic coupling conditions in the following way:

ρKh
∂Vz
∂t
− C2

∂dr
∂z
− C1

∂2dz
∂z2

+ Ser · ez = 0 on Γ× (tn, tn+1),

ρKh
∂Vr
∂t

+ C0dr + C2
∂dz
∂z

+ Ser · er = 0 on Γ× (tn, tn+1).

In this way the membrane equations serve as Robin boundary conditions for the
thick structure problem.

Problem A2(a): The Stokes Problem.
This step involves solving a time-dependent Stokes problem on (tn, tn+1),

with a Robin-type boundary condition involving the thin structure inertia and
Part I of the fluid stress. This problem is solved on the fixed fluid domain ΩF (tn),
determined by the structure position in the previous time step. Using the updated
fluid domain calculated in Problem A1 is also an option. In the proof of stability of
this scheme, using ΩF (tn) is more covenient for the proof. In this step the structure
position and the velocity of the thick structure do not change, and so

ηn+2/3 = ηn+1/3,dn+2/3 = dn+1/3,V n+2/3 = V n+1/3.

The problem reads as follows:
Find u, p, and v such that for t ∈ (tn, tn+1), with pn denoting the pressure

obtained at the previous time step, the following holds:

ρF
∂u

∂t

∣∣∣∣
ΩF

= ∇ · σ, ∇ · u = 0 in ΩF (tn)× (tn, tn+1),

ρKh
∂(u|Γ(t))

∂t
+ J

(
σn|Γ(t) + βpnn|Γ(t)

)
= 0 on Γ× (tn, tn+1),

v = u|Γ(t) on Γ× (tn, tn+1),

where v = u|Γ(t) means v(z, t) = u(R + η(z, t), z, t) on Γ. This is supplemented
with the following boundary conditions:

∂uz
∂r

(z, 0, t) = ur(z, 0, t) = 0 on (0, L), u(0, R, t) = u(L,R, t) = 0,

σnin = −pin(t)nin on Γin, σnout = −pout(t)nout on Γout,

and initial conditions: u(tn) = un, v(tn) = vn+1/3. Then set

un+2/3 = u(tn+1), pn+2/3 = p(tn+1), vn+2/3 = v(tn+1).
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Problem A2(b): The Advection Problem.
Solve the fluid and ALE advection sub-problem defined on the fixed domain

Ω(tn), with the domain velocity wn+1 just calculated in Problem A1. The dis-
placement of the structure, the velocity of the thick structure, the velocity of the
thin structure, and the fluid pressure do not change in this step, so that

ηn+1 = ηn+2/3,dn+1 = dn+2/3,V n+1 = V n+2/3,vn+1 = vn+2/3, pn+1 = pn+2/3.

The advection problem reads: Find u such that for t ∈ (tn, tn+1)

∂u

∂t

∣∣∣∣
ΩF

+ (un+2/3 −wn+1) · ∇u = 0, in ΩF (tn)× (tn, tn+1),

u = vn+2/3, on Γ× (tn, tn+1),

with the inlet/outlet conditions:

u = un+2/3 on Γ
n+2/3
− = {x ∈ R2|x ∈ ∂ΩF (tn), (un+2/3 −wn+1) · n < 0},

and initial conditions u(tn) = un+2/3. Then set

un+1 = u(tn+1).

Set n = n+ 1 and return to Problem A1.

1.7.6 Discretized Scheme in Weak Form

To discretize the problem in time, sub-divide the time interval (0, T ) into N sub-
intervals of width ∆t, and let tn = n∆t, where n ≤ N . The Backward Euler scheme
is implemented to discretize the time-derivatives. For the space discretization, we
use the finite element method approach. Thus, we define the finite element spaces
VhF (tn) ⊂ VF (tn), Qh(tn) ⊂ Q(tn),VhK ⊂ VK and VhS ⊂ VS , and introduce the
following bilinear forms

anF (u,ϕ) := 2µF

∫

ΩF (tn)

D(u) : D(ϕ),

bnF (p,ϕ) :=

∫

ΩF (tn)

p∇ ·ϕ,

aK(ηr, ζr) := C0

∫ L

0

ηrζr,

aS(d,ψ) := 2µ

∫

ΩS

D(d) : D(ψ) + λ

∫

ΩS

(∇ · d)(∇ ·ψ).

