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Abstract

In Xu [14], a class of parametrized flux limiters is developed for high order finite differ-

ence/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes cou-

pled with total variation diminishing (TVD) Runge-Kutta (RK) temporal integration for

solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving

(MPP). In this paper, we continue along this line of research, but propose to apply the

parametrized MPP flux limiter only to the final stage of any explicit RK method. Compared

with the original work [14], the proposed new approach has several advantages: First, the

MPP property is preserved with high order accuracy without as much time step restric-

tion; Second, the implementation of the parametrized flux limiters is significantly simplified.

Analysis is performed to justify the maintenance of third order spatial/temporal accuracy

when the MPP flux limiters are applied to third order finite difference schemes solving gen-

eral nonlinear problems. We further apply the limiting procedure to the simulation of the

incompressible flow: the numerical fluxes of a high order scheme are limited toward that of a

first order MPP scheme which was discussed in [3]. The MPP property is guaranteed, while

designed high order of spatial and temporal accuracy for the incompressible flow computa-

tion is not affected via extensive numerical experiments. The efficiency and effectiveness of

the proposed scheme is demonstrated via several test examples.
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1 Introduction

In this paper, we consider the following scalar hyperbolic conservation laws

ut +∇ · F(u) = 0, u(x, 0) = u0(x). (1.1)

Popular methods for solving (1.1) include finite difference/volume schemes based on high

order essentially non-oscillatory (ENO) and Weighted ENO (WENO) reconstructions [2,

6] and finite element discontinuous Galerkin (DG) methods coupled with total variation

diminishing (TVD) Runge-Kutta (RK) time discretization [8]. Our focus of this paper is the

finite difference RK-WENO scheme. The close relationship between the finite difference and

finite volume scheme was first explained by Shu and Osher [8, 9], by introducing a sliding

average function h(x). Compared with finite volume schemes, high order finite difference

schemes are more computationally efficient for high dimensional implementations. Compared

with DG, finite difference schemes with WENO reconstruction are more robust in capturing

shocks without oscillations, although the finite difference schemes are not as compact and

flexible in domains with complicated geometry.

An important property of the solution for hyperbolic conservation laws (1.1) is the strict

maximum principle [4], namely um ≤ u(x, t) ≤ uM , if um ≤ u0(x) ≤ uM . The TVD

schemes satisfy the strict maximum principle, but it is only first order at the smooth extrema.

ENO and WENO schemes are essentially non-oscillatory around discontinuities; however, the

numerical solutions do not necessarily preserve the strict maximum principle. A genuinely

high order conservative scheme to preserve the global maximum principle has recently been

developed by Zhang and Shu in [16, 18]. MPP limiters are applied to the reconstructed high

order polynomials in the finite volume/DG framework around the cell averages in order for

the updated cell-average values of the numerical solutions to satisfy the maximum principle.

The maintenance of high order spatial accuracy and maximum principle is theoretically

proved and numerically verified when suitable CFL numbers are chosen. The techniques have

recently been applied to a number of problems including the compressible/incompressible

Euler equations, shallow water equations, among many others [17, 20, 13, 12]. However,

it was also pointed out in [19] that it is not trivial to apply the MPP limiters to the finite

difference schemes without destroying the designed order of accuracy. Also the time step size

required to preserve the MPP property is smaller than the one for the original scheme, e.g.

it is about 1
6
of the original CFL for a third order finite volume scheme with MPP limiters

[16].
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In [14], Xu developed a parametrized MPP flux limiting technique to maintain the MPP

property of numerical solutions of the one-dimensional scalar hyperbolic conservation laws.

Compared with limiting the cell-wise reconstructed polynomials in [16, 18], in [14] the MPP

property is achieved via limiting high order numerical fluxes toward first order monotone

fluxes in a conservative scheme. Compared with traditional flux limiters for the TVD prop-

erty (which is a stronger stability requirement than MPP), as discussed in [10, 11] and the

references therein, the MPP flux limiting approach in [14] has the potential to be designed

with higher than second order accuracy. The MPP requirement of um ≤ uh ≤ uM is de-

scribed by a group of explicit inequalities. By decoupling these inequalities, the numerical

fluxes are locally redefined, leading to a consistent, conservative maximum principle preserv-

ing high order scheme. When coupled with the TVD RK scheme, a successive parametrized

limiting approach with some ‘relaxed’ upper and lower bound is proposed for each stage of

the RK method. The method was later generalized to the high order methods for solving

multi-dimensional scalar hyperbolic conservation laws [15]. The MPP property is guaran-

teed under the same CFL time step restriction of the first order monotone scheme. However,

the scheme suffers from additional time step restriction for the preservation of high order

accuracy.

In this paper, following the idea in [14], we focus on developing the MPP flux limiter for

conservative high order schemes, exemplified by the finite difference WENO scheme coupled

with TVD RK time discretization. There are two new ingredients in this paper. First,

we propose to implement the parametrized MPP flux limiters only at the final stage of

the multi-stage RK time discretization. It was commented in [14] that if the MPP flux

limiter is applied at each of the intermediate stage of RK method, due to the influence of

the special cancellation of RK, high order temporal accuracy could be lost. With the flux

limiter applied only at the final RK stage, the implementation complexity is significantly

reduced. Error analysis is performed to prove the maintenance of third order spatial and

temporal accuracy when the high order flux is limited toward a first order local Lax-Friedrich

(LFF) flux or Godunov flux. Secondly, we apply the MPP flux limiters to the high order

FD WENO method solving the incompressible Euler equation in vorticity stream-function

formulation to maintain a maximum principle for vorticity. We remark that, compared with

the unified high order limiting procedure for arbitrary high order reconstructed polynomials

of Zhang & Shu in [16, 18], the maintenance of high order spatial and temporal accuracy

so far can only be proved for the original third order finite difference scheme solving the

one-dimensional nonlinear equations. We largely rely on extensive numerical experiments to
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verify the maintenance of high order spatial and temporal accuracy for general high order

schemes, high dimensional case, and for the incompressible flow without additional time step

restriction.

The rest of the paper is organized as follows. In Section 2, we will first review the high

order finite difference schemes [7] and the parametrized MPP flux limiters in Xu [14]. In

Section 3, we describe on how to apply the MPP limiter on the final stage of a multi-stage

RK method in one- and two-dimensional cases. Third order error analysis is provided to

show that the newly proposed limiter preserves high order accuracy in both space and time

without excessive time step restriction. In Section 4, MPP flux limiters are proposed for

high order finite difference schemes solving incompressible flow. In Section 5, we perform

numerical tests on both scalar conservation problems and incompressible Euler equations to

demonstrate that maximum principle is preserved with designed order of accuracy, without

additional time step restriction.

2 Review of finite difference WENO scheme [7] and

parametrized MPP flux limiter [14]

2.1 Finite difference WENO scheme.

We first briefly review the finite difference WENO scheme [7] for a simple one-dimensional

hyperbolic conservation equation

ut + f(u)x = 0, x ∈ [0, 1] (2.1)

with initial condition u(x, 0) = u0(x). Without loss of generality, we assume periodic bound-

ary condition. We adopt the following spatial discretization for the spatial domain [0, 1]

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1,

where Ij = [xj− 1
2
, xj+ 1

2
] has the mesh size ∆x = 1

N
. Let uj(t) denote the solution at grid

point xj = 1
2
(xj− 1

2
+ xj+ 1

2
) at continuous time t. The finite difference scheme evolves the

point values of the solution by approximating the differential form of the equation (2.1)

directly in a conservative form

d

dt
uj(t) +

1

∆x
(Ĥj+1/2 − Ĥj−1/2) = 0. (2.2)

Ĥj+1/2 = f̂(uj−p, · · · , uj+q) is a numerical flux consistent with the physical flux f(u) and is

Lipschitz continuous with respect to all arguments. The stencil {uj−p, · · · , uj+q} is chosen
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to be upwind biased. Especially, when f ′(u) ≥ 0, one more point from the left (p = q)

will be taken to reconstruct f̂j+ 1
2
; otherwise one more point from the right (p = q − 2) will

be taken. When f ′(u) changes sign over the domain, then a flux splitting, e.g. the Lax-

