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SNAPSHOT LOCATION BY ERROR EQUILIBRATION IN PROPER
ORTHOGONAL DECOMPOSITION FOR LINEAR AND

SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

R.H.W. HOPPE∗ AND Z. LIU†

Abstract. It is well-known that the performance of snapshot based POD and POD-DEIM for
spatially semidiscretized parabolic PDEs depends on the proper selection of the snapshot locations.
In this contribution, we present an approach that for a fixed number of snapshots selects the location
based on error equilibration in the sense that the global discretization error is approximately the
same in each associated subinterval. The global discretization error is assessed by a hierarchical-type
a posteriori error estimator known from automatic time-stepping for systems of ODEs. We study the
impact of this snapshot selection on error equilibration for the ROM and provide numerical examples
that illustrate the performance of the suggested approach.

Key words. POD, POD-DEIM, snapshot location, equilibration of the error, linear and semi-
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1. Introduction. During the past decades, there has been significant progress
in the development, analysis, and efficient implementation of Model Order Reduc-
tion (MOR) for the numerical simulation of dynamical systems (systems of ordinary
differential equations (ODEs)) and partial differential equations (PDEs). Among the
most common techniques are Balanced Truncation Model Reduction (BTMR), Proper
Orthogonal Decomposition (POD), and the Reduced Basis Method (RBM). The com-
mon aim is to construct a Reduced Order Model (ROM) of a significantly reduced
dimension which essentially captures the dynamics of the original Full Order Model
(FOM). This requires the specification of a ROM basis using data extracted from the
FOM. In particular, one is interested both in a preservation of input-output relations
and in a sufficiently accurate approximation of the state. For an overview of the state-
of-the-art we refer to [1, 3, 4, 13, 14, 24, 26, 27, 30, 34] and the references therein.
POD can be applied to both linear and nonlinear parabolic PDEs and is usually based
on snapshots of the solution at selected time instants (snapshot locations). The snap-
shots can be chosen in function space (POD-Galerkin) or in Euclidean space for the
spatially discretized PDEs. The basis for the ROM can be computed either by SVD
of the matrix formed by the snapshots or by an Eigenvalue Decomposition (EVD)
of associated covariance matrices. Estimates of the POD-Galerkin error in the state
have been provided in [15, 20, 21]. As far as estimates of the POD state error in
the ODE setting are concerned, we refer to the survey article [17] and the references
therein.
For nonlinear dynamical systems, POD suffers from the fact that the computa-
tional complexity for the evaluation of the nonlinear mapping still depends on the
dimension N of the FOM. In [7], the authors have adopted the ’Empirical Interpola-
tion Method’ (EIM) from [2] to the discrete case (’Discrete Empirical Interpolation
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Method’ (DEIM)) and suggested an approach where the nonlinear function is ap-
proximated by a function whose evaluation is independent on N and features a com-
putational complexity being proportional to the number of reduced variables. This
approach is now commonly referred to as POD-DEIM. Estimates of the POD-DEIM
error in the state for spatially discretized nonlinear parabolic PDEs have been derived
in [8].
It is well-known that the performance of POD depends on a proper selection of the
snapshot locations. Given a fixed number of snapshot locations, in [22] the authors
have addressed the optimal selection of a certain number of additional snapshot loca-
tions. They have formulated this problem as a nonlinear optimization problem and
have provided an SQP (Sequential Quadratic Programming)-type algorithm based on
the second order sufficient optimality conditions. In this paper, we will focus on a
different approach based on an equilibration of the POD or POD-DEIM error in the
state. To be more precise, the snapshot locations are chosen in such a way that the
state error is approximately the same in each subinterval of the resulting partition of
the global time interval. The evaluation of the state error is realized by an efficient and
reliable hierarchical a posteriori error estimator known from automatic time-stepping
for systems of ODEs, namely the Euclidean norm of the difference of the solutions
obtained by the implicit Euler scheme and the implicit trapezoidal rule. It turns out
that the equilibration of the error is inherited by the POD or POD-DEIM based ROM.
In the nonlinear case, this can be explained by means of the affine covariant version of
the Newton-Kantorovich convergence theorem [11] for Newton’s method which is used
as an iterative scheme to compute the solutions of the nonlinear algebraic systems to
be solved at each time step.

The paper is organized as follows: Section 2 deals with initial-boundary value prob-
lems for linear and semilinear second order parabolic PDEs and their semidiscretiza-
tion by the finite element method. The semidiscretized problems are considered as the
Full Order Models (FOMs). Section 3 gives a brief overview on snapshot based POD
and POD-DEIM, whereas section 4 is devoted to snapshot selection by equilibration
of the error. In the nonlinear case, implicit time stepping requires the solution of
nonlinear algebraic systems which can be done by Newton’s method. We perform a
convergence analysis in an affine covariant framework with emphasis on the relation-
ship between the Newton’s method for the FOM and the POD and POD-DEIM based
ROMs (subsections 4.1 and 4.2). In subsection 4.3, we provide conditions which guar-
antee that the error equilibration for the FOM is inherited by the respective ROMs.
Finally, section 5 contains a detailed documentation of numerical results illustrating
the performance of the suggested approach.

2. Linear and semilinear Parabolic PDEs and their semidiscretization
in space. We use standard notation from Lebesgue and Sobolev space theory [31]
and consider semilinear parabolic PDEs that can be written as abstract evolution
equations according to

y′(t) −Ay(t) + f(t, y(t)) = 0, t ∈ (0, T ], (2.1a)

y(0) = y0, (2.1b)

in L2(Ω), where y′(t) := dy(t)/dt and A is a linear second order elliptic differential
operator with D(A) = H2(Ω) ∩ H1

0 (Ω), Ω being a bounded polyhedral domain in
Rd, d ∈ N, with boundary Γ := ∂Ω. We further assume T > 0, y0 ∈ L2(Ω), and
f ∈ C([0, T ], L2(Ω)) with f(t, 0) = 0, t ∈ [0, T ], satisfying a Lipschitz condition in the
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second argument, i.e.,

∥f(t, y1) − f(t, y2)∥L2(Ω) ≤ Lf ∥y1 − y2∥L2(Ω), y1, y2 ∈ L2(Ω), t ∈ [0, T ], (2.2)

for some constant Lf > 0. In particular, we assume A to be of the form

Ay :=

d∑

i,j=1

∂

∂xj
(aij

∂y

∂xi
) −

d∑

i=1

bi
∂y

∂xi
− cy, (2.3)

where aij ∈ L∞(Ω), 1 ≤ i, j ≤ d, such that for some α > 0

d∑

i,j=1

aij(x)ξiξj ≥ α |ξ|2, ξ ∈ Rd, f.a.a. x ∈ Ω,

bi ∈ L∞(Ω), 1 ≤ i ≤ d, and c ∈ L∞(Ω) such that c(x) ≥ 0 f.a.a. x ∈ Ω. Moreover, we
assume the coefficient functions to be such that A− ωI is dissipative for some ω > 0
withD(A) ⊂ R(I−hA), 0 < h < 1/ω. Then, the solution operator of (2.1a),(2.1b) is a
nonlinear semigroup [18, 19]. In case f does not depend on y, (2.1a),(2.1b) represents
a linear evolution equation whose solution operator is a strongly continuous linear
semigroup.