A weak formulation of the fully discrete loosely coupled algorithm applied to the
simplified problem is given as follows:
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Problem A1. (The structure problem) To discretize the structure problem
in time we use the second order Newmark scheme. The problem reads as follows:

Find (d
n+1/3
h ,V

n+1/3
h ) ∈ VhS × VhS such that for all (ψh,φh) ∈ VhS × VhS

ρS

∫

ΩS

V
n+1/3
h − V n

h

∆t
·ψh + γ

∫

ΩS

dnh + d
n+1/3
h

2
·ψh

+ρKh

∫

Γ

V
n+1/3
r,h − V nr,h

∆t
ψr,h + aK(

dnr,h + d
n+1/3
r,h

2
, ψr,h) + aS(

dnh + d
n+1/3
h

2
,ψh)

+ρS

∫

ΩS

(
V n
h + V

n+1/3
h

2
− d

n+1/3
h − dnh

∆t
) · φh

+ρKh

∫

Γ

(
V nr,h + V

n+1/3
r,h

2
−
d
n+1/3
r,h − dnr,h

∆t
) · φr,h = 0. (1.201)

Note that in this step we take all the kinematic coupling conditions into
account. More precisely:

1. Initially we set V nr,h|Γ = vnr,h = unr,h|Γ(tn);

2. Once d
n+1/3
h and V

n+1/3
h are computed, η

n+1/3
r,h , v

n+1/3
r,h and u

n+1/3
r,h |Γ(tn) are

recovered via

η
n+1/3
r,h = d

n+1/3
r,h |Γ, vn+1/3

r,h = u
n+1/3
r,h |Γ(tn) = V

n+1/3
r,h |Γ.

In this step the fluid velocity does not change, and so

u
n+1/3
h = unh.

In this step we also update the fluid domain velocity w. As mentioned ear-
lier, after the new position of the structure has been calculated, we calculate the
ALE mapping An+1 : ΩF → ΩF (tn+1) as the harmonic extension of the structure

displacement η
n+1/3
h = ηn+1

h onto the whole fluid domain, and obtain the domain
velocity wn+1

h as the difference quotient between the new location of points asso-
ciated with An+1, minus the old location of points associated with An, divided by
∆t. This will be used it in the advection problem, i.e., Problem A2(b) below.

Problem A2(a). (The time dependent Stokes problem) Find (u
n+2/3
h , p

n+2/3
h ) ∈

VhF (tn)×Qh(tn) such that for all (ϕh, qh) ∈ VhF (tn)×Qh(tn)

ρF

∫

ΩF (tn)

u
n+2/3
h − u

n+1/3
h

∆t
·ϕh + anF (un+1

h ,ϕh)− bnF (p
n+2/3
h ,ϕh)

+ρKh

∫ L

0

u
n+2/3
r,h |Γ(tn) − un+1/3

r,h |Γ(tn)

∆t
ϕr,hdx+ bnF (qh,u

n+2/3
h )
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=

∫ R

0

pin(tn+1)ϕz,h|z=0dr −
∫ R

0

pout(t
n+1)ϕz,h|z=Ldr. (1.202)

This step is computed on the fixed domain Ωf (tn). The only updated variables are
the fluid velocity and pressure. For higher accuracy, this step can be computed on
the updated domain Ω(tn+1).

Problem A2(b) (The advection problem) As mentioned earlier, it is conve-
nient to write the fluid and ALE advection term in symmetric form, giving rise to
the following weak formulation: Find un+1

h ∈ VhF (tn) such that for all ϕh ∈ VhF (tn)

ρF

∫

ΩF (tn)

un+1
h − u

n+2/3
h

∆t
·ϕh +

ρF
2

∫

ΩF (tn)

(∇ ·wn+1
h )un+1

h ·ϕh

+
ρF
2

∫

ΩF (tn)

(
(unh −wn+1

h ) · ∇)un+1
h ·ϕh − ((unh −wn+1

h ) · ∇)ϕh · un+1
h

)
= 0.

(1.203)
In this step all the other variables, except for the fluid velocity, remain unchanged
so that

dn+1
h = d

n+2/3
h ,V n+1

h = V
n+2/3
h , ηn+1

r,h = η
n+2/3
r,h ,vn+1

r,h = v
n+2/3
r,h ,

with
un+1
r,h |Γ(tn) = u

n+2/3
r,h |Γ(tn) = v

n+2/3
r,h .

In was shown in [22] that an energy estimate associated with unconditional
stability of this scheme, holds for the full nonlinear FSI problem. Therefore, we
expect that this scheme in unconditionally stable for all the parameters in the
problem.