Friedrichs flux splitting can be applied. The spatial accuracy of the scheme is determined

by how well 1
∆x

(Ĥj+ 1
2
− Ĥj− 1

2
) approximates f(u)x. To obtain a high order approximation,

Shu and Osher [8] introduced a sliding average function h(x), such that

1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ = f(u(x, t)). (2.3)

Taking the x derivative of the above equation gives

1

∆x

(
h(x+

∆x

2
)− h(x− ∆x

2
)

)
= f(u)x. (2.4)

Therefore the numerical flux Ĥj+ 1
2
in equation (2.2) can be taken as h(xj+ 1

2
), which can

be reconstructed from neighboring cell averages of h(x), h̄i =
1
∆x

∫
Ii
h(ξ)dξ

(2.3)
= f(u(xi, t)),

i = j − p, · · · , j + q by WENO reconstruction. By adaptively assigning nonlinear weights to

neighboring candidate stencils, the WENO reconstruction preserves high order accuracy of

the linear scheme around smooth regions of the solution, while producing a sharp and essen-

tially non-oscillatory capture of discontinuities. Equation (2.2) can be further discretized in

time by a high order time integrator. For example, the scheme with the first order forward

Euler time discretization is

un+1
j = unj − λ(Ĥj+1/2 − Ĥj−1/2), (2.5)

where unj denotes the numerical solution at xj and at time tn, λ = ∆t
∆x

and ∆t is the time

step size.

The finite difference WENO schemes have been extended to the adaptive mesh refine-

ment (AMR) framework [5] and have been applied to a wide range of problems including

computational fluid dynamics, astrophysics, plasma physics, semi-conductor device simula-

tions among many others [7]. It is well-known that the schemes enjoy the mass conservation,

high order spatial accuracy, and the flexibility in implementation for high dimensional prob-

lems when compared with the finite volume framework. However, the maximum principle

preserving (MPP) property of the solution for hyperbolic equation (2.1) is not preserved on

the numerical level. For more details, please see [7] and the references therein.
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2.2 A parametrized MPP flux limiter [14]

Below, we illustrate the idea of parametrized flux limiters for preserving the maximum

principle of the high order finite difference scheme. For simplicity, we first consider the one

step forward Euler time discretization. The idea will be generalized to a high order TVD

Runge-Kutta time discretization in the next section.

Let

um = min
x

(u(x, 0)), uM = max
x

(u(x, 0)).

To preserve the MPP property

um ≤ unj ≤ uM , ∀j, n (2.6)

it is proposed in [14] to modify the numerical fluxes Ĥj+1/2 as

H̃j+1/2 = θj+1/2(Ĥj+1/2 − ĥj+1/2) + ĥj+1/2 (2.7)

where ĥj+1/2 = f̂(uj, uj+1) is the first order monotone flux. Notice that with the first

order monotone flux in equation (2.5), it is well-known that the MPP property (2.6) will be

preserved. θj+1/2 ∈ [0, 1] is designed by taking advantage of the MPP property with the use

of the first order monotone flux ĥj+1/2 and the high order accuracy of Ĥj+1/2 reconstructed

from WENO procedure.

Below is a detailed procedure of designing θj+1/2. For each θj+1/2 limiting the numerical

flux H̃j+1/2, we are looking for upper bounds Λ−1/2,Ij and Λ+1/2,Ij from the need of keeping

un+1
j within [um, uM ]. Consequently,

θj+1/2 ∈ [0,Λ+1/2,Ij ] ∩ [0,Λ−1/2,Ij+1
], ∀j (2.8)

provides a sufficient condition for the scheme to preserve the maximum principle. Let

ΓM
j = uM − uj + λ(ĥj+1/2 − ĥj−1/2), Γm

j = um − uj + λ(ĥj+1/2 − ĥj−1/2),

then from the MPP property of a first order monotone scheme,

ΓM
j ≥ 0, Γm

j ≤ 0.

To ensure un+1
j ∈ [um, uM ] with H̃j+1/2 as in equation (2.7), it is sufficient to have

λθj−1/2(Ĥj−1/2 − ĥj−1/2)− λθj+1/2(Ĥj+1/2 − ĥj+1/2)− ΓM
j ≤ 0, (2.9)

λθj−1/2(Ĥj−1/2 − ĥj−1/2)− λθj+1/2(Ĥj+1/2 − ĥj+1/2)− Γm
j ≥ 0. (2.10)
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The discussion is case by case based on the sign of

Fj±1/2
.
= Ĥj±1/2 − ĥj±1/2.

1. Assume

θj−1/2 ∈ [0,ΛM
−1/2,Ij

], θj+1/2 ∈ [0,ΛM
+1/2,Ij

],

where ΛM
−1/2,Ij

and ΛM
+1/2,Ij

are designed to preserve the upper bound by equation (2.9)

(a) If Fj−1/2 ≤ 0 and Fj+1/2 ≥ 0,

(ΛM
−1/2,Ij

,ΛM
+1/2,Ij

) = (1, 1).

(b) If Fj−1/2 ≤ 0 and Fj+1/2 < 0,

(ΛM
−1/2,Ij

,ΛM
+1/2,Ij

) = (1,min(1,
ΓM
j

−λFj+1/2

)).

(c) If Fj−1/2 > 0 and Fj+1/2 ≥ 0,

(ΛM
−1/2,Ij

,ΛM
+1/2,Ij

) = (min(1,
ΓM
j

λFj−1/2
), 1).

(d) If Fj−1/2 > 0 and Fj+1/2 < 0,

• If equation (2.9) is satisfied with (θj−1/2, θj+1/2) = (1, 1), then

(ΛM
−1/2,Ij

,ΛM
+1/2,Ij

) = (1, 1).

• If equation (2.9) is not satisfied with (θj−1/2, θj+1/2) = (1, 1), then

(ΛM
−1/2,Ij

,ΛM
+1/2,Ij

) = (
ΓM
j

λFj−1/2 − λFj+1/2

,
ΓM
j

λFj−1/2 − λFj+1/2

).

2. Similarly assume

θj−1/2 ∈ [0,Λm
−1/2,Ij

], θj+1/2 ∈ [0,Λm
+1/2,Ij

],

where Λm
−1/2,Ij

and Λm
+1/2,Ij

are designed to preserve the lower bound by equation (2.10).

(a) If Fj−1/2 ≥ 0 and Fj+1/2 ≤ 0,

(Λm
−1/2,Ij

,Λm
+1/2,Ij

) = (1, 1).
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(b) If Fj−1/2 ≥ 0 and Fj+1/2 > 0,

(Λm
−1/2,Ij

,Λm
+1/2,Ij

) = (1,min(1,
Γm
j

−λFj+1/2

)).

(c) If Fj−1/2 < 0 and Fj+1/2 ≤ 0,

(Λm
−1/2,Ij

,Λm
+1/2,Ij

) = (min(1,
Γm
j

λFj−1/2

), 1).

(d) If Fj−1/2 < 0 and Fj+1/2 > 0,

• If equation (2.10) is satisfied with (θj−1/2, θj+1/2) = (1, 1), then

(Λm
−1/2,Ij

,Λm
+1/2,Ij

) = (1, 1).

• If equation (2.10) is not satisfied with (θj−1/2, θj+1/2) = (1, 1), then

(Λm
−1/2,Ij

,Λm
+1/2,Ij

) = (
Γm
j

λFj−1/2 − λFj+1/2

,
Γm
j

λFj−1/2 − λFj+1/2

).

Notice that the range of θj+1/2 (2.8) is determined by the need to ensure both the upper

bound (2.9) and the lower bound (2.10) of numerical solutions in both cell Ij and Ij+1. Thus

the locally defined limiting parameter is given as

θj+1/2 = min(Λ+1/2,Ij ,Λ−1/2,Ij+1
), (2.11)

with Λ+1/2,Ij = min(ΛM
+1/2,Ij

,Λm
+1/2,Ij

), Λ−1/2,Ij+1
= min(ΛM

−1/2,Ij+1
,Λm

−1/2,Ij+1
). The mod-

ified flux in equation (2.7) with the θj+1/2 designed above ensures the maximum prin-

ciple. Such modified flux is consistent and monotone since it is a convex combination

(θj+1/2 ∈ [0, 1]) of a high order flux Ĥj+1/2 with the first order flux ĥj+1/2. Since the scheme

is in the flux difference form (2.5), the mass conservation property is preserved. It is proven

in [14] that if the time step size ∆t is small enough, fourth order spatial accuracy of the

scheme with regular WENO flux Ĥj+1/2 is maintained with the modified flux H̃j+1/2 for the

linear case.