Although snapshots may be considered in function space as in Galerkin-POD, the
practical computation of snapshots is done with respect to a semidiscretization of the
semilinear or linear evolution equation (2.1a),(2.1b) in space, e.g., by the finite element
method [6, 10]. The finite element method is based on the variational formulation of
(2.1a),(2.1b). We define function spaces

W (0, T ) := H1((0, T ),H−1(Ω)) ∩ L2((0, T ),H1
0 (Ω)), (2.4a)

W̄ (0, T ) := {y ∈ W (0, T ) | f(t, y) ∈ L2(Ω), t ∈ (0, T )}, (2.4b)

and note that W (0, T ) ⊂ C([0, T ], L2(Ω)) (cf., e.g., [29]). The variational formulation
of (2.1a),(2.1b) amounts to the computation of y ∈ W̄ (0, T ) such that for almost all
t ∈ (0, T ) and v ∈ V := H1

0 (Ω) it holds

⟨∂y
∂t
, v⟩H−1(Ω),H1

0 (Ω) + a(y, v) + (f(y), v)L2(Ω) = (g, v)L2(Ω), (2.5a)

(y(0), v)L2(Ω) = (y0, v)L2(Ω), (2.5b)

where the bilinear form a(·, ·) : H1
0 (Ω) ×H1

0 (Ω) is given by

a(v, w) :=
d∑

i,j=1

∫

Ω

aij
∂y

∂xi

∂y

∂xj
dx+

d∑

i=1

∫

Ω

bi
∂y

∂xi
v dx+

∫

Ω

cyv dx. (2.6)

A function y ∈ W̄ (0, T ) satisfying (2.5a),(2.5b) is called a weak solution of (2.1a),
(2.1b). For the existence of a weak solution we refer to [16] and [23]. In particular,
under the previous assumptions on the operator A and the nonlinear mapping f , the
existence of a weak solution is guaranteed.

For the finite element approximation of (2.5a),(2.5b) let {Th(Ω)} be a shape regular
family of geometrically conforming simplicial triangulations of Ω. We denote by Nh(Ω)
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the set of nodal points of Th(Ω) in Ω and set N := card(Nh(Ω)). For T ∈ Th(Ω) we
refer to hT as the diameter of T and set h := max{hT | T ∈ Th(Ω)}. We further
refer to Vh ⊂ V = H1

0 (Ω) the finite element space of continuous, piecewise linear
finite elements with respect to Th(Ω), i.e., denoting by P1(T ) the set of polynomials
of degree ≤ 1 on T , we have

Vh := {vh ∈ C(Ω̄) | vh|T ∈ P1(T ), T ∈ Th(Ω), vh|Γ = 0}. (2.7)

We note that dim Vh = N and Vh = span{φ(1)
h , · · · , φ(N)

h }, where φ
(i)
h , 1 ≤ i ≤ N,

stands for the nodal basis function associated with the nodal point ai ∈ Nh(Ω).
Then, the finite element approximation of (2.5a),(2.5b) reads: Find yh ∈ C1([0, T ], Vh)
such that for all t ∈ [0, T ] and vh ∈ Vh it holds

(y′
h(t), vh)L2(Ω) + a(yh, vh) + (f(yh), vh)L2(Ω) = (g, vh)L2(Ω), (2.8a)

(yh(0), vh)L2(Ω) = (y0, vh)L2(Ω). (2.8b)

For a priori estimates of the discretization error y − yh in term of the mesh width h
we refer to [32].

We may identify the finite element function yh(·, t) with a vector y(t) := (yh,1(t),
· · · , yh,N (t))T ∈ RN such that yh,i(t) := yh(ah,i, t), ah,i ∈ Nh(Ω), 1 ≤ i ≤ N . We
denote by M ∈ RN×N and A ∈ RN×N the mass and the stiffness matrix

(M)ij := (φ
(i)
h , φ

(j)
h )L2(Ω), 1 ≤ i, j ≤ N,

(A)ij := a(φ
(j)
h , φ

(i)
h ), 1 ≤ i, j ≤ N.

We further refer to y0 ∈ RN and g ∈ RN as the vectors with components

yi := (y0, φ
(i)
h )L2(Ω), ,gi := (g, φ

(i)
h )L2(Ω), 1 ≤ i ≤ N,

and to f(t,y) : RN → RN , t ∈ [0, T ], as the nonlinear map

f(t,y) = (fh,1(t, yh), · · · , fh,N (t, yh))T ,

fh,i(t, yh) := (f(t,
N∑

j=1

yh,jφ
(j)
h ), φ

(i)
h )L2(Ω), 1 ≤ i ≤ N.

Then, the finite element approximation (2.8a), (2.8a) can be equivalently written as
the following initial-value problem for a system of nonlinear first order ODEs

My′(t) + Ay(t) + f(t,y(t)) = 0, 0 ≤ t ≤ T, (2.9a)

My(0) = y0. (2.9b)

Since f is continuous and satisfies a Lipschitz condition in the second argument, due
to the Theorem of Picard-Lindelöf the initial-value problem (2.9a),(2.9a) admits a
unique solution.

In the sequel, we consider (2.9a),(2.9a) as the Full Order Model (FOM) for which we
will describe the application of snapshot based POD and POD-DEIM in the following
section 3.
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3. Snapshot Based POD and POD-DEIM.

3.1. Snapshot Based POD. The method of snapshots for systems of ODEs
assumes a certain number of snapshot times tj , 0 ≤ j ≤ M, and snapshots yj ∈ RN of
the solution of (2.9a),(2.9b). The aim is to find a set {ψi}n

i=1, n ≪ N, of orthonormal
vectors ψi ∈ RN , 1 ≤ i ≤ n, such that

min
{ψi}n

i=1

J(ψ1, · · · ,ψn) :=
M∑

j=1

∥yj −
n∑

i=1

⟨yj ,ψi⟩ ψi∥2, (3.1a)

subject to ⟨ψi,ψj⟩ = δij , 1 ≤ i, j ≤ n. (3.1b)

The following well-known result establishes the necessary and sufficient optimality
conditions for (3.1a),(3.1b).

Theorem 3.1. Let K := [y1| · · · |yM ] ∈ RN×M . The necessary and sufficient op-
timality conditions for the minimization problem (3.1a),(3.1b) amount to the solution
of the symmetric N ×N eigenvalue problem

KKTψi = λi ψi, 1 ≤ i ≤ n. (3.2)

Proof. We refer to [33].

The orthonormal vectors ψi, 1 ≤ i ≤ n, can be computed by a Singular Value De-
composition (SVD) for K ∈ RN×M which requires the computation of orthogonal
matrices

Vℓ = [u1| · · · |uN ] ∈ RN×N , (3.3a)

Vr = [v1| · · · |vM ] ∈ RM×M , (3.3b)

and a diagonal matrix

D = diag(σ1, · · · , σℓ) ∈ Rℓ×ℓ, (3.3c)

with σ2
i in decreasing order such that

VT
ℓ KVr =

(
D 0
0 0

)
=: Σ ∈ RN×M , (3.4a)

Kvi = σi ui, KT ui = σi vi, KKT ui = σ2
i ui, 1 ≤ i ≤ ℓ. (3.4b)

The orthonormal POD basis {ψi}n
i=1, n ≤ ℓ, and the associated eigenvalues λi of KKT

are then given by

ψi = ui, λi = σ2
i > 0, 1 ≤ i ≤ n. (3.5)

The SVD for K ∈ RN×n implies the following error estimate.

Theorem 3.2. Let ψi, 1 ≤ i ≤ n, as in (3.5) and λi = σ2
i , 1 ≤ i ≤ ℓ, with σi

from (3.3c). Then it holds

J(ψ1, · · · , ψn) =

M∑

j=1

∥yj −
n∑

i=1

⟨yj , ψi⟩ψi∥2 ≤
ℓ∑

i=n+1

λi. (3.6)
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Proof. We refer to [33].

