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NUMERICAL SOLUTION OF SOME TYPES OF FRACTIONAL
OPTIMAL CONTROL PROBLEMS

N.H. SWEILAM∗, T.M. AL-AJMI† , AND R.H.W. HOPPE‡

Abstract. We present two different approaches for the numerical solution of fractional optimal
control problems (FOCPs) based on a spectral method using Chebyshev polynomials. The fractional
derivative is described in the Caputo sense. The first approach follows the paradigm ’optimize first,
then discretize’ and relies on the approximation of the necessary optimality conditions in terms of
the associated Hamiltonian. In the second approach, the state equation is discretized first using the
Clenshaw and Curtis scheme for the numerical integration of non-singular functions followed by the
Rayleigh-Ritz method to evaluate both the state and control variables. Two illustrative examples
are included to demonstrate the validity and applicability of the suggested approaches.

Key words. fractional calculus, fractional optimal control, numerical solution, Chebyshev
spectral method
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1. Introduction. FOCP refers to the minimization of an objective functional
subject to dynamical constraints on the state and the control which have fractional
order models. Fractional order models are sometimes more appropriate than con-
ventional integer order models to describe physical systems ([3],[7],[11], [17]). For
example, it has been shown that materials with memory and hereditary effects and
dynamical processes including gas diffusion and heat conduction in fractal porous
media can be more adequately modeled by fractional order models [18]. Numerical
methods for solving FOCPs have been suggested in ([1],[8],[12], and [16]).
This paper presents two numerical methods for solving some types of FOCPs where
fractional derivatives are introduced in the Caputo sense. These numerical methods
rely on the spectral method where Chebyshev polynomials are used to approximate
the unknown functions. Chebyshev polynomials are widely used in numerical compu-
tation ([9], [15]).

For the first numerical method, we follow the approach ’optimize first, then dis-
cretize’ and derive the necessary optimality conditions in terms of the associated
Hamiltonian. The necessary optimality conditions give rise to fractional bound-
ary value problems that have left Caputo and right Riemann−Liouville fractional
derivatives. We construct an approximation of the right Riemann−Liouville frac-
tional derivatives and solve the fractional boundary value problems by the spectral
method. The second method relies on the strategy ’discretize first, then optimize’.
The Clenshaw and Curtis scheme [4] is used for the discretization of the state equation
and the objective functional. The Rayleigh-Ritz provides the optimality conditions
in the discrete regime.
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The paper is organized as follows: In section 2, some basic notations and pre-
liminaries as well as properties of the shifted Chebyshev polynomials are introduced.
Section 3 contains the necessary optimality conditions of the FOCP model. Section
4 is devoted to the approximations of the fractional derivatives. In section 5, we de-
velop the two numerical schemes and present two illustrative examples to demonstrate
the validity and applicability of the suggested approaches. Finally, in section 6, we
provide a brief conclusion and some final remarks.

2. Basic Notations and Preliminaries.

2.1. Fractional Derivatives and Integrals.
Definition 2.1. Let x : [a, b] −→ R be a function, α > 0 a real number, and

n = dαe, where dαe denotes the smallest integer greater than or equal to α. The left
(left RLFI) and right (right RLFI) Riemann−Liouville fractional integrals are defined
by

aI
α
t x(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1x(τ)dτ (left RLFI),

tI
α
b x(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1x(τ)dτ (right RLFI).

The left (left RLFD) and right (right RLFD) Riemann−Liouville fractional derivatives
are given according to

aD
α
t x(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1x(τ)dτ (left RLFD),

tD
α
b x(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(τ − t)n−α−1x(τ)dτ (right RLFD). (2.1)

Moreover, the left (left CFD) and right (right CFD) Caputo fractional derivatives are
defined by means of

C
aD

α
t x(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ)dτ (left CFD),

C
t D

α
b x(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1x(n)(τ)dτ (right CFD). (2.2)

The relation between the right RLFD and the right CFD is as follows [2]:

C
t D

α
b x(t) = tD

α
b x(t)−

n−1∑

k=0

x(k)(b)

Γ(k − α+ 1)
(b− t)k−α, (2.3)

2



Further, it holds

C
0 D

α
t c = 0, where c is a constant, (2.4)

and

C
0 D

α
t t

n =

{
0, for n ∈ N0 and n < dαe

Γ(n+1)
Γ(n+1−α) t

n−α, for n ∈ N0 and n ≥ dαe , (2.5)

where N0 = {0, 1, 2, ...}. We recall that for α ∈ N the Caputo differential operator
coincides with the usual differential operator of integer order. For more details on the
fractional derivatives definitions and its properties we refer to [10]-[13].

