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Abstract

Various superconvergence properties of discontinuous Galerkin (DG) and local DG (LDG)
methods for linear hyperbolic and parabolic equations have been investigated in the past.
Due to these superconvergence properties, DG and LDG methods have been known to provide
good wave resolution properties, especially for long time integrations [26]. In this paper,
under the assumption of uniform mesh and via Fourier approach, we observe that the error
of the DG or LDG solution can be decomposed into three parts: (1) dissipation and dispersion
errors of the physically relevant eigenvalue; this part of error will grow linearly in time and is
of order: 2k+1 for DG method and 2k +2 for LDG method (2) projection error: there exists
a special projection of the exact solution such that the numerical solution is much closer to
this special projection than the exact solution itself; this part of error will not grow in time
(3) the dissipation of non-physically relevant eigenvectors; this part of error will be damped
exponentially fast with respect to the spatial mesh size Axz. Along this line, we analyze the
error for a fully discrete Runge-Kutta (RK) DG scheme. A collection of numerical examples
for linear equations are presented to verify our observations above. We also provide numerical
examples based on non-uniform mesh, nonlinear Burgers’ equation, and high-dimensional
Maxwell equations to explore superconvergence properties of DG methods in a more general

setting.
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1 Introduction

In this paper, we investigate superconvergence properties of discontinuous Galerkin (DG)
and local DG (LDG) methods for smooth solutions of linear hyperbolic and parabolic prob-
lems. DG and LDG methods are a class of finite element methods, designed for solving
hyperbolic and parabolic problems among many others [10]. These methods use piecewise
polynomial spaces of degree k that could be discontinuous across cell boundaries as solution
and test function spaces. These methods have the advantage of being compact and flexi-
ble for unstructured meshes, and being suitable for h-p adaptivity. Moreover, it has been
proved that both DG and LDG methods are of order k + 1 for linear problems with smooth
enough solutions [10] for 1-D cases. For general meshes, DG solutions are proved to be k + 3
order accurate for linear hyperbolic problems [18]. These methods also have some inherit
dissipation mechanism for L? stability of nonlinear problems, see for example [14, 22] and
references there in.

In this paper, our focus is on the superconvergence properties of DG and LDG solutions.
Superconvergence properties of DG and LDG methods for hyperbolic and parabolic problems
have been intensively investigated in the past. Lowrie et al. [17] discovered that when
polynomials of degree k is used, “a component of error” of the DG method converges with
order 2k+1 in L? norm. It is showed in [9, 16] that the DG and LDG solutions converge with
order 2k + 1 in terms of negative norm. Based on the negative norm estimate, the DG and
LDG solutions on translation invariant grids can be post-processed via a kernel convolution
with B-spline functions. The post-processed solution is proved to converge with order 2k + 1
in L? norm [9, 19, 16]. Adjerid et al. in [1] analyzed the DG method in the setting of ordinary
differential equations with the conclusion that the DG solution converges with order k+2 at
Radau points of each element, and with order 2k 4+ 1 at downwind points. In [2], Adjerid et
al. numerically investigated the superconvergence of DG and LDG for convection-diffusion
equations at Radau points. Cheng and Shu in [5, 6, 7] showed that the DG and LDG solution
is closer to the Radau projection of the exact solution than the exact solution itself. As a
result, the error of DG and LDG solution will not grow over a long time period O(\/#A—z).
In [13, 3, 4, 20, 21|, Fourier analysis has been adopted to indicate the superconvergence

properties of DG solution in terms of dispersion and dissipation error of physically relevant
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eigenvalues. We remark that the work in [13, 3, 4] is based on initial-boundary value problem
with a given inflow boundary condition, while our analysis in this paper is based on the
initial-boundary value problem with a periodic boundary condition. Such difference leads
to different assumptions, and therefore different observations and conclusions in the Fourier
analysis. Zhong and Shu [26] use the Fourier analysis and symbolic computation to show
that the DG method is superconvergent at Radau and downwind points with the order of
k + 2 and 2k + 1 respectively. In [23], for the first time that DG solutions are proved to
converge at the optimal rate of k£ + 2 at Radau points under the general assumption of non-
uniform mesh. Because of these superconvergence properties, the method is considered to
be very competitive in resolving waves propagating with long time integrations.

Different approaches have been adopted to analyze the superconvergence properties of
DG schemes, such as the negative norm estimate [9, 16], by considering the problem as an
initial or boundary value problem [1, 13, 3, 4], by special decomposition of error and playing
with test functions in the weak formulation [5, 23|, Fourier analysis [26, 20, 21, 12| etc.
Fourier analysis has been known to be limited to linear problems with periodic boundary
conditions and uniform mesh. However, it provides a sufficient condition for instability of
“bad” schemes [25] as well as a quantitative error estimate. It can be used as a guidance
to results in a more general setting [26]. In this paper, we will continue adopting Fourier
approach to analyze the errors of DG and LDG methods for time dependent linear hyperbolic
and parabolic equations.

In this paper, we perform Fourier analysis and symbolically compute eigenvalues and the
corresponding eigenvectors of the amplification matrices of the DG and LDG methods with

P* polynomial spaces. We obtain the following observations when k = 1, 2, 3:

1. There are k + 1 eigenvalues of the amplification matrices for DG and LDG schemes.
One of these eigenvalues is physically relevant. It approximates the analytical wave
propagation speed with an order of 2k + 1 in dissipation error and an order of 2k + 2
in dispersion error for DG solutions; and with an order of 2k 4 2 in dissipation error
for LDG solutions. This is consistent with the results in [13, 3] for initial boundary
value problems. The rest of the eigenvalues are non-physically relevant; they have

large negative real part that is of order AL for DG and ﬁ for LDG. As a result, the
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corresponding non-physically relevant eigenvectors will be damped exponentially fast

with respect to Ax over time.

2. There are k + 1 eigenvectors. If Lagrangian basis functions based on shifted Radau
points are used, the eigenvector corresponding to the physically relevant eigenvalue
approximates the wave function with order k£ + 2 at shifted Radau points and with

order 2k 4+ 1 at downwind points.

Based on the observations above, we decompose the error of DG and LDG solutions into
three parts. One part is due to the dissipation and dispersion errors of physically relevant
eigenvalues; this part of error is of very high order (2k + 1 for DG and 2k + 2 for LDG)
and will grow linearly in time. The second part is the projection error from the eigenvector
analysis. The magnitude of this part of error doesn’t grow in time. The third part of error
is related to how non-physically relevant eigenvectors are being dissipated over time. It is

concluded in this paper that the error of the DG or LDG solution at Radau points will not

1

AT for DG solutions and is on the order

grow over a period of time that is on the order of
of ﬁ for LDG solutions, where k is the degree of polynomial space. We remark that the
numerical solution is closer to the special projection investigated in this paper than that in
[5].

The paper is organized as follows. In Section 2, a review of DG and LDG methods
and Fourier approach is given. In Section 3, we symbolically analyze the eigenstructure of
the amplification matrices of the DG (Section 3.1) and LDG (Section 3.2) schemes with
polynomial degrees up to k (1 < k < 3). We also comment on the supraconvergence of DG
scheme based on Radau points in Section 3.3. We analyze the fully discrete RKDG scheme in
Section 3.4. In Section 4, numerical examples for scalar and system of equations in one and
two spatial dimensions are provided to verify our theoretical results. Numerical examples on
equations with variable coefficients, nonlinear equations, as well as schemes based on non-
uniform meshes are also presented to assess superconvergence properties of DG and LDG

schemes in a more general setting. Some interesting observations are discussed based on our

understanding. Conclusions are given in Section 5.



2 DG and LDG scheme and Fourier analysis
2.1 DG scheme

We first review the DG formulation and Fourier analysis for the linear hyperbolic problem

u + au, =0, x€1[0,27],t >0
(2.1)
u(z,0) = expliwz), x € [0, 27]
with periodic boundary conditions. Here a is a constant indicating wave propagation speed
and w is the wave number. For convenience, assume that a > 0.

To define the DG method for the model problem, we consider a uniform partition of the

computational domain [0, 27] into N cells as follows:
0:.1'% <$% <-"<Z’N+% = 2m.

Denote the cell by I; = [z, 1,2.,1] and the cell center by z; = 1 (xﬁ% —i—mj,%), for

i—50 ity 2

j=1,--- N. Clearly, the cell size is Ax = ZW” Define the approximation space as
Vi ={v:v|, € P*I;); 1<j < N} (2.2)

where P*(I;) denotes the set of polynomials of degree up to k defined on the cell I;. The
semi-discrete DG method using the upwind flux for solving (2.1) is defined as follows: find
the unique function u = u(-,t) € V¥ such that, for all test functions v € V}¥, we have

/ utvda:—a/ v, dr +au. ,v(x ) —au. ,v(zt ,)=0,j=1,--- N. (2.3)

I; I; Jts tits 2
Here and below u™, u~ denote the left and right limits of the function u at the cell interface,
respectively. Equation (2.3) is usually further discretized in time by a stable time integrator,
such as the strong stability preserving (SSP) Runge-Kutta (RK) method [11].
To implement the scheme (2.3), we adopt a local basis of P¥(I;), denoted as

{¢h(x), 1=1,2,--+ k+1}. (2.4)

Then the numerical solution can be represented as

k+1

u(z) = Zuéqﬁé(w), r el (2.5)



After substituting (2.5) into (2.3) and inverting a local mass matrix, the DG scheme (2.3)

can be written as

du; a
d_tj = AL (Au; + Bu;), (2.6)
where w; = (u}, - - ,uf“)T, A and B are (k+ 1) x (k + 1) constant matrices.