Setting V := [ψ1| · · · |ψn] ∈ RN×n, the POD based ROM takes the form

M̂ŷ′(t) + Âŷ(t) + f̂(t, ŷ(t)) = 0, 0 ≤ t ≤ T, (3.7a)

M̂ŷ(0) = ŷ0, (3.7b)

where ŷ0 := V T y0, the matrices M̂, Â ∈ Rn×n are given by

M̂ := VT MV, Â := VT AV, (3.8)

and the nonlinear function f̂(t, ŷ(t)) reads as follows

f̂(t, ŷ(t)) := VT f(t,Vŷ(t)), 0 ≤ t ≤ T. (3.9)

Remark 3.1. Denoting by In and IN the n × n and N × N unit matrix, we
have VT V = In. Moreover, for x ∈ RN , the quantity τPOD(x) := ∥(IN − VVT )x∥
represents the optimal POD norm error which satisfies

M∑

m=1

∥(IN − VVT )ym∥2 ≤
N∑

m=M+1

λm. (3.10)

Remark 3.2. We note that f̂ inherits the Lipschitz continuity in the second
argument from f such that the reduced order initial-value problem (3.7a),(3.7b) is
uniquely solvable.

Remark 3.3. A commonly used criterion (cf., e.g., [25]) for the determination of
the dimension n of the ROM (3.7a),(3.7b) is to select some Θ ∈ (0, 1) and to choose
n as the smallest integer for which

(
n∑

i=1

λi)/(
ℓ∑

i=1

λi) ≥ Θ. (3.11)

For a discussion of this criterion and some more refined criteria we refer to [15].

3.2. POD-DEIM. POD-DEIM relies on two orthonormal matrices. The first
one is the matrix V ∈ RN×n obtained from the SVD of the snapshot matrix, whereas
the second one is the matrix W ∈ RN×L, L ≪ N, from the SVD of the nonlinear
snapshot matrix FFT , where F := (f(t1,y

1)| · · · |f(tL,yL)). The DEIM is applied to
the nonlinear function by using interpolation projection onto the columns of W. To
this end, one selects L rows pi, 1 ≤ i ≤ L, of W and solves the linear algebraic system

(PT W) c(t) = PT f(t,Vŷ), P := (ep1 | · · · |epL
) ∈ RN×L, (3.12)

where ei stands for the i-th unit vector in RN . This results in the approximation

f̄ := W(PT W)−1PT f (3.13)
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of the nonlinear mapping f . We note that the evaluation of f(t,Vŷ) only requires
O(L) components of Vŷ.
As has been shown in [7], the DEIM error estimate is

∥f − f̄∥ ≤ ∥(PT W)−1∥ ∥(IN − WWT )f∥ ≤ CD ∥(IN − WWT )f∥. (3.14)

Here

CD := ∥(PT W)−1∥ ≤ (1 +
√

2N)L, (3.15)

and ∥(IN − WWT )f∥ stands for the optimal POD-DEIM norm error which satisfies

L∑

ℓ=1

∥(IN − WWT )f(tℓ,y
ℓ)∥2 ≤

N∑

ℓ=L+1

sℓ, (3.16)

where sℓ, 1 ≤ ℓ ≤ N, are the eigenvalues of the nonlinear snapshot matrix FFT in
decreasing order.
We define f̂ : [0, T ] × Rn → Rn according to

f̂(t, x̂) := VT f̄(t,Vx̂), x̂ ∈ Rn. (3.17)

The POD-DEIM based ROM reads

M̂ŷ′(t) + Âŷ(t) + f̂(t, ŷ(t)) = 0, 0 ≤ t ≤ T, (3.18a)

M̂ŷ(0) = ŷ0, (3.18b)

4. Snapshot selection by Equilibration of the Error. Prescribing a fixed
number M + 1 of snapshots, we want to determine the snapshot locations 0 =: t0 <
t1 < · · · < tM := T in such a way that the global discretization error y(tm) − ym is
equidistributed, i.e., ∥y(tm+1)−ym+1∥ ≈ ∥y(tm)−ym∥ for all 1 ≤ m ≤ M −1. Since
the exact solution y is not known, we substitute ∥y(tm) − ym∥ by an efficient and
reliable a posteriori error estimator ηm and aim at ηm+1 ≈ ηm, 1 ≤ m ≤ M − 1. Such
a posteriori error estimators are well-known from automatic time-stepping for systems
of ODEs (cf., e.g., [12]). Here, we consider a hierarchical-type estimator based on the
difference between the solution by the implicit Euler scheme

(M + τmA)ym + τmf(tm,y
m) = Mym−1, 1 ≤ m ≤ M, (4.1a)

My0 = y0, (4.1b)

and the implicit trapezoidal rule

(M +
τm
2

A)ym
T +

τm
2

f(tm,y
m
T ) =

(M − τm
2

A)ym−1 − τm
2

f(tm−1,y
m−1), 1 ≤ m ≤ M, (4.2a)

My0
T = y0, (4.2b)

which is known to be convergent of order 2 provided y ∈ C3([0, T ]). Hence, for
sufficiently smooth y and sufficiently small τ the so-called saturation assumption

∥y(tm) − ym
T ∥ ≤ θ ∥y(tm) − ym∥, 1 ≤ m ≤ M, 0 ≤ θ < 1, (4.3)
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can be expected to hold true which infers efficiency and reliability of the estimator
ηm := ∥ym − ym

T ∥ in the sense that

1

1 + θ
ηm ≤ ∥y(tm) − ym∥ ≤ 1

1 − θ
ηm. (4.4)

In the sequel, we use a slightly modified estimator ηm. Rearranging terms in (4.2a),
we get

(M + τmA)ym
T + τm f(tm,y

m
T ) = (4.5)

Mym−1 +
τm
2

A(ym
T − ym−1) − τm

2

(
f(tm−1,y

m−1) − f(tm,y
m
T )

)
.

We replace ym
T on the right-hand side of (4.5) with ym and thus obtain

(M + τmA)ym
T + τm f(tm,y

m
T ) = (4.6)

Mym−1 +
τm
2

A(ym − ym−1) − τm
2

(
f(tm−1,y

m−1) − f(tm,y
m)

)
.

Setting em := ym − ym
T , it follows from (4.1) and (4.5) that em can be computed as

the solution of

(M + τmA)em − τmf(tm,y
m − em) = g(tm), 1 ≤ m ≤ M, (4.7a)

Me0 = 0. (4.7b)

where g(tm) is given by

g(tm) := (M +
τm
2

A)(ym − ym−1) + τm Aym−1

+
τm
2

(
f(tm−1,y

m−1) − f(tm,y
m)

)
.

For error equilibration, we set ηm := ∥y(tm) − ym∥, ηav := M−1
∑M

m=0 ηm, and
determine {t1, · · · , tM−1} as the solution of the minimization problem

min
{t1,··· ,tM−1}

1

2

M∑

m=1

|ηm − ηav|2, (4.8a)

subject to the constraints

0 =: t0 < t1 < · · · < tM−1 < tM := T. (4.8b)

The minimization problem (4.8a),(4.8b) is solved by SQP (Sequential Quadratic Pro-
gramming) with BFGS updates [5].