2.2. Shifted Chebyshev Polynomials. The well-known Chebyshev polyno-
mials are defined on the interval [−1, 1] and can be determined by the following
recurrence formula [14]:

Tn+1(z) = 2z Tn(z)− Tn−1(z), T0(z) = 1, T1(z) = z, n = 1, 2, ... .

The analytic form of the Chebyshev polynomials Tn(z) of degree n is as follows

Tn(z) =

bn/2c∑

i=0

(−1)i 2n−2 i−1 n (n− i− 1)!

(i)! (n− 2 i)!
zn−2 i, (2.6)

where bnc denotes the biggest integer less than or equal to n. The orthogonality
condition reads

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =





π, for i = j = 0;
π
2 , for i = j 6= 0;
0, for i 6= j.

(2.7)

In order to use these polynomials on the interval [0, L], we use the so-called shifted
Chebyshev polynomials by introducing the change of variable z = 2t

L − 1. The shifted
Chebyshev polynomials are defined according to

T ∗n(t) = Tn(
2t

L
− 1) where T ∗0 (t) = 1 T ∗1 (t) =

2t

L
− 1.

Their analytic form is given by

T ∗n(t) = n

n∑

k=0

(−1)n−k
22k (n+ k − 1)!

(2k)! (n− k)!Lk
tk, n = 1, 2, . . . , (2.8)

We note that from (2.8) implies T ∗n(0) = (−1)n, T ∗n(L) = 1. Further, it is easy to see
that the orthogonality condition reads

∫ L

0

T ∗j (t)T ∗k (t)w(t)dt = δjkhk, (2.9)

with the weight function w(t) = 1√
Lt−t2 , hk = bk

2 π, b0 = 2, bk = 1 for k ≥ 1.

A function y ∈ L2([0, L]) can be expressed in terms of shifted Chebyshev polynomials
as

y(t) =
∞∑

j=0

cnT
∗
n(t),
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where the coefficients cn are given by

cn =
1

hn

∫ L

0

y(t)T ∗n(t)w(t)dt, n = 0, 1, ... . (2.10)

3. Necessary Optimality Conditions. Let α ∈ (0, 1) and let L, f : [a,+∞[×R2 →
R be two differentiable functions. We consider the following FOCP [12]:

minimize J(x, u, T ) =

∫ T

a

L(t, x(t), u(t))dt, (3.1a)

subject to the dynamical system

M1ẋ(t) +M2
C
aD

α
t x(t) = f(t, x(t), u(t)), (3.1b)

x(a) = xa, x(T ) = xT , (3.1c)

where M1,M2 6= 0, T, xa and xT are fixed real numbers.

Theorem 3.1. [12] If (x, u, T ) is a minimizer of (3.1a)-(3.1c), then there exists
an adjoint state λ for which the triple (x, u, λ) satisfies the optimality conditions

M1ẋ(t) +M2
C
aD

α
t x(t) =

∂H

∂λ
(t, x(t), u(t), λ(t)), (3.2a)

M1λ̇(t)−M2 tD
α
Tλ(t) = −∂H

∂x
(t, x(t), u(t), λ(t)), (3.2b)

∂H

∂u
(t, x(t), u(t), λ(t)) = 0, (3.2c)

for all t ∈ [a, T ], where the Hamiltonian H is defined by

H(t, x, u, λ) = L(t, x, u) + λf(t, x, u).

Remark 3.1. Under some additional assumptions on the objective functional
L and the right-hand side f , e.g., convexity of L and linearity of f in x and u, the
optimality conditions (3.2a)-(3.2c) are also sufficient.

4. Numerical Approximations. In this section, we provide numerical approx-
imations of the left CFD and the right RLFD using Chebyshev polynomials. We
choose the grid points to be the Chebyshev-Gauss-Lobatto points associated with the
interval [0, L], i.e.,

tr =
L

2
− L

2
cos(

πr

N
), r = 0, 1, ..., N.

