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Abstract. We compare three different time discretization schemes in combination
with an augmented Lagrangian method to simulate the motion of an inextensi-
ble beam. The resulting saddle-point problem is solved with an Uzawa-Douglas-
Rachford algorithm. The three schemes are tested on a benchmark with an analyti-
cal solution and on a more challenging application. We found that in order to obtain
optimal convergence behavior in time, the stopping tolerance for the Uzawa-type
algorithm should be balanced against the time step size.

1 Introduction

The motion of an inextensible beam, while well studied (see, e.g, [4] and ref-
erences therein), remains to be a challenging problem numerically. The main
difficulties stem from the nonlinearity due to the inextensibility condition,
and the choice of appropriate time discretization scheme that is stable and
accurate (see [5] for a survey on different schemes). In this work, we eval-
uate the performance of the Houbolt scheme, a generalized Crank-Nicolson
scheme, and a Newmark scheme, which are combined with an Uzawa-type
algorithm for solving the saddle-point problem associated with an augmented
Lagrangian method employed to handle the inextensibility condition.

2 DMotion of an inextensible beam

We consider an inextensible elastic beam in static and dynamic regimes,
assuming negligible torsional effects. We will denote by p the linear density
(i.e. mass per unit length), by L the length, and by EI the flexural stiffness

of the beam. We will use the following notation, with s denoting arc length

] vy 9 q 9 " 52 . o2
and t time: y' = 3%, y=3¢, y'=3F, v=3%

2.1 The static problem

We assume that the beam is subject to external forces f and that the strain-
stress relation is linear. The position of the beam at the equilibrium config-



2 S. Basting et al.

uration is solution of a non-convex constrained problem:

1 /L L
x = argmin J(y), where J(y) = f/ EIy"" ds— / f-yds, (1)
yekK 2 Jo 0

and K = {y € (H*(0,L))% |y'| = 1, plus boundary conditions} .
To treat the inextensibility condition |y’| = 1, which is a quadratic con-
straint, we use an augmented Lagrangian Method (see, e.g., [1-4]). Let us

introduce the following space and set:

V={ye (H?(0,L))?, plus boundary conditions} ,
Q={qe (L*0,L))%|g=1ae. on(0,L)}.

The static problem (1) is equivalent to

{w,w’}Z?rgl}miVI;J(y), with W={yeV, geQ, y—q=0}
Y,q95€

With r > 0, we introduce the following augmented Lagrangian functional:

L L
L) =I5 [ —afdss [wew g @

Let {z,p; A} be a saddle point of £, over (V x Q) x (L?(0,L))?. Then x
is a solution of the static problem (1) and p = «’. In order to solve the
above saddle-point problem, we employ the algorithm called ALG2 in, e.g.,
[2,4]. As shown in, e.g., [2], this Uzawa-type algorithm is in fact a ‘disguised’
Douglas-Rachford operator-splitting scheme. It reads as follow:

Step 0: The initial guess {z_1,A¢} € V x (L?(0, L))? is given.
Then, for k > 0, {xx_1, Ak, } being known, proceed with:

Step 1: Find py € Q such that:

Lo(xr—1,Pr5 M) < Lo(xk-1,q; M), Vg€ Q.
Step 2: Find x; € V such that:

Lo (xr, pr; Ae) < Lo(Y, s Ak), Yy € Vo, (3)

Step 3: Update the Lagrange multipliers by:

Air1 = A+ r((zr) — Pr).
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If the boundary conditions for problem (1) are y(0) = ¢4 and y'(0) = xp,
then the test function space at step 2 is defined by:

Vo ={y € (H*(0,L))% y(0) =0, y'(0) =0}.

To obtain py at step 1, we have to solve the minimization problem:

/
_ A
min L, (xk_1,q; Ar), with the solution py = r(@e1) + A

la|=1 Ir(xp—1)" + | @)

Problem (3) can be stated as the equivalent problem: Find @) € V such
that for all y € Vj:
L L L L
/ Elz) -y"ds + r/ xp, - y'ds = fyds +/ (rpr — i) - y'ds.
0 0 0 0

Step 1, 2, and 3 are repeated till the following stopping criterion is satisfied:

Hwk+1 _wkH <. (5)
|||

2.2 The dynamic problem

Using the virtual work principle, the beam motion for ¢ € [0, 7] is modeled
by: Find x(t) € Ky:

L L L
/ P - yds +/ El x" y'ds= / f-yds, VyedKiz), (6)
0 0 0

with
Kt = {y € (H2(07L))27 ‘y/| = 17 y(O) = mA(t)7 y/(O) = wB(t)} ) (7)
dKy(x) = {y € (H*(0,L))*, &’ y' =0, y(0) =0, y'(0) =0}, (8)
and initial conditions (s, 0) = x¢(s) and &(s,0) = x1(s). Weak formulation
(6) assumes that at s = L natural boundary conditions (L) = 0 and

x''(L) = 0 are imposed. Note that problem (6) in strong form reads: p& +
Elx" = f.