1.7.7 Numerical Examples

We present two numerical examples. One is a simplified problem for which there
exists and exact solution against which we can test our numerical scheme. The
other one if a fully nonlinear FSI problem with a thin and thick structural layer.
Since there are no numerical results in literature on FSI problems with multiple
structural layers against which we could test our solution, in this second example
we calculated solutions to a sequence of problems for which the thickness of the
thin structure converges to zero, and showed that the limiting solution is the same
as the solution of the FSI problem in which the structure consists of only one thick
structural layer. This was proved using analytical methods in [22]. The solution of
the limiting problem was then numerically tested against the solution of the FSI
problem with only one thick structural layer, which was obtained using a different
solver. We show below that the two solutions, obtained with two different solvers,
are in good agreement.



98 Chapter 1. Fluid-Multi-Layered Structure Interaction

Example 1.

We consider a simplified FSI problem with multiple structural layers that satisfies
the following simplifying assumptions:

1. The fluid problem is defined on the fixed, reference domain of width R, and
length L (the coupling is linear).

2. The fluid problem is driven by the constant inlet and outlet pressure data
pin and pout = 0 (the pressure drop is constant).

3. Only radial displacement of the thin and thick structure is assumed to be
different from zero.

Assumption 3 implies that the thin structure membrane model takes the form:

ρKh
∂2ηr
∂t

+ C0ηr = fr,

while the thick structure problem simplifies as follows:

ρs
∂2dr
∂t2

= µ
∂2dr
∂x2

+ (µ+ λ)
∂2dr
∂y2

.

Finally, the coupling conditions between the fluid and the multilayered structure
are given by

fr = p+ (λ+ µ)
∂dr
∂y

on Γ× (0, T ),

∂ηr
∂t

= ur on Γ× (0, T ),

ηr = Ur on Γ× (0, T ).

The exact solution to this problem is given by the following. The fluid flow through
the fixed cylinder with constant pressure drop is given by the Poiseuille velocity
profile:

uez(z, r) = uez(r) =
pin − pout

2µFL
(R2 − r2), uer = 0,

and the fluid pressure is linear within the channel:

pe(z, r) = pe(z) =
poutz + pin(L− z)

L
, z ∈ (0, L), r ∈ (0, R).

The radial displacements of the thin and thick structure are given by:

ηer(z) =
pe(z)

C0
, der(z, r) = der(z) = ηer(z).
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Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

In. press. pin (dyne/cm2) 250 Out. press. pout (dyne/cm2) 0
Fluid density ρf (g/cm3) 1 Dyn. viscosity µ (g/cm s) 0.35

Thin wall:
Density ρm(g/cm3) 1.1 Thickness h (cm) 0.02
Lamé coeff. µm(dyne/cm2) 1.07× 106 Lamé coeff. λm(dyne/cm2) 4.29× 106

Thick wall:
Density ρs(g/cm

3) 1.1 Thickness H (cm) 0.1
Lamé coeff. µs(dyne/cm

2) 1.07× 106 Lamé coeff. λs(dyne/cm
2) 4.29× 106

Spring coeff. γ(dyne/cm4) 0

Table 1.5: Geometry, fluid and structure parameters used in Example 1.

We solve this problem numerically using the parameters given in Table 5.
The initial data was taken to be

u = 0, p = pout, ηr = 0, dr = 0, at t = 0,

while at the inlet and outlet boundaries we kept both structures fixed, with the
inlet and outlet displacement data tailored so that the final solution does not
exhibit a boundary layer:

ηr|z=0 = dr|z=0 =
pin
C0

, ηr|z=L = dr|z=L =
pout
C0

= 0,∀t > 0.

The numerical scheme with β = 1 was implemented, and the problem was
solved until the steady state was achieved. With the time step ∆t = 10−5 it
took 200 iterations to achieve the accuracy of less than 0.08%. Namely, the maxi-
mum relative error between the computed and exact solution was less than 0.08%
(namely, 0.000778).
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Figure 1.14: Comparison between the computed solution (in blue) and the exact
solution (in red). The two are superimposed. Left: Axial velocity. Middle: Fluid
pressure. Right: Radial displacement.

