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SUMMARY

We discuss in this paper the validation of an open sourcedwark for the solution of problems arising in
hemodynamics. The proposed framework is assessed thrapghiraental data for fluid flow in an idealized
medical device with rigid boundaries and a numerical berakrfor flow in compliant vessels. The core of
the framework is an open source parallel finite elementtjbtizat features several algorithms to solve both
fluid and fluid-structure interaction problems. The numariesults for the flow in the idealized medical
device (consisting of a conical convergent, a narrow thiaad a sudden expansion) are in good quantitative
agreement with the measured axial components of the wlaoid pressures for three different flow rates
corresponding to laminar, transitional, and turbulentimeg. We emphasize the crucial role played by
the accuracy in performing numerical integration, mestd, time step to match the measurements. The
numerical fluid-structure interaction benchmark dealdlite propagation of a pressure wave in a fluid-
filled elastic tube. The computed pressure wave speed agaefiney of oscillations, and the axial velocity
of the fluid on the tube axis are close to the values predicyetthds analytical solution associated with the
benchmark. A detailed account of the methods used for batbHyearks is provided. Copyrigl® 2010
John Wiley & Sons, Ltd.

KEY WORDS: Computational fluid dynamics; hemodynamics;eskpental validation; fluid-structure
interaction

1. INTRODUCTION

Computational fluid dynamics (CFD) is nowadays a tool of chofor the investigation of
blood flow problems. It has been extensively applied overytbars to study the physiology
and physiopathology of the cardiovascular systdm2] 3] and to patient-specific planning of
interventions for cardiovascular diseage %, 6]. It has been used in the medical device industry
to develop and/or analyze the performance of prosthetic abves [7], stents B, 9], ventricular
assist devicesl1[], blood filters [L1] etc. In addition, CFD results are also being used by some
manufacturers to help demonstrate safety and efficacy oViaelas part of the pre-market device
submissions to the U.S. Food and Drug Administration (FDA&).[

However, the reliability of the computational approach lie study of physics phenomena is
dependent on thealidation of the mathematical models and tlerification of the numerical
methods 13]. A verified method is capable of correctly solving the pevhl equations, while a
valid model is able to correctly describe the features oftloblem (i.e., it uses the right equations).

In 2004, the FDA launched a “Critical Path Initiative” pragn [L4] aimed, among other things,
at improving the use and validating CFD techniques in thduat@mn of medical devices. A
benchmark nozzle model was developed which contains alfehtires commonly encountered
in medical devices (flow contraction and expansion, retatan zones etc., see Figuteand three
laboratories were asked to perform flow visualization expents on fabricated models for five
flow rates spanning laminar, transitional, and turbulegtmes [L2]. This resulted in benchmark
data available online to the scientific community for thedetion of CFD simulationsi[5]. Other
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significant efforts towards the definition of a shared test bsr numerical solvers for partial
differential equations, and specifically for flow problennglude the works by Turek and coworkers
for the verification of solvers for the Navier-Stokes eqoiasi [L6] and for the fluid-structure
interaction problem]7, 18].

The results of a first CFD study of the FDA nozzle model are megbin [19]. Twenty-
eight groups of CFD professionals around the world parigg in the study, following different
modeling approaches (turbulence models vs. direct nuaiesimulations, 2D vs. 3D geometries,
choice of the boundary conditions etc). Overall, the rasaolitained by different groups had a
very large variability, also with respect to the experina¢nésults. It was observed that turbulence
models were in general unable to correctly estimate theedamd velocities in the inlet and throat
of the nozzle, and velocities and shear stresses in thewgtiion zones downstream of the sudden
expansion. Limitations of direct numerical simulationsentdealing with flows in the transitional
regime were also discussed, most likely due to under-résalwf the computational grid. One
of the conclusions of the study was the recommendation thlatation studies should always be
performed when attempting the use of computational modelhe evaluation of medical devices.

Our goal is two-fold: (i) validate an open source CFD framdwior the solution of problems
of interest in hemodynamics and (ii) provide a detailed repa the methodology that we use, to
make our experiences reproducible. To achieve this goattee to (a) the FDA benchmark; (b) the
FSI test case presented 0]. The former is intended to assess the code capabilitieisnunlating
fluid flow in a rigid domain representative of a medical devitbe latter is intended to evaluate
the performance of the software in simulating fluid flow inatefiable domains, which is clearly of
utmost relevance for cardiovascular problems. In paicuin absence of an analogue of the FDA
benchmark including FSI - the second test deals with theggation of a pressure wave in a fluid-
filled elastic cylindrical vessel for which an analyticalion for the wave speed and frequency of
oscillation are provided.

The core of our open-source CFD framework is Lifeéd], an open source library of algorithms
and data structures for the numerical solution of partiédintial equations with high performance
computing (HPC) technologies. High performance compuiggupported by LifeV through
the interplay with third-party software (in particular thieear algebra package Trilinog7] by
Sandia National Laboratories). LifeV is maintained andelieped by an international network
of universities and research centers across Europe and $hentdose core members are the
Politecnico di Milano (Italy), theEcole Polytechnique Fédérale de Lausanne (Switzer|amt)
Emory University in Atlanta (USA). Other institutions coibiute to the project, including the INRIA
in Paris (France), Florida State University, Georgia tnsti of Technology, and the University of
Houston.

LifeV has been used over the last ten years as a valuabledothié prototyping of numerical
methods (see e. B, 24, 25, 26, 27, 28]). Moreover, software based on LifeV has been extensively
used in research projects focused on the modeling of blood fflmblems, among others the
drug release from implantable stenf], the design of medical procedures in cardiolo@y][
the optimization of diagnostic procedurexl], surgical planning 32] and the study of cerebral
hemodynamics33).

As part of the framework we also consider open source mesergtms, such as Netge&4]
and Gmsh 35], and software for visualization and post processing sucPRaraView $6]. Both
Netgen and Gmsh provide several algorithms for 3D mesh gdoerand mesh refinement. Their
scripting languages allow to have a fine control on the feastwf the mesh when dealing with
simple geometries (in particular axisymmetric domainajaRiew is a large software project based
on VTK. In this context, it is recalled for its powerful graphl interface and for offering several
filters to operate on the data from numerical simulation {oi@lize, probe, process, ...).