Clenshaw and Curtis [4] introduced an approximation yN of the function y. We
reformulate it to be used with respect to the shifted Chebyshev polynomials as follows

yN (t) =
N∑

n=0

′′
anT

∗
n(t), an =

2

N

N∑

r=0

′′
y(tr)T

∗
n(tr). (4.1)

Here, the summation symbol with double primes denotes a sum with both first and
last terms halved.
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4.1. Approximation of the Left CFD. In the sequel, some basic results for
the approximation of the fractional derivative C

0 D
α
t y(t) are given.

Theorem 4.1. [6] An approximation of the fractional derivative of order α in
the Caputo sense of the function y at ts is given by

C
0 D

α
t yN (ts) ∼=

N∑

r=0

y(tr)d
α
s,r, α > 0, (4.2)

where

dαs,r =
4θr
N

N∑

n=dαe

N∑

j=0

n∑

k=dαe

nθn
bj

(−1)n−k(n+ k − 1)!Γ(k − α+ 1
2 )T ∗n(tr)T

∗
j (ts)

LαΓ(k + 1
2 )(n− k)!Γ(k − α− j + 1)Γ(k − α+ j + 1)

,

(4.3)
and s, r = 0, 1, ..., N with θ0 = θN = 1

2 , θi = 1 ∀i = 1, 2, ..., N − 1.

An upper bound for the error in the approximation of the fractional derivative C
0 D

α
t

of the function y is given as follows:

Theorem 4.2. [5] Let C0 D
α
t yN (t) be the approximation of the fractional derivative

C
0 D

α
t of the function y as given by (4.2). Then it holds

‖C0 Dα
t y(t)−C0 Dα

t yN (t)‖2 ≤
N∑

n=0

′′
anΩn(

G(tk−α;T∗0 ,...,T
∗
N )

G(T ∗0 , ..., T
∗
N )

)
1
2 (4.4)

where

Ωn =
n∑

k=dαe

(−1)n−k2n(n+ k − 1)!Γ(k − α+ 1
2 )

bjLαΓ(k + 1
2 )(n− k)!Γ(k − α− j + 1)Γ(k − α+ j + 1)

T ∗j (t), (4.5)

G(x; y1, y2, ..., yn) =

∣∣∣∣∣∣∣∣∣

< x, x > < x, y1 > · · · < x, yn >
< y1, x > < y1, y1 > · · · < y1, yn >

...
...

. . .
...

< yn, x > < yn, y1 > · · · < yn, yn >

∣∣∣∣∣∣∣∣∣
.

4.2. Approximation of the Right RLFD. Let f be a sufficiently smooth
function in [0, b] and let J(s; f) be defined as follows

J(s; f) =

∫ b

s

(t− s)−αf ′(t)dt, 0 < s < b. (4.6)

From (2.2) and (2.3) we deduce

sD
α
b f(s) =

f(b)

Γ(1− α)
(b− s)−α +

J(s; f)

Γ(1− α)
.

We approximate f(t), 0 ≤ t ≤ b, by a sum of shifted Chebyshev polynomials Tk( 2t
b −1)

according to

f(t) ≈ pN (t) =
N∑

k=0

′′
akTk(

2t

b
− 1), ak =

2

N

N∑

j=0

′′
f(tj)Tk(

2tj
b
− 1), (4.7)
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where tj = b
2 − b

2 cos(πjN ), j = 0, . . . , N, and obtain

J(s; f) ≈ J(s; pN ) =

∫ b

s

p′N (t)(t− s)−αdt. (4.8)

Lemma 4.1. Let pN be the polynomial of degree N as given by (4.7). Then there
exists a polynomial FN−1 of degree N − 1 such that

∫ x

s

[p′N (t)− p′N (s)](t− s)−αdt = [FN−1(x)− FN−1(s)](x− s)1−α. (4.9)

Proof. Let p′N (t)− p′N (s) be expanded in a Taylor series at t = s:

p′N (t)− p′N (s) =
N−1∑

k=1

Ak(s)(t− s)k.

Then,

∫ x

s

[p′N (t)− p′N (s)](t− s)−αdt =
N−1∑

k=1

Ak(s)

∫ x

s

(t− s)k−αdt

= [(t− s)1−α
N−1∑

k=1

Ak(s)(t− s)k
k − α+ 1

]xs .

The assertion follows, if we choose

FN−1(x) =
N−1∑

k=0

Ak(s)(x− s)k
k − α+ 1

,

with an arbitrary constant A0(s).