3 A new parametrized MPP limiter for the RK-WENO

3.1 One-dimensional problem

A ‘successive’ MPP limiting procedure was proposed in [14] for limiting the upper and

lower bounds of solutions at internal stages of a third order TVD RK method [1]. In this
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section, we propose to apply the MPP flux limiting procedure at the final stage of RK time

discretization only. The newly proposed limiting procedure is very general in the sense that

it can be applied to any high order explicit RK method. Moreover, the time step restriction

to ensure both MPP property and high order accuracy in both space and time is relieved

compared with that proposed in [14], see Theorem 3.2 below.

To illustrate the idea, without loss of generality, we use a third order TVD RK time

discretization below as an example. With the method-of-lines approach, the third order

TVD RK time discretization [1] can be written as

u(1) = un +∆tL(un),

u(2) = un +∆t(
1

4
L(un) +

1

4
L(u(1))),

un+1 = un +∆t(
1

6
L(un) +

2

3
L(u(2)) +

1

6
L(u(1))). (3.1)

We note that the second term in equation (3.1) approximates
∫ tn+1

tn
L(u(τ))dτ . Here L(un)

.
=

− 1
∆x

(Ĥn
j+ 1

2

− Ĥn
j− 1

2

), where Ĥn
j+ 1

2

is the numerical flux from WENO reconstruction based on

un. Similarly, let Ĥ
(1)

j+ 1
2

and Ĥ
(2)

j+ 1
2

be the numerical fluxes reconstructed based on u(1) and

u(2). The equation (3.1) can be rewritten as

un+1
j = unj − λ(Ĥrk

j+ 1
2
− Ĥrk

j− 1
2
), (3.2)

where

Ĥrk
j+ 1

2

.
=

1

6
Ĥn

j+ 1
2
+

2

3
Ĥ

(2)

j+ 1
2

+
1

6
Ĥ

(1)

j+ 1
2

.

Based on equation (3.2), we propose to replace the numerical flux Ĥrk
j+ 1

2

by the modified one

H̃rk
j+ 1

2
= θj+ 1

2
(Ĥrk

j+ 1
2
− ĥj+ 1

2
) + ĥj+ 1

2
(3.3)

where ĥj+ 1
2
is the first order monotone flux and θj+ 1

2
is designed in the same way as that in

the review Section 2.2 to preserve the MPP property. It shall be pointed out that most of the

explicit RK temporal approximation method can be written in the form of (3.2). Therefore,

the newly proposed MPP flux limiting procedure can be directly applied to most of the high

order conservative schemes equipped with an explicit RK temporal integration. It is proven

in Theorem 3.2 below that the proposed flux limiters maintain high order spatial accuracy

of the original finite difference scheme and temporal accuracy of RK discretization.

Remark 3.1. The proposed flux limiting procedure is very simple and computationally

efficient, compared with that in [14]. Notice that numerical solutions at intermediate RK
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stages, i.e. u(1) and u(2), are low order in time approximations to the exact solutions at the

corresponding stages. If the MPP properties are enforced at these intermediate stages, the

special cancellation of RK method may be affected. As a result, very restrictive time step

size would be needed to maintain high order accuracy in time, see [14].

In the following, we will show that the high order accuracy in both space and time is

maintained with the newly proposed MPP limiter when the solution is smooth enough. As

there is no rigorous error analysis for finite difference scheme with high order reconstruc-

tion by introducing the sliding function h(x) and high order RK method for hyperbolic

equation (2.1), we make some assumptions on the error of the original high order finite dif-

ference scheme. Notice that these assumptions have been numerically verified extensively,

but haven’t been rigorously proven. In the Theorem below, we rigorously justify that the

amount of modification performed by the parametrized flux limiter is of high order.

Theorem 3.2. Consider solving advection equation (2.1) using a third order finite difference

spatial discretization and a third order RK time discretization with the scheme written in the

form of equation (3.2). Assume the global error,

enj = |unj − u(xj , t
n)| = O(∆x3 +∆t3), ∀n, j. (3.4)

Consider applying the proposed MPP limiter to the numerical fluxes Ĥrk
j± 1

2

in equation (3.2),

and taking ĥj+ 1
2
in equation (3.3) to be the local Lax-Friedrichs (LLF) flux, then

|Ĥrk
j+ 1

2
− H̃rk

j+ 1
2
| = O(∆x3 +∆t3), ∀j, (3.5)

with λmaxu |f ′(u)| ≤ 1, where λ = ∆t/∆x.

Proof. We only consider the limiters for the maximum value case, it is similar for the mini-

mum value case. The statement is proved via discussing four cases described in Section 2.2.

Without specifying, we use uj instead of unj and use u(x) instead of u(x, tn). From our as-

sumption (3.4), the difference between u(xj , t
n) and unj is of high order. In our proof below,

we use u(xj , t
n) and unj interchangeably when such high order difference allows.

Case (a): No limiters are introduced in case (a) decoupling, therefore equation (3.5)

holds.

Case (d): This is the case of Fj− 1
2
> 0 and Fj+ 1

2
< 0. From (3.3), it is sufficient to show

that

ΓM
j − (λFj− 1

2
− λFj+ 1

2
)

λFj− 1
2
− λFj+ 1

2

Fj+ 1
2
= O(∆x3 +∆t3), (3.6)
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when ΓM
j < λFj− 1

2
−λFj+ 1

2
. Since Fj− 1

2
> 0 and Fj+ 1

2
< 0, we have 0 < −

F
j+1

2

λF
j− 1

2
−λF

j+1
2

≤ 1/λ.

Recalling

ΓM
j − (λFj− 1

2
− λFj+ 1

2
) = uM − {uj − λ(Ĥrk

j+ 1
2
− Ĥrk

j− 1
2
)} < 0, (3.7)

it suffices to show

|uM − {uj − λ(Ĥrk
j+ 1

2
− Ĥrk

j− 1
2
)}| = O(∆x3 +∆t3). (3.8)

Equation (3.8) can be justified by using equation (3.4), since in this case we have u(xj , t
n+1) ≤

uM ≤ un+1
j , where un+1

j = uj − λ(Ĥrk
j+ 1

2

− Ĥrk
j− 1

2

).

Case (b): Similar to case (d), we only need to consider the case when

Λ+ 1
2
,Ij

=
ΓM
j

−λFj+ 1
2

< 1. (3.9)

with

H̃rk
j+ 1

2
− Ĥrk

j+ 1
2
=

ΓM
j + λFj+ 1

2

−λ =
uM − (uj − λ(Ĥrk

j+ 1
2

− ĥj− 1
2
))

−λ . (3.10)

To prove (3.5), it suffices to prove

|uM − (uj − λ(Ĥrk
j+ 1

2
− ĥj− 1

2
))| = O(∆x3 +∆t3), (3.11)

if uM − (uj − λ(Ĥrk
j+ 1

2

− ĥj− 1
2
)) < 0. For the high order RK flux, we have

Ĥrk
j+ 1

2
=

1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt+O(∆t3). (3.12)

Using the 3-point Gauss Lobatto quadrature for (3.12), we can get

1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt =

1

6
h(xj+ 1

2
, tn +∆t) +

2

3
h(xj+ 1

2
, tn +

∆t

2
) +

1

6
h(xj+ 1

2
, tn) +O(∆t3).

