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Abstract

The paper introduces a finite difference solver for the unsteady incompressible Navier-Stokes
equations based on adaptive cartesian octree grids. The method extends a stable staggered grid
finite difference scheme to the graded octree meshes. It is found that a straightforward extension is
prone to produce spurious oscillatory velocity modes on the fine-to-coarse grids interfaces. A local
linear low-pass filter is shown to reduce much of the bad influence of the interface modes on the
accuracy of numerical solution. We introduce an implicit upwind finite difference approximation
of advective terms as a low dissipative and stable alternative to semi-Lagrangian methods to treat
the transport part of the equations. The performance of method is verified for a set of benchmark
tests: a Beltrami type flow, the 3D lid-driven cavity and channel flows over a 3D square cylinder.

Keywords: Octree grid, staggered grid, MAC scheme, incompressible viscous fluid,
benchmarking

1. Introduction

Octree grids are gaining popularity in computational mechanics and physics due to the their
simple cartesian structure and embedded hierarchy, which makes mesh adaptation, reconstruction
and data access fast and easy. As an example, such grids were used for adaptive discontinuous
Galerkin and finite volume methods with application to hyperbolic conservation laws, see, e.g., [1,
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2, 3, 4]. Fast dynamic remeshing with octree grids makes them a natural choice for the simulation
of moving interfaces and free surface flows, see, e.g., [5, 6, 7, 8, 9, 10, 11], octree grids became a
standard tool in image processing [12].

In this paper, we study the application of octree grids to numerical solution of the incompress-
ible Navier-Stokes equations, which in non-dimension form read

∂u
∂t

+ u · ∇u − ν∆u + ∇p = 0 in Ω × (0,T ),

div u = 0 in Ω × [0,T ),
u|t=0 = u0 in Ω,

u|Γ1 = g,
(
ν
∂u
∂n
− pn

)∣∣∣∣∣∣
Γ2

= 0,

(1)

where u, p are unknown fluid velocity and kinematic pressure, ν is the viscosity parameter, Γ2 is the
outflow part of the boundary, n is the normal vector to Γ2, and Γ1 is the rest of ∂Ω. Discretizations
on octree (quadtree) cartesian grids already enjoyed an employment in incompressible viscous and
inviscid fluid flow computations. Thus, Popinet in [13] developed a finite volume Godunov type
scheme, which uses a collocated arrangement of velocity unknowns in cells vertices. Min and Gi-
bou [14, 15] introduced a finite difference method on non-graded octree grids, where all unknowns
were collocated to cell vertices and semi-Lagrangian techniques was applied to treat advection. A
special stabilization was applied in those papers to avoid spurious pressure modes typical for the
collocated arrangement of unknowns. In [6, 7, 11] the finite difference MAC scheme [16, 17, 18],
with staggered location of unknowns, was extended to octree meshes.

The advantages of using staggered location of unknowns are the cell-wise enforcement of the
incompressibility condition and the well-known pressure stability of such schemes: odd-even os-
cillatory pressure modes do not emerge. However, such arrangement of unknowns makes building
higher order accurate methods on octree grids technically more difficult or computationally ex-
pensive. In particular, in papers [6, 7, 11] a first order semi-Lagrangian method was applied to
treat advection terms. In this paper, we develop a second order accurate finite difference scheme
with the staggered location of unknowns on graded octree cartesian meshes. To reduce numerical
dissipation, we build higher order upwind finite difference approximations of advective terms. The
discretization invokes simple linear interpolation or quadratic interpolation built upon second de-
gree polynomials of only two variables. This leads to compact nodal stencils and makes implicit
treatment of diffusion and advection terms feasible by solving algebraic systems of equations,
with sparse matrices, by preconditioned Krylov subspace iterative methods. The implicit advec-
tion step removes the Courant stability condition for the time step, which can be otherwise rather
restrictive for locally refined meshes. Applying low dissipative approximations reveals, however,
a (seemingly) previously unknown issue: For octree staggered grids, the discrete Helmholtz de-
composition is unstable due to oscillatory spurious velocity modes tailored to course-to-fine grid
interfaces. If a fluid viscosity or numerical diffusion is sufficiently large, then such modes are sup-
pressed, otherwise they propagate and destroy the accuracy of numerical solution. In the paper, we
introduce a linear low-pass filter which eliminates the spurious modes and improves the accuracy
of numerical solution significantly.
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Figure 1: Left: Each shared face holds a node for velocity x-component. The nodes are located at faces barycenters.
Right: Discretization stencil for ∂p/∂x.

The remainder of the paper is organized as follows. In section 2, we consider the discrete
Helmholtz decomposition on octree meshes with the staggered location of unknowns. It turns out
that the decomposition is specifically unstable. However, it can be stabilized by a local enrichment
of discrete pressure space or by introducing a local low-pass filter. The discretizations of advective
and diffusion operators are described in section 3. We note right away that only the case of cubic
cells is treated in the paper. For curvilinear boundaries, this means a first order staircase approx-
imation. An extension of the discretization for cut cells will be reported elsewhere. Further, in
section 4 we collect few time-stepping splitting schemes that are used further in numerical experi-
ments. Finally, in section 5 we present the results of numerical experiments for several benchmark
problems: a 3D Beltrami type flow, the 3D lid-driven cavity problem and channel flows around a
3D square cylinder. Conclusions are given in section 6.

2. Staggered grid discretization and the Helmholtz decomposition

For the staggered location of velocity and pressure unknowns on cubic meshes, the pressure
degrees of freedom are assigned to cells centers and velocity variables are located at cells faces in
such a way that every face stores normal velocity flux. If a face is shared by cells from different
grid levels, then velocity degrees of freedom are assigned to the faces centers of fine grid cells
(in the case of graded octree mesh, the corresponding face of the coarse grid cell holds 4 velocity
unknowns), cf. Figure 1 (left). The staggered FD discretization is well-known, cf. [19], to be stable
on a uniform mesh. Although we do not have a rigorous proof, which is a non-trivial exercise even
for the uniform grid, results of numerical experiments strongly suggest that the scheme remains
pressure-stable for octree meshes as well.

The approximation of div u in the center xV of a grid cell V makes use of the Gauss formula
∫

V
div u dx =

∫

∂V
u · n ds, (2)

where n is the outward unit normal to the cells boundary. Let F (V) be the set of all faces F of
V , i.e. ∂V = ∪F∈F (V)F, and xF denotes the center of F ∈ F (V). We define the grid divergence
operator by

(divh uh)(xV) = |V |−1
∑

F∈F (V)

|F|(uh · n)(xF). (3)
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Thanks to the staggered location of velocity nodes, the fluxes (uh · n)(xF) are well-defined.
One way to introduce the discrete gradient is to define it as the adjoint of the discrete diver-

gence. We define ∇h differently based on the formal Taylor expansions. For every internal face
we assign the corresponding component of ∇h p as follows. Since the octree mesh is graded, there
can be only two geometric cases. If a face is shared by two equal-size cells, then the central dif-
ference approximation is used. Otherwise, the approximation of px at the face center node y is
illustrated in Figure 1 (right): Consider the centers of five surrounding cells x1, . . . , x5 and expand
the pressure value p(xi) with respect to p(y):

p(xi) = p(y) + ∇p(y) · (xi − y) + O(|xi − y|2).