In view of (4.9) we have

J(s; pN ) =

∫ b

s

p′N (t)(t− s)−αdt = [
p′N (s)

1− α + FN−1(b)− FN−1(s)](b− s)1−α. (4.10)

Moreover, sD
α
b f(s) can be approximated by means of

sD
α
b f(s) ≈ f(b)

Γ(1− α)
(b− s)−α +

J(s; pN )

Γ(1− α)
. (4.11)

We express FN−1(t) in (4.10) by a sum of Chebyshev polynomials and provide the
recurrence relation satisfied by the Chebyshev coefficients. Differentiating both sides
of (4.9) with respect to x yields

{p′N (x)− p′N (s)}(x− s)−α =

F ′N−1(x)(x− s)1−α + {FN−1(x)− FN−1(s)}(1− α)(x− s)−α,

whence

p′N (x)− p′N (s) = F ′N−1(x)(x− s) + {FN−1(x)− FN−1(s)}(1− α). (4.12)
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To evaluate FN−1(s) in (4.10), we expand F ′N−1(x) in terms of the shifted Chebyshev
polynomials

F ′N−1(x) =
N−2∑

k=0

′
bkTk(

2x

b
− 1), 0 ≤ x ≤ b, (4.13)

where the summation symbol with one prime denotes a sum with the first term halved.
Integrating both sides of (4.13) gives

FN−1(x)− FN−1(s) =
b

4

N−1∑

k=1

bk−1 − bk+1

k
{Tk(

2x

b
− 1)− Tk(

2s

b
− 1)}, (4.14)

where bN−1 = bN = 0. On the other hand, we have

(x− s)F ′N−1(x) =
b

2
F ′N−1(x){(2x

b
− 1)− (

2s

b
− 1)}.

By using the relation Tk+1(u) + Tk−1(u) = 2uTk(u) and (4.13), it follows that

(x− s)F ′N−1(x) =
b

4

N−1∑

k=0

′{bk+1 − 2(
2s

b
− 1)bk + bk−1}Tk(

2x

b
− 1), (4.15)

where b−1 = b1. Let

p′N (x) =
N−1∑

k=0

′
ckTk(

2x

b
− 1). (4.16)

Inserting FN−1(x)− FN−1(s) and (x− s)F ′N−1(x) as given by (4.14) and (4.15) into
(4.12) and taking (4.16) into account, we get

{1− 1− α
k
}bk+1 − 2(

2s

b
− 1)bk + {1 +

1− α
k
}bk−1 =

4

b
ck, 1 ≤ k. (4.17)

The Chebyshev coefficients ck of p′N (x) as given by (4.16) can be evaluated by inte-
grating (4.16) and comparing it with (4.7):

ck−1 = ck+1 +
4k

b
ak, k = N,N − 1, . . . , 1, (4.18)

with starting values cN = cN+1 = 0 , where ak are the Chebyshev coefficients of
pN (x).

5. Numerical Results. In this section, we develop two algorithms (Algorithm
I and Algorithm II) for the numerical solution of FOCPs and apply them to two
illustrative examples.

5.1. Example 1. We consider the following FOCP from [12]:

min J(x, u) =

∫ 1

0

(tu(t)− (α+ 2)x(t))2dt, (5.1a)

subject to the dynamical system

ẋ(t) + C
0 D

α
t x(t) = u(t) + t2, (5.1b)
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and the boundary conditions

x(0) = 0, x(1) =
2

Γ(3 + α)
. (5.1c)

The exact solution is given by

(x̄(t), ū(t)) = (
2tα+2

Γ(α+ 3)
,

2tα+1

Γ(α+ 2)
). (5.2)

5.1.1. Algorithm I. The first algorithm for the solution of (5.1a)-(5.1c) follows
the ’optimize first, then discretize’ approach. It is based on the necessary optimality
conditions from Theorem 3.1 and implements the following steps:

Step 1: Compute the Hamiltonian

H = (tu(t)− (α+ 2)x(t))2 + λ(u(t) + t2). (5.3)

Step 2: Derive the necessary optimality conditions from Theorem 3.1:

λ̇(t)− tD
α
1 λ(t) = −∂H

∂x
= 2(α+ 2)(tu(t)− (α+ 2)x(t)), (5.4a)

ẋ(t) + C
0 D

α
t x(t) =

∂H

∂λ
= u(t) + t2, (5.4b)

0 =
∂H

∂u
= 2t(tu(t)− (α+ 2)x(t)) + λ. (5.4c)

Use (5.4c) in (5.4a) and (5.4b) to obtain

− λ̇(t) + tD
α
1 λ(t) =

(α+ 2)

t
λ(t), (5.5a)

ẋ(t) + C
0 D

α
t x(t) = − λ

2t2
+

(α+ 2)

t
x(t) + t2. (5.5b)