Below we review the Fourier analysis [25, 26]. This analysis depends heavily on the

assumption of uniform mesh and periodic boundary conditions. Assume
u;(t) = a(t)exp(iwz;), (2.7)

substituting which into the DG scheme (2.6) provides the following ODE system for the

coefficient vector u(t),
—u(t) = aGu(t), (2.8)

where G is the amplification matrix, given by

1 .
G = E(A + Be™®), ¢ =wAx. (2.9)
If G is diagonalizable, denote the eigenvalues of G as Ay, -+, \g11 and the corresponding
eigenvectors as Vi, - -, Viq1. Then the general solution of the ODE system (2.8) is
A(t) = CL eV + - Chpg €M1V, (2.10)
where (', -+ ,Cyy1 can be determined by the initial condition. Let V; = C’lf/l, then
a(t) = MV + - 4 e (2.11)

which is an explicit representation of DG solution for some future time ¢ > 0.

2.2 LDG scheme

Below we review the LDG formulation and Fourier analysis for the linear parabolic problem

U — Uy =0, x€[0,27],>0
(2.12)
u(z,0) = exp(iwz), z € [0, 27]



with periodic boundary conditions. The LDG scheme for (2.12) uses the same mesh and
approximation space as those for the DG scheme in Section 2.1. It is formulated based on

rewriting (2.12) as
Ut — 4z = 07
(2.13)
q— u; =0.

The scheme is defined as follows: find u,q € V/¥ such that, for all test functions v,p € V¥

and j=1,---, N, we have

/ v dx —|—/ qu, dx — Ljﬂ%v(x];%) +q; vzl ) =0,
I I;

1 1
) 2 J—3
J I (2.14)
N - N + oy
/qudx—l—/lupm dx—uj+%p(xj+%)+uj_%p(xj_%)—(),

J J

where a good choice for the fluxes ¢ and w is

¢=q",

>
I
N

i.e. we alternatingly take the right and left limits for fluxes in ¢ and uw. The choice of
Gg=¢q , &=u" is also fine.
Similar to the DG scheme, after choosing a set of local basis (2.4), the scheme (2.14) can

be written as

du; 1
d_tj = A_[L‘Z (Al’u]'_l + B’U;j + AQ’U,]‘_H) s (215)
where u; = (u},- - ,uf*l)T, Ay, B and Ay are (k+1) x (k+ 1) constant matrices. Assume

that the LDG solution is of the form in equation (2.7). Substituting (2.7) into (2.15) gives

d . N
Eu(t) = Gu(t), (2.16)

with the amplification matrix G given by

G = AL(Ale_’f + B + Aye®), € =wAxz. (2.17)
x

As in equation (2.11) for the DG solution, the explicit form of the LDG solution can also be

expressed based on eigenvalues and eigenvectors of G in equation (2.17) if G is diagonalizable.



3 Eigen-structures of G: error estimate

3.1 DG scheme

3.1.1 1-D scalar and system of linear hyperbolic equations

Depending on different choices of basis functions in DG implementation, the amplification
matrix G could be different. The eigenvalues of G however will stay the same, since the
DG method is independent of the choice of basis functions. However, the eigenvectors will
be basis-dependent. Below we analyze G matrix based on the basis functions that are the
Lagrangian polynomials

r—X

o5(x) =] r{é, (3.1)
izl i

where

I Ch.i
xj:l’j+7 xZ, lzl,,k—l—l,

are the k + 1 shifted Radau points. {(;;} are the roots of the Radau polynomial P, ({) —
Pi(C), where Py(() is the Legendre polynomial of degree k normalized such that
! 2
| P@p@ = 5=
where 6;; is the Kroneker delta. Such choice of basis functions will help to reveal the super-

convergence properties at Radau and downwind points [1, 5].

Proposition 3.1. Consider DG methods with polynomial space P* (k = 1,2,3) for linear
hyperbolic problem (2.1) with uniform mesh. Consider Fourier analysis of the DG method
using Lagrangian polynomials (3.1) based on shifted Radau points as basis functions. The
amplification matrix G is diagonalizable with k 4 1 distinct eigenvalues. One of these eigen-
values denoted as \; is the physically relevant one; it approximates the analytical value —iw
with dissipation error on the order of 2k 4+ 1 and dispersion error on the order of 2k + 2.
The rest of eigenvalues Ao, - - - Ay 1 have negative real part with the magnitude on the order

1
Of Az”

Proof. We perform symbolic computations via Mathematica to analyze eigenvalues of G.

Here is a summary of our results:



e P! case

-5
M = —iw — = Az® — Azt + O(AD)

72 270
A ——i+(9(1)
2T Az
e P2 case
6 -7
N = —iw — 5_LA6 A7
1= T = g AT g AT OB
—34++/51i
Mg = —8 1
2,3 Ar + O(1)
e P?3 case

A = —iw — 7.08 x 1077w Az" — 9.00 x 10 %iw’Az® + O(Az?)

—0.42 4+ 6.612 19.15
TZ+O(1), A= — +O(1)

oo —
2,3 AZL’

It can be checked from above that for £k =1,2,3

R(—iw — A1) = O(Az* ) T(—iw — \) = O(Az?2).

1

Remark 3.2. The fact that the non-physically relevant eigenvalues have large negative
real part on the order of ﬁ indicates that the corresponding eigenvectors will be damped

exponentially fast with respect to Ax over time.

Proposition 3.3. With the same assumption as Proposition 3.1, the eigenvector V; corre-
sponding to the physically relevant eigenvalue A\, approximates u(0) in equation (2.11) with
order k + 2 at Radau points and with order 2k 4+ 1 at downwind points. The non-physically

relevant eigenvectors V;, [ = 2,---k + 1 are of order k£ 4 2 at Radau points.

Proof. We perform symbolic computations via Mathematica. Below is a summary of our

results:



e P! case

—Am + O(Ax?)
162
Vi —a(0) =
——A A
54 2% 4+ O(Ax?)
——A
Tk + O(Ax?)
Vy =
-3
W A3 4
o4 Az® + O(Az")
e P? case
(3+ 8\/6)0)4 A 5
5000 Azt + O(Az°)
4
Vi —a(0) = (3_8\/6>WA4 N
20000 ri+0(Ar)
A
73000 (A)
(153 + 408V/6 + i18v/34 — i29v/51) w* At 1 O(AL)
2040000
153 — 408v/6 — i18v/34 — i294/51) w*
Vo = —( V6 —i18V3L —i \/_)wa4—|—(’)(Ax5)
2040000
Azt + O(AL°
160\/_ (Az”)
(153 + 4086 — i18v/34 +i29V/51) w* A+ O(A)
2040000
153 — 408v/6 4 i18v/34 + i29+/51) w*
Vi — | V6 +i18v/34 + i \/_)wa‘l—i—O(Aa:E’)
2040000
Azt + O(AZ®
160\/_ (Aa?)
e P3 case
—4.58 x 1072w’ Ax® + O(Az°
4.81 x 107 %W’ Az’ + O(AzS
Vi—a(0) =

(Az?)
(Az?)
—2.61 x 107w’ Az’ + O(Az®)
—2.43 x 107%w Az" + O(Az®)
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(2.13 x 107° +41.19 x 107°)w’Az® + O(Az®)
(1.55 x 107% —i1.86 x 107*)w° Az’ + O(Az?)
(—1.73 x 107° +i9.61 x 10" %)W Az’ + O(Az?)
(6.53 x 107% +42.31 x 107°)w’ Az’ + O(Az°)

9 =

(—2.13 x 107° +i1.19 x 107w Az’ + O(Az®)
(—1.55 x 107% — i1.86 x 107°)w°Az® + O(Az®)

V pum
’ (1.73 x 107 + 19.61 x 10~)w’ Az’ + O(Az®)
(—6.53 x 107° 4+i2.31 x 107°)w° Az® + O(Az®)
2.20 x 10 %iw° Az® + O(Az®)
v —1.09 x 10 %iw Az’ + O(Az®)
4 p—

6.85 x 10 %W Az® + O(Az®)
—4.62 x 107 %iw° Az’ + O(Az®)

Clearly, for k = 1,2, 3, V} approximates u(0) with order 2k + 1 at downwind points and with
order k+ 2 at other Radau points. V;, [ = 2,---k+1 are of order (k+2) at Radau points. B

Remark 3.4. We remark that the choice of Lagrangian basis functions based on shifted
Radau points is crucial in estimating superconvergence properties at Radau points. If we
choose other basis functions, e.g. Lagrangian basis functions based on uniformly distributed
points as in [25], then the eigenvector V; approximates t(0) with order k + 1 at all points,
and Vj, | > 2, is of order k 4 1 at all points. Details of symbolic computation are omitted

for brevity.

Proposition 3.5. With the same assumption as Proposition 3.1, let u(7") = a(0)exp (iw(z;—
aT)) and u,(T) = 4(T)exp(iwz;) be point values of exact solution and numerical solution

at shifted Radau points on a cell I;. Let e = u —uy. Then for 7" > 0,

T
le(T)|| < CraTAz** ™ + CyAz*T? + C’gexp(—C'Z—)A:Ek+2, (3.2)
x
where C, (4, Cy, C3 are positive constants independent of Az and || - || can be any norm for

vectors.