Neglecting the second-order terms, we obtain the following over-determined system:


1 −∆/2 ∆/4 ∆/4
1 ∆/4 0 0
1 ∆/4 ∆/2 0
1 ∆/4 0 ∆/2
1 ∆/4 ∆/2 ∆/2





p(y)
px(y)
py(y)
pz(y)


=



p(x1)
p(x2)
p(x3)
p(x4)
p(x5)


, (4)

where ∆ ≡ ∆x. The least squares solution of (4) gives the stencil for the x-component of the
gradient:

px(y) ≈ 1
3∆

(p2 + p3 + p4 + p5 − 4p1). (5)

The finite difference gradient and divergence defined above are similar to what can be found in
[7]. Yet the gradient stencil is slightly different: For the cells arrangement given in Figure 1 (right)
the reference [7] uses

px(y) ≈ 1
2∆

(p2 + p3 + p4 + p5 − 4p1). (6)

We found that using (5) shows slightly better results for smooth solutions compared to (6), al-
though the convergence order and the accuracy were comparable. The super-position of the dis-
crete gradient and divergence operators generally leads to the non-symmetric matrix for the pres-
sure problem. However, the corresponding linear algebraic systems are solved efficiently by a
Krylov subspace method with a multigrid preconditioner, see details in section 5.

The key ingredient of many splitting algorithms for the time-integration of the incompress-
ible Navier-Stokes equations is the (discrete) Helmholtz decomposition of a given (grid) vector
function f such that

∫
∂Ω

f · n = 0:



f = u + ∇p,
div u = 0,
u · n|∂Ω = f · n|∂Ω.

⇐⇒



− div∇p = div f,
∂p
∂n

∣∣∣∣∣
∂Ω

= 0,

u = f − ∇p.

(7)

It occurs that for the finite difference discretization as described above, the decomposition is not
stable in the following sense. For a given smooth function f, the error for u in the discrete decom-
position may significantly increase with every level of local refinement. This is illustrated below
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Table 1: Errors for the discrete Helmholtz decomposition on uniform and one-level refined grids.

quantity mesh size h
1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64

uniform mesh locally refined mesh

‖u − uh‖L∞ 1.1e-1 2.9e-2 1.1e-2 3.8e-3 1.4e-1 7.0e-1 3.5e-1 1.8e-1
‖u − uh‖L2 6.7e-2 1.7e-2 4.2e-3 1.1e-3 3.5e-1 1.2e-1 4.2e-2 1.5e-2
‖p − ph‖L2 2.5-2 6.4e-3 1.6e-3 4.0e-4 1.4e-2 3.3e-3 8.1e-4 2.0e-4
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Figure 2: The velocity error is dominated by the div-free modes occurring on the coarse-to-fine grids interface. The
left figure shows the u-component of the error, the middle figure shows the v-component, and the right figure shows
the grid for h = 1/8.

by a simple 2D example and one refinement level (another example of a 3D problem and more
levels of refinement can be found in the next section). We consider two meshes in Ω = (0, 1)2:
The first is uniform with the mesh size h, the second mesh results from the first one by applying
one refinement step for cells in the right half of the square, x > 1

2 (Figure 2, right). The function f
is such that the exact solution to (7) reads

u = sin
(
2π(ex − 1)

e − 1

) (
1 − cos

(
2π(eay − 1)

ea − 1

) )
1

2π
ex

(e − 1)
,

v =

(
1 − cos

(
2π(ex − 1)

e − 1

))
sin

(
2π(eay − 1)

ea − 1

)
a

2π
eay

(ea − 1)
,

p = a cos
(
2π(ex − 1)

e − 1

)
cos

(
2π(eay − 1)

ea − 1

)
ea+1

(e − 1)(ea − 1)
,

with a = 0.1, u = (u, v)T . The discrete decomposition (7) on two grids was computed and the
L∞-norm and the (discrete) L2-norm of the errors for u and p are shown in Table 1 (for the locally
refined grid, h denotes the size of the coarse grid cells). The results in Table 1 show that introducing
more degrees of freedom in a local way may lead to the significant loss of accuracy in velocity. The
first explanation of this error growth could be the formal decrease of the discretization consistency
order from the second to the first one at the nodes on the interface between the coarse and fine
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grids. However, a closer look at the velocity error reveals the appearance of specific interface
modes, which dominate the entire error function, see Figure 2 (left). These are local discretely
div-free modes, which occur on the coarse-to-fine grids interface and are subgrid modes for the
coarse grid, see Figure 3 (left).

v -component nodes u -component nodes pressure nodes

u-component nodes

v-component nodes

Xc

Figure 3: Left: A single local div-free mode, which is subgrid for the coarse grid cell. Right: Introducing additional
pressure d.o.f. for the coarse cell next to fine cells. This yields a stronger discrete div-free condition and precludes the
occurrence of subgrid div-free modes such as shown in the left figure.

A straightforward way to filter out the specific modes is to enforce a stronger divergence free
condition such that these modes are no longer discretely divergence free. To demonstrate this,
we introduce extra pressure degrees of freedom in the coarse grid cell near the coarse-to-fine
grid interface, see Figure 3 (right). For this coarse cell, the div-free condition is now enforced
separately for two sub-cells, by interpolating the v-component into the center point xc. The discrete
gradient operator is altered in the obvious way. We call this method the “pressure enrichment”
and show results for the discrete Helmholtz decomposition (7) in the left part of Table 2: The
error in velocity is substantially reduced. However, for general 3D octree meshes the pressure
enrichment may not be the best method for filtering the subgrid modes for the following reasons:
When a coarse-grid cell is neighboring fine-grid cells from different sides, introducing up to 7
extra pressure d.o.f. may be required. This complicates the scheme and can lead to the pressure
instability.