Step 3: By using Chebyshev expansion, get an approximate solution of the coupled
system (5.5a),(5.5b) under the boundary conditions (5.1c):
Step 3a: In order to solve (5.5a) by the Chebyshev expansion method, use (4.1) to
approximate λ. A collocation scheme is defined by substituting (4.1),(4.2), and (4.11)
into (5.5a) and evaluating the results at the shifted Gauss-Lobatto nodes ts, s =
1, 2, ..., N − 1. This gives:

−
N∑

r=0

d1
s,rλ(tr) +

λ(1)

Γ(1− α)
(1− ts)−α +

J(ts; pn)

Γ(1− α)
=
α+ 2

ts
λ(ts), (5.6)

s = 1, 2, ..., N − 1, where d1
s,r is defined in (4.3). The system (5.6) represents N − 1

algebraic equations which can be solved for the unknown coefficients λ(t1), λ(t2), ...,
λ(tN−1). Consequently, it remains to compute the two unknowns λ(t0), λ(tN ). This
can be done by using any two points ta, tb ∈]0, 1[ which differ from the Gauss-Lobatto
nodes and satisfy (5.5a). We end up with two equations in two unknowns:

λ̇(ta) + tD
α
1 λ(ta) =

α+ 2

ta
λ(ta), λ̇(tb) + tD

α
1 λ(tb) =

α+ 2

tb
λ(tb).
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Step 3b: In order to solve (5.5b) by the Chebyshev expansion method, we use (4.1)
to approximate x. A collocation scheme is defined by substituting (4.1), (4.2) and
the computed λ into (5.5b) and evaluating the results at the shifted Gauss-Lobatto
nodes ts, s = 1, 2, ..., N − 1. This results in:

N∑

r=0

d1
s,rx(tr) +

N∑

r=0

dαs,rx(tr) = −λ(ts)

2t2s
+
α+ 2

ts
x(ts) + t2s, s = 1, 2, ..., N − 1, (5.7)

where d1
s,r and dαs,r are defined in (4.3). By using the boundary conditions, we have

x(t0) = 0 and x(tN ) = 2
Γ(3+α) . The system (5.7) represents N −1 algebraic equations

which can be solved for the unknown coefficients x(t1), x(t2), ..., x(tN−1).

Figures 5.1 − 5.4 display the exact and approximate state x and the exact and ap-
proximate control u for α = 1

2 and N = 2, 3.

x x x x
x

x
x

x

x

x

x

x

x

x

x

x

x

o o o o o
o

o
o

o

o

o

o

o

o

o

o

o

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

t

xH
tL

o Exact,Α=
1

2

x
App.,Α=

1

2
, N=2

Fig. 5.1. Exact and approximate state.
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Fig. 5.3. Exact and approximate state.
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Fig. 5.4. Exact and approximate control.

Table 5.1 contains the maximum errors in the state x and in the control u for
N = 2, N = 3 and N = 5.
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Table 5.1
Maximum errors in the state x and in the control u for different values of N .

N = 2 N = 3 N = 5
Max. error in x 3.03292E − 2 3.4641E − 3 2.6415E − 4
Max. error in u 2.12592E − 1 4.1878E − 2 7.7493E − 3

5.1.2. Algorithm II. The second algorithm follows the ’discretize first, then
optimize’ approach and proceeds according to the following steps:

Step 1: Substitute (5.1b) into (5.1a) to obtain

min J =

∫ 1

0

(t[ẋ(t) + C
0 D

α
t x(t)− t2]− (α+ 2)x(t))2dt. (5.8)

Step 2: Approximate x using the Clenshaw and Curtis formula (4.1) and approximate
the Caputo fractional derivative C

0 D
α
t x and ẋ using (4.2). Then, (5.8) takes the form

min J =

∫ 1

0

(t[
N∑

r=0

d1
t,rx(tr) +

N∑

r=0

dαt,rx(tr)− t2]− (α+ 2)
N∑

n=0

′′
anT

∗
n(t))2dt, (5.9)

where dαt,r is defined as in (4.3) replacing ts by t.