We discuss in this paper some of the the strengths of thisefnark, such as its open source
nature, its solid mathematical background, its flexibilityhandling complex geometries, and its
performance on HPC machines. This work in fact representssasfiep towards making such
CFD framework a reliable tool for flow simulations in medidavices or biomechanics problems.
Nonetheless, we also draw some conclusions (e.g., on whathads and algorithms work best
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in the different flow regimes) that are not restricted to #psecific CFD framework, but rather are
general and could be used as guidelines for similar CFD esudlith different software.

The outline of the paper is as follows. In Sectidwe state the problems that we want to solve
(fluid, structure, and coupled fluid-structure interactoblems). For each problem we touch on
the numerical methods that we use for their discretizatidime and space and discuss the solution
of the associated linear systems. In Sectipwe describe the FDA benchmark and the numerical
benchmark for FSI problems and we report the results of théatégon and verification. Conclusions
are drawn in SectioA.

2. PROBLEM DEFINITION

2.1. The fluid equations

The motion of an incompressible viscous fluid in a spatial dondenoted hereafter l§y;) over a
time interval of interestt,, T') is described by the Navier-Stokes equations

0 .
pf (a—?+(u~V)u)V~af—gf in Qp x (to,T), 1)

V-u=0 in Qf x (to,T), (2)

wherep; is the fluid densityu is the fluid velocity,o; the Cauchy stress tensor agd the body
force. For Newtonian fluide ; has the following expression

os(u,p) = —pl+2ure(u),

wherep is the pressurey; is the fluid dynamic viscosity, andu) = (Vu + (Vu)T) /2 is the strain
rate tensor. Equation4)¢(2) need to be supplemented with initial and boundary conustio

In the following we focus on the problem of the flow of blood invassel (either rigid or
deformable). For such a problem, it is commonly acceptedytore any body force (including
the gravity force).

The Reynolds number can be used to characterize the flow eegind identify the transition of
the flow to turbulence. We define the Reynolds number as

uD
vf

Re = 3

wherew is the mean sectional velocity within a pipe of hydraulicrdeterD andvy = py/py is
the fluid kynematic viscosity. The Reynolds number can baghoof as the ratio of inertial forces
to viscous forces. For large Reynolds numbers, inertigleeiare dominant over viscous forces and
vice versa

2.1.1. DiscretizationWe approximate in time equation$){(2) by the backward differentiation
formula of order 2 (BDF237]) and we linearize the convective term by an extrapolatmmila
of the same order. Giveft € R, let us set” =ty + nAt, withn =0, ..., Ny andT = tg + Ny At.
Problem ()-(2) discretized in time reads: givert, for n > 1, find the solution(w™*1, p»*1) of the
system:

3un+1 —4u” +un—1 n n— n n n .
Py 2At +ppu —u ) VT = Veop(u ") =0 inQy, (4)

V-u"tt =0 in Q. (5)

For the space discretization, we introduce a conformal aadieuniform partitiorV;lf of Q made
up of a certain number of tetrahedra. We will use two inf-stabke finite element pairs: tHe-P,
elements and thB,-P; elements and we will point out the strengths and limitatiohboth. For

3
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more details concerning the discretization of the Naviek&s problem, we refer, e.g., t8g]. We

do not use any stabilization for the convective term: cdiflection of the discretization parameters
- time step and mesh size - yields stable solutions withoaitrntbed for numerical stabilization
techniques. Moreover, even though the semi-implicit tresit of the convective term in eqd)(
does not guarantee the unconditional stability in time eftlamerical scheme, we encounter no
stability issues in the numerical experiments describegein.3.1and3.2.

Let us denote by the mass matrixi the diffusion matrix,NV the matrix associated with the
discretization of the convective term, amithe matrix associated with the discretization of the
operator(—V-). The linearization and full discretization of proble){2) yields the following
system

3
pf2—AtMun+l —+ /J,fKun+1 —+ pru"+1 —+ BTpn+1 = bz+1, (6)
Bu"t! — 0, @)

whereu™*! andp”*! are the arrays of nodal values for velocity and pressure. artey b +!
accounts for the contributions of solution at the previdogetsteps and the contribution that the
boundary nodes give to the internal nodes.

SetC = pr%tM + pnrK + pyN. We can rewrite®)-(7) in the form

Ax" = b?“, 8)
where
C BT n ut! n bz“
A:|:B O :|7 X+1:|:pn+1:|7 bf+1:|: 0 :| (9)

At every time level™ "1, to solve systemd) we use the left preconditioned GMRES method. As
preconditioner, we use an upper-triangular variant of tiesgure corrected Yosida splittingg] 39
given by

_ ¢ BT oAt .
F= { 0 S(S+BH(ufK+pr)HBT)‘1S}’ =z M S=-BHE. (10)

The above preconditioner is a suitable approximation of théactor in the exact block.U
factorization of matrixA in (9):

0 —BC BT

! (])] U—[C Bt 1 (11)

See also40, 41, 42] for more details.

2.2. The structure equations

The motion of an elastic structure in terms of its displacetfield d with respect to a given material
reference configuratiofl, is governed by the elastodynamics equation
0%d

psw —st(d) =9s in f\25 X (t07T)ﬂ (12)

whereg, is the body force which we neglect in the following. We assuha the structure behaves
like a linearly elastic, or Hookean, material. Thus, we have

3.(d) = 2pee(d) + Ao (V- d)L (13)
Here,e(d) = (Vd + (Vd)T)/2is the strain tensop,; and); are the Lamé constants, that are related
to Young’s modulus® and the Poisson ratig, as follows:

E Fug

s= o, As= :
Hs =50 10y 1+ vs)(1 - 20,)
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2.2.1. DiscretizationFor the time discretization of problemiZ), we adopt a method from the
family of generalizedr schemes (see, e.g4d). Such schemes represent a more stable version
of the well-known Newmark method

psa" Tt — V. as(d"H) =0, (14)

) 1
o s 06 s (3 5) o). s
o' =" + At (ya" ! + (1= y)a”), (16)

wherev™ anda™ are proper approximations of the structure velocity anckcation at time™.
Here, set3 = 1 and~y = 3 to have second order accuracy. The numerical solutionsnettavith
the Newmark scheme may be affected by high frequency spiascillations if the time step is not
small enough compared to the space discretization paresn&eneralized- methods act as low-
pass filters that selectively introduce numerical dampinly @r the high frequency modes, while
conserving the low frequency modes. The spectral progeofi¢hose methods are determined by
a single parameter: the asymptotic spectral radiug0 < po. < 1). If poo = 1 the generalizedr
method reduces to the Newmark method. By setting

antimom = (1- Q7n(p00))an+1 + am(pc)a”™, 0< am(ps) <1 (7)
d" = (1= ap(poo))d™ + o (poc)d”, 0 < a(poc) < 1, (18)

the generalizedr scheme replaces momentum equatiof) py
psa"timm _ V.o (d"T ) = 0. (19)

By using (L7)-(18) and (L5)-(16), it is possible to rewrite equatiorl®) in terms of the only
unknownv™*!. Concerning the particular choice of the generalizemtethod and parameters, we
takea,,, = -1, a, =0, v = 3/2 and$ = 1, which correspond tp., = 0. This scheme, originally
proposed in44], features excellent stability properties and secondrosflaccuracy in time.