Proof. Note that in (2.11), @(0) = 327" Vi. By Equation (2.11), Proposition 3.1 and 3.3,

11



we have

le(I = [[u(T) —u(T)|

= |l(exp(—iwaT)a(0) = > exp(\aT)Vi|

=1

1) k+1 k+1
=" |[(exp(—iwaT) Z Vi— Z exp(NaT)Vi||
=1 =1
k+1 k+1
< |(exp(—iwaT) — exp(MaT) Vil + lexp(—iwaT)||| Y Vill + Y llexp(NaT) V|
1=2 1=2
k41
< Jexp(—iwaT) — exp(MaT)|[ Vil + [6(0) = Vil + Y lexp(haT)||Vi]
1=2
T
< C1aTA* ! 4+ CoAZ 2 4 C’gexp(—C’Z—)Axk+2
x

where C, Cy, Cy, Cy are positive constants independent of Ax. Notice that ||V;]| is of order

1 by Proposition 3.3. H

Remark 3.6. From Proposition 3.5, it can be seen that under the assumption of uniform
mesh, the error of the DG solution for a linear hyperbolic problem can be decomposed as

three parts:

1. Dissipation and dispersion errors of the physically relevant eigenvalue. This part of

error will grow linearly in time and is of order 2k + 1.

2. Projection error |[u* — u||. That is, there exists a special projection of the solution,
u’(T) = Ppu(T) = expliw(z; —aT))Vy

on cell [}, such that the numerical solution is much closer to the special projection of
exact solution (||u;, —u*|| = O(Az?**1)), than the exact solution itself. The projection

error

lu* —uf| = O(Az"*?),

will not grow in magnitude in time. By Proposition 3.3, such special projection ap-
proximates the exact solution at Radau points with order k£ + 2 with the exception of

Radau point at downwind end, which is of order 2k + 1. Unfortunately, the analytical
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form of such special projection is only known symbolically and is subject to further

investigation.

3. Dissipation of non-physically relevant eigenvectors. This part of error will decay expo-

nentially fast over time with respect to Ax if a > ag > 0.

Remark 3.7. When a > ag > 0, the error e(7T') in Proposition 3.5 is of order k+ 2 at Radau

points and is of order 2k 4+ 1 at downwind points.

Remark 3.8. Based on the error estimate (3.2), one can conclude

(a) when T' = o( x5 ), O(Az*2) is the dominant term in (3.2); this term will not grow
with time;

(b) when T' = O(5—=) (very long time integration), C1aTAz**! is the dominant term

Agk—1

in (3.2); this term grows linearly with time and is of order 2k + 1.

Since it is hard to check numerically the long time behavior of the error of DG solutions,
we propose to use the following Corollary as a way to numerically assess our theoretical

results discussed in this section.

Corollary 3.9. Consider DG methods with polynomial space P* (k = 1,2,3) for linear
problem (2.1) with uniform mesh. Let n > 1 be an integer, then

2nm Cat
||un(t + T) —w,(t)|] < Cin(Ax* T + Cgexp(—E)Axk”, (3.3)

where C', ] and Cy are positive constants independent of Az.

Proof.
o k+1
lun(t+==) —un(@®)| = || D _(ewp(N(at +2n7)) — exp(Nat) Vi|
=1
< exp(Ai(at + 2nm)) — exp(Aiat)||| Vi
k+1
+3 " lexp(Mi(at + 2n7)) — exp(Nat)|[|Vi]
1=2
~ Cat. \ ko
< exp(M2nm) — exp(iw2nm)||lexp(Arat)||| V|| + C’Qexp(—A—z)Ax
t
< Cin|h —iw| + C'gexp(—c—a)A:ckJr2
Az
< CinAz®t 4 Cgexp(—%)Axk“.
x
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Remark 3.10. Assume a = 1, let T' = 2n7 + t with ¢ = O(1), then the first term on the

r.h.s. of (3.3) is the dominant term.

le(D) = [la(T) = un(T)]
= @) —un(2n7 + 1)

< un(2nm + 1) — an (8[| + [ut) — wn(@)]-

Since ||u,(2nm +t) — up(t)| is order of 2k + 1 and grows linearly with n, we can conclude

that the error e(7T") will not grow linearly in time until 7' = O(zz—).

Remark 3.11. When a is of order 1, the dominant error on the r.h.s. of (3.3) is of order
2k + 1. This observation is numerically verified in many examples presented in Section 4.
When a is very small, the dominant error is of order k+2, rather than 2k+1. This observation
is important in explaining the numerical performance of DG schemes for a nonlinear Burgers

equation in Example 4.4 and for a rotational problem in Example 4.8.

Remark 3.12. Proposition 3.5 and Corollary 3.9 can be extended to a linear hyperbolic
system U; + AU, = 0, where A, ., is a constant diagonalizable matrix with real eigenvalues.

This is due to the fact that the hyperbolic system can be decoupled to n scalar equations.

3.1.2 DG scheme for 2-D problem: Q*

In this subsection, we analyze the DG method for a 2-D linear advection equation
up + auy +bu, =0, (z,y) € [0,27)? (3.4)

via Fourier analysis. Without loss of generality, we assume that a,b > 0. Consider a uniform
partition of the computational domain as [0, 27]? = U, ;I;; = ULJ-[JEF%,QL’Z-JF%} X [yjfé,yﬂ%].
The basis functions are chosen to be 2-D functions Q* which are tensor products of 1-D ones

on each cell ;;. Define the approximation space

VE={v:v

1, €Q"(Iy); 1<i<N, 1<j<N} (3.5)

14



[} ([ ] ([ ] T

Figure 3.1: Radau points in two-dimensional case.

The semi-discrete DG method using the upwind flux for solving (3.4) is defined as follows:
find u(-,-,t) € Vi¥, such that

I I;; I;i
ijr% yj+%
— a(/y 1 U;%,J(y)v(l";_%»y) dy - /y\ l UZ__%J(y)'U(.Tj__%) y) dy>
i—3 -1

- b(/ ui’j+%(x)v(x,yj+%) dx —/ u, é(zzc)v(x,y, )dx)
xi_l Ii_l
2 2

for all v € V;¥. As in 1-D case, to illustrate the superconvergence properties at Radau nodes,

we use the following basis functions
By =Ln(x)Ly(y), mmn=1---k+1

where L,,(z) and L, (y) are shifted Radau Lagrangian basis functions (3.1) in z- and y-
directions respectively. Please see Figure 3.1 for distribution of shifted Radau points in a
cell.

In the Fourier analysis, the DG solution is assumed to be of the form
u(t) = a(t)exp(iw,x; + iwyy;), (3.7)

where (¢) is the coefficient vector of (k 4 1)? elements. We substitute equation (3.7) into

the DG scheme (3.6) to obtain an ODE system for the coefficient vector

d . .
au(t) = Gu(t).
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Let G"“* and GY*¥ be the 1-D amplification matrix in 2- and y- direction respectively. Then

the 2-D amplification matrix G' can be written as
G=al ® G"* +bG¥*" ® I, (3.8)
where ® is the tensor product or Kronecker product of two matrices.

Proposition 3.13. The 2-D amplification matrix G in equation (3.8) has (k+1)? eigenvalues,
a\>®) 1 b)\yv(q)’ pg=1,---k+1
with the corresponding eigenvectors

V(@) ® Vﬂﬂ,(ﬁo)7

where A»®) and V&=® p=1,.--k+1, \@ and V%@ ¢g=1,.---k + 1 are eigenvalues and

eigenvectors for G**“* and GY*“¥ respectively.
Proof. Since (A® B)(x®y) = Ax ® By, we have

G(vyy(q) ® va,(p)) = (al ® G*** +bGY*" @ ])(V%(q) ® Vw,(p))
— V¥ g (Gx,wmvxv(p)) + bGYr YD) ) 1(P)
— a/\w,(p)(vy,(Q) ® va(p)) + b/\yv(‘I)(Vyv(Q) ® va,(p))

= (aX"®) 4 pA ) (V8@ g @),

|

Similar to the 1-D case, based on our understanding on the eigen-structures of 2-D
amplification matrices, we have the following error estimate for the DG method with Q*
basis functions for a 2-D linear advection problem (3.4). The proof is similar to the 1-D

case, and thus is omitted.

Proposition 3.14. Consider DG methods with polynomial space Q* (k = 1,2, 3) for a 2-D
linear hyperbolic problem (3.4) with uniform mesh size Az and Ay in z- and y- directions

respectively. Let u(T") = a(0)exp (iw, (z; — aT’) +iw, (y; —bT)) and u,(T) = (T)exp(iw,x;+
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iwyy;) be point values of exact and numerical solution at shifted Radau points in a cell I;;.

Let e = u — uy, then for T' > 0,

b

le(T)]| < ClT(an2k+1+bAy2k+1)+CQ(A:Bk+2+Ayk+2)—I—Cgezvp(—CT(ijL—))(Awk+2+Ayk+2),

Ax Ay
(3.9)

where C', C, Cy, C3 are positive constants independent of Az and Ay.

Remark 3.15. Consider a DG method for a 2-D linear problem (3.4) using polynomial

spaces

PE(L;) ={ ) c'y’} (3.10)

i+j<k
as polynomials up to degree k on each cell [;;. Unlike the QF case, the eigen-structure for
a 2-D amplification matrix cannot be analyzed via our understanding on a 1-D case, since
the number of basis functions increase quadratically with k& and it is difficult to obtain the

roots of an algebraic equation of degree higher than 4.

