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AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR
THE INTERIOR PENALTY DISCONTINUOUS GALERKIN

METHOD

D. BRAESS∗, T. FRAUNHOLZ†§ , AND R. H. W. HOPPE†‡¶

Abstract. Interior Penalty Discontinuous Galerkin (IPDG) methods for second order elliptic
boundary value problems have been derived from a mixed hybrid formulation of the problem. Nu-
merical flux functions across interelement boundaries play an important role in that theory. Residual
type a posteriori error estimators for IPDG methods have been derived and analyzed by many au-
thors including a convergence analysis of the resulting adaptive scheme [3, 12, 13, 14]. Typically,
the effectivity indices deteriorate with increasing polynomial order of the IPDG methods. The situ-
ation is more favorable for a posteriori error estimators derived by means of the so-called hypercircle
method. Equilibrated fluxes are obtained by using an extension operator for BDM elements, and
this can be done in the same way for all the DG methods presented in [2] in a unified framework.
This construction enables to establish the efficiency of the equilibrated estimator, whereas the reli-
ability can be shown by standard arguments. In contrast to the residual-type estimators, the new
estimators do not contain unknown generic constants. Numerical results are given that illustrate the
performance of the suggested approach.

Keywords: Interior Penalty Discontinuous Galerkin method, a posteriori error
estimation, equilibration

AMS subject classification: 65N30, 65N15, 65N50

1. Introduction. Residual a posteriori error estimates are the favorites in the
error analysis of discontinuous Galerkin (DG) elements.

They are more involved than the analogous ones for conforming elements. The
situation is quite different when the hypercircle method is applied.

The hypercircle method that is also denoted as two-energies principle [4, Section
III.9] has attracted much attention, since the main contributions of the error bound
do not contain (unknown) generic constants. It requires the knowledge or the con-
struction of an equilibrated flux. This is a nontrivial task in the case of conforming
Lagrangian elements. It turns out that an equilibrated flux is easily obtained from
the numerical fluxes that are computed by the DG method. This holds for all the
DG elements for which Arnold et al. [2] presented a unified theory. The construction
of a left inverse of the divergence operator is the same for all the methods, when the
mixed method in [2] is used. The numerical fluxes that are originally defined on the
interelement boundaries are extended to the elements

Here, the main task is the postprocessing that yields a conforming approximation
from the computed nonconforming finite element solution. In particular, the efficiency
of the error bound requires a suitable procedure. Fortunately, a local construction
of such an auxiliary conforming function has already been provided by the theory of
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residual-based estimators, and we derive efficiency of the new method by using results
from the analysis of residual-based estimates [13, 14].

Our construction of equilibrated fluxes differs from the fluxes of Ern and Vohraĺık
[10]. We use an extension operator for BDM elements such that care is also taken of
the curls. In this way we are able to prove efficiency of the estimates. Moreover, it
becomes apparent that the construction follows the same scheme for all DG methods
discussed in [2]. Only the efficiency has to be proven individually (separately) for each
DG method. Here we focus on the interior penalty discontinuous Galerkin (IPDG)
method.

The consideration of the efficiency shows that the estimates share a property with
the estimates of other non-conforming methods [1, 5]. The main contributions reflect
the non-conformity, and there is no element-oriented term referring to the residue
∆u + f when we consider the problem (2.1).

Numerical experiments indicate that the quotient of the error bound and the true
error do not exceed the number 2, even if the degree k of the involved polynomials
increases. This is consistent with results on conforming Lagrange elements. The
efficiency of the error bounds by the two-energy principle is good for those elements
of higher degree while the efficiency of residual estimates decrease linearly with the
degree k [6].

Throughout this paper we will use standard notation from Lebesgue and Sobolev
space theory [4]. In particular, for a bounded domain Ω ⊂ R2 we denote by (·, ·)0,Ω

and ∥·∥0,Ω the inner product and the associated norm on the Hilbert space L2(Ω). We
further refer to Hk(Ω), k ∈ N, as the Sobolev space with norm ∥ · ∥k,Ω and seminorm
| · |k,Ω, whereas Hk

0 (Ω) stands for the closure of C∞
0 (Ω) with respect to the topology

induced by ∥ · ∥k,Ω. Moreover, H(div, Ω) denotes the Hilbert space of vector fields
τ ∈ L2(Ω)2 such that div τ ∈ L2(Ω) equipped with the graph norm.