For the space discretization, we introduce a conformal arasiguniform triangulatiorv,® of
Q. made up of a certain number of tetrahedra and we set up a @afarie element procedure
usingP; elements. We denote by, the mass matrix and b ; the stiffness matrix obtained after
discretization of probleml@). The problem now becomes: givett, for n > 1, find the solution
vt of equation:

1—oam
YAt

Dv"tt =b"t with D =p, Mg+ (1 — ozk)éAth,

Y
wherev is the array of nodal values for the structure velocity, @bil accounts for the contributions
of the solution at the previous time steps and boundary tiondi

2.3. The coupled problem

The structure deforms due to the contact force exerted bijuiteonto the fluid-structure interface,
so that both the structure and fluid domains depend are. Q; = Q,(¢t) andQy = Q(¢). Let us
denote by'(¢) the fluid-structure interface, that is the common boundatyben(t) and,(t).
Fort € (to,T), atT'(¢) the fluid problem {)-(2) and the structure problem?) are coupled by two
transmission conditions:

1. continuity of velocity
u=v onl(t); (20)

2. continuity of stress
om=osn onl(t), (21)

n being the outward normal fés(¢). In (21), o is the structure Cauchy stress tensor, which
is the Eulerian description of the second Piola-Kirchhtfss tensoE, defined in (3).

5
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In order to describe the evolution of the whole dom&ift) = Q¢ (t) U Q,(t), we adopt two
different approaches in each subdomain. The structure idoimalescribed with a Lagrangian
mapping as in sectioR.2. Thus, if d: Q, x (to,T) denotes the displacement of the structure
with respect to the reference configuration, then each painn the current configuratiof(t)
is associated to a poini, in the reference configuration by, (z,,t) = Zs + d(Zs,t). The fluid
domain is described with aArbitrary Lagrangian-Eulerian(ALE) mapping. In other words, its
kinematics is only required to comply by that of the boundB(y), which is the result of the
coupling with the structural model. We define the positionof internal points to2¢(¢) as the
harmonic extension of the position of points Bft). See, e.g.,45, 46] for details. The position in
the reference fluid domaiﬁf (att = 0) is denoted byt ¢, and the domain velocitw is calculated
using the following expression:

Oox
w(xy, t) = 8—; 3,

The velocity ALE time derivative, i. e. rate of change of thaédlvelocity in a point that moves
with the computational domain reads

8_11, —a—u—i-w-Vu
otlz, 0ot '

With these definitions, we can write the incompressible Biatitokes equations in ALE formulation
as follows:

pf—u _ +pflu—w)-Vu—-V-0;,=0 in Qf(t), (22)
ot |z,
V-u=0 in Qf(t), (23)
for ¢t € (to, T). Coupling conditionsZ0),(21) can be written in the equivalent form

rru+om=ryv+osn onl(y), (24)
rsu+om=rv+o,n onl(t), (25)

wherer; > 0 andr; > 0 (ry # r,) are constants.

2.3.1. DiscretizationAt every time levelt”t!, the FSI problem discretized in time and space can
be written in matrix form as:

Afsx;}:I = bnJrl (26)

C+ T’fRf Tfs BT ut! bz+1
Aps = Tsu D+riRy Ty |, xpit=| v |, b= bt | (27)
B 0 0 p 0

Here, the boundary mass matricesg, R, and the coupling matriceB;,, T, Ts, arise from the
discretization of the coupling condition&4),(25).

To precondition systen?(), we consider an inexaétl block factorization of the matrixd ¢, in
a similar way to what already done in S€cl and in the same spirit ofip, 46]. The approximated
U factor for matrixAy, is:

0 s
0 0

Ups =

o3
S

C-l-TfRf Tts BT]

™MD
=
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‘Ln’ LU

z = —0.062685 2= —-0.04 z=10

Figure 1. Computational domain. The units are meter.

whereS, andip are appropriate approximations of the structure Schur éemmgnt
Y =D+ 1Ry — Tsu(C + 1y Rp) Ty,

and the pressure Schur complement

Y, =-B(C+rsRs) 'BT+
B(C+riRp) T2 Tous(C+ 7 Ry) ' BT — B(C + 1y Ry) ' T2 T
To approximates,, we use(C + ryR¢)~!' ~ H, whereH is defined in {0). Thus, we have:
is =D+rsRs — TsuHTfS

To approximate:,, we modify the pressure corrected Yosida preconditionBnelé in Sect2.1as
follows: .
¥, =S8(S+BH(usK +pyN +r;Rp)HBT)71S. (28)

At every time levelt™+!, we solveU; ' A x} /" = U, b1 with the GMRES method. The
position of the fluid domain is extrapolated from the prewcbmne step, while the non-linearity
induced by the fluid convective term is resolved with Picéedations (see e. g3f]).

3. RESULTS

3.1. The FDA benchmark

The FDA benchmark consists in simulating the flow of an incogapible and Newtonian fluid with
prescribed density and viscosity;(= 1056 kg/m* and s = 0.0035 Pas) in an idealized medical
device shaped like a nozzle (see Hipat different Reynolds numbers.

The geometry of the device includes a conical convergerittaat, and a sudden expansion. In
this paper, we are only considering the so-called “Suddgmision” model 12, 19, that is in
Fig. 1 the fluid flows from left to right. The idealized device wasidegd to feature accelerating,
decelerating, and recirculating flow, all of which occuréakmedical devices.

The system is studied in a variety of conditions, includitg taminar, transitional, and
turbulent regimes: the results of the published interdatmyy experiments refer to values of
the Reynolds numbers (defined as B))(evaluated in the throat, denoted [Re;, of Re; =
500, 2000, 3500, 5000, 6500. In this paper, we focus on the first three valuedief for reasons that
will be clarified in the following (see Remafk4). In tablel, we report the throat Reynolds number
Rey, the corresponding inlet Reynolds numider;, and flow rate for the flow regimes that we are
going to consider. Notice that in all the three flow regimesftow upstream of the throat is laminar,
Re; being below the critical Reynolds number for transitionaWflin a straight pipe Re ~ 2000
[47)).