Figure 14 shows a comparison between the computed (blue) and the exact
solution (red) for axial velocity (left), fluid pressure (middle), and radial displace-
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ment (right), showing excellent agreement. The corresponding relative errors are
given by the following:

||ue − u||L2(Ωf )

||ue||L2(Ωf )

= 7.78× 10−4,
||pe − p||L2(Ωf )

||pe||L2(Ωf )

= 1.17× 10−4,

||ηer − ηr||L2(0,L)

||ηer ||L2(0,L)
= 3.82× 10−5,

||der − dr||L2(Ωs)

||der||L2(Ωs)
= 3.82× 10−5.

We conclude that the scheme behaves well for this simplified FSI problem with
multiple structural layers.

Example 2.

In this example we solve the full, nonlinear FSI problem (177)-(191) with the
structure consisting of two layers, using the data that correspond to a benchmark
problem in FSI with a single thick structure. Moreover, we solve a sequence of
FSI problems (177)-(191) in which the thickness of the thin layer converges to
zero. The limiting solution is then compared with the solution of the benchmark
problem with a single, thick structure, obtained using a different solver. In the
sequence of FSI problem with two structural layers, the combined thickness of
the entire structure is set to be constant, and equal to the thickness of the thick
structure from the benchmark problem. Furthermore, the elastic properties (i.e.,
the Young’s modulus of elasticity and the Poisson ratio) of the thin and thick
structure, are all set to be equal to the elastic properties of the thick structure in
the benchmark problem.

The elastodynamics of the thin structural layer is modeled using the linearly
elastic Koiter membrane equations with both radial and longitudinal displacement
(182), (183), while the elastodynamics of the thick structure is modeled using the
equations of 2D linear elasticity (184). The same 2D linear elasticity model (184)
is used to capture the elastodynamics of the thick structure in the FSI benchmark
problem. In both cases the flow is driven by the time-dependent pressure data:

pin(t) =

{ pmax
2

[
1− cos

(
2πt
tmax

)]
if t ≤ tmax

0 if t > tmax
, pout(t) = 0 ∀t ∈ (0, T ),

where pmax = 1.333 × 104 (dyne/cm2) and tmax = 0.003 (s). The values of the
parameters used in this example are given in Table 6. The same parameters were
used to test partitioned FSI schemes in [9].

We assume that the combined thickness of the two-layered structure is fixed,
and equal to h + H = 0.12cm, which is set to be the same as the thickness of
the single thick structure in the benchmark problem. Our kinematically-coupled β
scheme, described in Section 0.7.5, was used to solve the multi-layered FSI problem
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Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

Fluid density ρf (g/cm3) 1 Dyn. viscosity µ (g/cm s) 0.035

Thin wall:
Density ρm(g/cm3) 1.1 Thickness h (cm) 0.02
Lamé coeff. µm(dyne/cm2) 5.75× 105 Lamé coeff. λm(dyne/cm2) 1.7× 106

Thick wall:
Density ρs(g/cm

3) 1.1 Thickness H (cm) 0.1
Lamé coeff. µs(dyne/cm

2) 5.75× 105 Lamé coeff. λs(dyne/cm
2) 1.7× 106

Spring coeff. γ(dyne/cm4) 4× 106

Table 1.6: Geometry, fluid and structure parameters that are used in Example 2.
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Figure 1.15: Axial displacement (top) and radial displacement (bottom) at time
t = 8 ms obtained using the model capturing two structural layers (left), and the
model capturing FSI with a single thick structural layer [21] (right).

with β = 1, while the scheme presented in [21] was used to solve the single-
layered FSI benchmark problem. The problem was solved over the time interval
[0, 0.012]s, using the time step ∆t = 5×10−5. Figure 15 shows the axial and radial
displacement at time t = 8 ms obtained using the multilayered model (left) and
the single-layered model (right) for the arterial wall. We further compared the
results of the multilayered model with the single layered model as the thickness of
the thin structure h goes to zero. As we decreased h, we increased H to maintain
the constant combined thickness h+H = 0.12 cm. Figures 16, 17 and 18 show the
flowrate, mean pressure and displacement of the fluid-structure interface obtained
using different values of h. The results obtained using the single layered wall
model correspond to the label h = 0. Indeed, we can see that as we decrease
the thickness of the fluid-structure interface, the numerical results obtained using
our multilayered model approach the results obtained using the single-layered FSI
model! Notice how for h = 0.025cm the solutions obtained using the multilayered
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Figure 1.16: Flowrate computed using two different models: the model in [21]
containing a single thick structural layer (h = 0), and the model considered in
this chapter, consisting of two layers. The thickness of the thin membrane layer
was decreased from h = 0.02 to h = 0.0025 cm. The combined thickness of the
two-layered structure was kept constant at h + H = 0.12cm. Convergence of the
solutions to the FSI solution containing a single, thick layered model (h = 0) can
be observed.
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Figure 1.17: Displacement of the fluid-structure interface obtained under the same
conditions as those described in Figure 16.

model and the single thick structure model (h = 0 in Figures 16, 17, 18) are almost
identical.
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Figure 1.18: Mean pressure obtained under the same conditions as those described
in Figure 16.