Table 2: Errors for the discrete Helmholtz decomposition, with one-level refined grids, using pressure enrichment and
differential filter stabilizations.

quantity mesh size h
1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64

pressure enrichment differential filter

‖u − uh‖L∞ 1.4e-1 8.1e-2 4.3e-2 2.2e-2 1.2e-1 4.9e-1 2.2e-2 1.0e-2
‖u − uh‖L2 5.1e-2 1.5e-2 4.5e-3 1.5e-3 3.8e-2 1.0e-2 3.1e-3 1.0e-3
‖p − ph‖L2 1.1e-2 2.8e-3 6.9e-4 1.7e-4 1.1e-2 2.6e-3 6.3e-4 1.6e-4
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Figure 4: Left: Reference points for the third-order upwind approximation of advection. This illustration is for the
derivative tangential to a face, where velocity degree of freedom is located. Right: An example of the set P, if the
velocity value (u−1) is sought in the reference point x−1. All points p0, pi, i ≥ 2, appear to be velocity nodes in this
example. To assign a velocity value to p1 one uses the linear interpolation.

The oscillatory behavior of the interface velocity error also suggests the application of a low-
pass filter as an alternative way to enhance the stability of the discrete Helmholtz decomposition.
To test the idea, we introduce the interface diffusion in (7) as



f = (I − αh2∆Γ)u + ∇p,
div u = 0,
u · n|∂Ω = f · n|∂Ω.

(8)

Here ∆Γ is the vector Laplace-Beltrami operator for the coarse-to-fine grids interface Γc f (∆Γv :=
vyy|Γc f for our test example), h is the size of coarse cells and α ≥ 0 is a parameter. Thus, (8) is
closely related to the idea of low-pass differential filters, see, e.g., [20]. The results for the discrete
decomposition (8) with α = 4 are shown in the right part of Table 2. The error in velocity is
reduced versus the non-stabilized case and the accuracy is comparable to the pressure enrichment
stabilization (as usual for stabilized method, the parameter α has to be tuned). Note that intro-
ducing interface diffusion in (8) makes the corresponding pressure operator, div(I − αh2∆Γ)−1∇,
non-local and the corresponding matrix is not sparse. Hence, the repeated solution of the pressure
problem becomes expensive. To avoid this, in the splitting scheme for the Navier-Stokes equations
we shall introduce explicit filter, rather than implicit as in (8).

We conclude that the error of the discrete Helmholtz decomposition on octree-refined meshes
may be dominated by specific divergence-free coarse-to-fine grid interface velocity modes. How-
ever, using simple low-pass local filters may reduce the error significantly. In the next section, we
define the remaining discrete operators and introduce a low-pass filter for unsteady flow computa-
tions.

3. Advection, diffusion and filtering

First, we describe how the advection terms are treated. Consider the advection term for the
velocity x-component: a · ∇u. We distinct between derivatives in the normal and the tangential
directions to a face, where the velocity degree of freedom is located. Consider the discretization
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of the tangential derivative, ay
∂u
∂y , in the face center x. Depending on the sign of ay(x), (ay is com-

puted in x with the help of an interpolation procedure described in Remark 3.2), four ‘reference’
points (x−1, x1, x2, x0 := x) are taken as shown in Figure 4 (left). Note that x−1, x1, and x2 are
not necessarily grid nodes. Values u−1, u1, and u2 in these nodes are then defined based on the
following interpolation procedure. If the reference point belongs to a cell smaller than the cell of
x0 (points x1 and x2 in the figure), then the linear interpolation between the two nodes of adjunct
faces is used. If the node belongs to a cell larger than the cell of x0 (point x−1 in the figure), then
one considers the plane P such that x−1 ∈ P and P ⊥ Oy. Further, consider the cross sections of
P with the cell possessing x−1 (denote this cell by V) and all cells sharing a face or an edge with
V . Any such cross-section can be either a square or the empty set. All center points of square
cross-sections form the set P, cf. Figure 4 (right). Now we assign u-values to all points from P.
Due to the octree mesh structure, any p ∈ P can be either a u-node (thus the value is assigned triv-
ially) or it lies on the x-midline of a cell (denote this cell by V ′). In the latter case, we first assign
u-values to the centers of two x-faces of V ′: if the center is not a u-node, we take the average of
velocity values from four u-nodes on this face. Further, we take the linear interpolation of these
values from the face centers and assign a u-value to p. When all p ∈ P receive their u-values,
the least-square second order interpolant Q2 is computed for the set of p ∈ P (Q2 is the second
order polynomial of y and z variables) and u−1 := Q2(x−1). Once the values {ui}, i = −1, . . . , 2, are
defined, we compute ay

∂u
∂y at x using the third order upwind discretization stencil:

c1 = − hH
r(h+r)(r+H) , c3 = rh

H(r+H)(H−h) , c2 = − r
h(r+h) − 1

H + h
(r+h)(r+H)

uL := c1u1 + c2u0 + c3u−1, uR := c1u2 + c2u1 + c3u0,

ay
∂u
∂y

(x) ≈ ay(x)(uR − uL),

where notations r, h, H are illustrated in Figure 4 (left). A special care is taken near boundaries,
since the reference point x2 may be not available. In this case, we use the second order difference:

ay
∂u
∂y

(x) ≈ ay(x)
( r
h(r + h)

u1 − r2 − h2

hr(h + r)
u0 − h

r(h + r)
u−1

)
.

The finite difference approximation of the derivative in the normal direction, ax
∂u
∂x , is con-

structed in the similar manner. The alterations to the algorithm described above are the following:
ax is defined in x (no interpolation required), and the reference points x−1, x1, x2 are always lying
on cells x-faces (although not necessarily in the centers and the interpolation is done as above).

Remark 3.1. Note that the interpolation procedure invokes computing the second order polyno-
mial of only 2 variables. Moreover, only a limited number of different auxiliary matrices should
be inverted to find the interpolation polynomials for a given grid. It may look inconsistent that
some reference nodes from {x−1, x1, x2} receive velocity values by the simplest linear interpola-
tion, while others by more elaborated interpolation procedure. From numerical experiments we
observed that using simple linear interpolation for fictitious nodes located in cells larger than the
current cell, where x0 is located, leads to perceptibly less accurate results, especially if a larger
cell lies from the upwind side of the current cell. Applying the quadratic interpolation for larger
cells, as described above, was found to produce stable and accurate disretization.
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Figure 5: Left: Reference points for the diffusion flux approximation; Right: uh(y) is defined by a linear interpolation
based on the fan triangulation with the center in xV , i.e. interpolation of uh(xV ), uh(x1),uh(x10) in this example.

Now we explain how the finite difference approximation of viscous terms is computed. Con-
sider a velocity component u node x lying on a face F and define a cubic control volume V ′, such
that x is the center of V ′ and F is a middle cross section of V ′. We set

(∆hu)(x) = −|V ′|−1
∑

F′∈F (V′)

|F′|(∇hu · n)(yF′). (9)

In order to approximate the diffusion flux in the center yF′ of F′ ∈ F (V ′), we take four reference
points (x−1, x0, x1, x2) as shown in Figure 5 (left). Velocity values u−1, u0, u1, and u2 are assigned
to reference points in the same way as for the advective terms described above. Using the notation
from Figure 5, the formal third order approximation of the diffusion flux (∇u · n) can be written
out as

(∇u · n) ≈ D−1[(h2H3 + h3R2 − H3R2 + h2R3 − H2R3 − h3H2)u0

+ (H3R2 + r3R2 + H2R3 − r2R3 − H3r2 − H2r3)u1

+ (h3r2 + h2r3 − h3R2 − r3R2 − h2R3 + r2R3)u−1

+ (h3H2 − h2H3 − h3r2 + H3r2 − h2r3 + H2r3)u2
]
,

with D = (H − h)(h + r)(H + r)(h + R)(H + R)(R − r). If the reference point in x2 is not available,
we use the point x−2.