4.1. Newton’s Method for the POD Based ROM. Given snapshot loca-
tions 0 =: t0 < t1 < · · · < tM := T , snapshots ym, 0 ≤ m ≤ M, can be computed by
applying the implicit Euler scheme (4.1a),(4.1b) to the FOM (2.9a),(2.9b). The solu-
tion of (4.1a) requires the computation of a zero x∗ of the nonlinear map F : RN → RN

given by

F(x) := (M + τmA)x + τmf(tm,x) − Mym−1, x ∈ RN . (4.9)
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We observe that F inherits Lipschitz continuity from f in the sense that

∥F(y1) − F(y2)∥ ≤ LF ∥y1 − y2∥, yi ∈ RN , 1 ≤ i ≤ 2. (4.10)

The Lipschitz constant LF reads

LF := ∥M + τmA∥ + τmLf , (4.11)

where Lf is from (2.2).
We further note that M + τmA is invertible. Moreover, if f is continuously differ-
entiable in its second argument and τm is small enough, it follows from the Banach
perturbation lemma (cf., e.g., [28]) that F is continuously differentiable with regular
Jacobian

F′(x) := M + τmA + τmfy(tm,x), x ∈ RN . (4.12)

Hence, we may solve F(x) = 0 by Newton’s method

F′(xk)∆xk = − F(xk), (4.13a)

xk+1 = xk + ∆xk, k ≥ 0, (4.13b)

using x0 := ym−1 as an initial iterate. Since Newton’s method is affine covariant, i.e.,
invariant with respect to transformations in the range space, the convergence analysis
should be provided in an affine covariant setting. An affine covariant version of the
Newton-Kantorovich convergence theorem has been provided in [11].

Theorem 4.1. Let F : D ⊂ RN → RN be continuously differentiable on D with
an invertible Jacobian F′(x0) for some initial guess x0 ∈ D. Assume further that the
following conditions hold true:

∥F′(x0)−1F(x0)∥ ≤ αm , (4.14)

∥F′(x0)−1 (F′(y1) − F′(y2))∥ ≤ γm ∥y − x∥, yi ∈ D, 1 ≤ i ≤ 2, (4.15)

hm := αm γm <
1

2
, (4.16)

B(x0, ρm) ⊂ D , ρm :=
1 −

√
1 − 2hm

γm
. (4.17)

Then, for the sequence {xk}N0 of Newton iterates there holds

(i) F′(x) is invertible for all Newton iterates x = xk, k ∈ N0,

(ii) The sequence {xk}N of Newton iterates is well defined with xk ∈ B(x0, ρm),
k ∈ N0, and xk → x∗ ∈ B(x0, ρm) (k → ∞), where F(x∗) = 0,

(iii) The convergence xk → x∗ (k → ∞) is quadratic.

(iv) The solution x∗ of F(x) = 0 is unique in

B(x0, ρm) ∪ (D ∩B(x0, ρm)) , ρm :=
1 +

√
1 − 2hm

γm
.

Proof. We refer to the proof of Theorem 2.1 in [11].
Remark 4.1. The previous result tells us that Newton’s method is locally quadrat-

ically convergent, i.e., the initial iterate x0 has to be situated in a sufficiently small
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neighborhood of a zero x∗ of F, the so-called Kantorovich neighborhood. If the initial
iterate x0 does not satisfy the assumptions of Theorem 4.1, convergence of Newton’s
method can be achieved by appropriate globalization techniques. One of these tech-
niques is the damped Newton method combined with a so-called monotonicity test for
which we refer to [11].

The POD based ROM (3.7a),(3.7b) can be solved by the implicit Euler scheme as well

giving rise to the solution of a nonlinear algebraic system F̂(x̂) = 0 where F̂ : Rn → Rn

is given by

F̂(x̂) := (M̂ + τmÂ)x̂ + τmf̂(tm, x̂) − M̂ŷm−1, x̂ ∈ Rn. (4.18)

The following result shows that F̂ inherits essential properties of F.

Theorem 4.2. If F is continuously differentiable in D ⊂ RN with Jacobian
F′(x),x ∈ D, then F̂ is continuously differentiable in D̂ ⊂ Rn,VD̂ ⊂ D, with Jacobian

F̂′(x̂), x̂ ∈ D̂, given by

F̂′(x̂) = VT F′(Vx̂)V. (4.19)

Let the Jacobian F′(x),x ∈ D, be regular and assume that F′ satisfies the affine
covariant Lipschitz condition

∥F′(x)−1
(
F′(y1) − F′(y2)

)
∥ ≤ γm ∥y1 − y2∥, yi ∈ D, 1 ≤ i ≤ 2, γm > 0. (4.20)

Let F̂′
V(x) : Rn → Rn be given by

F̂′
V(x) := VT F′(x)V, x ∈ D. (4.21)

Then, VT F′(x)−1V is an approximate inverse of F̂′
V(x) in the sense that

VT F′(x)−1V = F̂′
V(x)−1

(
In − Dn

)
, (4.22)

where

Dn := In −
(
VT F′(x)(IN − VVT )F′(x)−1V

)
. (4.23)

In particular, if ∥(IN − VVT )F′(x)−1V∥ satisfies

∥(IN − VVT )F′(x)−1V∥ ≤ q/(∥VT F′(x)∥), (4.24)

for some 0 ≤ q < 1, we have

∥F̂′
V(x)−1∥ ≤ 1

1 − q
∥VT F′(x)−1V∥. (4.25)

Moreover, assume that x̂ ∈ D̂ satisfies

∥x − Vx̂∥ < 1/CF ′ , CF ′ :=
γm

1 − q
∥VT F′(x)−1∥ ∥VT F′(x)∥. (4.26)

Then, F̂′ is regular in x̂ and it holds

∥F̂′(x̂)−1∥ ≤ 1

1 − q
∥VT F′(x)−1∥

(
1 − CF ′ ∥x − Vx̂∥

)
. (4.27)
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Proof. For the Jacobian F̂′(x̂), x̂ ∈ Rn, we obtain

F̂′(x̂) = VT (M − τmA)V + τmVT fy(tm,Vx̂)V = VT F′(Vx̂)V. (4.28)

If F′(x) is regular, so is F̂′
V(x). Using VT V = In we have

F̂′
V(x)VT F′(x)−1V =

VT F′(x)VVT F′(x)−1V = In − VT F′(x)(IN − VVT )F′(x)−1V,

which implies (4.22). Under the assumption (4.24), In − Dn is invertible, whence

F′
V(x)−1 = VT F′(x)−1V

(
In − Dn

)−1

.

The estimate (4.25) is a consequence of the Neumann lemma (cf., e.g., [28]).
Observing (4.20), it follows that

∥F̂′
V(x) − F̂′(x̂)∥ = ∥VT (F′(x) − F′(Vx̂))V∥ (4.29)

≤ ∥VT F′(x)∥ ∥F′(x)−1(F′(x) − F′(Vx̂))∥ ≤ γm ∥VT F′(x)∥ ∥x − Vx̂∥.

Under the assumption (4.26), the regularity of F̂′(x̂) and the estimate (4.27) follow
from the Banach perturbation lemma (cf., e.g., [28]).

Remark 4.2. The assumption (4.26) in Theorem 4.2 can be expected to hold
true, if ∥x̂ − VT x∥ is sufficiently small as can be seen easily from

∥x − Vx̂∥ ≤ ∥x − VVT x∥ + ∥x̂ − VT x∥ = τPOD(x) + ∥x̂ − VT x∥.

We are now in a position to show that the convergence properties of Newton’s method
for the FOM are inherited by the POD based ROM.