(3.13)

The sliding average function h can be given in the following expanded form [9]

h(xj+ 1
2
, t) = f(u(xj+ 1

2
, t)) +

s∑

k=1

a2k∆x
2k

(
∂2k

∂x2k
f(u(x, t))

)

x=x
j+1

2

+O(∆x2s+2) (3.14)

11



with properly defined {a2k} to ensure (h(xj+ 1
2
, t)−h(xj− 1

2
, t))/∆x = f(u)x(xj , t)+O(∆x2s+1)

for arbitrary s. For a third order approximation, taking the first two terms in (3.14) and

approximating fxx(u) by a central difference, we have

h(xj+ 1
2
, t) = f(u(xj+ 1

2
, t))− ∆x2

24
fxx(u(xj+ 1

2
, t)) +O(∆x4) (3.15)

=
13

12
f(u(xj+ 1

2
, t))− 1

24
(f(u(xj+ 3

2
, t)) + f(u(xj− 1

2
, t))) +O(∆x4). (3.16)

Now (3.13) can be written as

1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt

=
1

6

(
13

12
f(u(xj+ 1

2
, tn +∆t))− 1

24
(f(u(xj+ 3

2
, tn +∆t)) + f(u(xj− 1

2
, tn +∆t)))

)

+
2

3

(
13

12
f(u(xj+ 1

2
, tn +

∆t

2
))− 1

24
(f(u(xj+ 3

2
, tn +

∆t

2
)) + f(u(xj− 1

2
, tn +

∆t

2
)))

)

+
1

6

(
13

12
f(u(xj+ 1

2
, tn))− 1

24
(f(u(xj+ 3

2
, tn)) + f(u(xj− 1

2
, tn)))

)
+O(∆t3 +∆x4).

Following the characteristics, we have

1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt

=
1

6

(
13

12
f(u(xj+ 1

2
− λ21∆x, t

n))− 1

24
(f(u(xj+ 3

2
− λ31∆x, t

n)) + f(u(xj− 1
2
− λ11∆x, t

n)))

)

+
2

3

(
13

12
f(u(xj+ 1

2
− λ22∆x, t

n))− 1

24
(f(u(xj+ 3

2
− λ32∆x, t

n)) + f(u(xj− 1
2
− λ12∆x, t

n)))

)

+
1

6

(
13

12
f(u(xj+ 1

2
, tn))− 1

24
(f(u(xj+ 3

2
, tn)) + f(u(xj− 1

2
, tn)))

)
+O(∆t3 +∆x4) (3.17)

where

λ11 = λf ′(u(xj− 1
2
− λ11∆x, t

n)), λ12 =
λ

2
f ′(u(xj− 1

2
− λ12∆x, t

n)), (3.18)

λ21 = λf ′(u(xj+ 1
2
− λ21∆x, t

n)), λ22 =
λ

2
f ′(u(xj+ 1

2
− λ22∆x, t

n)), (3.19)

λ31 = λf ′(u(xj+ 3
2
− λ31∆x, t

n)), λ32 =
λ

2
f ′(u(xj+ 3

2
− λ32∆x, t

n)). (3.20)

We prove (3.11) case by case. For the high order flux, we approximate f(u(x, tn)) in (3.17)

by a third order polynomial interpolating f(uj−1), f(uj) and f(uj+1). We take the local Lax-

Friedrichs (LLF) flux as the first order monotone flux ĥj− 1
2
= 1

2
(f(uj)+ f(uj−1)−αj− 1

2
(uj −

uj−1)) , where αj− 1
2
= maxu∈[A,B] |f ′(u)| with A = min{uj−1, uj} and B = max{uj−1, uj}.

12



We first consider the case xM ∈ Ij , with uM = u(xM), u′M = 0 and u′′M ≤ 0. We perform

Taylor expansions around xM

uj = uM + u′M(xj − xM) + u′′M
(xj − xM )2

2
+O(∆x3) (3.21)

f(uj) = f(uM) + f ′(uM)u′M(xj − xM) +
(
f ′(uM)u′′M + f ′′(uM)(u′M)2

)

(xj − xM )2

2
+O(∆x3) (3.22)

f(uj−1) = f(uM) + f ′(uM)u′M(xj − xM −∆x) +
(
f ′(uM)u′′M + f ′′(uM)(u′M)2

)

(xj − xM −∆x)2

2
+O(∆x3) (3.23)

f(uj+1) = f(uM) + f ′(uM)u′M(xj − xM +∆x) +
(
f ′(uM)u′′M + f ′′(uM)(u′M)2

)

(xj − xM +∆x)2

2
+O(∆x3) (3.24)

If we denote λk,1 = λ0 + ηk,1∆x +O(∆x2) and λk,2 =
λ0

2
+ ζk,2∆x +O(∆x2) for k = 1, 2, 3,

where λ0 = λf ′(uM), substitute into (3.18)-(3.20) to determine ηk,1 and ζk,2, we have

λ11 = λ0 + f ′′(uM)u′Mλ(z −
1

2
− λ0)∆x+O(∆x2),

λ12 =
λ0
2

+ f ′′(uM)u′M
λ

2
(z − 1

2
− λ0

2
)∆x+O(∆x2),

λ21 = λ0 + f ′′(uM)u′Mλ(z +
1

2
− λ0)∆x+O(∆x2),

λ22 =
λ0
2

+ f ′′(uM)u′M
λ

2
(z +

1

2
− λ0

2
)∆x+O(∆x2),

λ31 = λ0 + f ′′(uM)u′Mλ(z +
3

2
− λ0)∆x+O(∆x2),

λ32 =
λ0
2

+ f ′′(uM)u′M
λ

2
(z +

3

2
− λ0

2
)∆x+O(∆x2).

with z = (xj − xM)/∆x.

With above notation and u′M = 0, we have

uj − λ

(
1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt− ĥj− 1

2

)
= uM +

u′′M
12

∆x2g(z, λ0) +O(∆x3 +∆t3) (3.25)

with

g(z, λ0) = (3αj− 1
2
λ+ 2λ0 + 3λ20 − 2λ30) + 6(−αj− 1

2
λ− 2λ0 + λ20)z + 6z2 (3.26)

We discuss g(z, λ0) with the following two cases:

• If f ′(uM) ≥ 0, we have λ0 = λf ′(uM) ∈ [0, 1] since λmaxu |f ′(u)| ≤ 1, and we can

write g(z, λ0) to be

g(z, λ0) = g1(z, λ0) + 6(αj− 1
2
λ− λ0)(

1

2
+ z) (3.27)

13



with

g1(z, λ0) = (5λ0 + 3λ20 − 2λ30) + 6(−3λ0 + λ20)z + 6z2 (3.28)

the minimum value of function g1 with respect to z is

(g1)min = g1(z, λ0)
∣∣∣
z=− 1

2
λ0(λ0−3)

=
λ0
2
(λ0 − 2)(λ0 − 1)(5− 3λ0) ≥ 0 (3.29)

and since |αj− 1
2
− f ′(uM)| = O(∆x), we have |(αj− 1

2
λ−λ0)(

1
2
+ z)| = |λ(1

2
+ z)||αj− 1

2
−

f ′(uM)| = O(∆x), that is g(z, λ0) = g1(z, λ0) + O(∆x) with g1(z, λ0) ≥ 0. Since

u′′M ≤ 0, we obtain (3.11).

• If f ′(uM) < 0, we have λ0 ∈ [−1, 0], similarly we have

g(z, λ0) = g2(z, λ0) + 6(αj− 1
2
λ+ λ0)(

1

2
+ z) (3.30)

with

g2(z, λ0) = (−λ0 + 3λ20 − 2λ30) + 6(−λ0 + λ20)z + 6z2 (3.31)

the minimum value of g2 with respect to z is

(g2)min = g2(z, λ0)
∣∣∣
z=− 1

2
λ0(λ0−1)

=
λ0
2
(λ0 + 1)(λ0 − 1)(2− 3λ0) ≥ 0 (3.32)

and similarly |(αj− 1
2
λ+λ0)(

1
2
+ z)| = O(∆x), we get g(z, λ0) = g2(z, λ0)+O(∆x) with

g2(z, λ0) ≥ 0. Since u′′M ≤ 0, we also obtain (3.11).