Finally, following the discussion of the previous section, we define the low-pass filter G acting
on the coarse-to-fine grid interface Γc f :

G ◦ u(x) =



1
4

4∑

i=1

u(xi) if x ∈ Γc f ,

u(x) otherwise,

for every internal velocity component node x.

Here Γc f denotes the union of all octree cells faces, which are shared by cells of different sizes; xi

are four velocity nodes lying on the same large cells face as x (obviously x ∈ {x1, x2, x3, x4}).
9



Remark 3.2. We recall that for computing finite difference advection derivative a · ∇u, we need
the approximation of every component of the grid vector function a in all velocity nodes. For a
given point y in computational domain we evaluate a(y) as follows. Assume y belongs to a cell V
and we are interested in interpolating the x-component of velocity to y, i.e. ax(y). Consider a plane
P such that y ∈ P and P is orthogonal to the Ox axis. Let xV ∈ P be the orthogonal projection
of the center of V on P and xk, k = 1, . . . ,m, m ≤ 12, are the projections of centers of all cells
sharing a face with V . The values ax(xV) and ax(xk) can be defined by a linear interpolation of the
velocity values at u-nodes. Once ax(xV) and ax(xk), k = 1, . . . ,m, are computed, we consider the
triangle fan based on xV and xk, k = 1, . . . ,m, as shown in Figure 5 (right). Now ax(y) is defined
by a linear interpolation between the values of ax in the vertices of the triangle, which contains y.

Note that the discretization of momentum and continuity equations is based on control vol-
umes. The method is, however, not consistent with a classical finite volume approach, since for
the momentum equation the control volumes may fail to cover the entire computational domain.

4. Numerical time-integration

Our method of choice for numerical time-integration is the semi-implicit splitting scheme (also
known as projection scheme [21]): Given un, pn approximating u(t), p(t), find approximations
un+1, pn+1 to u(t + ∆tn), p(t + ∆tn) in several steps. First, solve for auxiliary velocity ũn+1 the
convection-diffusion problem with the filter acting on the advection terms,



αũn+1 + βun + γun−1

4tn + G ◦ (un + ξ(un − un−1)) · ∇ũn+1) − ν∆ũn+1 = −∇pn,

ũn+1|Γ1 = g,
∂ũn+1

∂n

∣∣∣∣∣∣∣
Γ2

= 0.
(10)

Here ξ = 4tn/4tn−1, α = 1 + ξ/(ξ + 1), β = −(ξ + 1), γ = ξ2/(ξ + 1). Next, project ũn+1 on the
divergence-free space to recover un+1:



α(un+1 − ũn+1)/4tn − ∇q = 0,

div un+1 = 0,

n · un+1|Γ1 = n · g, q|Γ2 = 0.

(11)

The problem (11) is reduced to the Poisson problem for q:


−∆q = α div ũn+1/4tn,

q|Γ2 = 0,
∂q
∂n

∣∣∣∣∣
Γ1

= 0.
(12)

Finally, update the pressure:
pn+1 = pn − q + ν div ũn+1. (13)
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The ‘extra’ divergence term in the pressure correction step (13) is known,see, e.g., [22, 23], to
reduce numerical boundary layers in the pressure.

Further, we refer to the scheme (10)–(13) as the linearized BDF2 projection scheme, since
it relies on BDF2 time discretization of the momentum equation at time tn+1 and the lineariza-
tion of the advective terms. Note that the step (10) is implicit. The matrix of the corresponding
linear algebraic system is non-symmetric, but it is well conditioned thanks to the scaled identity
matrix resulting from the term αũn+1

4tn . A preconditioned Krylov subspace iterative method turns
out to be efficient solver, see section 5. The implicit diffusion-advection step largely relaxes the
Courant condition for the time step, which is now restricted by accuracy, rather than by stability
requirements.

For a uniform time step, 4tn = 4t, n = 1, 2, . . . , the splitting scheme (10)–(13) is found, for
example, in [22] § 3.3. In that paper, the method was shown to be second order accurate in time, if
Γ2 = ∅. We shall demonstrate in the series of numerical experiments that the scheme retains second
order accuracy if 4t varies smoothly. In the case of outflow boundary conditions, building a second
order accurate stable pressure projection method is a well-known problem, see, e.g., [24, 25]. It
is not our intention to address this problem in the present paper. If one sets ν∂ũn+1

∂n

∣∣∣∣
Γ2

= pnn in

(10), then Guermond et al. [24] proved that the splitting method is up to 3
2 order the accurate

(the actual order depends on a certain regularity index). However, for such explicit treatment
of pressure on outflow boundary, our experiments show instability if ν is not sufficiently large.
Therefore, we modified the splitting of boundary conditions to ensure the numerical stability for
higher Reynolds numbers. We are not aware of a convergence analysis for such modified splitting.
In numerical experiments, no significant upstream influence was observed for outflow conditions
we use: Developed vortex structures leave the computational domain through outflow boundary
smoothly and retaining their shapes.

Remark 4.1. Instead of the implicit filter in the projection step, as in (8), we use the explicit filter
G acting on advection terms. The rationality behind such choice is that computing projection, with
implicit differential filter, on every time step is computationally ‘expensive’. Let us briefly explain
why the explicit filter still is efficient. Noting that G ◦ ∇ = ∇, we combine (10) and (11) to get

αun+1 + βun + γun−1

4tn + G ◦
[
(un + ξ(un − un−1)) · ∇ũn+1) + ∇(pn − q)

]
= ν∆ũn+1. (14)

Hence, for inviscid fluid, if un and un−1 are free of spurious modes, then the same is true for un+1.
For ν > 0, the viscous term can be the source of spurious modes. However for small ν, we observe
that the production of such modes is not significant and the scheme remains stable, while for large
ν, there is enough physical viscosity to damp the spurious modes.