2. Interior Penalty Discontinuous Galerkin Method. For convenience, we
consider the Poisson equation

−∆u = f in Ω,

u = 0 on Γ,
(2.1)

in a polygonal domain Ω ⊂ R2 with homogeneous Dirichlet boundary conditions on
Γ = ∂Ω. The extension to more general second order elliptic differential operators
and boundary conditions can be accommodated.

Let Th(Ω) be a simplicial triangulation of the computational domain Ω. For
D ⊂ Ω̄, we denote by Nh(D) and Eh(D) the set of vertices and edges of Th(Ω) in
D, and we refer to Pk(D), k ∈ N, as the set of polynomials of degree ≤ k on D.
Moreover, hK ,K ∈ Th(Ω), and hE , E ∈ Eh(Ω), stand for the diameter of K and the
length of E, respectively, and h := max(hK | K ∈ Th(Ω)). We consider the finite
element approximation with the DG spaces

Vh := {vh ∈ L2(Ω) | vh|K ∈ Pk(K), K ∈ Th(Ω)}, (2.2a)

Vh := {τh ∈ L2(Ω)2 | τh|K ∈ Pk(K)2, K ∈ Th(Ω)}. (2.2b)

For E ∈ Eh(Ω), E = K+ ∩ K−, K± ∈ Th(Ω), and vh ∈ Vh, we denote the average and
jump of vh across E by {vh}E and [vh]E , i.e.,

{vh}E :=
1

2

(
vh|E∩T+ + vh|E∩T−

)
, [vh]E := vh|E∩T+ − vh|E∩T− .
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We follow the general scheme of DG methods in the mixed formulation as in [2]. The
finite element approximation of the Poisson equation with homogeneous Dirichlet
boundary conditions amounts to the computation of (uh, σh) ∈ Vh × Vh such that
for all (v, τ ) ∈ Vh × Vh and all K ∈ Tk

∫

K

σh · τ dx = −
∫

K

uh div τ dx +

∫

∂K

û∂K ν · τ ds, (2.3a)

∫

K

σh · grad v dx =

∫

K

fv dx +

∫

∂K

σ̂∂K · ν v ds, (2.3b)

where ν stands for the exterior normal unit vector on ∂K.
The definition of the DG method is completed by fixing û∂K and the numerical fluxes
σ̂∂K . In particular, the IPDG method is obtained by the specification of the numerical
fluxes û∂K and σ̂∂K :

û∂K |E := {uh}E ,

σ̂∂K |E := {grad uh}E − αh−1
E [uh]Eν,

}
E ∈ Eh(Ω), (2.4)

where α > 0 is a penalty parameter, and α = 2.5(k+1)2 is considered as a convenient
choice [11].

3. An Interpolation by BDM Elements. The numerical fluxes σ̂ that live
on the interelement boundaries will be extended to the elements by an interpolation.
The finite element space for the fluxes is the BDM element, where BDMk(K), k ∈ N,
is given by

BDMk(K) = Pk(K)2, dim BDMk(K) = (k + 1)(k + 2). (3.1)

We refer to λK
i , 1 ≤ i ≤ 3, as the barycentric coordinates of K ∈ Th(Ω) and denote

by bK the element bubble function bK := λK
1 λK

2 λK
3 . By (3.41) in [2, p. 125] any

qK ∈ BDMk(K) is uniquely determined by the following degrees of freedom (DOF)
∫

E

qK · ν pk ds, pk ∈ Pk(E), E ∈ Eh(∂K), (3.2a)

∫

K

qK · grad pk−1 dx, pk−1 ∈ Pk−1(K), (3.2b)

∫

K

qK · curl(bKpk−2) dx, pk−2 ∈ Pk−2(K). (3.2c)

A standard scaling argument yields a bound of the L2 norm when a BDM element
is interpolated with these data.

Lemma 3.1. There exists a constant c that depends only on k and the shape
regularity of Th such that for each qK ∈ BDMk(K):
∫

K

q2
K(x) dx ≤

(
h

∫

∂K

(qK · ν)2 ds

+ h2 max
{∫

K

(qK grad p)2 dx; p ∈ Pk−1, max
x∈K

|p(x)| ≤ 1
}

+ h2 max
{∫

K

(qK · curl(bKp))2 dx; p ∈ Pk−2, max
x∈K

|p(x)| ≤ 1
})

.
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Fig. 3.1. DOFs of the BDM1 element and of the BDM2 element.

Remark 3.2. For k = 1, qK ∈ BDM1(K) is uniquely determined by the DOF
on ∂K; cf. Figure 3.1.