Regularizing Effects by Thin Fluid-Structure Interface with Mass

We conclude this section with a remark on the regularizing effects of the thin
fluid-structure interface with mass. Figures 16, 17, 18 indicate that as we increase
inertia of the thin fluid-structure interface with mass by increasing its thickness,
the solution of the entire FSI problem is damped, or regularized. More precisely,
if one looks at the FSI problem with a single thick structural layer, the fluid-
structure interface is simply the massless trace of the thick structure that is in
contact with the fluid. Mathematically, in that case the trace of the structure
displacement is not well-defined (assuming regularity of the data consistent with
weak solutions), and using energy estimates it is not possible to even show that
the fluid-structure interface is continuous. In the case when the fluid-structure
interface has mass, we showed in Proposition 73 that not only is the fluid-structure
interface continuous, but its evolution can be controlled by the energy norm of
the time derivative of its displacement. We see effects of this in the solutions
presented in Figures 16, 17, 18, and in Figures 19 below. In Figure 19 below
we focus on the displacement and displacement velocity of the fluid-structure
interface, which measures the effects of inertia. In the first row of Figure 19 three
snap-shots of the fluid-structure interface are shown as the inlet pressure wave
travels down the tube. In the second row of Figure 19 the same three snap-shots
are shown, but for the fluid-structure interface velocity. The red solid line in these
figures corresponds to the massless fluid-structure interface in the FSI problem
with a single thick structural layer. The black dashed line correspond to the fluid-
structure interface with mass in the FSI problem with two structural layers. We
see significant damping of the traveling wave in the case when the fluid-structure
interface has mass. This indicates that inertia of the fluid-structure interface with
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Figure 1.19: Fluid-structure interface displacement (top) and velocity (bottom)
obtained using a multilayered wall model and the single layered model from [21],
shown at times t = 1 ms, t = 6 ms, and t = 12 ms.

mass regularizes solutions of FSI problems.
This is reminiscent of the results by Hansen and Zuazua [89] in which the

presence of a point mass at the interface between two linearly elastic strings with
solutions in asymmetric spaces (different regularity on each side) allowed the proof
of well-posedness due to the regularizing effects by the point mass. In particular, in
[89] two linearly elastic strings were considered, meeting at a point mass. The elas-
todynamics of each string was modeled by the linear wave equation. It was shown
that as the wave with the displacement in H1(0, L) and velocity in L2(0, L) passes
through the point mass, a reflected and a transmitted waves form. The transmit-
ted wave, which passes through the point mass, gets smoothed out to H2(0, L)
regularity in displacement, and H1(0, L) regularity in velocity. A numerical simu-
lation of this phenomenon was shown in [105]. Figure 20 shows one of the results

Figure 1.20: Regularizing effects of point mass. The figure is taken from [105]. The
initial data (left panel) is smoothed out as the transmitted wave traveling to the
right, passes through the point mass (right panel).

from [105]. The panel on the left show the initial displacement in H1(0, L) with
zero initial velocity, located just left from the point mass. The panel on the right
shows the solution at time T = 10s at which the reflected and transmitted waves
have formed, with the displacement of the reflected wave on the left of the point
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mass still in H1(0, L), but with the displacement of the transmitted wave, shown
to the right of the point mass, belonging to H2(0, L). For a reader with further
interest in the area of simplified coupled problems we mention [90, 132, 143].

1.8 Conclusions

This chapter addresses an operator splitting approach to study multi-physics prob-
lems related to fluid-structure interaction. The methodology is based on the Lie
splitting scheme, also known as the Marchuk-Yanenko scheme. The splitting dis-
cussed in this chapter deals successfully with the added mass effect which is known
to be responsible for instabilities in loosely-coupled Dirichlet-Neumann schemes
for FSI problems in which the density of the structure is comparable to that of
the fluid. Particular attention was payed to a multi-physics FSI problem in which
the structure is composed of multiple structural layers. Problems if this kind arise,
for example, in modeling blood flow through human arteries which are composed
of several layers, each with different mechanical characteristics and thickness. A
benchmark problem was studied in which the structure consists of two layers: a
think layer which is in contact with the fluid, and a thick layer which sits on top
of the thin layer. The thin layer serves as a fluid-structure interface with mass.
Both analytical (existence of a weak solution) as well as numerical results were
studied for the underlying benchmark problem. In particular, it was shown that
the proposed scheme converges to a weak solution to the full nonlinear fluid-multi-
layered structure interaction problem. Two academic examples were considered to
test the performance of the numerical scheme.