For the time discretization of problem (6) we will consider three schemes:
a generalized Crank-Nicolson scheme, the Houbolt scheme, and a Newmark
scheme (see, e.g.,[4]). All these schemes are known to be second order accurate
for linear problems. Let At be a time discretization step and set t" = nAt,
for n = 1,..,N, with N = T/At. The time discrete problem reads: Find
x"tl e Kintr:

L L L
/ pE" T yds + / EIz" y'ds = / f - yds, 9)
0 0 0
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Table 1: Definition of ", &, and f in (9) for the time discretization schemes
under consideration: Generalized Crank-Nicolson (GCN), Houbolt, and Newmark
with 8 =1/4, vy=1/2. For GCN, 0 < o < 1/2.

GCN Houbolt Newmark™
antl "t — 2™ 4 gn ! 22"t — B 44t — g2 pntl
At? At2 Al
n+1 n
P Oé:l)n+1 + (1 _ 20{)113” + amn—l mn+1 %
~ n+1 n
Fooafrt 41 —2a)f +afrt ot %
n+1 n n+1 n
v +v x —x
* with =
wi 5 Y

for all y € dKnsi ("), The definition of "', &, and f in (9) is re-
ported in table 1 for each scheme under consideration. Time discretization
approximates problem (6) by a sequence of quasi-static problems for which
ALG2 still applies. For the space discretization of problem (9) we use a third
order Hermite finite element method (see, e.g., [1]). For details about the
discretization of py € Q (4) and Ay, € (L%(0, L))? we refer to [4].

3 Numerical results

3.1 Benchmark with analytical solution

We consider s € [0,7/2] and ¢ € [0,1], and a family of exact solutions which
is given by:

Tex(5,1) = (6(1)) " [cos(s (1)), sin(se(t))]" . (10)

Notice that solution (10) satisfies the inextensibility condition ||' = 1 point-
wise for every function ¢(t). We chose ¢(t) = e, for which the solution is a
quarter of a circle of initial radius 1 that coils over time as its radius decreases
(see Fig. 1). At s = 0 and s = /2, we impose the values of  and «’. The
forcing term f., needed to recover solution (10) is found by plugging .,
into the governing differential equations (strong form):

pies + BTz = feu. (11)
For simplicity, we set p = 1 Kg/m3 and EI = 1 Kg m?®/s?. The forcing

term f., is made up of two contributions: an external body force f;, and an
internal force due to inextensibility f;,. To find f;,, we notice that problem
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Fig. 1: Comparison between analytical and numerical solution at ¢ = 0 s (left),
t = 0.5 s (center), t = 1 s (right) for two values of stopping tolerance: ¢ = 107"
(top) and € = 10™° (bottom). The legend in the subfigures on the left is common
to all the subfigures.

(6) is equivalent to minimization problem x = argmin, ¢, J(y), where the
total energy of the beam can be written as:

1 L 1o 1 L 2 L o L
J)=5 [ plylids+5 [ Elly'["ds+ [ My|"—1ds— | f-yds,
2 0 2 0 0 0

and A is a scalar function that depends on time only. If the above functional
attains its minimum at «x, it follows that its Gateaux derivative must be
vanishing at x, leading to

L L L L
/ px - yds + / Elx" y'ds= / f-yds+ / (\x') - yds,
0 0 0 0

for all y € dK¢(x). The second integral on the right-hand side (equal to
zero if y € dKy(x), which is not the case for the test functions used in the
computations) gives the explicit contribution of f;,. We are going to check
the convergence rates in time for the three schemes in table 1 in two cases:

— linear case: when the forcing term is f., the inextensibility condition
becomes inactive due to the fact that f., is given by (11) and the problem
reduces to the linear beam equation;

— nonlinear case: when then forcing term is f., + (Ax’)’, with, e.g., A =1,
the problem becomes nonlinear and the inextensibility is treated via the
augmented Lagrangian method described in Sec. 2.