Step 3: Use t = 1
2 (η + 1) to transform (5.9) to:

min J =
1

2

∫ 1

−1

(
1

2
(η + 1)[

N∑

r=0

d1
η,rx(ηr) +

N∑

r=0

dαη,rx(ηr)− (
1

2
(η + 1))2]

− (α+ 2)
N∑

n=0

′′
anT

∗
n(η))2dη. (5.10)

Step 4: Use the Clenshaw and Curtis formula [4]

∫ 1

−1

F (η)dη ∼= 2

m

m∑

s=0

m∑

i=0

θsF (ηs)

2i+ 1
[T ∗s (η2i)− T ∗s (η2i+2)], (5.11)

where

θ0 = θm =
1

2
, θs = 1∀s = 1, 2, ...,m− 1, ηi = cos[

(πi)

m
]∀i < m, ηi = −1∀i > m,

to approximate the integral (5.10) as a finite sum of shifted Chebyshev polynomials
as follows

min J =
1

m

m∑

s=0

m∑

i=0

θs
2i+ 1

(
1

2
(ηs + 1)[

N∑

r=0

d1
ηs,rx(ηr) +

N∑

r=0

dαηs,rx(ηr)− (
1

2
(ηs + 1))2]

− (α+ 2)
N∑

n=0

′′
anT

∗
n(ηs))

2[T ∗s (η2i)− T ∗s (η2i+2)]. (5.12)

Step 5: According to the Rayleigh-Ritz method, the critical points of the objective
functional (5.1a) are given by

∂J

∂x(t1)
= 0,

∂J

∂x(t2)
= 0, ...,

∂J

∂x(tN )
= 0,
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which leads to a system of nonlinear algebraic equations. Solve this system by New-
ton’s method to obtain x(t1), x(t2), ..., x(tN−1) and use the boundary conditions to
get x(t0), x(tN ). Then, the pair (x, u) which solves the FOCP has the form

x(t) =
2

N

N∑

n=0

′′
N∑

r=0

′′
x(tr)T

∗
n(tr)T

∗
n(t), (5.13a)

u(t) = ẋ(t) +C
0 Dα

t x(t)− t2. (5.13b)

Figures 5.5 − 5.8 display the exact and approximate state x and the exact and ap-
proximate control u for α = 1

2 and N = m = 2, 3.
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Fig. 5.5. Exact and approximate state
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Fig. 5.6. Exact and approximate control
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Fig. 5.7. Exact and approximate state
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Fig. 5.8. Exact and approximate control

Table 5.2 contains the maximum errors in the state x and in the control u for
N = m = 2, N = m = 3 and N = m = 5.

Table 5.2
Maximum errors in the state x and in the control u for different values of N .

N = m = 2 N = m = 3 N = m = 5
Max. error in x 3.03292E − 2 3.4641E − 3 2.6416E − 4
Max. error in u 2.69495E − 1 4.8393E − 2 8.0532E − 3
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A comparison of Table 1 and Table 2 reveals that both algorithms yield comparable
numerical results which are more accurate than those obtained by the algorithm used
in [12].

5.2. Example 2. We consider the following linear-quadratic optimal control
problem:

min J(x, u) =

∫ 1

0

(u(t)− x(t))2dt, (5.14a)

subject to the dynamical system

ẋ(t) + C
0 D

α
t x(t) = u(t)− x(t) +

6tα+2

Γ(α+ 3)
+ t3, (5.14b)

and the boundary conditions

x(0) = 0, x(1) =
6

Γ(α+ 4)
. (5.14c)

The exact solution is given by

(x̄(t), ū(t)) = (
6tα+3

Γ(α+ 4)
,

6tα+3

Γ(α+ 4)
). (5.15)

We note that for Example 2 the optimality conditions stated in Theorem 3.1 are also
sufficient (cf. Remark 3.1).

Table 3 contains a comparison between the maximum error in the state x and in the
control u for Algorithm I and Algorithm II.

Alg. I, N = 3 Alg. II, N = m = 3
max. error in x 7.6404E − 3 1.1943E − 2
max. error in u 7.6404E − 3 1.6339E − 1

Alg. I, N = 5 Alg. II, N = m = 5
max. error in x 7.8604E − 5 1.0304E − 4
max. error in u 7.8604E − 5 1.0600E − 3

As opposed to Example 1, in this case Algorithm I performs substantially better than
Algorithm II.

6. Conclusions. In this article, we have presented two algorithms for the nu-
merical solution of a wide class of fractional optimal control problems, one based
on the ’optimize first, then discretize’ approach and the other one on the ’discretize
first, then optimize’ strategy. In both algorithms, the solution is approximated by
N -term truncated Chebyshev series. Numerical results for two illustrative examples
show that the algorithms converge as the number of terms is increased and that the
first algorithm is more accurate than the second one.
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