For the purpose of comparison, we consider few alternative splitting schemes that have been
shown to be efficient in other settings. Thus, consider the second order projection scheme, with
the semi-Lagrangian method for treating the advection terms, as introduced in [26, 27]. The
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differences from the scheme (10)–(13) are the following. The first predictor step (10) now reads


αũn+1 + βun
d + γun−1

d

4t
− ν∆ũn+1 = −∇pn,

ũn+1|Γ1 = g, ν
∂ũn+1

∂n

∣∣∣∣∣∣∣
Γ2

= 0,
(15)

where un
d and un−1

d are given by the semi-Lagrangian method: un
d(xn+1) = u(tn, xn

d), where xn+1 is
the grid node and xn

d is found as a departing point at time tn of a characteristic that passes through
xn+1 at time tn+1. The equation for characteristics is integrated using the second order method:

y = xn+1 − 4tn

2
un(xn+1),

xn
d = xn+1 − 4tn

((
1 +

ξ

2

)
un(y) − ξ

2
un−1(y)

)
.

(16)

Similarly, one sets un−1
d (xn+1) = u(tn−1, xn−1

d ), where the departure point xn−1
d is found from:

y = xn+1 − 4tn + 4tn−1

2
un(xn+1),

xn−1
d = xn+1 − 4tn + 4tn−1

2

(
(1 + ξ)un(y) + (1 − ξ)un−1(y)

)
.

(17)

Of course, xn
d and xn−1

d are not necessarily grid nodes and an interpolation should be done to
define u(tn, xn

d) and u(tn−1, xn−1
d ). In [27] the quadratic Hermite interpolation was used to interpolate

between unknowns located in the vertices of cubic cells. To interpolate between face-centered
unknowns on octree grids, in [6, 7] the piecewise linear interpolation was applied. To the best
of our knowledge, an extension of higher order semi-Lagrangian methods to staggered octree
grids is not available in the literature. For the purpose of comparison, we shall use both linear
and quadratic interpolation. We stress that building more accurate and stable semi-Lagrangian
methods, for example, based on non-linear oscillatory-free interpolation procedures [28], may be
another way of developing staggered octree grid schemes. However, such developments are not
within the scope of the present paper. In what follows, the scheme (15), (12), (13) is referred to as
the BDF2 with semi-Lagrangian step.

A popular alternative, e.g., [29], to BDF2 scheme is the second order projection method often
attributed to van Kan [30]. This method approximates the equations at time tn+1/2. On the first step
of the method, one finds ũn+1 from



ũn+1 − un

4tn + G ◦ (un +
ξ

2
(un − un−1)) · ∇ ũn+1 + un

2
) − ν∆ ũn+1 + un

2
= −∇pn,

ũn+1|Γ1 = g, ν
∂ũn+1

∂n

∣∣∣∣∣∣∣
Γ2

= 0.
(18)

We shall refer to this method as the linearized van Kan (VK) projection scheme.
12



5. Numerical experiments

In this section, the performance of the method is verified for a set of benchmark tests. We
compare several options for spacial and temporal discretizations. First, a smooth 3D Beltrami
type flow with known analytical solution is considered. Next we compute the 3D lid-driven cavity
flow for Re={100, 400, 1000} and channel flows around a 3D square cylinder for Re={20, 100} and
a variable Reynolds number.

5.1. Example with an analytical solution
To assess the accuracy of the scheme on smooth solutions, we consider the well known Ethier-

Steinman exact NSE solution from [31]. This problem was developed as a 3D analogue to the
Taylor vortex problem, for the purpose of benchmarking. Although unlikely to be physically
realized, it is a good test problem because it is an exact NSE solution and has non-trivial vortical
structure. For chosen parameters a, d and viscosity ν, the exact NSE solution is given on [−1, 1]3

by

u = −a (eax sin(ay + dz) + eaz cos(ax + dy)) e−νd
2t

v = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd
2t

w = −a (eaz sin(ax + dy) + eay cos(az + dx)) e−νd
2t

p = −a2

2
(e2ax + e2ay + e2az + 2 sin(ax + dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax + dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t.

In our experiment we set a = π/4, d = π/2 and vary ν.
First we compare the performance of different temporal discretizations if the spacial grid is

uniformly refined. The errors in velocity and pressure are measured at time t = 0.1 and the results
are shown in Table 3. The time steps for ‘BDF2 with semi-Lagrangian (quadratic interpolation)’
was set two times smaller than for other methods, otherwise we observed no convergence with this
method. All schemes except ‘BDF2 with semi-Lagrangian (linear interpolation)’ demonstrated the
expected second order of convergence. The semi-Lagrangian method with quadratic interpolation
demonstrates the second order of convergence in L2, but the convergence deteriorates in L∞ norm.
This may indicate the loose of the monotonicity of the scheme and non-physical oscillations in
numerical solution. Further, we will see that this is indeed the case for the example of the flow
around a square cylinder. ‘BDF2 with FD advective fluxes’ and VK show very similar accuracy,
although the results with VK are slightly more accurate. Thus, our method of choice for further
experiments is the ’BDF2 with FD advective fluxes’ as potentially more robust than the van Kan
scheme, while demonstrating similar accuracy (we note that the van Kan scheme is based on the
trapezoidal rule, which is well known to require certain care, when applied to flow equations [32]).

In section 3 we built an upwind discretization of the advection terms. We shall refer to it as the
third order upwind (TOU) discretization (the ‘order’ is related to uniformly refined grids). Since
the entire scheme is of the second order, one may be interested in using the second order upwind
stencil for advective derivatives, next referred to as SOU. Table 4 compares the accuracy of two
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Table 3: Errors for different temporal discretizations on uniform meshes.
viscosity ν = 10−5 ν = 10−2

mesh size h 1/16 1/32 1/64 1/16 1/32 1/64
time step 4t 1/200 1/400 1/800 1/200 1/400 1/800

BDF2 with FD advective terms
‖u − uh‖L∞ 1.7e-3 4.2e-4 1.1e-4 1.7e-3 3.5e-4 7.6e-5
‖u − uh‖L2 4.0e-4 9.7e-5 2.4e-5 4.0e-4 9.5e-5 2.3e-5
‖p − ph‖L2 8.4e-3 2.2e-3 5.7e-4 8.0e-3 2.0e-3 4.7e-4

BDF2 with semi-Lagrangian (linear interpolation)
‖u − uh‖L∞ 3.3e-2 1.8e-2 9.7e-3 3.2e-2 1.7e-2 9.0e-3
‖u − uh‖L2 8.6e-3 4.4e-3 2.2e-3 8.5e-3 4.3e-3 2.1e-3
‖p − ph‖L2 2.9e-1 1.3e-1 6.4e-2 2.8e-1 1.3e-1 6.4e-2

BDF2 with semi-Lagrangian (quadratic interpolation)†

‖u − uh‖L∞ 3.0e-4 8.3e-4 5.2e-4 2.5e-3 8.4e-4 1.0e-3
‖u − uh‖L2 5.6e-4 1.4e-4 3.8e-5 5.7e-4 1.4e-4 3.4e-5
‖p − ph‖L2 1.4e-2 6.3e-3 5.0e-3 2.2e-2 5.4e-3 1.3e-3

VK
‖u − uh‖L∞ 1.7e-3 4.2e-4 1.2e-4 1.6e-3 3.4e-4 7.5e-5
‖u − uh‖L2 4.0e-4 9.7e-5 2.4e-5 3.9e-4 9.4e-5 2.3e-5
‖p − ph‖L2 8.0e-3 2.1e-3 5.6e-4 7.0e-3 1.6e-3 2.8e-4
† Here the time step was equal 4t/2

discretizations. From this experiment we conclude that the higher order approximation of the ad-
vection terms leads to more accurate solutions.Further we will see that for the benchmark problem
with non-smooth solutions and adaptively refined grids TOU is still advantageous compared to
SOU. Thus, the third order upwind scheme for advective terms is our preferred approach.