Now if xM /∈ Ij , however there is a local maximum point xlocM inside the cell of Ij, the

above analysis still holds. We therefore consider that u(x) reaches its local maximum ulocM

over Ij at xlocM = xj− 1
2
, we have u′

j− 1
2

< 0. From the Taylor expansions in (3.21)-(3.24),

following the same procedure as above, with z = (xj − xlocM )/∆x = (xj − xj− 1
2
)/∆x = 1/2,

we have

uj − λ

(
1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt− ĥj− 1

2

)

= uj− 1
2
+ u′

j− 1
2
∆xs1 + (u′

j− 1
2
)2∆x2s2 + u′′

j− 1
2

∆x2

2
s3 +O(∆x3 +∆t3) (3.33)

where

s1 =
1

2
(1− 2λ0 + λ20)−

λ

2
αj− 1

2

s2 = −f ′′(uj− 1
2
)
λ

6
(2− 6λ0 + 3λ20)

s3 =
1

12
(3− 8λ0 + 12λ20 − 4λ30)

14



If f ′(uj− 1
2
) ≥ 0, we have αj− 1

2
− f ′(uj− 1

2
) = O(∆x) and λ0 ∈ [0, 1]. We can write (3.33)

to be

uj − λ

(
1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt− ĥj− 1

2

)

= u(xj− 1
2
−√

s3∆x) + u′
j− 1

2
∆x(

1

2
(1− 3λ0 + λ20) +

√
s3) + u′

j− 1
2
∆x2s4

+O(∆x3 +∆t3) (3.34)

where s4 = u′
j− 1

2

s2 − λ
2

α
j− 1

2
−f ′(u

j− 1
2
)

∆x
, which is in the order of O(1). It is easy to check that

s3 ≥ 0 and 1
2
(1− 3λ0 + λ20) +

√
s3 ≥ 0.

However, if f ′(uj− 1
2
) < 0 and λ0 ∈ [−1, 0]. We can write (3.33) as

uj − λ

(
1

∆t

∫ tn+1

tn
h(xj+ 1

2
, t)dt− ĥj− 1

2

)

= u(xj− 1
2
−√

s3∆x) + u′
j− 1

2
∆x(s1 +

√
s3) + u′

j− 1
2
∆x2s4

+O(∆x3 +∆t3) (3.35)

where s4 = u′
j− 1

2

s2. s3 ≥ 0, s1 +
√
s3 ≥ 0 for λ0 ∈ [−1, 0] and λαj− 1

2
≤ 1.

In the above two cases, to prove (3.11), it is sufficient to show u(xj− 1
2
− √

s3∆x) +

∆x2u′
j− 1

2

s4 ≤ uM or u′
j− 1

2

= O(∆x). If [xj− 1
2
− √

s3∆x − ∆x, xj− 1
2
− √

s3∆x] is not a

monotone region, there is a point x#,1 in this region, such that u′(x#,1) = 0. Similarly, if

[xj− 1
2
−√

s3∆x−∆x, xj− 1
2
−√

s3∆x] is a monotone increasing region, since u′
j− 1

2

< 0, there

is one point x#,2 in [xj− 1
2
− √

s3∆x, xj− 1
2
], such that u′(x#,2) = 0. For these two cases,

u′
j− 1

2

= O(∆x). We then focus on the case when [xj− 1
2
−√

s3∆x −∆x, xj− 1
2
−√

s3∆x] is a

monotone decreasing region. We assume

u(xj− 1
2
−√

s3∆x) + c∆x2 > uM

where c = |u′
j− 1

2

s4|. Since

u(xj− 1
2
−√

s3∆x) = u(xj− 1
2
−√

s3∆x−∆x) + u′(x#,3)∆x,

where u′(x#,3) < 0, we have

u′(x#,3)∆x+ c∆x2 > 0,

which implies |u′(x#,3)| ≤ c∆x, therefore, u′
j− 1

2

= O(∆x).

xlocM = xj+ 1
2
with u′(xlocM ) ≥ 0 can be proved similarly. Combining the above discussion,

(3.11) is proved.
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Remark 3.3. From Theorem 3.2, we have proved that the proposed MPP flux limiter with

LLF fluxes as the first order monotone fluxes introduces a third order modification to the

original RK fluxes Ĥrk
j+ 1

2

for a third order finite difference scheme without additional time

step restriction. When Godunov flux is used as the first order monotone flux, the same

conclusion holds. However, when global Lax-Friedrichs (LF) flux is used as the first order

monotone flux, additional time step restriction would be needed, as s1 +
√
s3 is not always

positive in (3.33) when f ′(uj− 1
2
) ≥ 0 (see the form (3.35)). However, under a smaller CFL

number, i.e., λα = λmaxu |f ′(u)| ≤ 0.886, s1+
√
s3 ≥ 0 in (3.33), thus the 3rd order accuracy

is maintained. Extension of the above analysis to higher order case would be very technical

and algebraically complicated and is out of the scope of the current paper.

3.2 Two-dimensional problem

We consider the two-dimensional scalar problem

ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). (3.36)

The multi-dimensional parametrized MPP flux limiters for high order schemes solving (3.36)

are developed in [15]. We refer to [15] for the algorithm description and implementation

details of the successive MPP flux limiters for multi-dimensional problems. In this section,

we would like to apply the MPP flux limiters at the final stage of the multi-stage RK-WENO

schemes solving two-dimensional problem (3.36). As in the one-dimensional case, the high

order finite difference RK-WENO scheme can be written as

un+1
i,j = uni,j − λx(Ĥ

rk
i+1/2,j − Ĥrk

i−1/2,j)− λy(Ĝ
rk
i,j+1/2 − Ĝrk

i,j−1/2), (3.37)

where Ĥrk and Ĝrk are linear combination of fluxes from RKmultiple stages. Let ĥi+1/2,j , ĝi,j+1/2

be any first order monotone flux satisfying maximum principle,

um ≤ uni,j − λx(ĥi+1/2,j − ĥi−1/2,j)− λy(ĝi,j+1/2 − ĝi,j−1/2) ≤ uM . (3.38)

In order to ensure maximum principle, we are looking for the type of limiters

H̃i+1/2,j = θi+1/2,j(Ĥ
rk
i+1/2,j − ĥi+1/2,j) + ĥi+1/2,j ,

G̃i,j+1/2 = θi,j+1/2(Ĝ
rk
i,j+1/2 − ĝi,j+1/2) + ĝi,j+1/2 (3.39)

such that

um ≤ uni,j − λx(H̃i+1/2,j − H̃i−1/2,j)− λy(G̃i,j+1/2 − G̃i,j−1/2) ≤ uM . (3.40)
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(3.39) and (3.40) form coupled inequalities for the limiting parameters θi+1/2,j , θi,j+1/2. As

for the 1-D case, for each node (i, j), the maximum principle preserving limiters can be

parametrized in the sense that we can find a group of numbers ΛL,i,j,ΛR,i,j,ΛD,i,j,ΛU,i,j,

such that the numerical solutions of (3.37) satisfy the MPP property (3.40) with

(θi−1/2,j , θi+1/2,j , θi,j−1/2, θi,j+1/2) ∈ [0,ΛL,i,j]× [0,ΛR,i,j]× [0,ΛD,i,j]× [0,ΛU,i,j].

For the maximum value case, let

Γi,j = uM − (ui,j − λx(ĥi+1/2,j − ĥi−1/2,j)− λy(ĝi,j+1/2 − ĝi,j−1/2)) ≥ 0, (3.41)

when a monotone numerical flux is used under suitable CFL constraint αx
∆t
∆x

+ αy
∆t
∆y

≤ 1,

here αx = maxu |f ′(u)| and αy = maxu |g′(u)|. Denote




Fi−1/2,j = λx(Ĥ
rk
i−1/2,j − ĥi−1/2,j),

Fi+1/2,j = −λx(Ĥrk
i+1/2,j − ĥi+1/2,j),

Fi,j−1/2 = λy(Ĝ
rk
i,j−1/2 − ĝi,j−1/2),

Fi,j+1/2 = −λy(Ĝrk
i,j+1/2 − ĝi,j+1/2).

(3.42)

The coupled inequalities (3.39) and (3.40) can be rewritten as

θi+1/2,jFi+1/2,j + θi−1/2,jFi−1/2,j + θi,j+1/2Fi,j+1/2 + θi,j−1/2Fi,j−1/2 ≤ Γi,j, (3.43)

We shall now focus on decoupling the inequalities (3.43). For the single node (i, j),

1. Identify positive values out of the four locally defined numbers Fi−1/2,j , Fi+1/2,j , Fi,j−1/2,

Fi,j+1/2;

2. Corresponding to those positive values, collectively, the limiting parameters can be

defined. For example, if Fi+1/2,j , Fi−1/2,j > 0 and Fi,j−1/2, Fi,j+1/2 ≤ 0, then

{
ΛM

i+1/2,j,Λ
M
i−1/2,j = min(

Γi,j

Fi+1/2,j+Fi−1/2,j
, 1),

ΛM
i,j−1/2,Λ

M
i,j+1/2 = 1.