Since we are dealing with a viscous fluid, on the lateral serfsf the computational domain we
prescribe a no-slip boundary condition. For all three flogimees in tabld, at the inlet section we

7
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Table I. Throat Reynolds numbée;, inlet Reynolds numbeRe;, and flow rate for the flow regimes under
consideration.

| Re: | Re; | flowrate Q (m/s) |
| 500 | 167 |  5.2062e-6
2000 | 667 |  2.0825e-5
3500 | 1167 |  3.6444e5

prescribe a Poiseuille velocity profile to get the desired ftate, a choice which is justified by
the considered values dte;. At the outlet section, we prescribe a stress-free (ngtb@lindary
condition. This simulates a discharge into open air, whiclsdhot correspond to the experimental
set up of the FDA benchmark (a closed flow lodj2]). However, this choice is expected to alter
the computed solution only in a confined region of the comiprrial domain close to the outlet
section §8]. The results of the flow analysis are not affected, provittedcomputational domain
represents a long enough expansion channel. As discuss#eel following, we always considered
the length of the expansion channél,(in Fig. 1) to be greater than 10 times its diameter, and we
did not observe a dependence of the solution on the actuat el ..

As for the initial condition, we start our simulations withuifil at rest, i.e.p=0 andu =0
everywhere inf2;. We use a smooth increase of the velocity profile at the iolétensition from
the fluid at rest to the regime flow conditions. A short transitreduces the duration and therefore
the overall computational cost of the simulation. Howewsiine time discretization is required to
resolve fast transient dynamics of the computed solution.

For every flow regime, we use direct numerical simulationsIg), with no turbulence model.
This choice is motivated by the results presentedlif],[where it is shown that DNS most
accurately predicts the velocities at &lé;, in particular in the entrance region, in the throat, and
just downstream of the sudden expansion. In DNS, it is esdeatassess whether or not the flow
field is properly resolved. For this purpose, we follow thpra@ch proposed byif], that is the grid
resolution is qualified in terms of the viscous length scedenputed as
U Al

vy
In (29), Al represents the local grid siZg, is the tetrahedron volume, afid ||~ is the Frobenius
norm. Ifi*t ~ O(1), the average grid sizAl is of the order of the viscous length scale, which is the
smallest spatial scale at which turbulent fluctuation casige

As mentioned in Se.1, selection of the time step was not driven by stability isset rather
based on accuracy considerations solely.

We compare the experimental data provided by the FDA with raumerical simulations for
all the flow regimes listed in table The experimental data were acquired by three independent
laboratories and one of the laboratory ran three trialshatfor each case we have five sets of data.
The comparison is made in terms of normalized axial compiofehe velocity along the centerline
and at various radial sections (see Ej.and normalized wall pressure difference along the length
of the domain. The axial component of the velocityis normalized with respect to the average
axial velocity at the inleti;:

It = ., with Al = 12/vV2VY3 ) and u? = v¢||e(u)||r. (29)

. u oy Q
UTZLO m= ﬂ—j, with U; = W, (30)
where( is the volumetric flow rate calculated from the throat Regsatumber (see tablg The
pressure difference data are normalized with respect taweage velocity at the throat:

Pz — Pz=0 . _
Ap" = ————-  with U = —F57,
1/2pru? nD?/4

wherep. denotes the wall pressure along thexis and.— is the wall pressure at= 0. As a proxy
for the wall pressure at a given axial coordinate, we probegtessure value at the corresponding

(31)

8
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~0.088 0064 —0.048  —0.02 70 NN 0.06 0.08

~0.008 0 0.008 0.016 0.0240.032

Figure 2. Radial sections at which the numerical results esmpared against the experimental
measurements.

location on the axis of the domain, since we observed presalues being approximately uniform
on axial cross-sections.

The graphs with the above comparisons are reported inSkd.for Re; = 500, Sec.3.1.2for
Re; = 2000, and Sec3.1.3for Re; = 3500. Finally, a quantification of the agreement is provided
in Section3.1.4following a validation metric proposed idi§].

3.1.1. Casere; = 500 Among the considered values Bt,, the caseRe, = 500 proved to be the
the easiest to be studied, as expected since the flow is laalirzdong the length of the domain.

We selected.; = 10D, and L, = 15D; (see Fig.l) and considered three meshes with different
levels of refinement:

- meshcoarsel5D with an average element diameter,, = 6.9 - 10~4, a maximum element
diameterh,,q, = 1.8 - 103 and a minimum element diametgy,;,, = 1.7 - 10~%; this mesh
has1.7 - 10° nodes an®.3 - 10° tetrahedra;

- meshmedium15Dwith hgpg = 4.5 - 1074, hypae = 1.9 - 1073, hypn, = 1.3 - 107%; this mesh
has6.3 - 10° nodes an@.4 - 10° tetrahedra;

- meshfinel5D with hgpy = 3.4 - 1074, Ay = 1.8 - 1073, hypin = 9.2 - 1077; this mesh has
1.3 -10% nodes and - 10° tetrahedra.

A special refinement was prescribed, so that the mesh sizeadased in the convergent ang,;,,
was achieved in the throat. All three meshes had a small \@ltlee viscous length scale at the
steady state (maximum valué ~ 0.5 over the entire domain). We ran a simulation on each mesh,
with time stepAt = 102 for every mesh and using:-P; finite elements. An advantage of this
choice of finite elements is that the resulting algebraidfem is significantly smaller and easier to
solve with respect to the one generated by chooBinf; finite elements. The latter are however
more accurate, and this may be required in some cases, asoussliater.