In the next two sets of experiments we demonstrate the role of the low-pass filter on the coarse-
to-fine cells interface and the convergence of the method on a sequence of refined non-uniform
grids. To compute the results in Tables 5 and 6, we refined the mesh inside the sphere of the radius
0.5 with the center in (0, 0, 0). The sizes of the largest and the smallest cells are hmax and hmin,
respectively. Obviously, hmax = hmin corresponds to the uniform grid. Table 5 shows the results of
computations for two values of viscosity, ν = 0 (the Euler limit) and ν = 1 (diffusion dominated

Table 4: Errors for two FD discretizations of the advective operator on uniform meshes, ν = 10−2.
upwind order SOU TOU

mesh size h 1/16 1/32 1/64 1/16 1/32 1/64
time step 4t 1/100 1/200 1/400 1/100 1/200 1/400
‖u − uh‖L∞ 4.3e-3 8.4e-4 1.6e-4 1.6e-3 3.4e-4 7.5e-5
‖u − uh‖L2 8.3e-4 1.6e-4 3.2e-5 3.9e-4 9.4e-5 2.3e-5
‖p − ph‖L2 1.5e-2 4.1e-3 1.1e-3 8.0e-3 2.1e-3 5.5e-4
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Table 5: Dependence of errors on the number of tree levels for locally refined meshes. The effect of the filter.
viscosity ν = 0 ν = 1

mesh size hmax 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16
mesh size hmin 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

BDF2 with FD advective terms, no filter
‖u − uh‖L∞ 1.7e-3 1.6e-2 2.2e-2 2.9e-2 1.2e-3 1.3e-3 1.6e-3 1.8e-3
‖u − uh‖L2 4.0e-4 1.1e-3 1.4e-3 1.4e-3 3.1e-4 3.9e-4 5.3e-4 6.5e-4
‖p − ph‖L2 8.0e-3 6.9e-3 6.2e-3 5.4e-3 4.0e-3 9.5e-3 1.4e-2 1.7e-2

BDF2 with FD advective terms, with filter
‖u − uh‖L∞ 1.7e-3 2.6e-3 3.3e-3 3.2e-3 1.2e-3 1.4e-3 1.6e-3 1.8e-3
‖u − uh‖L2 4.0e-4 5.7e-4 7.8e-4 9.1e-4 3.1e-4 3.9e-4 5.3e-4 6.5e-4
‖p − ph‖L2 8.0e-3 6.9e-3 5.8e-3 5.2e-3 4.0e-3 9.5e-3 1.4e-2 1.7e-2

Table 6: Convergence of the method on a sequence of refined non-uniform octree grids, ν = 0.01; Results are shown
for the BDF2 with FD advective terms, with filter.

mesh size hmax 1/8 1/16 1/32 1/64
mesh size hmin 1/32 1/64 1/128 1/256
time step dt 1/50 1/100 1/200 1/400
‖u − uh‖L∞ 1.1e-2 3.1e-3 7.9e-4 1.6e-4
‖u − uh‖L2 3.6e-3 7.6e-4 1.8e-4 4.3e-5
‖p − ph‖L∞ 6.3e-2 9.8e-3 2.5e-3 7.0e-4
‖p − ph‖L2 1.5e-2 5.8e-3 1.7e-3 4.9e-4
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Figure 6: Left: The 3D driven cavity problem setup; Right: The centerline ((0.5, 0.5, z), 0 ≤ z ≤ 1) u-velocities
compared to reference data from [33]

case). Similar to what was observed for the discrete Helmholtz decomposition, for small values
of the viscosity parameters the local mesh refinement leads to the growth of the error. Since the
spurious modes are oscillatory and tailored to the coarse-to-fine grid interface, the L∞-norm of
the velocity error is more sensitive indicator of the instability than the L2 norm. The error in
pressure is not much influenced by the local refinement. For ν = 1 the spurious oscillatory modes
are damped by the dominating physical diffusion, so the error growth is very modest in this case.
Otherwise, the course-to-fine grid interface filter provides the auxiliary damping of the modes and
stabilizes the problem. In further experiments of this paper, we always use the filter with TOU
discretization of advection terms (unless otherwise noted). Table 6 demonstrates the second order
convergence for velocity and almost the second order convergence for pressure on the sequence of
refined octree grids.

5.2. The 3D driven cavity
The next numerical example is the standard lid driven cavity benchmark problem. The problem

setup is illustrated in Figure 6. One looks for the steady solution of the flow equations (1) in
Ω = (0, 1)3, with u = (1, 0, 0)T for z = 1 and no-slip/no-penetration conditions on other parts of the
boundary. In spite of the simplest of geometrical settings, the cavity flows display many important
fluid mechanical phenomena [34]. Note that due to the discontinues boundary conditions, the
solution to the problem is singular in the neighborhood of upper edges.

We are interested in steady solutions for Re = 100, 400, 1000. The projection method (10)–(13)
was used to integrate in time until the equilibrium steady state is recovered. For this benchmark
problem, the coarsest mesh of hmax = 1/32 was used; further the grid was refined towards the
boundary (five grid layers with h = 1/64 and two grid layers with hmin = 1/256 ). This resulted
in the 983256 pressure degrees of freedom and 2936724 velocity degrees of freedom. Figure 6
(right) shows the computed centerline ((0.5, 0.5, z), 0 ≤ z ≤ 1) u-velocities of the steady state
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Figure 7: Spanwise vorticity for the midplane y = 0.5 and Re = 100 (left), Re = 400 (middle), Re = 1000 (right).

solution. They are in a very good agreement with the reference results of Wong and Baker [33],
who used a solution-adapted tetrahedral mesh and a conforming finite element method to compute
the solution in velocity-vorticity variables.