(3.44)

For the minimum value part, let

Γi,j = um − (ui,j − λx(ĥi+1/2,j − ĥi−1/2,j)− λy(ĝi,j+1/2 − ĝi,j−1/2)) ≤ 0. (3.45)

The coupled inequalities (3.39) and (3.40) can be rewritten as

Γi,j ≤ θi+1/2,jFi+1/2,j + θi−1/2,jFi−1/2,j + θi,j+1/2Fi,j+1/2 + θi,j−1/2Fi,j−1/2. (3.46)

A similar procedure would be applied
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1. Identify negative values out of the four locally defined numbers Fi−1/2,j , Fi+1/2,j ,

Fi,j−1/2, Fi,j+1/2;

2. Corresponding to the negative values, collectively, the limiting parameters can be

defined. For example, if Fi,j−1/2, Fi,j+1/2 ≥ 0 and Fi−1/2,j , Fi+1/2,j < 0, then
{
Λm

i−1/2,j ,Λ
m
i+1/2,j = min(

Γi,j

Fi−1/2,j+Fi+1/2,j
, 1)

Λm
i,j−1/2,Λ

m
i,j+1/2 = 1.

(3.47)

Namely, all high order fluxes which possibly contribute (beyond that of the first order fluxes)

to the overshooting or undershooting of the updated value shall be limited by the same

scaling. Similarly we can find ΛM
i,j±1/2 and Λm

i,j±1/2, The range of the limiting parameters

satisfying MPP for a single node (i, j) therefore can be defined by




ΛL,i,j = min(ΛM
i−1/2,j ,Λ

m
i−1/2,j),

ΛR,i,j = min(ΛM
i+1/2,j,Λ

m
i+1/2,j),

ΛU,i,j = min(ΛM
i,j+1/2,Λ

m
i,j+1/2),

ΛD,i,j = min(ΛM
i,j−1/2,Λ

m
i,j−1/2).

(3.48)

Considering the limiters from neighboring nodes, finally we let
{
θi+1/2,j = min(ΛR,i,j,ΛL,i+1,j),

θi,j+1/2 = min(ΛU,i,j,ΛD,i,j+1).
(3.49)

The flux limiters designed for two-dimensional problem (3.36) can be easily generalized to

higher dimensional problems. The analytical tools in performing Taylor expansions, han-

dling the sliding average functions and in tracing characteristics in proving Theorem 3.2 can

be generalized for 2-D problems. However, in our current approach, more algebraic compu-

tations are needed for schemes of higher orders and for problems of higher dimensions. It is

our future work to find a general approach in investigating the maintenance of high order

spatial and temporal accuracy, without a case-specific discussion.

4 The MPP flux limiter for incompressible flow

Consider 2D equations describing advection in incompressible flow,

ut + (v1(x, y, t)u)x + (v2(x, y, t)u)y = 0, (4.1)

in conservative form with the divergence free condition of the velocity field

∇x · v = 0. (4.2)
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The solutions of such equation enjoy the properties of mass conservation and strict maximum

principle thanks to the divergence-free condition. The challenge of computing (4.1) by a

conservative scheme is to preserve a discrete divergence-free condition, especially when a

high order method is used. In this section, we start from introducing a first order monotone

scheme in flux difference form which is in a similar spirit to that discussed in [3]. With the

divergence-free condition, there exists a potential function Φ, s.t. v = (−Φy,Φx)
T . In some

cases, when the analytical formulae of the potential function is hard to be determined from

v1 and v2, it can be computed through solving the Poisson equation

∆Φ = −∂yv1 + ∂xv2 (4.3)

with a stable scheme, i.e., a five-point central difference scheme. The previously computed

discrete values of the potential function can be used to design the following first order

monotone scheme. Assuming

αi−1,j = − ∆t

∆x∆y
(Φi−1,j − Φi−1,j−1) ≥ 0,

αi,j−1 =
∆t

∆x∆y
(Φi,j−1 − Φi−1,j−1) ≥ 0,

Let D±
x Φi,j = ±(Φi±1,j − Φi,j) and D±

y Φi,j = ±(Φi,j±1 − Φi,j). The first order monotone

scheme is designed by using the potential function Φ:

un+1
i,j = uni,j −∆t

(
−D−

x ((D
−
y Φ)u

n) +D−
y ((D

−
x Φ)u

n)
)

= αi,ju
n
i,j + αi−1,ju

n
i−1,j + αi,j−1u

n
i,j−1 (4.4)

with

αi,j = 1− (αi−1,j + αi,j−1).

These coefficients α are positive under the CFL condition αx
∆t
∆x

+ αy
∆t
∆y

≤ 1, here αx =

max |D−
y Φ|/∆y and αy = max |D−

x Φ|/∆x. With the updated solution being the convex

combination of the solution from previous time steps, it is easy to check that the first order

scheme (4.4) satisfies the MPP property.

For the general case, we perform a flux splitting of Φ. For example, with the Lax-

Friedrichs splitting, we let

Φ+ =
1

2
(Φ + αxx+ αyy) , Φ− =

1

2
(Φ− (αxx+ αyy)) (4.5)
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with αx and αy large enough, so thatD
−
x (Φ

+) ≥ 0, D−
y (Φ

+) ≥ 0, D+
x (Φ

−) ≤ 0 andD+
y (Φ

−) ≤
0. A first order monotone scheme satisfying the MPP property can be designed as

un+1
i,j = uni,j −∆t

(
D+

x ((−D−
y Φ

+)un) +D−
x ((−D+

y Φ
−)un)

+D−
y ((D

+
x Φ

+)un) +D+
y ((D

−
x Φ

−)un)
)
. (4.6)

Similar to equation (4.4), it is easy to check that the scheme (4.6) satisfies the MPP property.

Similar to the MPP flux limiters presented in Section 3, the high order finite difference

RK-WENO scheme for the conservative form of incompressible flow (4.1) can be written in

the form of (3.37) with the MPP flux limiter (3.39), where

ĥi+ 1
2
,j = −Φi+1,j − Φi+1,j−1

2∆y
ui+1,j −

Φi,j+1 − Φi,j

2∆y
ui,j −

αx

2
(ui+1,j − ui,j)

ĝi,j+ 1
2
=

Φi+1,j − Φi,j

2∆x
ui,j +

Φi,j+1 − Φi−1,j+1

2∆x
ui,j+1 −

αy

2
(uni,j+1 − ui,j)

is the numerical flux from the first order scheme (4.6) with MPP property.

The application of the high order FD RK-WENO scheme with general MPP flux limiters

presented in the previous sections to the incompressible flow problem is convenient based

on the above description. However, a rigorous justification on maintenance of high order

accuracy, following the line of proof for the third order scheme solving advection equation,

is technically prohibitive due to the increased complexity of the flux function and tracing of

the characteristic etc. A thorough analysis will be part of our future investigation.

Remark 4.1. The computation of incompressible flow can also be applied to the incom-

pressible Euler equations with vorticity stream-function formulation in the form (5.7) and

(5.8). In this case, we solve the potential function from the Possion equation by the Fourier

spectral method.

5 Numerical simulations

5.1 Basic tests.

In this section, we present numerical examples for the proposed parametrized MPP flux

limiters for high order finite difference schemes with high order RK time discretization. There

are two schemes we tested. One is the 3rd order finite difference scheme with 3rd order Runge-

Kutta time discretization, denote as “FD3RK3”, here the 3rd order finite difference scheme

is the 3rd order finite difference WENO scheme but with linear weights; the other is the 5th
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order finite difference WENO scheme with 4th order RK time discretization [8] denoted as

“WENO5RK4”. We use the global Lax-Friedrichs scheme as the first order monotone scheme,

unless otherwise stated. And the CFL condition in our numerical experiments is defined to

be maxu |f ′(u)|∆t
∆x

≤ CFL for one dimensional case, and maxu |f ′(u)|∆t
∆x

+maxu |g′(u)|∆t
∆y

≤
CFL for two dimensional case.

Example 5.1. Consider the 1D linear equation

ut + ux = 0, u(x, 0) = u0(x) (5.1)

on [0, 2π] with periodic boundary conditions. We take the initial condition to be u0(x) =

sin4(x). We list the L1 and L∞ errors at T = 0.5 in Tables 5.1-5.4 with CFL = 0.6 . The 3rd

order for “FD3RK3” and 5th order for “WENO5RK4” schemes with the MPP flux limiters

are numerically observed. The minimum values are observed to be strictly non-negative from

schemes with limiters. We also test CFL = 1.0 for “FD3RK3” and report results in Tables

5.5-5.6. Similar behaviors are observed.