We let the simulations run until reasonably close to thedstestate. To this aim, we monitored
the flow rate and average pressures at the inlet and outtarsecAftert = 3 s, all the simulations
gave a stable estimate of at least four significant digithefaressure drop along the nozzle and at
least five significant digits of the flow rate. We observed Higlquency oscillations in the pressure
field computed on the finest mesh, that we attribute to nulerainding errors. In this case, to
isolate the variability due solely to the transient regimeeapplied a low-pass filter to the sequence
of computed values. To reach= 3 s required roughly 15.5 hours of computational time on 32 €PU
for meshcoarse15D24 hours on 128 CPUs for mestedium15D36 hours on 256 CPUs for mesh
finel5D

First, we report the comparison for the normalized axiabe#y (30) along thez axis (Fig.
3(a)) and the normalized pressure differen8®) @long thez axis (Fig.3(b)). In Fig. 3, we plotted
a dot for every measure and a solid line to linearly interfmothe five sets of measurements,
while we used a dashed line for the numerical results obdawith the three meshes. From Fig.
3(a), we see that the numerical axial velocities computechemtedium15Dandfine15Dmeshes
are always superimposed, showing that mesh independercachéeved with the second level
of refinement. Results obtained on tbearsel5Dmesh are superimposed to the previous in the

9
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entrance region, convergent, and throat, while they difféhe sudden expansion region. However,
the axial velocities computed on all the meshes are in agegaemith the measurements, all along
the portion of thez axis under consideration-(.088 < z < 0.08). As for the numerical pressure
differences, the three curves corresponding to the cortipn& results on the three meshes cannot
be distinguished in the scale of the picture, all along thie ésee Fig3(b)), but they do not match
the measured data. As reported i9]] these data sets seem in fact to be significantly affected by
normalization errors. This would explain the apparent fpesioffset of aboutl.5 mmHg in most

of the measurements with respect to the computed valuesdver, the experimental results vary
significantly from one data set to the other, suggesting dhedmparison with the measurements
might not be too meaningful in this case.
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Figure 3. Casé&e; = 500: comparison between experimental data (solid lines) antknigal results (dashed
lines) for (a) normalized axial velocity3() along thez axis and (b) normalized pressure differengé)(
along the: axis. The legend in (a) is common to the two subfigures.

In Fig. 4, we show the profiles of the normalized axial veloci80) at four different radial
sections. In the entrance region and in the throat @aj. and (b)) there is no noticeable difference
between the numerical results obtained on the differenhegsndicating that no further refinement
is required there. In the same pictures, a mismatch is hawayvserved between the numerical
velocity profiles and the measurements. Assuming axial sgtmnof each (measured or computed)
velocity profile, we can calculate the associated flow raiefid that the measured velocity profiles
underestimate the theoretical flow rate by at least 3%, whéesimulated velocity profiles retrieve
the correct value within an error of 0.019% (using the fine mheBor this reason, we conclude
that the mismatch observed in Fig(a) and (b) is due to measurement errors. Downstream of the
sudden expansion (Fig{(c) and (d)), the simulated velocity profiles on meshedium15Dand
finel5Dcoincide, they match the experimental data and are ablerteatty capture the negative
velocities within the recirculation zones. Results olddimn mestcoarsel5Ddo not accurately
represent the velocity profile. The agreement with expentadaelata is poor and the velocity profile
is not axisymmetric, as can be appreciated in particulaherakis of the nozzle. These results are
consistent with those presented in Fi¢n).

Remark 3.1

As mentioned in Se@.1, the mesh plays a central role in DNS. Ré; = 500, the flow is axially
symmetric for—0.088 < z < 0.08. It is important that the mesh is close to uniform on eachlaxia
section to respect the symmetry of the problem. A mesh thes dot have such a feature would
give unphysical asymmetric velocity profile.

3.1.2. CaseRe; = 2000 The transitional regimeRe; = 2000) proved to be a tough test both from
the experimental and numerical point of view.

10
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Figure 4. Casée; = 500: comparison between experimental data (solid lines) antenical results (dashed
lines) for normalized axial velocity3Q) at (a)z = —0.064, (b) z = —0.008, (c) = = 0.016, and (d)z = 0.06.
The legend in (a) is common to all four subfigures.

From the experimental side, the interlaboratory velocatacagreed with each other withia%
error at the entrance, convergent, throat, and right alftersudden expansion. However, farther
downstream of the sudden expansion the velocity profila® fitee laboratories are significantly
different from one another. In particular, the experimémnga breakdown point varied among
the laboratories. This was attributed mainly td@% higher flow rate (and consequently higher
Re;) which caused premature jet breakdown in two experiment®bfive [12]. However, minor
differences in the fabricated geometrical models and ipdgturbation levels played a role also.
From the numerical point of view, we found the results to be/wensitive to mesh size and time
step.

We selected.; = 10D; and L, = 12D; (see Fig.1l). After several numerical experiments, we
managed to identify a mesh sufficiently refined in the différeegions of the domain: average
element diametét,,, = 7.1 - 10~%, maximum element diametéy,,,, = 4.5 - 10~3 and minumum
element diameteh,,;, = 2.1-10~%. Also in this case the mesh was selectively refined in the
convergent and in the throat, whekg,;,, was obtained. The final mesh has a totakaf- 10°
nodes anad.5 - 10° tetrahedra.

We set time step\t = 10~ and usedP,-P; finite elements. Around time= 0.45 s, the turbulent
regime is fully developed. The mesh viscous length scalkiated at this time has a maximum value
I+ ~ 2 over the entire domain.

11
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We start by reporting the comparison for the normalizedlaxgkocity (30) along thez axis (Fig.
5(a)) and the normalized pressure differeng® @long thez axis (Fig.5(b)). In Fig.5, we see that
the simulated axial velocities and pressure differencesimaery well with the sets of data showing
a longer jet.

z
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Figure 5. CaseRe; = 2000: comparison between experimental data (solid lines) andenical results
(dashed line) for (a) normalized axial veloci§0j along thez axis and (b) normalized pressure difference
(31) along thez axis. The legend in (a) is common to both subfigures.

Fig. 6 shows the profiles of the normalized axial velocigp) at four different radial sections.
As for the Re; = 500 case, all the sets of measurements slightly underestitnataxial velocity at
z = —0.064; see Fig6(a). Inside the throat (Figh(b)), the velocity profile is plug-like. The peak
velocity found by the simulation is slightly less than theesifiound experimentally. In this case, the
measured velocity profiles overestimate the theoreticad fide by at least 2%, while the simulated
velocity profiles underestimate it by 0.41% (See Bigp)). Inmediately downstream of the sudden
expansion (Fig6(c)), the simulated profiles have peak values that fall withe measurements sets
and the recirculation zones are pretty well captured. 8eeti= 0.06 (Fig. 6(d)) is close to the jet
breakdown point for three sets of measurements, while iag fhe breakdown point for the other
two sets. The simulated velocity is closer to the former,lasady seen in Figh(a).