3.2 LDG scheme

In this subsection, we discuss the eigen-structure of the amplification matrix from an LDG
scheme for linear parabolic problem (2.12). As in a DG scheme, we formulate the amplifica-
tion matrix with Lagrangian basis functions (3.1) based on the k£ + 1 shifted Radau points.
Such choice of basis functions will help to reveal superconvergence properties at Radau points
[2, 6]. The direction of the Radau points is determined by the choice of the numerical flux.
In the following analysis and simulation, we choose & = v~ and ¢ = ¢™. In this case, the
right-shifted Radau points are used and the corresponding downwind points are a:'];%. Note
that the amplification matrix of the LDG scheme for equation (2.12) can be derived from
the amplification matrix of DG scheme for equation (2.1) with @ = 1 directly. Specifically,
let Gpg and G pg denote the amplification matrix of DG and LDG respectively. Then

Grpg = —WGpcWGpg. (3.11)

Here G pg is the conjugate of Gpg, i.e.

1 : _ 1 .
A—m(A‘i‘Be_l&), GDG = —<A+B€l§),

Gpa = AL
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with the notations introduced in (2.9). W is the change of basis matrix, which maps function
values at right-shifted Radau points to the left-shifted ones. By the symmetry of right-shifted
and left-shifted Radau points distribution, W features the property W—! = W. For example,
for P! case, the right-shifted Radau points are ordered as (xj_%,mﬁ%), the left-shifted ones

are ordered as (xj+%, xj_%), and

oW N =
—_

Notice the symmetry of these two set of points with respect to x;. Due to such symmetry,

it can be checked that W—! = W as claimed above.

Proposition 3.16. Consider LDG methods with polynomial space P* (k = 1,2, 3) for linear
parabolic problem (2.12) with uniform mesh. Consider Fourier analysis of the LDG method
using Lagrangian basis functions (3.1) based on shifted Radau points. The amplification
matrix G is diagonalizable with (k+1) distinct eigenvalues. One of these eigenvalues denoted
as \; is the physically relevant one, approximating —w? with dissipation error on the order
of 2k + 2. The rest of eigenvalues A, - - - A\ 1 have negative real part with the magnitude on

the order of ﬁﬂ.

Proof. We perform symbolic computations on Mathematica. Below is a summary of eigen-

values of (.
e P! case
6 1108
N = —w? W_A 4 Ax Az
1= W AT g A T OAT)
36
-2 1
A2 Az? o)
e P? case
(JJS wlO
M=-—-w?t— A4 2 A+ O(AL
1= o002t tooooSF T OBTT)
—78 + 61/69
Moy = ——=2VP7 L 001
2,3 N + O(1)
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e P3 case

A= —w? —2.25 x 107 %Y Az® — 7.51 x 107w Az + O(Ax'?)
438.91

= — 1
Ay A2 +O(1)
46.58
A3 = — A2 + O(1)
34.51
A= — A2 + O(1)

It can be checked from above that for k =1,2,3
R(—w? — A1) = O(Az* 1),
R(N) <0, [RN)|=0(—), 1=2,---k+1.
|

Remark 3.17. In our symbolic computation, we find that the eigenvalues of the amplifica-
tion matrix G for LDG methods are real for £ = 1,2,3. However, this fact is difficult to

prove based on equation (3.11).

Remark 3.18. The fact that the other eigenvalues have large negative real part on the order

of ALQ indicates that the corresponding errors will be damped out exponentially fast with

respect to Az over time.

Proposition 3.19. With the same assumption as Proposition 3.16, the eigenvector V) cor-
responding to the physically relevant eigenvalue A; approximates u(0) with order k + 2
at Radau points and with order 2k + 1 at downwind points. The non-physically relevant
eigenvectors Vi, [ = 2,---k + 1 are of order k + 2 at Radau points.

Proof. We perform symbolic computations on Mathematica. Below is a summary of our

results.

o P! case

-3
—;“’ﬂmf’) +O(AzY)
vi-a0)=|
A+ O(AzY
108
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e P? case

e P3 case

—A A
2ol z® + O( .7:)

_I N i
1O8A$ + O(Azx™)

(3+8V6)w* 5
BT OVOIW | A
gooop 2w T O(A7)

4
60000 T+ 0(Ar7)

18000A$ + O(Ax )

(207 + 552/6 + 1621/46 — 111/69)w*
8280000

V, = | (207 —552v/6 — 162v/46 + 11v/69)w*
8280000

Az* + O(AxY)

Azt + O(Az®)

Azt + O(A
480\/_36 (A7)

(207 + 552+/6 — 162+/46 + 111/69)w*
8280000

v, — | (207 —552v6 +162v46 — 11V/69)w*
8280000

Az* + O(AxY)

Azt + O(Az®)

480\/_A ‘4 0(A2)

1.15 x 10 %iw’ Az® + O(Ax%)

) —1.20 x 10" %iw° Az® + O(Az")
i—a(0) = 6.52 x 10 %w° Ax® + O(Az®)
4.05 x 1077w Az + O(Az®)

—3.06 x 107 %w Az’ + O(Ax°)
—1.20 x 107°iw° Az® + O(Az®)
—7.02 x 1077w Az® + O(Az®)
(Az”)

Vo =

1.19 x 107%iw’Az® + O(AzS

20




—5.96 x 107 %W Az® + O(Az®)
1.24 x 10 %w’Az® + O(Az®)
N 3.40 x 10~ %w’ Az® + O(Ax")
—4.61 x 107 %w°Az® + O(Az®)
—2.45 x 107 %w° Az® + O(Az®)
1.04 x 10 %iw’ Az’ + O(Ax)

V=
—9.22 x 107 %w° Az® + O(Az®)
—7.31 x 107 %W Az® + O(Az®)
It can be checked that for & = 1,2,3, V; approximates w(0) with order 2k 4+ 1 at downwind
points and with order k 4 2 at other Radau points. V}, [ = 2,---k + 1 are of order (k + 2)

at Radau points. B

Proposition 3.20. Consider LDG methods with polynomial space P* (k = 1,2,3) for the
linear parabolic problem (2.12) with uniform mesh. Let u(7T) = a(0)exp(iwz; — w?T) and
u,(T) = a(T)exp(iwz;) be point values of exact and LDG solutions at shifted Radau points

on a cell /;. Let e = u — uy, then for 7" > 0,

T

le(T)|| < CLT Az + CyAxF T2 + Cgexp(—CE

)AzMT? (3.12)
where C', C1, Cy, C3 are positive constants independent of Ax.

Proof. The result can be derived based on Proposition 3.16 and 3.19. The proof is similar
to Proposition 3.5.

Remark 3.21. Similar to the case of DG scheme, the error of the LDG solution can be
decomposed as three parts:

(a) Dissipation error of the physically relevant eigenvalue in the order of 2k + 2;

(b) Projection error |[u* — ul|: the numerical solution is much closer to the special pro-
jection of exact solution denoted as u* (|[u* — u,| = O(Az%+2)), than the exact solution
itself (|[u — uyl| = O(Az*2));

(¢) Dissipation of non-physically relevant eigenvectors.
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Remark 3.22. Based on the error estimate (3.12), one can conclude

(a) when T' = o( 555 ), O(Az*+?) is the dominant term in (3.12); this term will not grow
with time;

(b) when T = O(xtr), O(Az?*2)T is the dominant term in (3.12); this term grows
linearly with time and is of order 2k + 2.

As for the DG scheme, it is hard to check numerically the long time behavior of the error
of LDG solutions, we propose to use the following corollary as a way to numerically assess

our theoretical results above. Our numerical results on LDG method in the next section is

based on the following corollary.

Corollary 3.23. Consider LDG methods with polynomial space P* (k = 1,2, 3) for linear
parabolic problem (2.12) with uniform mesh. Let 7' > ¢ and ¢ = O(1), then

n(T) — wa)eap(~w*(T — )] < Cu(T ~ AL 1 Cheap(— ) AaH,
x
where C', C; and (5 are positive constants independent of Ax.
Proof. The proof is similar to Corollary 3.9.
k41
lun(T) = wp()exp(—w*(T = 1) = || D_(exp(NT) — exp(\t — (T — t)w*))Vi|
=1

< lexp(MT) — exp(hit — w*(T = 1)) | V1]
k+1

I [(exp(NT) — exp(t — (T — )| Vil

< leap(M(T — t) — exp(—w*(T — 1)) lexp(Mt)[[| VA
+Cgexp(——A:B2)Am +
Ct
< T —t)Ax? 2 — Y Agkt?
< Oy t)Ax + Chexp( AxQ) x

|
Remark 3.24. Similar to Remark 3.10, let 7 > ¢ and ¢t = O(1), then
le(Dl = [[ua(T) = un(T)|
= lexp(—w*(T — t))u(t) — up(7)|
< |[un(T) = exp(—w*(T — 1)) un(t)|| + lexp(—w*(T — 1))[[Ju(t) — wu(1)]
< JJun(T) = exp(—w*(T = ) un(®)[| + [u(t) — un(®)]
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From Corollary 3.23, the dominant term in ||uy,(2nm + t) — exp(—w?(T — t))uy,(¢)]| is order
of 2k + 2. Thus the error ¢(T) of LDG scheme will not grow until 7' = O(x).

3.3 Supraconvergence of DG and LDG scheme

In [24], a so-called supraconvergence property of the DG scheme was studied. It was dis-
covered that the leading term of the local truncation error for the DG scheme is first order
accurate when piecewise P! polynomial is used with basis functions being Lagrangian inter-
polant based on uniformly distributed points (i.e. ¢;_ 1 and ¢, 1 ). In this section, we further
study the supraconvergence property of the DG and LDG scheme based on our analysis for
the eigen-structure of amplification matrices G.