Table 5.1: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 0.6, 1D linear
equation with initial condition u0(x) = sin4(x), without limiters.

N L1 error order L∞ error order (uh)min

20 2.21e-02 – 4.43e-02 – -2.26E-02
40 3.49e-03 2.66 6.48e-03 2.77 -3.69E-03
80 4.54e-04 2.94 8.77e-04 2.89 -5.16E-04
160 5.76e-05 2.98 1.11e-04 2.98 -6.68E-05
320 7.22e-06 3.00 1.40e-05 3.00 -8.36E-06

Table 5.2: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 0.6, 1D linear
equation with initial condition u0(x) = sin4(x), with limiters.

N L1 error order L∞ error order (uh)min

20 1.83e-02 – 4.43e-02 – 3.55E-14
40 3.24e-03 2.50 6.48e-03 2.77 1.23E-14
80 4.57e-04 2.82 8.77e-04 2.89 6.38E-23
160 5.75e-05 2.99 1.23e-04 2.83 1.72E-16
320 7.22e-06 2.99 1.71e-05 2.85 9.61E-22

Example 5.2. Consider the 1D nonlinear Burgers’ equation with periodic boundary condi-

tions on [0, 2π]

ut +

(
u2

2

)

x

= 0, u(x, 0) = u0(x) (5.2)
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Table 5.3: L1 and L∞ error and order for “WENO5RK4”, T = 0.5, CFL = 0.6, 1D linear
equation with initial condition u0(x) = sin4(x), without limiters.

N L1 error order L∞ error order (uh)min

20 1.01e-02 – 1.90e-02 – -2.58E-03
40 1.59e-03 2.66 4.27e-03 2.16 -5.93E-04
80 1.13e-04 3.82 6.00e-04 2.83 -5.64E-05
160 3.77e-06 4.90 2.74e-05 4.46 -1.20E-05
320 9.76e-08 5.27 7.59e-07 5.17 -2.03E-08

Table 5.4: L1 and L∞ error and order for “WENO5RK4”, T = 0.5, CFL = 0.6, 1D linear
equation with initial condition u0(x) = sin4(x), with limiters.

N L1 error order L∞ error order (uh)min

20 9.47e-03 – 1.90e-02 – 7.84E-15
40 1.49e-03 2.67 3.83e-03 2.31 1.16E-04
80 1.02e-04 3.86 5.42e-04 2.82 2.83E-05
160 3.26e-06 4.97 2.17e-05 4.64 2.18E-07
320 9.76e-08 5.06 7.59e-07 4.84 9.61E-15

and with the initial condition u0(x) = sin4(x). The exact solution is smooth up to t = 4
√
3

9
≈

0.7698. The errors at T = 0.5 are reported in Tables 5.7-5.10. The numerical solutions

are observed to enjoy the MPP property. The order of accuracy is maintained for both

“FD3RK3” and “WENO5RK4”. After t = 4
√
3

9
, the solution develops a still shock. We

show the solutions at T = 1.2 in Figure 5.1. For “FD3RK3” at mesh N = 160, without

limiters, there are several large overshoots and undershoots. However with the MPP flux

limiters, the overshoots and undershoots are completely under control with the minimum

value (uh)min = 3.90752E−22 and the maximum value (uh)max = 1.00000. Without limiters,

the minimum value for “WENO5RK4” is also negative, which is (uh)min = −1.27153E − 05

at mesh N = 160, but with limiters, the minimum value is (uh)min = 1.20706E − 22.

Example 5.3. Consider the 2D linear equation on [−1, 1]× [−1, 1]

ut + ux + uy = 0, u(x, y, 0) = u0(x, y) (5.3)

with discontinuous initial condition

u0(x, y) =

{
1, y ≥ x;

−1, y < x.

We show the cuts of numerical solutions for “FD3RK3” along y + x = 0 in Figure 5.2.

With the MPP flux limiters, numerical solutions are observed to be non-oscillatory without
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Table 5.5: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 1.0, 1D linear
equation with initial condition u0(x) = sin4(x), without limiters.

N L1 error order L∞ error order (uh)min

20 2.54e-02 – 4.95e-02 – -2.40E-02
40 4.42e-03 2.52 8.62e-03 2.52 -4.91E-03
80 5.98e-04 2.88 1.16e-03 2.90 -6.84E-04
160 7.70e-05 2.96 1.49e-04 2.96 -8.90E-05
320 9.72e-06 2.98 1.88e-05 2.99 -1.13E-05

Table 5.6: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 1.0, 1D linear
equation with initial condition u0(x) = sin4(x), with limiters.

N L1 error order L∞ error order (uh)min

20 2.01e-02 – 4.94e-02 – 1.66E-23
40 4.11e-03 2.29 8.62e-03 2.52 0.00E-00
80 6.01e-04 2.77 1.16e-03 2.90 0.00E-00
160 7.69e-05 2.97 1.76e-04 2.71 1.19E-90
320 9.72e-06 2.98 2.27e-05 2.96 4.43E-158

overshoots and undershoots. For “WENO5RK4”, without limiters, the numerical solution

is observed to be non-oscillatory. However, numerically it shows values under the minimum

value −1. For example, with mesh 100 × 100, (uh)min = −1.00133 and (uh)max = 1.00109

from the scheme without limiters, but (uh)min = −1.00000 and (uh)max = 1.00000 from the

scheme with limiters.

Example 5.4. Consider the 2D Burgers’ equation

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0, u(x, y, 0) = u0(x, y) (5.4)

on [0, 2π] × [0, 2π] with periodic boundary conditions. The initial condition is u0(x, y) =

sin4(x + y). The results are similar to the 1D case, see Tables 5.11-5.14. The cuts of

the discontinuous solution along x + y = 0 are showed in Figure 5.3 at T = 0.8. With

limiters, the numerical solution performs much better than the solution without limiters for

“FD3RK3”. For the “WENO5RK4” scheme, the numerical solution is observed to be non-

oscillatory. However, MPP property is violated from the scheme without limiters (uh)min =

−3.02538E − 05. When the MPP limiter is applied, (uh)min = 3.06377E − 15.
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Table 5.7: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 0.6, 1D Burgers’
equation with initial condition u0(x) = sin4(x), without limiters.

N L1 error order L∞ error order (uh)min (uh)max

20 3.56e-02 – 1.47e-01 – -2.39E-02 0.973
40 7.92e-03 2.17 5.05e-02 1.54 -3.95E-03 1.009
80 1.65e-03 2.26 1.85e-02 1.45 -4.71E-04 0.999
160 2.58e-04 2.68 4.12e-03 2.17 -6.02E-05 1.000
320 3.28e-05 2.97 6.75e-04 2.61 -7.56E-06 1.000
640 4.16e-06 2.98 8.70e-05 2.96 -9.46E-07 1.000

Table 5.8: L1 and L∞ error and order for “FD3RK3”, T = 0.5, CFL = 0.6, 1D Burgers’
equation with initial condition u0(x) = sin4(x), with limiters.

N L1 error order L∞ error order (uh)min (uh)max

20 3.32e-02 – 1.47e-01 – 1.05E-13 0.973
40 6.91e-03 2.26 5.04e-02 1.55 1.86E-15 1.000
80 1.65e-03 2.06 1.85e-02 1.45 9.85E-18 0.999
160 2.58e-04 2.68 4.12e-03 2.17 2.72E-22 1.000
320 3.28e-05 2.97 6.75e-04 2.61 1.13E-20 1.000
640 4.16e-06 2.98 8.70e-05 2.96 7.44E-21 1.000

5.2 Advection in incompressible flow

Example 5.5. Consider the rigid body rotation

ut − (yu)x + (xu)y = 0, x ∈ [−π, π], y ∈ [−π, π]. (5.5)

The initial condition includes a slotted disk, a cone as well as a smooth hump, see Figure

5.4. The cuts of the numerical solution for “FD3RK3” are displayed in the Figure 5.5. With

limiters, the numerical solution is clearly within the range [0, 1]. For “WENO5RK4”, without

limiter, the minimum value for the numerical solution is (uh)min = −1.21853E−04. With the

limiter, the minimum value is strictly within the range [0, 1] with (uh)min = 6.22799E − 15.