Remark 3.2

TheP%-P; finite elements, which performed well féte, = 500, failed to give results comparable
to the experimental data fdte; = 2000. In the simulation aRRe; = 2000 with a mesh and time step
similar to those used for the results in Figand6, theP%-P; finite elements gave a numerical jet
breakdown point much farther downstream than observederetiperiments. A possible cause of
the mismatch with the experimental data is the accuracyeoftimerical integration performed by
LifeV. P%-P, finite elements require the accurate evaluation of the iated high order polynomials
on the computational domain. The use of numerical methodblanto guarantee the desired
accuracy may have caused the artificial damping of high #aqu modes in the solution and
consequently enhanced its laminar behavior.

3.1.3. CaseRe; = 3500 The third flow regime we consider features a throat Reynoldsber
Re; = 3500 which is well above the transitional Reynolds number in aight channel. In fact,
turbulence downstream of the sudden expansion was obsémvatl the experiments with a
reproducible jet breakdown point, which indicates a fullybulent flow regime.

We selectedl; = 10D; and L, = 15D; (see Fig.1). After numerical studies in the throat-
expansion region and convergent-throat-expansion regiemanaged to identify a sufficient level
of refinement for the different regions of the domain. Thelfinash has average element diameter

12
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Figure 6. CaseRe; = 2000: comparison between experimental data (solid lines) andenical results
(dashed line) for normalized axial velocitgQ) at (a)z = —0.064, (b) z = —0.008, (c) z = 0.016, and (d)
z = 0.06. The legend in (a) is common to all four subfigures.

havg = 8.4-107%, maximum element diametér,,,, = 2.5 - 1073, minumum element diameter
hmin = 1.4 -10~% for a total of5.6 - 10° nodes ang.2 - 106 tetrahedra.

We set time step\t = 10~* and used,-P; finite elements. Already around time= 0.4 s, the
turbulent regime is fully developed. The mesh viscous lerggale evaluated at this time has a
maximum valug™ ~ 4 over the entire domain. The simulation®#f s of flow took 336 hours on
256 CPUs.

In [19], none of the presented CFD results was able to catch thegakown point, because
DNS predicted a longer jet (likely due to a coarse mesh) wdiiteulations with turbulence models
under-predicted the jet length. In Fig(a), we see that DNS with a properly refined mesh is able to
capture with precision the jet breakdown observed in theexgents. Actually, the simulated axial
velocities matched with the measurements all along theqrodf the > axis under consideration.
As shown in Fig.7(b), also the simulated pressure difference is in very gapdement with the
experimental data, except in the convergent where the atedibressure difference overestimates
almost all the measurements.

Fig. 8 shows the profiles of the normalized axial velocigp) at four different radial sections.
The velocity profile upstream of the throat (Fi(a)) is of Poiseuille type, as expected (dee
in tablel). The simulation results are in very good agreement in @agr with one of the five
data sets. Inside the throat (FR{b)), the velocity profile is plug-like. As foRe; = 2000, the peak
velocity found by the simulation is a little lower than theesrfound experimentally. Immediately

13



14 T. PASSERINI ET AL.

-
S

—ry
no
T

—y
o

z

——3500data
——3500data?2
3500data3

normalized u

normalized pressure difference

——3500datad ---
8 ——3500data5 ]
—-—-simulation ’
0 —0.05 0 0.05 05 -0.05 0 0.05
F4 z
(a) normalized axial velocity along (b) normalized pressure difference along

Figure 7. CaseRe; = 3500: comparison between experimental data (solid lines) andenical results
(dashed line) for (a) normalized axial veloci§0j along thez axis and (b) normalized pressure difference
(31) along thez axis. The legend in (a) is common to both subfigures.

downstream of the sudden expansion (Fi(r)), the velocity profile still shows a plateau and
recirculation zones appear. Here, the simulated profilehpesk that falls within the measurements
sets, whereas the measurements and numerical resultsatitiee recirculation zones. However,
it was noted in 19] that measuring velocities accurately at the wall is verydh&specially in
recirculation zones downstream of the sudden expansiomembedocities near the wall are low.
Any conclusion about the accuracy of numerical results &t thgion, drawn by comparison with
experimental data, has to be considered purely specul&@ation: = 0.06 (Fig. 8(d)) is past the jet
breakdown point, thus the axial component of the velocityigh reduced. The simulated velocity
captures well the magnitude of measured velocity and paheoprofile.

Remark 3.3

Since the measurements of a turbulent flow are averagedime[1t?], we averaged the numerical
results. All the results presented in Figand8 have been averaged over 10 time steps. We noticed
that averaging over more than 10 would not change the avesdge.

Remark 3.4

Using DNS has a major limitation in the high computationatsoTo fully resolve the flow features
at high Reynolds number, it is necessary to consider sifoastwith a huge number of degrees
of freedom p(]. Since the tests that we presented so far already show thratamputational
framework can simulate adequately flow in laminar, traosdi and turbulent regimes, we limit
our analysis of the FDA problem to Reynolds numBef < 3500. Possible alternatives to DNS are
represented by filtering techniques such as the ones coedideLarge Eddy Simulations - see,
e. g., b1, 52 53]. In the future we plan to work on those models to reduce tmemdational costs
of flow simulations in the turbulent regime.

3.1.4. Quantitative analysitn order to quantify the agreement between the results ahalation
and the experimental data, ihJ a generic validation metri&, was proposed

n

Ez:%Z i U

i=1

; (32)

wherei, ; is the average of the experimental velocity data at oneelisgroint; along thez axis,
uc; IS the computational data at the same pojrindn is the total number of discrete points.

In tablesll andlll, we report validation metri&, (32) at each of the twelve radial sections in
Fig. 2 taken separately foRe; = 500, 2000, 3500. The corresponding graphs in semi-logarithmic
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Figure 8. CaseRe; = 3500: comparison between experimental data (solid lines) andenical results
(dashed line) for normalized axial velocitgQ) at (a)z = —0.064, (b) z = —0.008, (c) z = 0.016, and (d)
z = 0.06. The legend in (a) is common to all four subfigures.