Remark 3.3. A BDM element may be specified by div qK instead of (3.2b).
Therefore, the bound in Lemma 3.1 can be replaced by

∫
K

q2
K(x) dx ≤ c

(
h

∫

∂K

(qK · ν)2 ds + h2

∫

K

(div qK)2 dx

+h2 max
{∫

K

(qK · curl(bKp))2 dx; p ∈ Pk−2, max
x∈K

|p(x)| ≤ 1
})

.

Moreover, we will refer to the following
Lemma 3.4. There exists a constant c that depends only on k and the shape

regularity of Th such that for each qK ∈ BDMk(K):

∥qK · ν∥0,∂K ≤ ch−1/2∥qK∥0,K .

This inequality follows from the fact that

inf
∥qK ·ν∥0,∂K=1

∥qK∥0,K > 0 . (3.3)

The constant c depends on the degree k, since (3.3) is not true, if we take the infimum
over all H1 functions.

4. Application of the hypercircle method to nonconforming finite ele-
ments. The starting point is the Theorem of Prager and Synge [4, 15] that is also
called the two-energies principle. We restrict ourselves to the Poisson equation; the
generalization to other elliptic problems can be found in [4, Ch. III, §9].

Theorem 4.1. (Theorem of Prager and Synge, Two-Energies principle).
Let σ ∈ H(div, Ω) and v ∈ H1

0 (Ω). Furthermore, let u be the solution of (2.1). If σ
satisfies the equilibrium condition

div σ + f = 0, (4.1)

then,

|u − v|21,Ω + ∥ grad u − σ∥2
0,Ω = ∥ grad v − σ∥2

0,Ω.

Supplement. Let J(v) := 1
2∥ grad v∥2

0,Ω −
∫
Ω

fvdx and Jc(σ) := 1
2∥σ∥2

0,Ω denote the
(direct) energy and the complementary energy, respectively. If the assumptions above
hold, then

|u − v|21,Ω + ∥ grad u − σ∥2
0,Ω = 2J(v) + 2Jc(σ).
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A proof is provided, e.g., in [4]
The piecewise gradient of a finite element function vh in the broken H1 space will

be denoted by gradhvh. We have gradhvh ∈ L2(Ω).
Corollary 4.2. Let uh be the finite element solution of a nonconforming method

in a broken H1 space, e.g., a DG method. Assume that an auxiliary function uconf
h ∈

H1(Ω) that satisfies the Dirichlet boundary condition, is obtained by postprocessing.
Moreover, let σeq

h ∈ H(div, Ω) be a flow that satisfies the equilibrium condition (4.1).
Then we have the estimate

∥ grad u − gradhuh∥0,Ω ≤ ∥ gradhuh − σeq
h ∥0,Ω + 2∥ gradhuh − grad uconf

h ∥0,Ω. (4.2)

Indeed, the two-energies principle yields the following bound for the auxiliary function
uconf

h :

∥ grad u − grad uconf
h ∥0,Ω ≤ ∥ grad uconf

h − σeq
h ∥0,Ω .

By applying the triangle inequality twice, we obtain (4.2).
The corollary was implicitly used in [1, 5].
In actual computations, we have frequently an additional term due to data oscil-

lations. We only have the equilibration for an approximate function f̄ , i.e.,

div σ + f̄ = 0 .

If fh is the best approximation of f by a piecewise polynomial of degree k − 1, then
an extra term

ch ∥f − f̄∥0,Ω

has to be added to the error bound. Since the term is considered as a term of higher
order, it is no drawback to have here a generic constant c. As usual, there is a generic
constant only in this contribution to the a posteriori error bound.

5. Equilibration. Let f̄ be the L2-projection of f onto piecewise polynomials
of degree k − 1, i.e.,

∫

K

f̄v dx =

∫

K

fv dx, v ∈ Pk−1(K). (5.1)

We construct a flux σ̂K ∈ BDMk(K) by the specifications

σ̂K |∂K = σ̂∂K , (5.2a)

∫

K

σ̂K · grad pk−1 dx =

∫

K

σh · grad pk−1 dx, pk−1 ∈ Pk−1(K), (5.2b)

∫

K

σ̂K · curl(bKpk−2) dx =

∫

K

σh · curl(bKpk−2) dx, pk−2 ∈ Pk−2(K). (5.2c)

The first equation corresponds to (3.2a) and shows that the flux is an extension of the
numerical flux that is originally defined on the element boundaries. Now, it follows
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from (5.2a), Gauss’ theorem, (5.1), and the DG finite element equation (2.3b) that
∫

K

div σ̂Kpk−1 dx = −
∫

K

σ̂K · grad pk−1 dx +

∫

∂K

σ̂K · νKpk−1 dx

= −
∫

K

σK · grad pk−1 dx +

∫

∂K

σ̂K · νKpk−1 dx

= −
∫

K

fpk−1 dx = −
∫

K

f̄pk−1 dx. (5.3)

Since div σ̂K and f̄ are contained in Pk−1(K), we readily deduce from (5.3) that

div σ̂K + f̄ = 0.