Theorem 4.3. Assume that for F : D ⊂ RN → RN the assumptions of Theorem
4.1 hold true and that (4.24) holds true for x = x0. Then, for F̂ : D̂ ⊂ Rn → Rn it
holds

∥F̂′(x̂0)−1F̂(x̂0)∥ ≤ α̂m , (4.30a)

∥F̂′(x̂0)−1 (F̂′(ŷ) − F̂′(x̂))∥ ≤ γ̂m ∥ŷ − x̂∥, x̂, ŷ ∈ D̂. (4.30b)

Here, the constants α̂m, γ̂m are given by

α̂m := (4.30c)

1

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)(
αm + εm

)
,

γ̂m :=
γm

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
. (4.30d)

where εm in (4.30c) reads as follows

εm := ∥F′(x0)∥−1
(
∥VT M∥ ∥ym−1 − Vŷm−1∥ + (4.30e)

(∥VT (M + τmA)∥ + τm Lf ∥VT ∥)∥x0 − Vx̂0∥
)
.
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Moreover, assume that

ĥm := α̂m γ̂m <
1

2
, B̂(x̂0, ρ̂m) ⊂ D̂, ρ̂m :=

1 −
√

1 − 2ĥm

γ̂m
. (4.31)

Then, the sequence {x̂k}N0 of Newton iterates

F̂′(x̂k) ∆x̂k = − F̂(x̂k) ,

x̂k+1 = x̂k + ∆x̂k

is well defined, stays in B̂(x̂0, ρ̂m), and converges quadratically to some x̂∗ ∈ B̂(x̂0, ρ̂m)

with F̂(x̂∗) = 0. The solution x̂∗ is unique in B̂(x̂0, ρ̂m) ∪ (D̂ ∩ B̂(x̂0, ρ̂m)),

ρ̂m := (1 +
√

1 − 2ĥm)/γ̂m.
Proof. In view of (4.18) we have

F̂′(x̂0)−1F̂(x̂0) = (4.32)

F̂′(x̂0)−1
(
VT

(
(M + τmA)Vx̂0 + τmf(tm,Vx̂0) − MVŷm−1

))
=

F̂′(x̂0)−1VT
(
(M + τmA)x0 + τmf(tm,x

0) − Mym−1 + Mym−1 − MVŷm−1
)

−
(
(M + τmA)(x0 − Vx̂0) + τm

(
f(tm,x

0) − f(tm,Vx̂0)
))
.

Under the assumption (4.26) for x = x0 and x̂ = x̂0, by (4.14) and (4.27) the first
term on the right-hand side of (4.32) can be estimated from above as follows:

∥F̂′(x̂0)−1VT
(
(M + τmA)x0 + τmf(tm,x

0) − Mym−1 + M(ym−1 − Vŷm−1)
)
∥ =

∥F̂′(x̂0)−1VT
(
F′(x0) F′(x0)−1 F(x0) + M(ym−1 − Vŷm−1)

)
∥ ≤

∥F̂′(x̂0)−1∥
(
αm∥VT F′(x0)∥ + ∥VT M∥ ∥ym−1 − Vŷm−1∥

)
≤

1

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
·

·
(
αm + ∥VT F′(x0)∥−1 ∥VT M∥ ∥ym−1 − Vŷm−1∥

)
.

For the second term on the right-hand side it follows from (4.14), (4.25), and (4.27)
that

∥F̂′(x̂0)−1VT
(
(M + τmA)(x0 − Vx̂0) + τm

(
f(tm,x

0) − f(tm,Vx̂0)
))

∥ ≤
1

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
·

·
(
∥VT (M + τmA)∥ + τm Lf ∥VT ∥

)
∥x0 − Vx̂0∥.

The assertion (4.30a) can be deduced by using the preceding two estimates in (4.32).
On the other hand, observing (4.15), (4.25), and (4.27), we obtain

∥F̂′(x̂0)−1
(
F̂′(ŷ1) − F̂′(ŷ2)

)
∥ = ∥F̂′(x̂0)−1VT

(
F′(Vŷ1) − F′(Vŷ2)

)
V∥

≤ γm ∥F̂′(x̂0)−1VT F′(x0)∥ ∥ŷ1 − ŷ2∥
≤ γm

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
∥ŷ1 − ŷ2∥,

which is (4.30). The rest of the assertions is now a consequence of Theorem 4.1.
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4.2. Newton’s Method for the POD-DEIM Based ROM. Throughout
this subsection and in the sequel, we assume that the function f : [0, T ] × RN →
RN is continuously differentiable in its second argument with invertible Jacobian
fy(t,x0), t ∈ [0, T ], for some x0 ∈ D ⊂ RN and that fy satisfies the affine invariant
Lipschitz condition

∥fy(t,x0)−1
(
fy(t,y1) − fy(t,y2)

)
∥ ≤ γf ∥y1 − y2∥, yi ∈ D, 1 ≤ i ≤ 2, (4.33)

for some γf > 0.

If we solve (2.9a),(2.9b) with f̄ instead of f by the implicit Euler scheme, at each time
step we have to solve a nonlinear algebraic system F̄(x) = 0, where the nonlinear
map F̄ : RN → RN is given by

F̄(x) := (M + τmA)x + τm f̄(tm,x) − Mym−1. (4.34)

On the other hand, if we solve the POD-DEIM based ROM (3.18a),(3.18b) by the
implicit Euler scheme, we have to solve a nonlinear system with the nonlinear map
F̂ : Rn → Rn

F̂(x̂) := (M̂ + τmÂ)x̂ + τmVT f̄(tm,Vx̂) − M̂ŷm−1. (4.35)

As in the previous subsection, we are interested in the properties of F̂.

Theorem 4.4. Under the assumptions of Theorem 4.2 the POD-DEIM non-
linear map F̂ is continuously differentiable in D̂ ⊂ Rn,VD̂ ⊂ D, with the Jacobian
F̂′(x̂), x̂ ∈ D̂, given by

F̂′(x̂) = VT
(
M + τmA + τm f̄y(tm,Vx̂)

)
V. (4.36)

If x̂ ∈ D̂ satisfies

∥x − Vx̂∥ ≤ 1/CF ′ , (4.37)

CF ′ := (1 − q)−1τm γf CD ∥VT F′(x)−1∥ ∥VT ∥ ∥(IN − WWT )fy(tm,x)∥,

then F̂′ is regular in x̂ and it holds

∥F̂′(x̂)−1∥ ≤ 1

1 − q
∥VT F′(x)−1∥

(
1 − CF ′ ∥x − Vx̂∥

)
. (4.38)

Proof. The representation (4.36) of the Jacobian follows directly from the defini-
tion of F̂ by (4.34). Recalling (4.35) and (2.2), we further obtain

∥F̂′(x̂) − F′
V(x)∥ = ∥VT

(
F̄′(Vx̂) − F′(x)

)
V∥ (4.39)

≤ τm ∥VT ∥ ∥W(PT W)−1PT fy(tm,x)fy(tm,x)−1
(
fy(tm,Vx̂) − fy(tm,x)

)
∥

≤ τm γf CD ∥VT ∥ ∥(IN − WWT )fy(tm,x)∥ ∥x − Vx̂∥.