Table IlI. Validation metricE, (32) at six radial sections upstream and inside the throat. I8madlues of
the metric identify a better agreement with the availablada

| | 2= —0.088 | 2= —0.064 | z=—0.048 | z=—0.02 | z=—0.008 | z=0 |

| Re=500 | 0.0594 | 0.0522 | 0.0565|  0.0116 | 0.0100 | 0.0217 |
| Re =2000] 0.0433 | 0.0384 | 0.0692|  0.0164 0.0116 | 0.0127 |
| Re =3500] 0.0343 | 0.0267 | 0.0825|  0.0316 0.0212 | 0.0123 |

Table lll. Validation metricE, (32) at six radial sections downstream of the throat

| | 2=0.008 | z=0.016 | z=0.024 | z=0.032 | 2=0.06 | z=0.08 |
| Re=500| 0.1793| 0.3103| 0.2096| 0.1622| 0.3364| 0.3941|
|
|

Re=2000| 0.2662| 04595 0.6959|  1.0005| 2.0609| 1.1355|
Re=3500| 0.7231| 10648| 0.4469| 0.8729| 0.4247| 0.1698|

scale are shown in Fi§(a). ForRe; = 500, the numerical results obtained with mdste15Dwere
considered (see Seg.1.]).
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Figure 9. (a) Validation metri&. (32) in semi-logarithmic scale and (b) conservation of massrermetric
E (33) as afunction of the position along thexis for Re; = 500, 2000, 3500. The legend in (a) is common
to both subfigures.

From Fig.9(a), we see that in thRe; = 500 case the value df, decreases in the entrance region
and in the throat, while it increases (not monotonicallythi@ expansion region, the maximum value
being 0.3941 at = 0.08 (see tabléll). In the entrance region and in the thra&t, for Re; = 2000
is comparable to the one fdke; = 500. The value ofE, increases downstream of the sudden
expansion, with maximum value equal to 2.060% at 0.06. This large value is mainly due to
substantial inter laboratory variations (see Eigl)). In theRe; = 3500 case, we see that the value of
E. is low in the entrance region. Then, it increases by neantydwders of magnitude immediately
downstream of the sudden expansion, with maximum valuel ég@20648 at: = 0.016. It is worth
stressing that a large value &f, does not necessarily reflect a significant discrepancy legtwe
computations and measurements: B{g) shows that the computed and measured velocity values at
z = 0.016 are closer than suggested by the metric. Since the metrislimmaof normalized absolute
values, the error is in general large in low-velocity regisnch as recirculation zones. In this sense,
validation metric 82) may be not the best possible. Nonetheless, we decidedwolsiw our results
perform in this metric, so that we can more directly compaith ¢he results in 19]. This direct
comparison allows us to conclude that the results present8ec.3.1.1, 3.1.2 and3.1.3are in
excellent agreement with the measurements.

For all the simulations, we evaluated also the conservationass at the axial positionsn Fig.

2 using the conservation of mass error metric proposed 8ly {hat is:

_ Qerp—Q
Q

whereQ¢ rp is the volumetric flow rate computed from the numerical ax@obcity profiles. Higher
values of this metric identify worse performances of the patational model.

Fig. 9(b) shows the conservation of mass error metric as a a funatioz for Re; =
500, 2000, 3500. For Re; = 500, the maximum error is less than06%, which appears to be
excellent when compared to the results reportedlij. [Thanks to the fact that the simulation
on meshfinel5Dfeatures good mass conservation properties, we are conflgsrthe simulated
pressures in Fig(b) are not far from the real pressures despite the mismaitblitie experimental
data. ForRe; = 2000, largest error (in absolute value) is inside the convergEnére, the mesh
guality seems to be the key responsible, as we systemgtighdlerve some stretched elements
aroundz = —0.048 in our meshes. The combination of stretched mesh elemettftsinite elements
that are only weakly divergence-free (like tite — IP; elements we used54l]) results in a poor
approximation of the flow rate locally. Nonetheless, notitat the local validation metri&, at
z = —0.048 (see tablel) is satisfactory. FoRe; = 3500, the error (in absolute value) is bel®B8%

Eo 100, (33)
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on the whole domain. Also in this case though, we observettéied elements in the convergent and
the mesh could not be significantly improved without dradlycincreasing the number of degrees
of freedom. A more careful mesh design seems to be requireghions of the domain featuring
axial tapering.

3.2. The Greenshields-Weller numerical benchmark

The numerical fluid-structure interaction benchmark wegaiag to consider is taken from a paper
by Greenshields and Welle2()]. It deals with the propagation of a pressure wave in a fluidefi
elastic tube. The geometry is selected to be representattitsood flow in large arteries: it is a
straight cylindrical pipe with circular section, with lethgl = 10 cm, diameterD = 2 cm, and a
shell of thicknes#.; = 0.2 cm (see Fig10(a)).

L L 1
structure hs
I fluid_ | b
structure hs
(a) Longitudinal section of the domain. (b) Detail of the volume mesh on

a cross-section. The fluid domain is
depicted with a darker color.

Figure 10. Computational domain for the FSI benchmark.

The motion of the fluid filling the deformable tube is descdli®y the incompressible Navier-
Stokes equations in ALE formulatio2?)-(23), with py = 1000 kg/m® and s = 0.004 Pas. The
motion of the elastic shell is described by the elastodynamguationsi(2), with ;, = 5.77 - 10°
Pa and\, = 3.85 - 10° Pa (correspondinglyy = 10° Pa andv, = 0.3). The coupled fluid-structure
system is initially at rest and the wave propagation isandtil by settingg = 500 Pa at the fluid
domain inlet for allt > 0. At the fluid domain outlet and on the outer structure wallfrass-free
boundary condition is imposed. Axial movements of the stmecare prevented by prescribing a
zero velocity in the axial direction on the inlet section.

The pressure step applied at the inlet causes a pressuretavpv@pagate down the tube. This
induces a radial motion of the elastic structure, that shavise history of damped oscillations
around an asymptotic steady state. The frequghaf/the oscillations and the steady state value of
the radial displacemeut. can be quantified as

1 AE D%
f= o, = o
21 \| D2ps(1 + Myy) 4Fhg

In the definition off we use the ratio of equivalent fluid mass to solid m&&s, that depends on
the mass of fluid contributing to the radial motion. For thelgjem at hand, we assume that only a
fraction of the fluid mass contributes to the radial motiamd ave setV ¢, = D/(8hs)ps/ps [20].
This value for the equivalent mass assumes a linear distsibof the radial fluid velocity. Finally,
we obtainM;, = 1.67, f = 106.1 Hz andd,. = 0.25 mm.
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An analytical solution for wave speedan be given as a function of the geometric features, fluid
and structure physical parameters of the system:

E h, Krpo\] 7!
1= 1+ == (1L
o=l ()

To the purpose of finding an analytical solution, the fluid wassidered slightly compressible, with
bulk modulusK ; = 2.2 - 10° Pa. For the test casg¢,= 0.95 andc = 2.77 m/s.
The velocity of the fluid along the tube axis is predicted bykiwsky's equationd5)]

with

p
Uy = ——

pre
wherep is the pressure gradient. In the case at hang: 18.02 cm/s.