Firstly, we look into the DG scheme for the model problem (2.1). Without loss of gen-
erality, we assume that @ = 1. Denote D to be the temporal differentiation operator of @(0)

with D(0) = —iwti(0). Then the local truncation error denoted as LT E satisfies
LTE = Da(0) — Ga(0). (3.13)
Keeping the notation in equation (2.11), we have

LTE = Da(0) — Ga(0)
k+1
= (—iw—X\)V1 — Z()\l +iw)V;

1=2
From our analysis in Section 3.1, we have (—iw — A\)V; = O(Az*+1) (N +iw) = O(Az~1)
and V; = O(Axk+2) for | > 2 where k = 1,2,3. Thus the LTE based on shifted Radau points

is obtained as:

LTE = O(Ax"th). (3.14)

It is observed that, due to our estimate for \; = O(Az™!) with [ > 2, the order of local
truncation error is one order lower than the error in (3.2). Note that the local truncation
error analyzed based on uniformly distributed points [24] is one order lower than that based
on shifted Radau points (3.14). This fact partially explains the supraconvergence property
of DG scheme discussed in [24].
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Similar results can be derived for LDG schemes.

LTE = D%*i(0) - Ga(0)

= O(AzY) (3.15)

since —w? — A\ = O(Az%*2), (N +w?) = O(Ax72) and V; = O(Az*+?) for | > 2, when
k =1,2,3. The order of local truncation error is two orders lower than the error in equation
(3.12) based on shifted Radau points. Similarly, when uniformly distributed Lagrangian
basis is used, we have LTE = O(Az*1).

3.4 Fully discrete schemes

An analysis of fully discretized RKDG schemes will be presented below. Without loss of
generality, assume a = 1 in (2.3).

Let @ be the approximation solution of the fully discretized version of (2.3) obtained by
using an explicit RK methods of order p [11]. Denote u,(T") = @"exp(iwzx;) to be the point

values of the solution @ at shifted Radau points on a cell I; at time 7". Then

T
u'" = R"u(0 = —
u u( )7 n At?
with
At? AtP
R:1+AtG+7G2+---+—‘GP (3.16)
! p!
for an explicit p'* order RK method, where the amplification matrix G is defined in (2.9).
Consider the eigen-structure of G = QAQ™!, where Q = [Vi, -+, Vi11] is the matrix with
its columns being G’s eigenvectors and A = diag(A1,- -+, A\gr1) where N;, ¢ = 1,---  k+ 1
are G’s eigenvalues, then

. k+1 AP ) n
u :Z 1—|—At>\l—|—"'+7>\l Vi (317)
=1

Proposition 3.25. With the same assumption as Proposition 3.5. Denote 1, as the nu-

merical solution of fully discretized DG scheme with k" order polynomial as solutions space
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and with p* order RK method. Let & = u — 1,. Then for 7' > 0, and under certain linear

stability constrain for time step At, we have the error estimate

1&8(T)|| <CLTAZ* ! + CoAzF 2 + C3TA, (3.18)
where C}, Cy, C3 are positive constants independent of Az and At. Here || - || can be any
norm for vectors.

Proof.
e = () —an(T)] < [a(T) = un(T)|| + [un(T) — aa(T)| (3.19)

By Proposition 3.5 with a = 1, we have
|W(T) —u,(T)|| < CLTAZ* M + CLAZM (3.20)

where C, CY are positive constants independent of Az. We only need to estimate the second

part on the r.h.s. of (3.19). By Equation (2.11) and (3.17), after Taylor expansion, we have

[un(T) = (T)]| < Cl[a(T) —a(T)]| (3.21)
k+1 k+1 )\fAtp

s
< CZH@IP(/\;T)VZ—Z(1+)\1At+...+ . ) Vi

=1 =1

k+1 x
NINDE
< CZ|exp(/\zT)—<l+/\zAt+-~+ 5 ) Vi
=1 ’

e Firstly, we consider \;.

AP N}
lexp(MnAt) — (14 AtA + - + - Ly
AP}
< lexp(MAL) — (1 4+ Aty + -+ + ) Ly,
n—1 Atp)\p
| Z exp(MmAL) (1 + Athy +--- + . 1yn—1-m)
m=0 .
< CiTAt? (322)

where the last inequality requires the estimate about A\; from Proposition. 3.1,

lexp(AmAL)| <1, Vm.
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We also need

A AL)P
H+MAH<”+(2ﬂ>W§6g Vm <n-—1 (3.23)

To guarantee such inequality, the time step At has to be small enough for stability.
Below, we only consider a simple case to illustrate how time step restriction is related
to the stability, and the equation (3.23). The readers are referred to [12] for more
details.

RKDG scheme with P! with RK2. Denote c¢fl = &t and ¢ = wAz. From Prop. 3.1,

Az
we have
A = —iw— w—4Ax3 — EAZA + O(Az®)
b 72 270
. ¢ i&° 5
= —jw — — O .
W=y " 270ag O
Then
NAE? , cfl® , cfl , 9
|1+)\1At+ | == |1—ZCfl§—T§ —ﬁf +O(§ )|
cft  cfl 4 6
= 14 (2L - 22 :
1+ (- - S0t + o)
We require the lead term
cflt  cfl
ALY
136

which leads to cfl < 0.48075. Note that this is necessary, but not sufficient condition
to have (3.23) for all ¢ € [0, 27].

For A;, I > 2. From Prop. 3.1, we have

T T
APALPY Bt NPAPP Bt
wwwﬂ—(umAHw~%},)\ Skw@ﬂHﬂ@+Mm+~ﬁ—% )|
< 4, (3.24)
if
APALP
11+ NAE+ -+ lp, | < ). (3.25)

This inequality would be valid only for sufficiently small time step as for A;. Below,

we use the same example as above to derive a necessary condition for linear stability.
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RKDG scheme with P! with RK2. From Proposition 3.1, we have

6
= —— 1
Ao AL + O(1),

then

A3AL?
2

|1+ XAt + | < |1 —6efl+ 18cf1?| + O(¢€)

To ensure stability, we need

1
|1 —6cfl+18cfl?| <1 e cfl< 3

Combining the two time step restrictions, we get cfl < %, which is a necessary condition
for linear stability of RKDG scheme with P! with RK2. Such time step restriction
is consistent with the classical results in [10]. Similar analysis can be performed for

general RKDG methods.

Now we can finish the proof. Under certain linear stability constrain of time step At, we

have from the above discussions
[un(T) — (7)< CsTA# +C Y ChALH? (3.26)
!
where C3 = CCY is a positive constant independent of Az and At. Combine (3.19), (3.20)

and (3.26), we derive the final error estimate with Cy = C4y+C Y, Cs. W

Remark 3.26. In the proof, we do not intend to derive a necessary and sufficient condition
of the time step restriction. Related work on this topic can be found [15]. We only assume
such time step restriction is satisfied for the linear stability, then the error estimate for the

fully discretized scheme can be derived.

Similarly, an error estimate of fully discretized LDG scheme with p™* order explicit RK

method can also be derived.

Proposition 3.27. With the same assumption as Proposition 3.20. Denote u; as the nu-

merical solution of fully discretized LDG scheme with k** order polynomial as solutions space
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and p'* order RK method and € = u—1y,. Then for 7' > 0, and under certain linear stability

constrain for time step At, we have the error estimate
1&(T)|| <CiTAz* 2 + CyAzF 2 + CsT AP, (3.27)

where C, Cy, C5 are positive constants independent of Az and At. Here that || - || can be

any norm for vectors.
Proof. The proof is similar to Proposition 3.25.

Remark 3.28. For a fully discretized RKDG scheme, the results in Remark 3.8 still hold,
provided the order of RK method p > 2k + 1. If a low order of RK method is used with At =
O(Az), the error will grow linearly with time, see [24] for a detailed numerical comparison.

In general, in order to study the superconvergence property of DG and LDG scheme, we use

very high order RK method (SSPRK(9,9)) or let At = O(Axz?) to reduce temporal errors.

4 Numerical examples

In this section, we provide a collection of one- and two-dimensional numerical experiments
to verify our theoretical analysis in Section 3. DG schemes for a one-dimensional linear
equation based on non-uniform mesh, one-dimensional nonlinear Burgers’ equation, two-
dimensional systems such as wave equations and Maxwell equations are also investigated to
explore superconvergence properties of DG methods in a more general setting. We do not
report DG errors at Radau points due to superconvergence properties of physically relevant
eigenvectors in this paper, as they have been well documented in [26]. In our numerical
experiments in this section, we use explict p;-stage, ps-order strong stability preserving
Runge-Kutta methods [11], denotes as SSPRK(py,p2) for time discretization. In most of
our simulations below, we use SSPRK(9,9) for linear problems and use SSPRK(5,4) for
nonlinear problems. We also reduce the time step size so that the spatial error from DG
is the dominant error. We use Gaussian quadrature rule with k 4+ 1 quadrature points to
compute the volume integral in the DG formulation, which is exact for linear cases and is of
order 2k + 2 for variable coefficient cases nonlinear cases. We use the same quadrature rule

to compute the L? norm of error functions. We remark that since Gaussian quadrature rule
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is of order 2k + 2 for k + 1 Gauss points, (2k + 1) order of convergence will be able to be

maintained numerically.