Therefore, we have obtained an equilibrated flux up to data oscillations.
The last specification (5.2c) aims at the minimization of the error bound with

respect to the known quantities. This is one difference to the equilibration procedure
by Ern and Vohraĺık [10] who used Raviart–Thomas elements.

Remark 5.1. If k = 1, due to Remark 3.2, σ̂K is uniquely defined by (5.2a),
that is by data of the numerical flux on the edges.

Note that up to now we have not used the specification (2.4) of the interior penalty
method IPDG.

6. An approximation by conforming elements. Corollary 4.2 shows that
we require an approximation of uh by an H1 function. We want to have a conforming
element uconf

h , and we will compute the norm ∥ grad uconf
h − gradhuh∥0,Ω. If we are

content with an estimate of this quantity, then an unknown generic constant as in
(6.2) would enter into the a posteriori error estimate. Since such an approximation
was also used in [13] in connection with residual-based error estimates, we recall the
construction in [13].

Let N L be the set of Lagrangian nodal points for the elements in V r
h . Let κi

be the number of triangles that share the nodal point xi ∈ N L. We have κi = 1,
if xi is contained in the interior of an element, while κi > 1, if xi ∈ N L ∩ Eh(Ω).
The multiplicity κi is bounded, since a minimal angle condition is assumed. The
associated conforming element is now defined by its nodal values

uconf
h (xi) :=

1

κi

∑

K∈Th, xi∈K

uh|K(xi). (6.1)

The following estimate is provided by Theorem 2.2 in [13]:
∑

K∈Th

∥ grad uconf
h − gradhuh∥2

0,K ≤ c
∑

E∈Eh

h−1∥[uh]|20,E . (6.2)

The constant c depends only on the degree k of the finite elements and the shape
regularity of the triangulation. Note that the quasi-local character is more apparent
in the formulation

∥ grad uconf
h − gradhuh∥2

0,K ≤ c
∑

E∈Eh, E∩K ̸=∅
h−1∥[uh]|20,E .

The right-hand side of (6.2), in turn, can be bounded by Theorem 3.2(iv) in [14]:
∑

E∈Eh

h−1∥[uh]|20,E ≤ c∥ grad u − gradhuh∥2
0,Ω, (6.3)
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and we eventually obtain

∥ grad uconf
h − gradhuh∥2

0,Ω ≤ c∥ grad u − gradhuh∥2
0,Ω. (6.4)

This inequality will be used for the verification of the efficiency of the a posteriori
error bound under consideration.

The inequality (6.4) is obtained from the efficiency of a residual a posteriori error
estimate [13]. It gives rise to a comparison theorem in the spirit of the results in [5].

Theorem 6.1. Let uG
h be the solution of the Poisson equation by the conforming

finite elements Vh ∩ H1(Ω) on the same triangulation. Then

∥ grad(u − uG
h )∥0,Ω ≤ c∥ gradh(u − uh)∥0,Ω.

Proof. From the Galerkin orthogonality (grad(u − uG
h ), grad v)0,Ω = 0 for all

v ∈ Vh ∩ H1(Ω) it follows that ∥ grad(u − uG
h )∥0,Ω ≤ ∥ grad(u − uconf

h )∥0,Ω. Now we
obtain from (6.4)

∥ grad(u − uG
h )∥0,Ω ≤ ∥ grad(u − uconf

h )∥0,Ω

≤ ∥ gradh(u − uh)∥0,Ω + ∥ gradh(uh − uconf
h )∥0,Ω

≤ ∥ gradh(u − uh)∥0,Ω + c ∥ gradh(u − uh)∥0,Ω,

and the proof is complete.
We note that the comparison theorem was established independently of the equi-

libration, and the data oscillation is not involved.