We present the comparison between the computed and amalgtlutions of the proposed
benchmark problem, evaluating the mismatch with respeetith quantity of interest. Following
[20], we perform a series of numerical experiments, increnigntaducing the mesh size in the
radial and axial directions. We identify the different meskvith a triplet of numbers, corresponding
to the number of subdivisions in the axial direction, in thdial direction within the fluid domain,
and in the thickness of the tube wall. We construct four meshih the software GMSH,
guaranteeing axial symmetry of the position of the mesh sddach mesh contains an unstructured
region, bounded by a cylinder of radius 1cm; outside thahdgr the mesh is structured, and the
number of subdivisions in the circumferential directiorsigh that mesh elements at the interface
between the structured and unstructured regions have 4 simagle factor (see Fig.0(b)). Here
follows the list of considered meshes:

- mesh20-10-2 yielding a total number of degrees of freedom of abobit 103.
- mesh30-20-3 yielding a total number of degrees of freedom of atsnit 103.
- mesh50-30-5 yielding a total number of degrees of freedomi & - 10°.

mesh70-40-7 yielding a total number of degrees of freedom of alsbat 10,
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(a) Radial displacement of outer wall surface (b) Pressure along the tube centerline

Figure 11. Time history at the outlet section (absciss@ sm) of the (a) radial displacement of the outer

wall and (b) fluid pressure on the tube axis. Around 0.02 s the propagating wave reaches the outlet

section and wave reflections take place. Results obtainetieofinest mesh were processed to generate
these images.

To compare the computed features of the propagating wavethét theoretical predictions, we
limit our analysis to a time interval in which we can negldw effects of reflected pressure waves
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Table IV. Predicted pressure wave speed from numericalrgrpats with different mesh size.

| mesh | 20-10-2 | 30-20-3 | 50-30-5 | 70-40-7 |
| pressure wave speed (cm/s)274.1983| 275.3064| 276.4382| 276.6159 |

from the outlet section. This limitation can be in principéanoved, for instance by devising non-
reflective boundary conditions (see e. §6]). However, we did not investigate this. As shown in
Fig. 11, the wave has reached the outlet section-at20 ms. We therefore consider the results of
our numerical experiments only in the time range (0, 20) ms.

0.05r

—t=4.0ms

0.041

0.03r

0.02-
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pressure (dyn / cmz)

radial displacement (cm)
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0oy
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(a) Radial displacement of outer wall surface (b) Pressure along the tube centerline

Figure 12. The wave propagation in the fluid and solid dom&nsapshots at different times of (a) the radial
displacement of the outer wall surface (b) the fluid pressilmag the tube centerline. Results obtained on
the finest mesh were processed to generate these images.

Fig. 12 shows the time history of the radial displacement of thecstme computed with the finest
mesh. The oscillations tend to damp to a constant steady dtate to the value predicted by the
analytical solution4 0.25 mm).

To compute the average pressure wave speed we first definextleefrant at the half-height of
the pressure step, 50 Pa (seeZ(]); then we fit a first order polynomial to the position of thewsa
front in the time range < (0,20) ms and compute its (constant) derivative. The resultingnasée
is not sensitive to the mesh size (see Hig), and approximates the exact value2df7 m/s within
a 1% error margin. Tablg/ shows the predicted wave speed from different numericallsitions
with different grid sizes.

As a measure of the half-period of the wave we consider thartis between the first peak and
the first valley in the pressure time plot. From the resultsinled on the finest mesh we obtain for
this value an estimate @6 mm. Knowing the wave speed, we compute the wave frequentycas
Hz, within 1% error from the analytical prediction.

We noted before that the theoretical value for the wave faqu depends of/ ;.. The validity
of our choice ofM;, can be checked on the computed results. Consistently witlaggumption,
Fig. 14 (a) shows in fact that the radial velocity of the fluid is a lnéunction of the radial position
on a cross section at abscigsam, apart from a thin layer close to the wall (radius largentt8
cm).

Finally, the axial velocity of the fluid, evaluated on the éudis, is also a good approximation of
the value predicted by Joukowsky’s equation, as shown inlEi¢p).

4. CONCLUSIONS
The main goal of this work is to describe an open source frasriefer the solution of flow problems
relevant to biomechanics. At the core of this framework vwaeplthe software tools that we use to

build the computational meslpre-processingohase); LifeV, the library of algorithms and data
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Figure 13. The fluid pressure along the tube centerline=a0 ms, as computed using the four different
meshes. The small discrepancies in the computed values 8ftaiwsubstantial mesh independence is
achieved using the two finest meshes.
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Figure 14.The simulated wave propagation phenomenon emtahosely theoretical predictions.

Consistently with our assumptions on the model, the radéoity of the fluid is a linear function of

the radial position apart from a thin layer near the tube wéttle fluid velocity on the axis of the pipe

approximates the value predicted by Joukowsky’s equatesults obtained on the finest mesh were
processed to generate these images.

structures that we use to solve the differential problepnsoessingohase); software for thgost-
processingf the results of the numerical experiments.

Crucial aspects for a CFD framework are verificationandvalidation We show in this paper
how our tools can be tested against published benchmarkegpnsijor flow in rigid and deformable
domains. Within this context, we also believe that it is imipot to provide a detailed account on
the methods that we used, discussing where possible theisrard shortcomings.

In the simulation of flow in transitional and turbulent regisp we addressed the issue of accuracy
in the numerical integration performed by our code, pomitint the potential dramatic effect on
the quality of the solution. The importance of the mesh has &leen discussed, in particular
its consistency with the symmetry of the physical problerne Tlexibility of the mesh generator
is therefore a key factor. Computational costs have beewrsho be significant, as expected, in
particular for flow regimes characterized by high valueshef Reynolds number. While this is not
an intrinsic limitation of the proposed framework, it is @énly an area of possible improvement,
for instance through the implementation of effective tlebige models.

An important outcome of this work is the production of a switscripts and codes that are based
on a completely open-source set of tools, and therefore eandtily shared with the community.

20



As
we

Thi

VALIDATION OF AN OPEN SOURCE CFD FRAMEWORK 21

a matter of fact, we will prepare a distribution of our sete that will be published through the
b portal www.lifev.org and will allow the reproduction thfe results presented in this paper.
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