The analytical and numerical methods presented here apply with slight mod-
ifications to a larger class of problems. They include, for example, a study of FSI
with one structural layer (thin [85, 19, 20], or thick [21]), FSI with poroelastic
structures [23], FSI between a mechanical device called stent, arterial wall and
fluid [123], and FSI involving a non-Newtonian fluid [92, 94, 95].
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coupled-type algorithm for fluid-structure interaction in blood flow. J.
Comput. Phys., 228(18):6916–6937, 2009.

[86] G. Guidoboni, N. Cavallini, R. Glowinski, S. Čanić and S. Lapin. A kine-
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[103] D. Lengeler and M. Ružička. Global weak solutions for an incom-
pressible newtonian fluid interacting with a linearly elastic Koiter shell.
arXiv:1207.3696v1, 2012.

[104] D. Lengeler Global weak solutions for an incompressible, generalized New-
tonian fluid interacting with a linearly elastic Koiter shell arXiv:1212.3435,
2012.



114 Bibliography

[105] V. Lescarret and E. Zuazua. Numerical approximation schemes for
multi-dimensional wave equations in asymmetric spaces. Preprint.
http://www.bcamath.org/documentos public/archivos/publicaciones/
assym discret rev.pdf

[106] R. van Loon, P. Anderson, J. de Hart, F. Baaijens, A combined fictitious
domain/adaptive meshing method for fluid-structure interaction in heart
valves, Int. J. Num. Meth. Fluids, 46 (2004), 533–544.

[107] P. Le Tallec, J. Mouro. Fluid structure interaction with large structural
displacements. Comput. Methods Appl. Mech. Eng. 190(24-25):3039-3067,
2001.

[108] A. Leuprecht, K. Perktold, M. Prosi, T. Berk, W. Trubel, H. Schima. Nu-
merical study of hemodynamics and wall mechanics in distal end-to-side
anastomoses of bypass grafts. J. Biomech. 35(2):225-236, 2002.

[109] J. Lequeurre. Existence of strong solutions to a fluid-structure system.
SIAM J. Math. Anal., 43(1):389–410, 2011.

[110] J. Lequeurre. Existence of strong solutions for a system coupling the Navier-
Stokes equations and a damped wave equation. Journal of Mathematical
Fluid Mechanics, pages 1–23, 2012.

[111] S. Lim, C.S. Peskin, Simulations of the whirling instability by the immersed
boundary method, SIAM J. Sci. Comput., 25 (2004), 2066–2083.

[112] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems
and applications. Vol. I. Springer-Verlag, New York, 1972. Translated
from the French by P. Kenneth, Die Grundlehren der mathematischen Wis-
senschaften, Band 181.

[113] P. Luchini, M. Lupo and A. Pozzi, Unsteady Stokes flow in a distensible
pipe, Z. angew. Math. Mech. 71 (1991), pp. 367–378.

[114] X. Ma, G.C. Lee and S.G. Lu. Numerical Simulation for the ropagation
of Nonlinear Pulsatile Waves in Arteries, ASME J. Biomech. Eng. 114
(1992), pp. 490–496.

[115] H. Matthies, J. Steindorf, Numerical efficiency of different partitioned
methods for fluid-structure interaction, Z. Angew. Math. Mech., 2 (2000),
557–558.

[116] C. Michler, S.J. Hulshoff, E.H. van Brummelen, R. de Borst A monolithic
approach to fluid-structure interaction Computers and Fluids 33(5-6), 839-
848, 2004.

[117] L.A. Miller, C.S. Peskin, A computational fluid dynamics study of ’clap
and fling’ in thesmallest insects, J. Exp. Biol., 208 (2005), 195–212.



Bibliography 115

[118] C.M. Murea and S. Sy. A fast method for solving fluid-structure interaction
problems numerically. Int. J. Numer. Meth. Fl., 60(10):1149–1172, 2009.
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