To save space, we omit the figure here.

Example 5.6. (Swirling deformation flow) Consider solving

ut − (cos2(
x

2
) sin(y)g(t)u)x + (sin(x) cos2(

y

2
)g(t)u)y = 0, x ∈ [−π, π], y ∈ [−π, π] (5.6)

with g(t) = cos(πt/T )π. The initial condition is the same as Example 5.5. We also use

“FD3RK3” and “WENO5RK4” to compute this example, for which similar results are ob-

served. Solutions from “FD3RK3” with and without MPP limiters are displayed in Figure
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Table 5.9: L1 and L∞ error and order for “WENO5RK4”, T = 0.5, CFL = 0.6, 1D Burgers’
equation with initial condition u0(x) = sin4(x), without limiters.

N L1 error order L∞ error order (uh)min (uh)max

20 2.74e-02 – 1.10e-01 – -6.32E-04 0.934
40 4.03e-03 2.76 2.24e-02 2.30 -2.25E-04 0.990
80 6.81e-04 2.56 1.10e-02 1.03 -9.46E-05 0.998
160 6.79e-05 3.33 1.29e-03 3.10 -5.11E-06 1.000
320 2.97e-06 4.52 9.46e-05 3.77 -1.31E-08 1.000
640 1.07e-07 4.79 3.76e-06 4.65 -3.69E-10 1.000

Table 5.10: L1 and L∞ error and order for “WENO5RK4”, T = 0.5, CFL = 0.6, 1D Burgers’
equation with initial condition u0(x) = sin4(x), with limiters.

N L1 error order L∞ error order (uh)min (uh)max

20 2.72e-02 – 1.10e-01 – 9.73E-15 0.934
40 4.00e-03 2.77 2.25e-02 2.30 9.52E-15 0.990
80 6.74e-04 2.57 1.10e-02 1.03 8.92E-15 0.998
160 6.78e-05 3.31 1.29e-03 3.10 8.57E-22 1.000
320 2.97e-06 4.51 9.46e-05 3.77 9.73E-15 1.000
640 1.07e-07 4.79 3.76e-06 4.65 9.92E-15 1.000

5.6. For “WENO5RK4”, without the limiter, the minimum and maximum values for the

numerical solution are (uh)min = −1.74885E − 03, (uh)max = 1.01114. With the limiter,

(uh)min = −2.57912E − 13, (uh)max = 1.00000 within the range [0, 1].

Example 5.7. Consider the incompressible Euler equations

ωt + (uω)x + (vω)y = 0, (5.7)

∆ψ = ω, 〈u, v〉 = 〈−ψy, ψx〉, (5.8)

ω(x, y, 0) = ω0(x, y), 〈u, v〉 · n=given on ∂Ω (5.9)

on the domain [0, 2π] × [0, 2π] with periodic boundary conditions. The initial condition

ω0(x, y) = −2 sin(x) sin(y). The exact solution stays stationary with ω(x, y, t) = −2 sin(x) sin(y).

We tested the order of accuracy for “WENO5RK4” in Tables 5.15-5.16. We can see that

the numerical solution with limiters can be within the range [−2, 2] without affecting the

order of accuracy. The numerical solution for “FD3RK3” is already within the range [−2, 2]

without limiters, the results with limiters are the same as those without limiters, so we do

not list the results here.

Example 5.8. (The vortex patch problem) Consider the same problem as in Example 5.7,
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Figure 5.1: Numerical solutions for 1D Burgers’ equation at T = 1.2. Mesh: N = 160.
CFL=0.6. Left: without limiter; Right: with limiter. Top: FD3RK3; Bottom: WENO5RK4.
Solid line: exact solution; Symbols: numerical solution.

but with the initial condition given by

ω0(x, y) =





−1, π
2
≤ x ≤ 3π

2
, π
4
≤ y ≤ 3π

4
;

1, π
2
≤ x ≤ 3π

2
, 5π

4
≤ y ≤ 7π

4
;

0, otherwise.

We show the contour plots of vorticity ω and the cut along the diagonal at T = 5 in Figure 5.7.

The mesh size is 128×128. For “FD3RK3” without the limiter, overshoots and undershoots

are observed. However, the numerical solutions from the scheme with limiter are observed

to be in the range of [−1, 1]. For “WENO5RK4”, we cannot observe any visible difference

between the results without and with the limiter. The minimum and maximum values of

the numerical solution without limiters are (ωh)min = −1.00051 and (ωh)max = 1.00051, and
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Figure 5.2: Numerical solutions for 2D linear problem with discontinuous initial condition
for FD3RK3 at T = 0.5. Mesh: 100 × 100. CFL=1. Left: without limiter; Right: with
limiter. Cuts along x + y = 0. Solid line: referred maximal and minimal values ; Symbols:
numerical solution.

with limiters are (ωh)min = −0.99998 and (ωh)max = 0.99998.

6 Conclusion

In this paper, we propose to apply a parametrized flux limiters only at the final stage of a

multi-stage RK finite difference WENO schemes, to achieve the MPP property for solving

scalar hyperbolic conservation laws. We use a formal local truncation error analysis to prove

that, the proposed limiting approach maintains third order spatial and temporal accuracy

if the high order flux is limited toward a first order local Lax-Friedrich flux or a Godunov

flux under the linear stability condition of the original third order finite difference scheme.

We also apply the MPP flux limiters to the conservative high order FD RK-WENO scheme

solving the incompressible flow problems. Numerical experiments have demonstrated the

efficiency and effectiveness of our new approach. Error analysis for arbitrarily high order

schemes and extension to Euler systems will be explored in the future.
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Table 5.15: L1 and L∞ error and order for “WENO5RK4”, T = 0.1, CFL = 1.0, incom-
pressible Euler equations with initial condition ω0(x, y) = −2sin(x)sin(y), without limiters.

N L1 error order L∞ error order (uh)min − umin umax − (uh)max

40 7.85E-05 – 3.76E-04 – -1.69E-06 -1.69E-06
80 4.71E-06 4.06 3.60E-05 3.39 -6.77E-08 -6.77E-08
160 1.86E-07 4.66 1.60E-06 4.49 -1.57E-09 -1.57E-09
320 6.94E-09 4.75 7.58E-08 4.40 -2.60E-11 -2.60E-11
640 1.32E-10 5.71 1.42E-09 5.74 2.68E-13 2.68E-13

Table 5.16: L1 and L∞ error and order for “WENO5RK4”, T = 0.1, CFL = 1.0, incom-
pressible Euler equations with initial condition ω0(x, y) = −2sin(x)sin(y), with limiters.

N L1 error order L∞ error order (uh)min − umin umax − (uh)max

40 7.85E-05 – 3.76E-04 – 9.99E-14 9.99E-14
80 4.71E-06 4.06 3.60E-05 3.39 9.99E-14 9.99E-14
160 1.86E-07 4.66 1.60E-06 4.49 9.99E-14 9.99E-14
320 6.94E-09 4.75 7.58E-08 4.40 9.99E-14 9.99E-14
640 1.32E-10 5.71 1.42E-09 5.74 2.76E-13 2.77E-13
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Figure 5.5: Plots of slides of numerical solutions for equation (5.5) with FD3RK3 at T = 12π.
Mesh: 100 × 100. CFL=1. Left: without limiter; Right: with limiter. Cuts along x = 0,
y = 0.8 and y = −2 from top to bottom, respectively. Solid line: exact solution; Symbols:
numerical solution.
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Figure 5.6: Plots of slides of numerical solutions for equation (5.6) with FD3RK3 at T = 1.5.
Mesh: 100 × 100. CFL=1. Left: without limiter; Right: with limiter. Cuts along x = 0,
y = 0.8 and y = −2 from top to bottom, respectively. Solid line: exact solution; Symbols:
numerical solution.
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Figure 5.7: Plots of numerical solutions for Example 5.8 with FD3RK3 at T = 5. Mesh:
128 × 128. CFL=1. Left: without limiter; Right: with limiter. Top: 30 equally spaced
contours from -1.1 to 1.1; bottom: cut along the diagonal. Solid line: referred maximal and
minimal values ; Symbols: numerical solution.
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