7. Efficiency. Let σ̂h ∈ H(div, Ω) with σ̂h|K ∈ BDMk(K), K ∈ Th(Ω), be the
equilibrated flux constructed according to (5.2) and let uconf

h ∈ Vh ∩H1(Ω) be defined
by the averaging procedure from the previous section. Recalling Corollary 4.2 we
introduce the estimator

ηhyp := η
(1)
hyp + η

(2)
hyp, η

(ν)
hyp :=

∑

K∈Th(Ω)

η
(ν)
K , 1 ≤ ν ≤ 2, (7.1)

η
(1)
K := ∥ gradhuh − σ̂h∥0,K , η

(2)
K := 2∥ gradhuh − grad uconf

h ∥0,K , K ∈ Th(Ω).

By Corollary 4.2 we get the reliable a posteriori error estimate

∥ grad u − gradhuh∥0,h ≤ ηhyp + ch∥f − fh∥0,Ω (7.2)

with a generic constant only in the term with the data oscillation. From (6.4) it
follows that the efficiency of the error bound (7.2) without the contribution of the data
oscillation is guaranteed when we have appropriate bounds for ∥ gradhuh−σ̂h∥0,Ω. To
this end, we will establish bounds for the terms in the triangle inequality ∥ gradhuh −
σ̂h∥0,Ω ≤ ∥ gradhuh − σh∥0,Ω + ∥σh − σ̂h∥0,Ω.

First, (2.3a) and Gauss’ theorem yield for τ ∈ Vh:
∫

K

(σh − gradhuh) · τ dx =

∫

K

σh · τ dx −
∫

K

gradhuh · τ dx

= −
∫

K

uh div τ dx +

∫

∂K

ûντ dx

+

∫

K

uh div τ dx −
∫

∂K

uhν · τ dx

=

∫

∂K

(û − uh)ν · τ dx .
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It follows from the specification of the internal penalty method (2.4) that ûK − uh =
1
2 [uh]E holds on E ⊂ ∂K. We set τ := σh−gradhuh, and a standard scaling argument
yields

∥σh − gradhuh∥0,K ≤ ch−1/2∥[uh]∥0,∂K . (7.3)

After summing over all elements we obtain with (6.3) the required bound for the
left-hand side of (7.3),

∥σh − gradhuh∥0,Ω ≤ c∥ grad u − gradhuh∥0,Ω.

Moreover, it follows from Lemma 3.4 and (7.3) that

∥(σh − gradhuh) · ν∥0,∂K ≤ ch−1/2∥[uh]∥0,∂K . (7.4)

Eventually we derive a bound for σ̂h − σh. Lemma 3.1 together with (5.2b) and
(5.2c) yields

∥σ̂h − σh∥0,K ≤ ch1/2∥(σ̂h − σh) · ν∥0,∂K .

Recalling the specification (2.4) for the IPDG method, we obtain on E ⊂ ∂K

σ̂h − σh = σ̂h − gradhuh + (gradhuh − σh)

=
1

2
[gradhuh] − αh−1

E [uh]ν + (gradhuh − σh) . (7.5)

Let E = ∂K ∩ ∂K ′. Lemma 3.2(ii) in [14] asserts that

∥[gradhuh] · ν∥0,E ≤ ch−1/2∥ grad u − gradhuh∥0,K∪K′ .

The second term in (7.5) is already estimated in (6.3). The third term is reduced by
(7.4) also to the second one, and we get

∑

K∈Th

∥σ̂h − σh∥2
0,K ≤ c

∑

K∈Th

∥ grad u − gradhuh∥2
0,K . (7.6)

By collecting all terms we obtain the efficiency of the a posteriori error estimate
deduced from Corollary 4.2.

Theorem 7.1. Let uh and σ̂h be the finite element solution of the IPDG method
and the equilibrated flux, respectively. Further, assume that a conforming function
uconf

h has been constructed as described in Section 6. There is a constant c that depends
only on the degree k and the shape regularity of the triangulation such that

ηhyp ≤ c ∥ grad u − gradhuh∥0,Ω .

8. Numerical results. In this section, we present a documentation of numerical
results for two representative examples illustrating the performance of the suggested
adaptive approach which consists of successive cycles of the steps

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE.

In the step SOLVE we compute the solution of the IPDG approximation (2.3), whereas
the second step ESTIMATE is devoted to the computation of the local components

8



η
(1)
K and η

(2)
K of the error estimator ηhyp (cf. (7.1)). We use the standard Dörfler

marking in step MARK: Given some bulk parameter 0 < θ ≤ 1, we choose a set
M ⊆ Th(Ω) of elements K ∈ Th(Ω) such that

θ ηhyp ≤
∑

K∈M
(η

(1)
K + η

(2)
K ). (8.1)

The final step REFINE takes care of the practical realization of the refinement process
of the elements in M and is based on newest vertex bisection [9].