The space resolution As is taken to be m/240. For the generalized Crank-
Nicolson scheme, we set o« = 1/4 since in linear cases this choice leads to
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Fig. 2: Convergence rate in time for the generalized Crank-Nicolson (GCN) scheme,
the Houbolt scheme, and the Newmark scheme in the linear (left) and nonlin-
ear/inextensible (right) case.
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an unconditionally stable scheme which possesses a very small numerical
dissipation compared, e.g., to Houbolt method [1]. In the nonlinear case, for
ALG2 we set stopping tolerance ¢ = 107° (5) and r = 102. In Fig. 2, we
plot the L2 norm of the difference between the exact solution x., and the
numerical solution x;, at t = 1 against time step (At = 0.2, 0.1, 0.05, 0.025,
0.0125, 0.00625) for the linear and nonlinear cases. The rates predicted by
the theory are achieved in the linear case: all the schemes are of second order.
We remark that for a given value of At the Houbolt scheme is less accurate
than the other two. In the nonlinear case, for all the schemes the order of
convergence is even larger than 2 provided that At is less than a critical value
for which the error reaches the stopping tolerance €. If At is greater than that
critical value, the error remains unchanged or even slightly increases.

As noted earlier, the error depends on the choice of €. To illustrate this,
in Fig. 1 we compare analytical solution (10) with the numerical solution at
t =0,0.5,1 s and for two values of the stopping tolerance: e = 10! (top) and
€ = 107% (bottom), every other discretization parameter being the same. For
€ = 107! the difference between analytical and numerical solution is clearly
visible, while for € = 107> the two solutions are almost superimposed.
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Finally, in order to evaluate the dependence of the error on €, we report
in Fig. 4 the convergence rates in time for the generalized Crank-Nicolson
scheme in the nonlinear case for different values of the stopping tolerance
e = 1072,1073,107%,107°,1075,107". The values for At and As are the
same as those used for the results in Fig. 2. We see that at the critical value
of At the curves reach a plateau for all the values of ¢, indicating that for a
given value of € it does not make sense to choose a time step size that is too
small. Our computations seem to indicate that At should be larger than +/e.

3.2 Swinging beam

The second test problem we consider involves the two-dimensional motion of
a beam subject to gravity, which is a an established test problem [3]. The
beam is attached at one extremity (denoted by A here) and free at the other
one (B). We aim at comparing our results with those reported in [3]. We
have: L = 32.6 m, EI = 700 Kg m3/s?, p = 7.67 Kg/m. At A = (0,0)
the beam is fixed and B|i=¢g = (20,0). The initial position is given by the
solution of the static problem (1), with boundary conditions x(0) = (0,0)
and x(L) = (20,0). The motion of the beam for ¢ € [0, 10] s is visualized in

Fig.5: Position of the beam every 0.1 s for ¢ € [0,5] s (left) and ¢ € [5,10] (right).

Fig. 5. For the results in Fig. 5, we have used the generalized Crank-Nicolson
scheme (a = 1/4) with At = 0.01, and As = 32.6/60. For ALG2, we have set
r = 10° and € = 107°. Fig. 5 is qualitatively very similar to the corresponding
pictures in reference [3].

Next, we compare the displacement over time of the beam tip given by the
generalized Crank-Nicolson scheme, the Houbolt scheme, and the Newmark
scheme (see table 1). The ALG2 and discretization parameters are the same
used for the results in Fig. 5. Fig. 6 shows the z and y components of the
displacement for the three methods. We see that all the schemes are in good
agreement, with the Houbolt scheme giving larger oscillations than the other
two schemes.
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Fig. 6: Displacement of the beam tip for ¢ € [0,10]: z-component (left) and y-
component (right).

4 Conclusions

We compared three different time discretization schemes (the Houbolt scheme,
a generalized Crank-Nicolson scheme, and a Newmark scheme) in combina-
tion with an augmented Lagrangian method to simulate the motion of an
inextensible beam. While all these schemes are known to be second order ac-
curate in time for linear problems, for the nonlinear problem considered here,
our numerical simulations for a benchmark problem with analytical solution
indicate that the accuracy increases when they are combined with an Uzawa-
type algorithm to account for inextensibility. Special care has to be taken in
selecting the termination criterion. Our computations suggest that the stop-
ping tolerance for the Uzawa-type algorithm should be balanced against the
time step size in a rather restrictive manner.
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