Figure 7 shows the contours of spanwise vorticity for the midplane y = 0.5. The plots of the
midplane velocity fields are shown in Figure 8. Both vorticity contours and velocity fields agree
well with those of [33, 35] and fairly well illustrate the recovered cavity flow dynamics. Besides
the primary eddy (here we use the terminology of [34]), the method is able to capture upstream
secondary eddy for Re = 1000 and Re = 400, bottom end-wall vortices for all values of Re and
upper end-wall vortices for Re = 1000 and Re = 400; downstream swirls are visible for Re = 1000
and Re = 400. All this flow structures transit smoothly over coarse-to-fine meshes interfaces. The
ability of the method to correctly predict secondary flow structures indicates the low numerical
diffusion of the scheme.

5.3. Flow around cylinder
The final numerical example is the laminar 3D channel flow around a cylinder of square cross-

section. The problem was defined within the DFG priority research program “Flow simulation on
high performance computers” by Schäfer and Turek in [36] and further studied in, e.g., [37, 38].

The flow domain is shown in Figure 9. The no-slip and no-penetration boundary condition
u = 0 is prescribed on the channel walls and the cylinder surface. The parabolic velocity profile is
set on the inflow boundary:

u = (0, 0, 16Ũxy(H − x)(H − y)/H4)T on Γinflow,

with H = 0.41 and a peak velocity Ũ. The Reynolds number, Re = ν−1DŨ, is defined based on
the cylinder width D = 0.1. The viscosity coefficient ν is set to 10−3. In [36] three benchmark
problems were suggested:

• Problem Q1: Steady flow with Re = 20 (Ũ = 0.45);

• Problem Q2: Unsteady periodic flow with Re = 100 (Ũ = 2.25);

• Problem Q3: Unsteady flow with varying Reynolds number for Ũ = 2.25 sin(πt/8).
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Figure 8: The 2D planar projections of steady state velocity fields at the midplanes for the 3D driven cavity problem
with Re = 100, 400, 1000.

18



Inflow

Outflow

0.41

0.41

2.5
0.16

0.15

0.45

1.95

Z

Y

X

Figure 9: Computational domain for flow around a cylinder with square cross-section.

The initial condition is u = 0 for t = 0.
To realize possible stability limitations of the proposed techniques, we also compute the flow

around cylinder for Re = 103 and Re = 104.
The statistics of interest are the following:

• The difference ∆p = p(x2)−p(x1) between the pressure values in points x1 = {0.2, 0.205, 0.55}
and x2 = {0.2, 0.205, 0.45}.

• The drag coefficient given by an integral over the surface of the cylinder S :

Cdrag =
2

DHŨ2

∫

S

(
ν
∂(u · t)
∂n

nx − pnz

)
ds (19)

Here n = (nx, ny, nz)T is the normal vector to the cylinder surface pointing to Ω and t =

(−nz, 0, nx)T is a tangent vector.

• The lift coefficient given by an integral over the surface of the cylinder:

Clift = − 2

DHŨ2

∫

S

(
ν
∂(u · t)
∂n

nz + pnx

)
ds (20)

• If a periodic regime is attained by the solution to problem Q2, then one is interested in the
Strouhal number D f Ũ−1, where f is the frequency of vortices separation.

For problem Q3, the reference velocity in Cdrag and Clift is taken for t = 4.
The feature of the problem is the singularity of geometry: the corners on a square cylinder are

likely to destroy the regularity of the solution to (1). This makes the accurate numerical prediction
of the lift and drag coefficients difficult and a local grid refinement in the neighborhood of the
cylinder is necessary.
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Figure 10: The cutaway of the grid at y = 0.205 for hmax = 1/32 and hmin = 1/1024.

Table 7: Number of velocity and pressure d.o.f. for different meshes. NCD and NPP are the average numbers of
iterations in convection-diffusion and pressure solvers for problem Q1, respectively.

hmin hmax u d.o.f. p d.o.f. NCD NPP

1/256 1/256 1246359 416150 23 30
1/512 1/256 1402593 467110 27 37
1/1024 1/256 2707497 897330 47 41
1/2048 1/256 12828221 4245010 112 66
1/1024 1/32 1969827 645393 45 44

To compute the drag and lift coefficient, one may replace the surface integrals in (19) and (20)
by integration over the whole domain. This evaluation technique is known in the finite element
community and has been used in [39, 37].

Assume u = (u, v,w)T and p solve (1), then applying the integration by part one checks (cf.
[37]) the following identities:

Cdrag = C̃
∫

Ω

[(
∂w
∂t

+ (u · ∇) w
)
ϕ + ν∇w · ∇ϕ − p∂zϕ

]
dx

Clift = C̃
∫

Ω

[(
∂u
∂t

+ (u · ∇) u
)
ϕ + ν∇u · ∇ϕ − p∂xϕ

]
dx,

(21)

C̃ = 2
DHŨ2 , for any ϕ ∈ H1(Ω) such that ϕ|S = 1 and ϕ|∂Ω/S = 0.

If the Navier-Stokes solution is sufficiently smooth and one computes drag and lift coefficients
of a finite element numerical solution, then it is proved in [37] that using the volume based for-
mulas (21) gives more accurate values of drag and lift coefficients compared to (19) and (20).
Although for this test problem the solution is not regular, it turned out that using (21) still leads to
more accurate results.

Now we discuss few technical details of evaluating (21). The identities (21) hold for any ϕ
satisfying ϕ|S = 1 and ϕ|∂Ω/S = 0. However, if integrals in (21) are evaluated for a numerical
solution, then the analysis of [37] suggests that accuracy may depend on the regularity of ϕ. For
the finite difference method we define ϕ in pressure nodes and consider the discretely harmonic
function (divh ∇hϕ = 0). All derivatives in (21) were approximated with the second order of
accuracy.

The numerical solutions to problems Q1–Q3 were computed on a sequence of locally refined
meshes, see Table 7 for the account of corresponding discrete space dimensions. The cutaway of
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Table 8: Problem Q1: Convergence of drag, lift, and pressure drop to reference values for locally refined grid.
hmin hmax Cdrag Clift ∆p Cdrag Clift ∆p

SOU TOU
1/256 1/256 7.766 0.05951 0.1720 7.726 0.07122 0.1717
1/512 1/256 7.589 0.06671 0.1727 7.683 0.06814 0.1724
1/1024 1/256 7.609 0.06796 0.1732 7.706 0.06829 0.1745
1/2048 1/256 7.631 0.06868 0.1737 7.727 0.06864 0.1750
Braack & Richter 7.767 0.06893 0.1757 7.767 0.06893 0.1757
Schäfer & Turek 7.5-7.7 0.06-0.08 0.172-0.18 7.5-7.7 0.06-0.08 0.172-0.18
1/1024 1/32 7.631 0.06821 0.1727 7.716 0.0678 0.1749

a grid with hmin = 1/32 and hmax = 1/1024 is shown in Figure 10. The linear algebraic systems
were solved iteratively. Thus, the discrete convection-diffusion-reaction problem arising on the
predictor step (10) of the method was solved by the BiCGstab method with ILU(0) preconditioner
and the pressure Poisson problem was solved with the GMRES method preconditioned by one
V-cycle of the algebraic multigrid method from [40]. Average numbers of iterations required
to ensure the Euclidian norm of residual is less than 1e-13 are shown in Table 7. These values
correspond to the experiments with the problem Q1 and time step ∆t = 0.1. For problems Q2
and Q3 we set ∆tn = max{0.1, 10hmin(max |un|)−1}. While iteration numbers in pressure solve were
nearly the same for problems Q2 and Q3, the iteration numbers in advection-diffusion solve were
smaller and almost independent of the refinement level due to the dominant zero order term α ũn+1