Example 4.1. Consider a one-dimensional linear advection equation:

{ u+u, =0, z€]l0,2n]

u(z,0) = sin(z) (4.1)

with periodic boundary conditions. In order to make the temporal error negligible compared
to the spatial error, we adopt SSPRK(9,9) [11] to solve du/dt = Lu, where L is DG dis-
cretization operator. Note that in order to use SSPRK(9,9), L should be a linear operator.
In the simulation, we choose CFL = 0.3 for P!, CFL = 0.2 for P? and CFL = 0.1 for P3.

In this example, we consider two type of DG errors. One is the regular DG error (e =

u — uy), and the other is
&n = |un(T = 27) —up(T = 2(n+ 1)7)|, neN, (4.2)

whose order of convergence is 2k + 1 as discussed in Corollary 3.9. In Table 4.1 and 4.2
we report the L2 norm of €, and &, and the order of accuracy for P-P3. (2k + 1) order
of accuracy is observed, as expected from Corollary 3.9. It is also observed that e; ~ 2é;
indicating the linear growth rate of the error in time. This is also consistent with the
Corollary 3.9. In Figure 4.1, the evolution of L? norms of the regular DG errors e(t) and
én(t) in a log-log scale is provided. The magnitude of regular DG error is observed to be
much larger than ¢€,. It is observed that the regular DG error does not grow for a long time,
while linear growth rate of the error €, with respect to time is observed, see Remark 3.10.
In Figure 4.2 - 4.4, we plot the regular errors of DG schemes and the errors ; with n =1 in
equation (4.2) in a logarithmic scale for P'-P3. Highly oscillatory nature of DG errors are
observed as in [9]. On the other hand, €; does not oscillate as much; the magnitude of & is
much smaller and the order is 2k + 1.

A non-uniform mesh with two different mesh sizes is used to assess superconvergence
properties of DG with non-uniform mesh. We set A/ AZyight = 3/2, where Az, and
AZyigh is the mesh size for the left and right half part of the domain respectively. In Table
4.3, we report the error &,. An order of 2k + 1 is observed for P! and P? cases, but not for

the P case. We remark that in [26], with non-uniform mesh, (2k + 1) order of convergence
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is not observed well at downwind points for the case of P3 either. Figure 4.5 shows error
e, in logarithmic scale for P-P? when N = 70. Non-oscillatory errors are observed for P*
and P? even around the interface of different mesh sizes. For P3, the error is observed to be

oscillatory near the discontinuity of mesh size.

Table 4.1: Linear advection u; +u, = 0 with initial condition u(x,0) = sin(x). The L? norm

of €, and the order of accuracy. Uniform mesh.

Pt P? P3
mesh | L? error order | L? error order | L? error order
20 | 4.74E-03 — 4.71E-06 — 2.39E-09 —
30 1.41E-03 2.98 | 6.22E-07 4.99 | 1.39E-10 7.01
40 | 5.98E-04 2.99 | 1.48E-07 5.00 | 1.86E-11  7.00
50 | 3.06E-04 3.00 | 4.84E-08 5.00 | 3.90E-12 7.00
60 1.77E-04 3.00 | 1.95E-08 5.00 | 1.09E-12 7.00

Table 4.2: Linear advection u; + u, = 0 with initial condition u(z,0) = sin(x). The L? norm

of é; and the order of accuracy. Uniform mesh.

P! P? =
mesh | L? error order | L? error order | L? error order
20 9.47E-03 - 9.42E-06 - 4.76E-09 —
30 2.83E-03 298 | 1.24E-06 4.99 | 2.79E-10 7.00
40 1.20E-03 2.99 | 2.96E-07 5.00 | 3.72E-11 7.00
50 6.13E-04 3.00 | 9.69E-08 5.00 | 7.81E-12 7.00
60 3.55E-04 3.00 | 3.89E-08 5.00 | 2.18E-12 7.00

Example 4.2. Consider the same advection equation as Example 4.1 but with a different

initial condition:

Note that the initial condition contains infinite number of Fourier modes. In Table 4.4, we

report the L? norm of & and the order of accuracy. (2k + 1) order of accuracy is observed

as expected.

u(z,0) = exp(sin(z)).
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Figure 4.1: DG with P?, u; + u, = 0, the evolution of L? norms of regular DG error and
error |€,|. A reference line with slope 1 is plotted as the reference of linear growth rate of
|e,| with respect to time. In the simulation, we use RKDG P? with mesh size Az = 2% and
CFL=0.2.

50

Example 4.3. Consider the following linear variable coefficient equation:

us + (a(z)u), = b(x,t), x€]0,27]
{ u(x,0) = sin(x) (4.4)

with periodic boundary conditions. And a(z) and b(z,t) are given by
a(z) =sin(z) +2, bz, t) = (sin(z) + 3) cos(x + t) + cos(z) sin(x + t). (4.5)

The exact solution is u(z,t) = sin(z+t). We use SSPRK(5,4) for the temporal discretization.
In the simulation, we let CFL = § for P', CFL = 1 for P? and CFL = 1 for P?, and time
step At = CFLAx? to reduce the time errors. We report the L? norm of &, as defined in
equation (4.2) and numerical order of accuracy in Table 4.5. (2k + 1) order of accuracy is

observed, although our analysis only works for the constant coefficient problems.

Example 4.4. Consider the following nonlinear Burgers’ equation with a source term:

u + (u?), = b(x,t) x €[0,27]
{ u(z,0) =sin(z) + ¢ (4.6)

with periodic boundary conditions. Here ¢ is a real number and b(x,t) is given by
b(x,t) = cos(x +t)(2c+ 1 + 2sin(x + t)). (4.7)
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Table 4.3: Linear advection u; + u, = 0 with initial condition wu(z,0) = sin(x).

The L?

norm of é; and the order of accuracy. Nonuniform mesh with two different mesh sizes.

Axleft/Aajright = 3/2

Pt P? P3

mesh | L? error order | L? error order | L? error order
20 | 3.37E-03 — 5.61E-06 — 2.45E-08 —
30 | 1.01E-03 2.98 | 7.42E-07 4.99 | 1.49E-09 6.90
40 | 4.27E-04 2.99 | 1.76E-07 5.00 | 2.32E-10 6.46
50 | 2.19E-04 2.99 | 5.78E-08 5.00 | 6.00E-11 6.07
60 | 1.27E-04 3.00 | 2.32E-08 5.00 | 2.03E-11 5.93
70 | 798E-05 3.00 | 1.07E-08 5.00 | 2.03E-11 5.95

P1

P1

N=10
N=20 or
N=4
N=8

=

! I i l \" 7

Figure 4.2: DG with P!, u; + u, = 0, regular error |u(T = 4m) — uy(T =
@] (right).

47)| (left); error

The exact solution is u(z,t) = sin(z+1t)+c. We use SSPRK(5,4) for the temporal discretiza-
tion. In the simulation, we let CF'L = % for P*, CFL = % for P? and CFL = % for P3, and
time step At = CFLAz? to reduce the time errors. Firstly, we let ¢ = 0, and compute the
error €. In Table 4.6, the L? error and the order of accuracy are reported. (2k + 1) order
of accuracy is not observed. Note that the wave speed is 2u, and there exist some regions
around which wave travels at very slow speed (i.e. the region around which v = 0). In these
regions, the non physically relevant eigenvectors are damped very slowly with time, see the
second term on the r.h.s. of equation (3.3), see also Remark 3.11. (2k + 1) order is not

observed numerically. In Figure 4.6, €; in logarithmic scale for P! - P? cases are plotted
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P2 P2

Figure 4.3: DG with P2, u; + u, = 0, regular error |u(T = 4m) — uy(T = 47)| (left); error
@] (right).

Table 4.4: Linear advection u; + u, = 0 with initial condition u(z,0) = ezxp(sin(z)). The L?
norm of é; and the order of accuracy. Uniform mesh.

Pl P2 P3
mesh | L? error order | L? error order | L? error order
30 7.80E-03 — 2.68E-05 - 7.08E-08 -

40 | 3.42E-03 2.86 | 6.41E-06 4.96 | 9.54E-09 6.97
50 | 1.78E-03 2.93 | 2.11E-06 4.98 | 2.01E-09 6.98
60 | 1.04E-03 296 | 8.51E-07 4.99 | 5.62E-10 6.99
70 | 6.57E-04 297 | 3.94E-07 4.99 | 1.91E-10 6.99

when N = 100. It is observed that €; dominates around z = 7. Then, we set ¢ = 2. In
this case, there is a positive lower bound on the wave speed. We report the L? norm of é;
and numerical order of accuracy in Table 4.7. The (2k + 1) order is observed. In Figure
4.7 - 4.9, we plot the regular errors of DG schemes and &, in logarithmic scale for P! - P3
cases. While highly oscillatory nature of regular errors is observed, e; is observed to be much
less oscillatory with much smaller magnitude. We remark that although for the ¢ = 0 case,
(2k + 1) order of accuracy can’t be observed numerically, the long time behavior of the

error as commented in Remark 3.8 still holds.
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Figure 4.4: DG with P3, u; + u, = 0, regular error |u(T = 47) — uy(T =
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Figure 4.5: DG scheme for u; + u, = 0, error |é;|, nonuniform mesh with two different mesh

sizes, Ao/ Ayigne = 3/2, N =70, P! (left), P? (middle), P? (right).
Example 4.5. We consider the following one-dimensional system:

(2) (o) ()= ()

u(z,0) =sinz
v(z,0) = cosx

(4.8)

with periodic boundary conditions. Note that this is a one-dimensional wave equation written
as a first order hyperbolic linear system. The upwind flux is used for DG scheme and
SSPRK(9,9) is used for temporal discretization in the simulation. We let CFL = & for P,
CFL = % for P? and CFL = 1 for P®. We report the L? norm of & and the order of

accuracy for the u variable in Table 4.8. (2k + 1) order is observed.
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Table 4.5: Linear variable coefficient problem. The L? norm of &, and the order of accuracy.
Uniform mesh.