Under the assumption (4.37) the estimate (4.38) follows again from the Banach per-
turbation lemma.
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Theorem 4.5. Suppose that F : D ⊂ RN → RN satisfies the assumptions of
Theorem 4.1 and that (4.24) holds true for x = x0. Then, for F̂ : D̂ ⊂ Rn → Rn we
have

∥F̂′(x̂0)−1F̂(x̂0)∥ ≤ α̂m , (4.40a)

∥F̂′(x̂0)−1 (F̂′(ŷ) − F̂′(x̂))∥ ≤ γ̂m ∥ŷ − x̂∥, x̂, ŷ ∈ D̂. (4.40b)

Here, the constants α̂m, γ̂m are given by

α̂m := (4.40c)

1

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥ (1 − CF ′∥x0 − Vx̂0∥)(αm + ε(1)m ),

γ̂m := (4.40d)

1

1 − q
∥VT F′(x0)−1 ∥VT F′(x0)∥ (1 − CF ′∥x0 − Vx̂0∥)(γm + ε(2)m ).

where ε
(i)
m , 1 ≤ i ≤ 2, read as follows

ε(1)m := ∥VT F′(x0)∥−1
(
(∥VT (M + τmA)∥ + τm CD Lf ∥VT ∥)∥x0 − Vx̂0∥ +

(4.40e)

τm CD ∥VT ∥ ∥(IN − WWT )f(tm,x
0)∥ + ∥VT M∥ ∥ym−1 − Vŷm−1∥

)
,

ε(2)m := τm γf CD ∥VT F′(x0)∥−1 ∥VT ∥ ∥(IN − WWT )fy(tm,x
0)∥. (4.40f)

Moreover, assume that

ĥm := α̂m γ̂m <
1

2
, B̂(x̂0, ρ̂m) ⊂ D̂, ρ̂m :=

1 −
√

1 − 2ĥm

γ̂m
. (4.41)

Then, the sequence {x̂k}N0 of Newton iterates

F̂′(x̂k) ∆x̂k = − F̂(x̂k) ,

x̂k+1 = x̂k + ∆x̂k

is well defined, stays in B̂(x̂0, ρ̂m), and converges quadratically to some x̂∗ ∈ B̂(x̂0, ρ̂m)

with F̂(x̂∗) = 0. The solution x̂∗ is unique in B̂(x̂0, ρ̂m) ∪ (D̂ ∩ B̂(x̂0, ρ̂m)), ρ̂m :=

(1 +
√

1 − 2ĥm)/γ̂m.

Proof. Due to the definition of F̂ by (4.35) we have

F̂′(x̂0)−1F̂(x̂0) = (4.42)

F̂′(x̂0)−1VT
(
(M + τmA)Vx̂0 + τmW(PT W)−1PT f(tm,Vx̂0) − MVŷm−1

)
=

F̂′(x̂0)−1VT
(
(M + τmA)x0 + τmf(tm,x

0) − Mym−1 + M(ym−1 − Vŷm−1)
)

−

VT
(
(M + τmA)(x0 − Vx̂0) + τm

(
f(tm,x

0) − W(PT W)−1PT f(tm,x
0)

))
−

τmVT W(PT W)−1PT
(
f(tm,x

0) − f(tm,Vx̂0)
))

= F̂′(x̂0)−1VT
(
F′(x0)F′(x0)−1F(x0)

+ M(ym−1 − Vŷm−1)
)

− VT
(
(M + τmA)(x0 − Vx̂0) + τm

(
f(tm,x

0) −

W(PT W)−1PT f(tm,x
0)

))
− τmVT W(PT W)−1PT

(
f(tm,x

0) − f(tm,Vx̂0)
)
.
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Under the assumption (4.26) for x = x0 and x̂ = x̂0, by (4.14) and (4.27) the first
term on the right-hand side of (4.42) can be estimated from above as follows:

∥F̂′(x̂0)−1VT
(
F′(x0)F′(x0)−1F(x0) + M(ym−1 − Vŷm−1)

)
∥

≤ 1

1 − q
∥VT F′(x0)−1∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
·

·
(
∥αm ∥VT F′(x0)∥ + ∥VT M∥ ∥ym−1 − Vŷm−1∥

)
.

Using (4.27) and (3.14), for the second term we obtain

∥F̂′(x̂0)−1VT
(
(M + τmA)(x0 − Vx̂0) + τm

(
f(tm,x

0) − W(PT W)−1PT f(tm,x
0)

))
∥

≤ 1

1 − q
∥VT F′(x0)−1∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)(
∥VT (M + τmA)∥ ∥x0 − Vx̂0∥ +

τm CD ∥VT ∥ ∥(IN − WWT )f(tm,x
0)∥

)
.

Finally, observing (2.2), (4.27), and (3.15), the third can be estimated from above
according to

∥F̂′(x̂0)−1VT
(
τmVT W(PT W)−1PT

(
f(tm,x

0) − f(tm,Vx̂0)
))

∥

≤ 1

1 − q
τm CD Lf ∥VT F′(x0)−1∥ ∥VT ∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
∥x0 − Vx̂0∥.

Using the preceding three estimates in (4.42), it follows that

∥F̂′(x̂0)−1F̂(x̂0)∥ (4.43)

≤ 1

1 − q
∥VT F′(x0)−1∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)(
αm ∥VT F′(x0)∥ +

(∥VT (M + τmA)∥ + τm CD Lf ∥VT ∥) ∥x0 − Vx̂0∥ + ∥VT M∥ ∥ym − Vŷm−1∥ +

τm CD ∥VT ∥ ∥(IN − WWT )f(tm,x
0)∥

)
,

which readily gives (4.40a). In order to prove (4.40b), observing (4.35) we find

F̂′(x̂0)−1
(
F̂′(ŷ1) − F̂′(ŷ2)

)
= (4.44)

F̂′(x̂0)−1
(
VT (M + τmA)V(ŷ1 − ŷ2) + τm VT W(PT W)−1PT (fy(tm,Vŷ1) −

fy(tm,Vŷ1))V
)

= F̂′(x̂0)−1
(
VT (M + τmA)V(ŷ1 − ŷ2) + τm VT (fy(tm,Vŷ1) −

τmfy(tm,Vŷ1))
(
VT

(
IN − W(PT W)−1PT

)(
fy(tm,Vŷ1) − fy(tm,Vŷ1)

)
V

)
=

fy(tm,Vŷ2))VF̂′(x̂0)−1
(
VT

(
F′(Vŷ1) − F′(Vŷ2)

)
V −

τmVT
(
IN − W(PT W)−1PT

)(
fy(tm,Vŷ1) − fy(tm,Vŷ2)

)
V

)
.

Using (4.15) and (4.38), for the first term on the right-hand side of (4.44) we obtain
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the estimate

∥F̂′(x̂0)−1VT
(
F′(Vŷ1) − F′(Vŷ2)

)
V∥ =

∥F̂′(x̂0)−1VT F′(x0)F′(x0)−1
(
F′(Vŷ1) − F′(Vŷ2)

)
V∥ ≤

γm

1 − q
∥VT F′(x0)−1∥ ∥VT F′(x0)∥

(
1 − CF ′ ∥x0 − Vx̂0∥

)
∥ŷ1 − ŷ2∥.

Taking advantage of (4.33), (4.38), and (3.14), the second term can be estimated from
above according to

τm ∥F̂′(x̂0)−1VT
(
IN − W(PT W)−1PT

)(
fy(tm,Vŷ1) − fy(tm,Vŷ2)

)
V∥ ≤

τm
1 − q

CD ∥VT F′(x0)−1∥ ∥VT ∥
(
1 − CF ′ ∥x0 − Vx̂0∥

)
∥
(
IN − WWT

)
fy(tm,x

0)∥·

· ∥fy(tm,x
0)−1

(
fy(tm,Vŷ1) − fy(tm,Vŷ2)

)
∥ ≤

τm γf CD ∥VT F′(x0)−1∥ ∥VT ∥
(
1 − CF ′ ∥x0 − Vx̂0∥

)
·

· ∥
(
IN − WWT

)
fy(tm,x

0)∥ ∥ŷ1 − ŷ2∥.

Then, (4.40b) is a consequence of (4.44) and the preceding two estimates. The rest
of the assertions follow from Theorem 4.1.