Example 1: We consider the Laplace equation with inhomogeneous Dirichlet bound-
ary conditions

−∆u = 0 in Ω, (8.2a)

u = g on ∂Ω, (8.2b)

in the L-shaped domain Ω := (−1, +1)2 \ [0, +1) ∪ (−1, 0], where g in (8.2b) is chosen
such that

u(r, φ) = r2/3 sin(2φ/3)

is the exact solution (in polar coordinates). The solution exhibits a singularity at the
origin.

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

Fig. 8.1. Example 1: Adaptively refined meshes for k = 1 (top left), k = 2 (top right), k = 3
(bottom left), and k = 4 (bottom right) after 9 adaptive cycles (θ = 0.3 in the Dörfler marking).

For θ = 0.3 in the Dörfler marking, Figure 8.1 displays the adaptively refined meshes
for polynomial degrees 1 ≤ k ≤ 4. As can be expected, the adaptive algorithm refines
in the vicinity of the origin with coarser meshes for increasing polynomial degree k.
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Fig. 8.2. Example 1: The discretization error ∥ grad u − gradhuh∥0,Ω as a function of the
degrees of freedom (DOF) on a logarithmic scale for various θ in the Dörfler marking (left) and the
associated effectivity indices (right), i.e., the quotients of the estimated and the exact error.
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For adaptive refinements with θ = 0.7, θ = 0.3, and also for θ = 1 (uniform
refinement), Figure 8.2 (left) shows the decrease of the global discretization error
∥ grad u−gradhuh∥0,Ω as a function of the total number of degrees of freedom (DOF)
on a logarithmic scale for polynomial degree k = 1 (top left) to k = 4 (bottom left).
The negative slope is indicated for each curve.

We see that the optimal convergence rates are approached asymptotically for
θ = 0.3. Figure (8.2) (right) displays the associated effectivity indices (ratio of the a
posteriori error estimator and the global discretization error). In contrast to standard
residual type a posteriori error estimators for IPDG approximations, the effectivity
indices are only slightly above 1, remain below 1.6, and do not significantly deteriorate
with increasing polynomial degree k.

Example 2: We consider Poisson’s equation with homogeneous Dirichlet boundary
conditions

−∆u = f in Ω, (8.3a)

u = 0 on ∂Ω, (8.3b)

in the unit square Ω = (0, 1)2, where the right-hand side f in (8.3a) is chosen such
that

u(x, y) = x(1 − x)y(1 − y) arctan(60(r − 1)), r2 := (x − 5/4)2 + (y + 1/4)2

is the exact solution. The solution exhibits an interior layer along a circular segment
inside the computational domain.
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Fig. 8.3. Example 2: Adaptively refined meshes for k = 1 (left) and k = 4 (right) after 9
adaptive cycles (θ = 0.3 in the Dörfler marking).

Figure 8.3 shows the adaptively refined meshes for polynomial degree k = 1 and
k = 4 in case of θ = 0.3 in the Dörfler marking, whereas for uniform refinement
(θ = 1), θ = 0.7, and θ = 0.3 Figure 8.4 displays the global discretization error as a
function of the DOF on a logarithmic scale (left) and the associated effectivity indices
(right). We see that both for θ = 0.7 and θ = 0.3 the optimal convergence rates are
achieved asymptotically and that the effectivity indices are even slightly improved
with increasing polynomial degree k.
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Fig. 8.4. Example 2: The discretization error ∥ grad u − gradhuh∥0,Ω as a function of the
degrees of freedom (DOF) on a logarithmic scale for various θ in the Dörfler marking (left) and the
associated effectivity indices (right).
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9. Concluding remarks. The design of the a posteriori error bound is the
same for all discontinuous Galerkin methods. There is no generic constant, if data
oscillations are excluded, and the proof of the reliability is much easier than that for
residual-based estimators. In essence, it is focused on the terms which measure the
nonconformity.

The proof of the efficiency is very similar to the analysis of residual-based error
estimates, but there is one term less. The typical term

h∥∆uh + f∥0,Ω

that models the negative norm ∥∆uh + f∥−1 is not present, since implicitly a left
inverse of the divergence operator is involved. The left inverse is constructed by a
local procedure.

We recall that the analysis is based on the mixed formulation in [2], and it is
known (see [5]) that the efficiency of the estimator is related to the quality of the
mixed finite element method; cf. the comparison (7.6).
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