Pl P2 P3
mesh | L? error order | L? error order | L? error order
20 5.00E-04 — 9.43E-07 - 8.70E-08 -

30 | 1.68E-04 2.68 | 1.24E-07 5.00 | 5.66E-09 6.74
40 | 7.37E-05 2.87 | 2.95E-08 5.00 | 7.42E-10 7.06
50 | 3.83E-05 293 | 9.67E-09 5.00 | 1.20E-10  8.17
60 | 2.23E-05 296 | 3.88E-09 5.00 | 2.26E-11 9.15

Table 4.6: Nonlinear Burgers’ equation: u; + (u?), = b(z,t) with initial condition u(x,0) =
sin(x). The L? norm of €, measured from solutions at Gaussian points of each cell and the
order of accuracy. Uniform mesh.

P! P? P3
mesh | L? error order | L? error order | L? error order
50 1.30E-07 - 8.34E-09 - 1.93E-10 —

60 | 9.21E-08 191 | 3.96E-09 4.08 | 1.10E-10 3.09
70 | 6.79E-08 1.98 | 1.85E-09 4.95 | 5.95E-11 3.98
80 | 5.23E-08 1.95 | 1.13E-09 3.69 | 4.00E-11 2.97
90 | 4.18E-08 1.90 | 4.76E-10 7.34 | 2.75E-11 3.19
100 | 3.43E-08 1.88 | 3.29E-10 3.48 | 1.80E-11 4.00

Example 4.6. We consider the following one-dimensional diffusion equation:

{ U = Uy, x € [0,27]
u(z,0) = sin(z)

with periodic boundary conditions. The exact solution of (4.9) is
u(z,t) = exp(—t)sinz.

We use a LDG method with SSPRK(9,9) temporal discretization to solve the equation. In
the simulation, we use CFL = 0.01 and At = CFLAz?. We let u; denote the numerical

solution for u and p; denote that for u,. We compare the the error
é1 =exp(—Dup(T = 1) — up(T = 2), (4.10)

and

éy = exp(—1)pn(T = 1) — pp(T = 2). (4.11)
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Figure 4.6: DG scheme for nonlinear Burgers’ equation with initial condition u(x, 0) = sin(z),

error €, N = 100, P! (left), P? (middle), P? (right).

Table 4.7: Nonlinear Burgers’ equation: u; + (u?), = b(z,t) with initial condition u(x,0) =
sin(x) + 2. The L? norm of &; measured from solutions at Gaussian points of each cell and

the order of accuracy. Uniform mesh.

Pt P? P3

mesh | L? error order | L? error order | L? error order
50 | 3.64E-05 — 6.61E-09 — 1.76E-12 —
60 | 2.11E-05 2.98 | 2.66E-09 5.00 | 2.53E-13 10.64
70 | 1.33E-05 299 | 1.23E-09 5.00 | 7.45E-14 7.92
80 | 8.93E-06 2.99 | 6.30E-10 5.00 | 2.88E-14 7.12
90 | 6.27E-06 2.99 | 3.50E-10 5.00 | 1.26E-14 7.03
100 | 4.57E-06 3.00 | 2.06E-10 5.00 | 6.01E-15 7.02

In Table 4.9 and Table 4.10, we report the L? norm of &, and éy. (2k+2)™ order of accuracy
is observed as expected from Corollary 3.23. In Figure 4.10 - 4.12, we plot the regular errors
of LDG schemes and the errors é; in logarithmic scale for P'-P3. Regular errors are observed

to be highly oscillatory, while €; is much less oscillatory with much smaller magnitude.

Example 4.7. We consider the following two-dimensional advection equation:

{ u +up +uy =0, (2,y) € 10,271 x [0, 27] (4.12)

u(z,y,0) = sin(z + y)
with periodic boundary conditions in both z and y directions. The exact solution of (4.12)
is

u(z,y,t) = sin(x + y — 2t).
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P1 P1

Figure 4.7: DG with P'; nonlinear Burgers’ equation with initial condition u(z,0) = sin(x)+
2; regular error |u(T = 4w) — up(T = 4m)| (left); |e;| (right).

Table 4.8: The linear system (4.8). The L? norm of é; and the order of accuracy for variable
w. Uniform mesh.

Pl P2 P3
mesh | L? error order | L? error order | L? error order
30 6.52E-04 - 3.38E-07 - 8.58E-11 —

40 | 2.80E-04 294 | 8.11E-08 4.86 | 1.15E-11  6.99
o0 | 1.45E-04 296 | 2.67TE-08 4.97 | 2.42E-12 6.98
60 | 8.43E-05 297 | 1.08E-08 4.98 | 6.78E-13  6.98
70 | 5.33E-05 297 | 5.00E-09 4.98 | 2.31E-13 6.99

Firstly, we use DG with the Q* space, see equation (3.5). We compute the error
ér =up(T =m) —up(T = 2m). (4.13)

In Table 4.11, we report the L? norm of &; and the order of accuracy. (2k + 1) order of

accuracy is observed. In the simulations for 2-D cases, the time step is chosen as

At = CFL(& + %)

1 C2

where ¢, and ¢, are maximum wave propagation speed in z-direction and y-direction respec-
tively. We choose CFL = 0.1. Then, we use DG with the P* space, see equation (3.10).

We give the L? norm of &; and the order of accuracy in Table 4.12. Again (2k + 1) order

37



P2 P2

0;

_2;

yiih i

il

M a»q’miqu‘mﬁmm! lﬁmﬂt

Figure 4.8: DG with P?; nonlinear Burgers’ equation with initial condition u(z,0) = sin(z)+
2, regular error |u(T = 4w) — uy(T = 4m)| (left); |e;| (right).

Table 4.9: Diffusive equation u; = ,,. The L? norm and order of accuracy of é;. Uniform
mesh.

P! P? P3
mesh | L? error order | L? error order | L? error order
10 3.99E-05 - 8.15E-08 - 1.04E-10 —

20 | 245E-06 4.02 | 1.27E-09 6.01 | 4.08E-13 8.00
30 | 4.83E-07 4.01 | 1.11E-10 6.00 | 1.59E-14 8.00
40 | 1.53E-07 4.00 | 1.98E-11 6.00 | 1.60E-15 8.00
50 | 6.26E-08 4.00 | 5.18E-12 6.00 | 2.68E-16 8.00

of accuracy is observed. The magnitude of error appears to be larger than those from DG

scheme with a Q" space. In Figure 4.13, the DG error in 3-D and contour plot are reported.

Example 4.8. We consider the rigid body rotation problem:
Up — YUy + LUy = 07 (IL’, y) < [_ﬂ-?ﬂ—] X [—7'(', W]a (414)

with the following smooth initial condition:

cos'?(r) r <3,
u(z,y,0) = { 0 otherwise, (4.15)

where r = \/(x — 7/2)2 4+ y2. As before, we calculate the error

e = uh(T = 27T) — uh(T = 47'[')
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Figure 4.9: DG with P3; nonlinear Burgers’ equation with initial condition u(z,0) = sin(z)+
2; regular error |u(T = 4w) — up(T = 4m)| (left); |e;| (right).

Table 4.10: Diffusive equation u; = u,,. The L? norm of é; and the order of accuracy.
Uniform mesh.

Pl P2 P3
mesh | L? error order | L? error order | L? error order
10 4.08E-05 - 8.15E-08 - 1.04E-10 —

20 | 247E-06 4.05 | 1.27E-09 6.01 | 4.08E-13 8.00
30 | 4.85E-07 4.01 | 1.11E-10 6.00 | 1.509E-14 8.00
40 | 1.53E-07 4.01 | 1.98E-11 6.00 | 1.60E-15 &.00
50 | 6.26E-08 4.00 | 5.18E-12 6.00 | 2.68E-16 8.00

In the simulation, we adopt the approximation space P* for spatial discretization and
SSPRK(5,4) for temporal discretization. We choose CFL = 0.1. In Table 4.13, we re-
port L? norm of &; and the order of accuracy. (2k + 1) order is observed. Note that the
mesh has to be fine enough to resolve the ‘cosine bell’ in order to observe a clean order of
accuracy. Also note that the ‘cosine bell’ is centered at (7/2,0), which is away from the
origin. Around the origin, the propagation speed (—y, z) is close to zero. In such situation,
the second term on the r.h.s. of Corollary 3.3 might dominate and (2k + 1) order can’t be
observed. We omit to present the results to save space. Again, we remark that the long time
behavior of the error as commented in Remark 3.8 still holds if the ‘cosine bell’ is positioned

around the origin.
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Figure 4.10: LDG with P'; diffusive equation; regular error |u(T = 2) — up(T = 2)]| (left);
|é1] (right)

Table 4.11: Two-dimensional advection equation u; 4 u, +u, = 0. Q" is used. The L? norm
of ; and the order of accuracy. Uniform mesh.