4.3. Error Equilibration for the POD and POD-DEIM Based ROMs.
In this subsection, we show that the error equilibration for the FOM is inherited
by the POD and POD-DEIM based ROMs. The proof relies on the affine covariant
version of the Newton-Kantorovich theorem 4.1 applied to the respective ROMs and
on the assessment of the POD and POD-DEIM error from [33] and [8].
We first study the POD based ROM. Recalling the equations (4.7a),(4.7b) satisfied
by em := ym − ym

T , we note that e0 = 0, whereas em, 1 ≤ m ≤ M, is a zero of the
nonlinear map F : RN → RN given by

F(x) := (M + τmA)x − τm f(tm,y
m − x) − g(tm) (4.45)

with Jacobian

F′(x) := (M + τmA) + τm fy(tm,y
m − x). (4.46)

We solve F(x) = 0 by Newton’s method with initial iterate x0 = 0.
The POD based ROM requires the computation of êm, 1 ≤ m ≤ M, as a zero of the
nonlinear map F̂ : Rn → Rn given by

F̂(x̂) := (M̂ + τmÂ)x̂ − τm VT f(tm,y
m − Vx̂) − VT g(tm) (4.47)

with Jacobian

F̂′(x̂) := (M̂ + τmÂ) + τm VT fy(tm,y
m − Vx̂)V = VT F′(Vx̂)V. (4.48)

We compute êm by Newton’s method with initial iterate x̂0 = 0. If we assume

∥(IN − VVT )F′(0)−1V∥ ≤ q/∥VT F′(0)∥ (4.49)
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for some 0 ≤ q < 1 and take F′(0) = VT F′(0)V into account, as in Theorem 4.2 we
find that F′(0) is regular and satisfies

∥F′(0)−1∥ ≤ 1

1 − q
∥VT F′(0)−1∥. (4.50)

Then, the affine covariant Newton Kantorovich theorem applied to the POD based
ROM reads as follows:

Theorem 4.6. Let F : D ⊂ RN → RN fulfill the assumptions of Theorem 4.1
for x0 = 0, i.e.,

∥F′(0)−1F(0)∥ ≤ α, (4.51a)

∥F′(0)−1 (F′(y1) − F′(y2))∥ ≤ γ ∥y1 − y2∥, yi ∈ D, 1 ≤ i ≤ 2, (4.51b)

h := α γ <
1

2
, (4.51c)

B(0, ρ) ⊂ D , ρ :=
1 −

√
1 − 2h

γ
. (4.51d)

Moreover, suppose that (4.49) is satisfied. Then, for F̂ : D̂ ⊂ Rn → Rn it holds

∥F̂′(0)−1F̂(0)∥ ≤ α̂ , (4.52a)

∥F̂′(0)−1 (F̂′(ŷ1) − F̂′(ŷ2))∥ ≤ γ̂ ∥ŷ1 − ŷ2∥, ŷi ∈ D̂, 1 ≤ i ≤ 2, (4.52b)

where the constants α̂, γ̂ are given by

α̂ :=
α

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥, (4.52c)

γ̂ :=
γ

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥. (4.52d)

Moreover, assume that

ĥ := α̂ γ̂ <
1

2
, B̂(0, ρ̂) ⊂ D̂, ρ̂ :=

1 −
√

1 − 2ĥ

γ̂
. (4.53)

Then, the sequence {x̂k}N0
of Newton iterates is well defined, stays in B̂(0, ρ̂), and

converges quadratically to êm ∈ B̂(0, ρ̂) with F̂(êm) = 0. The solution êm is unique

in B̂(0, ρ̂) ∪ (D̂ ∩ B̂(0, ρ̂)), ρ̂ := (1 +
√

1 − 2ĥ)/γ̂.
Proof. Using (4.50), we find

∥F̂′(0)−1F̂(0)∥ ≤ ∥F̂′(0)−1∥ ∥VT F′(0)F′(0)−1F(0)V∥
≤ α

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥

as well as

∥F̂′(0)−1(F̂′(ŷ) − F̂′(x̂)∥ ≤ ∥F̂′(0)−1∥ ∥VT F′(0)F′(0)−1(F(Vŷ) − F(Vx̂))V∥
≤ γm

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥ ∥ŷ − x̂∥.
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The assertions follow from Theorem 4.1.

On the other hand, we know from [33] that there exists a constant C > 0 such that

∥em − Vêm∥ = ∥ym − ym
T − (Vŷm − Vŷm

T ∥ ≤ (4.54)

∥ym − Vŷm∥ + ∥ym
T − Vŷm

T ∥ ≤ C τPOD, τPOD := (
N∑

ℓ=n+1

λℓ)
1/2.

Setting η̂m := ∥êm∥, 1 ≤ m ≤ M, and combining the results of Theorem 4.6 and
(4.54), we can prove error equilibration of the POD based ROM.

Theorem 4.7. In addition to the assumptions of Theorem 4.6 suppose that
δm := C τPOD/ηm ≪ 1, 1 ≤ m ≤ M . Then, for ηm = η (1 − εm), εm ≪ 1, and
Λ := max(ρ̂, ρ) it holds

Λ−1 (1 − εm)(1 − δm) ≤ η̂m

η̂m−1
≤ Λ (1 − δm−1)

−1(1 − εm−1)
−1. (4.55)

Proof. We have

∥em − Vêm∥ ≥ ∥em∥ − ∥Vêm∥ ≥ ∥em∥ − ∥êm∥ = ηm − η̂m,

and hence, in view of (4.54) it follows that

η̂m ≥ ηm − ∥em − Vêm∥ ≥ ηm − C τPOD = ηm (1 − C τPOD/ηm). (4.56)

Theorem 4.6 tells us

η̂m ≤ ρ̂, 1 ≤ m ≤ M. (4.57)

Consequently, combining (4.56) and (4.57) we find

η̂m

η̂m−1
≥ ηm (1 − C τPOD/ηm)

ρ̂
≥ ηm (1 − C τPOD/ηm)

max(ρ̂, ρ)

and

η̂m−1

η̂m
≥ ηm−1 (1 − C τPOD/ηm−1)

ρ̂
≥ ηm−1 (1 − C τPOD/ηm−1)

max(ρ̂, ρ)
.

This leads to

ηm (1 − C τPOD/ηm)

max(ρ̂, ρ)
≤ η̂m

η̂m−1
≤ max(ρ̂, ρ)

ηm−1 (1 − C τPOD/ηm−1)
,

which readily results in (4.56).

A similar result can be derived for the POD-DEIM based ROM. In this case, we have

F̂(x̂) := (M̂ − τmÂ)x̂ − τmVT f̄(tm,y
m − Vx̂) − VT g(tm),

with f̄ from (3.13). The Jacobian reads

F̂′(x̂) = M̂ − τmÂ + τmVT f̄y(tm,y
m − Vx̂)V.
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Theorem 4.8. Suppose that F : D ⊂ RN → RN satisfies the assumptions of
Theorem 4.6 and that (4.49) is satisfied. Then, for F̂ : D̂ ⊂ Rn → Rn we have

∥F̂′(0)−1F̂(0)∥ ≤ α̂m , (4.58a)

∥F̂′(0)−1 (F̂′(ŷ1) − F̂′(ŷ2))∥ ≤ γ̂m ∥ŷ1 − ŷ2∥, ŷi ∈ D̂, 1 ≤ i ≤ 2. (4.58b)

The constants α̂m, γ̂m read

α̂m := α̂(1 + κ(1)
m , (4.58c)

γ̂m := γ̂(1 + κ(2)
m ), (4.58d)

where α̂, γ̂, and κ
(i)
m , 1 ≤ i ≤ 2, are given by

α̂ :=
α

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥, (4.58e)

γ̂ :=
γ

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥, (4.58f)

κ(1)
m :=

τm CD

(1 − q)α̂
∥VT F′(0)−1∥ ∥VT ∥ ∥(IN − WWT )f(tm,y

m)∥, (4.58g)

κ(2)
m :=

γf CD

(1 − q)γ̂
∥VT F′(0)−1∥ ∥VT ∥ ∥(IN − WWT )fy(tm,y

m)∥. (4.58h)

Moreover, assume that

ĥm := α̂m γ̂m <
1

2
, B̂(0, ρ̂m) ⊂ D̂, ρ̂m :=

1 −
√

1 − 2ĥm

γ̂m
. (4.59)

Then, the sequence {x̂k}N0 of Newton iterates is well defined, stays in B̂(0, ρ̂m), and

converges quadratically to êm ∈ B̂(0, ρ̂m) with F̂(êm) = 0. The solution êm is unique

in B̂(0, ρ̂m) ∪ (D̂ ∩ B̂(0, ρ̂m)), ρ̂m := (1 +
√

1 − 2ĥm)/γ̂m.

Proof. Under assumption (4.49) the Jacobian F̂′(0) is regular and we obtain

F̂′(0)−1F̂(0) =

τmF̂′(0)−1VT (IN − W(PT W)−1PT )f(tm,y
m)V − τmF̂′(0)−1VT f(tm,y

m)V =

F̂′(0)−1VT F′(0)F′(0)−1F(0)V + τm F̂′(0)−1VT (IN − W(PT W)−1PT )f(tm,y
m)V

For the first term on the right-hand side we get

∥F̂′(0)−1VT F′(0)F′(0)−1F(0)V∥ ≤ 1

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥,

whereas the second term can be estimated from above as follows

τm ∥F̂′(0)−1VT (IN − W(PT W)−1PT )f(tm,y
m)V∥ ≤

τm CD

1 − q
∥VT F′(0)−1∥ ∥VT F′(0)∥−1 ∥VT ∥ ∥(IN − WWT )f(tm,y

m)∥.
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Then, (4.58a) is a consequence of the preceding two estimates. In order to prove
(4.58b) we note that

F̂′(0)−1(F′(ŷ1) − F′(ŷ2)) =

τmF̂′(0)−1VT F′(0)F′(0)−1(fy(tm,y
m − Vŷ1) − fy(tm,y

m − Vŷ2))V −
τmF̂′(0)−1VT (IN − W(PT W)−1PT )(fy(tm,y

m − Vŷ1) − fy(tm,y
m − Vŷ2))V =

τmF̂′(0)−1VT F′(0)F′(0)−1(F′(Vŷ1) − F′(Vŷ2))V −
τmF̂′(0)−1VT (IN − W(PT W)−1PT )fy(tm,y

m) fy(tm,y
m)−1·

· (fy(tm,y
m − Vŷ1) − fy(tm,y

m − Vŷ2))V.

The first term on the right-hand side can be estimated from above according to

τm∥F̂′(0)−1VT F′(0)F′(0)−1(F′(Vŷ1) − F′(Vŷ2))V∥ ≤
γ

1 − q
τm ∥VT F′(0)−1∥ ∥VT F′(0)∥ ∥ŷ1 − ŷ2∥.

For the second term we obtain

τm∥F̂′(0)−1VT (IN − W(PT W)−1PT )fy(tm,y
m) fy(tm,y

m)−1(fy(tm,y
m − Vŷ1) −

fy(tm,y
m − Vŷ2))V∥ ≤ CD γf

1 − q
τm ∥VT F′(0)−1∥ ∥VT ∥∥ŷ1 − ŷ2∥.

The preceding two estimates result in (4.58b). The rest of the assertions follow from
Theorem 4.1.

Remark 4.3. Let ρ̂ := (1 − √
1 − 2α̂γ̂)/γ̂ for α̂γ̂ < 1/2 with α̂, γ̂ as in (4.58e),

(4.58f) and let ρ̂m, 1 ≤ m ≤ M, be given by (4.59) Then, with κ
(1)
m as in (4.58g) there

holds

1

2
ρ̂ (1 + κ(1)

m ) ≤ ρ̂m ≤ 2 ρ̂ (1 + κ(1)
m ). (4.60)

We know from [8] that there exists a constant C > 0 such that

∥em − Vêm∥ = ∥ym − ym
T − (Vŷm − Vŷm

T ∥ ≤ (4.61)

∥ym − Vŷm∥ + ∥ym
T − Vŷm

T ∥ ≤ C τDEIM, τDEIM := (
N∑

ℓ=n+1

λℓ +
N∑

ℓ=L+1

sℓ)
1/2.

Again, we set η̂m := ∥êm∥, 1 ≤ m ≤ M, and combine the results of Theorem (4.8)
and (4.61) to prove error equilibration of the POD-DEIM based ROM.

Theorem 4.9. In addition to the assumptions of Theorem 4.8 suppose that
δm := C τDEIM/ηm ≪ 1, 1 ≤ m ≤ M . Then, for ηm = η (1 − εm), εm ≪ 1, and
Λ := max(ρ̂, ρ) it holds

Λ−1 (1 − εm)(1 − δm)

2 (1 + κ
(1)
m−1)

≤ η̂m

η̂m−1
≤ Λ

2 (1 + κ
(1)
m )

(1 − δm−1) (1 − εm−1)
. (4.62)

Proof. In much the same way as in the proof of Theorem 4.7 we derive

ηm (1 − C τDEIM/ηm)

max(ρ̂, ρ)
≤ η̂m

η̂m−1
≤ max(ρ̂, ρ)

ηm−1 (1 − C τDEIM/ηm−1)
,

which gives (4.62) by taking (4.60) into account.
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5. Numerical results. As an example for a semilinear parabolic initial-boundary
value problem we consider

∂y

∂t
− ∆y + y2 = f in Q, (5.1a)

y = 0 on Σ, (5.1b)

y(·, 0) = 0 in Ω, (5.1c)

where Q := Ω × (0, 1), Ω := (0, 1), Σ := Γ × (0, 1), Γ := ∂Ω, and the right-hand side
f is given such that

y(x, t) = x3(1 − x)3t2(1 − t)2arctan(60((x− 5

4
)2 + (t+

1

4
)2)1/2 − 1) (5.2)

is the exact solution of (5.1a)-(5.1c) (cf. Figure 5.1).
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Fig. 5.1. Exact solution of the semilinear parabolic PDE.

As the nonlinear FOM we have chosen a finite element approximation in space
by continuous, piecewise linear finite elements with respect to a uniform partition
of the computational domain Ω with mesh size h = 1/128. We have further chosen
42 snapshot locations in the time interval (0, 1) by the solution of the minimization
problem (4.8) of section 4.

We have used the implicit Euler finite element solutions to compute both the
POD and the POD-DEIM singular values and basis functions. The singular values
of the POD snapshot matrix and the POD-DEIM snapshot matrix are displayed in
Figure 5.3 and Figure 5.4.

Table 1 contains the averages of the error estimators ηm and η̂m and its standard
deviations for the FOM and the POD and POD-DEIM ROMs of different dimension
N . The results reflect the theoretically derived estimates of subsection 4.3

21



5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

ith time instance

Plot of 40 time instances for error equilibration

 

 
Equilibration Time instance
t2
t40

Fig. 5.2. Snapshot locations tm, 0 ≤ m ≤ 41, by error equilibration for the FOM.
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Fig. 5.3. Singular values of the POD snapshot matrix.
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