Q' Q* Q°
mesh | L? error order | L? error order | L? error order
30 x 30 | 3.55E-03 — 1.56E-06 — 4.62E-10 —

40 x 40 | 1.50E-03  2.99 | 3.70E-07 5.00 | 4.75E-11  7.90
50 x 50 | 7.68E-04 3.00 | 1.21E-07 5.00 |9.79E-12 7.08
60 x 60 | 4.45E-04 3.00 | 4.88E-08 5.00 | 2.73E-12 7.00
70 x 70 | 2.80E-04 3.00 | 2.26E-08 5.00 | 9.28E-13 7.01

Example 4.9. We consider the following two-dimensional linear system:

()G E) A0, (0)

i 4.16
u(:v,y,O):ﬁsm(m+y)—2+fcos(x+y) (4.16)

v(z,y,0) = \f\/%l sin (xz +y) + ‘[}1 cos (x +y)

with periodic boundary conditions in both x and y directions. This is the second order wave
equation written as a first order linear hyperbolic system and the exact solution is
{ u(z,y,t) = ﬁsin(m—l—y—{— V2t) — #cos(xjty— V2t)

(4.17)
v(r,y,t) = \2@\/_51 sin (2 4y + V/2t) + \2[}1 cos (z +y — V/2t)

We remark that the two matrices in equation (4.16) don’t commute, therefore the linear
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Figure 4.11: LDG with P?; diffusive equation; regular error |u(T =

|é1] (right)

Table 4.12: Two-dimensional advection equation u; + u, + u, = 0. P* is used. The L? norm

of €; and the order of accuracy. Uniform mesh.

2) —Uh(T =2

P! P> =
mesh | L? error order | L? error order | L? error order
30 x 30 | 1.40E-02 — 2.22E-05 — 1.71E-08 —
40 x 40 | 5.96E-03 297 | 5.29E-06 4.99 | 2.28E-09 7.01
50 x 50 | 3.06E-03 2.98 | 1.74E-06 4.99 | 4.77E-10 7.00
60 x 60 | 1.77E-03 2.99 | 6.98E-07 5.00 | 1.33E-10 7.00
70 x 70 | 1.12E-03 2.99 | 3.23E-07 5.00 | 4.52E-11 7.01

system can’t be reduced to 2-D scalar problems. In the simulation, the upwind flux and a
SSPRK(9,9) scheme is used. We choose CF'L = 0.1. Note that the period of the solution in

time is /2, that is u(z,y,t) = u(z,y,t + v/27), then we let
& = up(T = 2) — up(T = 2 +V2r). (4.18)

In Table 4.14, we report L? norm of & and the order of accuracy. (2k + 1) order is
observed. The error about the v variable is not presented to save space since it gives almost

the same results.
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Table 4.13: Rigid body rotation: u; — yu, + xu,

the order of accuracy. Uniform mesh.

0. P* is used. The L? norm of &; and

Pl

PQ

P3

mesh

L? error

order

L? error

order

L? error

order

100 x 100

9.98E-03

3.77E-05

9.33E-08

120 x 120

6.22E-03

2.59

1.53E-05

4.95

2.62E-08

6.97

140 x 140

4.09E-03

2.72

7.11E-06

4.97

8.94E-09

6.97

160 x 160

2.81E-03

2.81

3.66E-06

4.98

3.52E-09

6.98

180 x 180

2.01E-03

2.86

2.04E-06

4.98

1.55E-09

6.99

200 x 200

1.48E-03

2.89

1.20E-06

4.99

7.40E-10

6.99

Example 4.10. We consider the two-dimensional Maxwell equations:

(

\

oH,  O0E.

ot oy 0
0OH, OF, _0
ot Ox ’
O£, OH, N 0H,
ot ox dy

(4.19)

Note that the Maxwell equations are linear hyperbolic systems, which can be written as

U, + AU, + BU, =0,
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Figure 4.13: DG with P?; 2-D linear advection equation w; 4 u, +u, = 0; N, x N, = 10 x 10;
3-D plot of error e = u(T = 4mw) — up(T = 4w) (left); Contour of error error e = u(T =
Am) — up(T = 4m) (right)

Table 4.14: Two-dimensional linear system (4.16). P* is used. The L? norm of €, and the
order of accuracy. Uniform mesh.

P! P? P’
mesh | L? error order | L? error order | L? error order
30 x 30 | 1.26E-02 - 1.40E-05 — 2.09E-08 —

40 x 40 | 5.34E-03 297 | 3.33E-06 4.99 | 2.51E-09 7.37
50 x 50 | 2.74E-03  2.99 | 1.09E-06 4.99 |4.31E-10 7.91
60 x 60 | 1.59E-03 2.99 | 4.40E-07 4.99 | 1.14E-10 7.27
70 x 70 | 1.00E-03  3.00 | 2.04E-07 5.00 | 3.80E-11 7.14

where
0 0 0 0 01
A=lo0o 0o -1|, B=[0o0o0 (4.21)
0 -1 0 1 00
For any unit vector n = (ny, ny), let
D =nA+nyB. (4.22)

Note that D always has three eigenvalues 1, -1 and 0 given a unit vector n. It is easy to

check that
H, = —pcos(ax+ fy+t)
H, = «cos(ar+ fy+1) (4.23)
E, = cos(ax + By + t)
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is an exact solution of Maxwell equations for (z,y) € [0, 27/a] x [0,27/8], where a?+ 3% = 1.
This example is motivated by the work in [8], where the DG error after applying a post-
processing technique are enhanced from (k+ 1) order to (2k+1)™ order. In the simulation,
we take @ = = */75 The upwind flux and a SSPRK(9,9) scheme is used. We choose
CFL =0.1. Let

In Table 4.15, we report L? norm of &; and the orders of accuracy. The (2k + 1) order of
accuracy is numerically observed for the P! and P? cases, but not for the P3 case. In Table
4.16, we report L? norm of &, and the orders of accuracy. (2k + 1) order of accuracy is not
observed for the P? and P? cases. The reason we suspect is that there is one zero eigenvalue
in D, along which the non physically relevant eigenvectors are not damped. In Figure 4.14,
contours of & and és are plotted, for the DG with P3 space. It is clear that &, oscillates
only in the x-direction and ez oscillates only in the y-direction. Such observation suggests
that the non-physically relevant eigenvectors of (H,), (or (Hy)s) do not damp in - (or y-)
direction properly. We remark that although (2k + 1) order can’t be observed for &; and
e3. The DG solution can still be post processed to obtain (2k + 1) order as in [8]. The long

time behavior of the magnitude of error as commented in Remark 3.8 might still hold.

Table 4.15: Two-dimensional Maxwell equations. P* is used. The L? norm and order of
accuracy of e; of E,. Uniform mesh.

P! P? P’
mesh L? error order | L? error order | L? error order
20 x 20 | 6.82E-02 - 2.49E-04 - 5.49E-07 —

30 x 30 | 2.09E-02 2.92 | 3.34E-05 4.96 | 4.92E-08 5.95
40 x 40 | 8.91E-03 296 | 7.97TE-06 4.98 | 9.65E-09 5.66
50 x 50 | 4.58E-03  2.98 | 2.62E-06 4.98 | 2.75E-09  5.62
60 x 60 | 2.66E-03 2.99 | 1.06E-06 4.99 | 9.84E-10 5.65
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Table 4.16: Two-dimensional Maxwell equations. P* is used. The L? norm and order of
accuracy of e; of H,. Uniform mesh.

P! P> P’
mesh | L? error order | L? error order | L? error order
20 x 20 | 4.88E-02 — 4.00E-04 — 1.02E-05 —

30 x 30 | 1.51E-02 2.89 | 1.08E-04 3.23 | 1.97E-06 4.06
40 x 40 | 6.54E-03 2.92 | 4.12E-05 3.35 | 5.69E-07 4.32
50 x 50 | 3.40E-03 2.93 | 1.90E-05 3.47 | 2.10E-07 4.47
60 x 60 | 1.99E-03 2.94 | 9.93E-06 3.56 | 9.12E-08 4.57

Error of Hx; P3 Error of Hy; P3

Figure 4.14: DG with P? for Maxwell equations; Contour of error éy = (H,),(T = 4m) —
(Hy)n(T = 2m) (left); Contour of error e = (H,)n(T = 4n) — (H,)n(T = 27) (right)

5 Conclusion

In this paper, we discussed the superconvergence properties of discontinuous Galerkin (DG)
and local DG (LDG) methods for linear hyperbolic and parabolic problems via Fourier ap-
proach. Especially, superconvergence properties of DG with uniform mesh for linear problems

with periodic boundary conditions are discussed in terms of

e dissipation and dispersion error of physically relevant eigenvalues; this part of error is

related to the negative norm of DG error as discussed in [9, 16]

e cigenvectors with Lagrangian basis functions based on shifted Radau-points; this part

of error is related to superconvergece at Radau points as discussed in [1, 2, 5, 6, 23]
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e the long time behavior of DG error as discussed in [5, 6, 23]. In this paper, we conclude
that the error of numerical solutions at Radau points will not grow over a period of

time that is on the order of Az~%*! and Axz~* for DG and LDG respectively.

Moreover, supraconvergence properties of DG and LDG methods are studied based on our
understanding of the eigen-structure of the amplification matrix. Extensive 1-D and 2-D
numerical examples for scalar and system of equations are demonstrated to verify our analysis
and to assess the superconvergence properties of DG and LDG schemes in a more general
setting. Future research directions include (1) to seek an analytical proof for our symbolic
analysis in this paper (2) to analyze superconvergence properties of various discontinuous

Galerkin formulations.
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