4tn .
For all three problems, the reference [36] collects several DNS results based on various finite

element, finite volume discretizations of the Navier-Stokes equations and the Lattice Boltzmann
method. In [36], the authors provide reference intervals where the statistics should converge.
Using a higher order finite element method and locally refined adaptive meshes, more accurate
reference values of Cdrag, Clift and ∆p were found in [37] for problem Q1. Thus, we first present
in Table 8 the results for problem Q1 computed with second and third order approximations of
advective terms. We note that the differences in CPU times for both cases were negligibly small.
Similar to the case of uniform grids and analytical solution, the TOU discretization shows some-
what more accurate results. For a sequence of locally refined octree meshes, Table 8 demonstrates
the convergence of computed drag, lift, and pressure drop to reference values. Here and in Table 9
we additionally include the results for the 5-refinement levels mesh (hmax = 1/32, hmin = 1/1024),
which appear to be very close to those for 2-refinement levels (hmax = 1/256, hmin = 1/1024), in-
dicating that the refinement around cylinder rather than in the bulk domain is crucial for accurate
computation of the statistics.

Less accurate reference data is available for problems Q2 and Q3. Table 9 summarizes the
results computed by the present method and those available in the literature. For problem Q2,
Cdrag and Clift are the maximum lift and drag coefficients after the flow attains a periodic regime.
For problem Q3, Cdrag and Clift are the maximum lift and drag coefficients over the whole time
interval t ∈ [0, 8], the pressure drop is computed at t = 8. Note that [36] does not give reference
intervals for problem Q2, and we simply show the maximum and minimum values of lift, drag,
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Table 9: Lift, drag, and the Strouhal number for problem Q2; Lift, drag, and pressure drop for problem Q3
Problem Q2 Problem Q3

hmin hmax Cdrag Clift St Cdrag Clift ∆p
1/256 1/256 6.204 0.07631 ∗ 6.038 0.3497 -0.1461
1/512 1/256 5.222 0.04407 0.326 5.178 0.0381 -0.1284
1/1024 1/256 4.679 0.02697 0.297 4.655 0.0168 -0.1367
1/2048 1/256 4.484 0.03166 0.307 4.475 0.0300 -0.1407
Schafer & Turek 4.32–4.67† 0.015–0.05† 0.27–0.35† 4.3–4.5 0.01–0.05 -0.14 – -0.12
1/1024 1/32 4.671 0.02666 0.306 4.658 0.0172 -0.1374
∗ Solution has not attained a periodic regime for t ∈ [0, 16].
† Reference intervals for problem Q2 may be not very accurate.

and the Strouhal numbers for the DNS results included in [36]. However, these intervals can be not
very accurate. It is expected that Re = 100 is close to the critical Reynolds number (when transition
from the steady state to unsteady periodic flow occurs). Therefore, the simplest reasonable criteria
of the success of a numerical method for this problem: Is a stable periodic flow (including vortex
separation and von Karman vortex street) captured by a method for Re = 100? If no, then the
method is likely to be excessively diffusive or unstable.
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Figure 11: The evolution of drag (left) and lift (right) coefficients for the flow around a square cylinder with Re = 100
(problem Q2) computed with hmax = 1/32, hmin = 1/1024.

For the present methods a stable periodic flow is recovered starting with hmin = 1/512. Fig-
ure 11 plots the evolution of the drag and lift coefficients for time interval t ∈ [0, 16]. It is clear
that the periodic regime is attained. In Figure 12 we show the snapshot of the spanwise vorticity
contours at time t=16 for the midplane y = 0.205. The figure illustrates the developed von Karman
vortex street behind the cylinder. We note that the periodic unsteady solution is recovered with
BDF2 with FD advective terms scheme, while the semi-Lagrangian method with linear interpo-
lation produces steady solutions. The semi-Lagrangian method with quadratic interpolation was
found unstable for this problem.
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Figure 12: Problem Q2 (Re=100): Spanwise vorticity at time t=16 for the midplane y = 0.205. The top plot shows the
development of vortex street for solution by BDF2 with FD advective terms; the bottom plot shows an over-diffusive
solution computed by BDF2 with semi-Lagrangian method (linear interpolation). Both solutions were computed with
hmax = 1/256 and hmin = 1/1024 at t = 16.

From the regularity theory of the linearized Navier-Stokes problem [41], we may expect that
pressure and velocity become less regular in the neighborhoods of cylinder edges: The theory
predicts p < H1(Ω) and u < H2(Ω)3. This, in particular, implies that the pressure gradient and the
second velocity derivatives are unbounded in the vicinity of the edges. Indeed, Figure 12 shows
sharp internal layers in vorticity originating from upstream edges of the cylinder and Figure 13
presents the midplane pressure contours around the cylinder. The pressure has large gradients
near the upstream edges. This lack of solution smoothness explains why local grid refinement is
necessary and why accurate evaluation of drag and lift coefficients for the flow around a square
cylinder is hard.

The 3D structure of the flow with Re = 100 is seen from Figures 14 and 15, where we show the
streamlines of the developed flow, pressure isosurfaces and the isosurfaces |w| = 20 of vorticity
colored by the absolute values of velocity, |u|.

Finally, we run the same test with higher Reynolds numbers, Re = 103 and Re = 104. We
have not found other data in the literature for this problem with higher Re numbers to make a
comparison. The goal of performing the tests is to verify if the method remains stable when Re
is increasing and to quantify stability limitations (if any). Note that for smooth solutions we got
stable results for arbitrary small values of the viscosity coefficient, see Table 5. For the flow around
a square cylinder problem, the situation is more complicated: A solution has sharp boundary and
internal layers and the flow becomes turbulent for sufficiently large Reynolds number. This was
eventually the case for Re = 104.

For flow around a square cylinder at Re = 103, we observe a stable numerical solution, which
demonstrates a quasi-periodic behaviour. Now large vortices periodically form in the internal
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Figure 13: Problem Q2 (Re=100): The midplane pressure contours around a square cylinder. The solution shown was
computed with hmax = 1/256 and hmin = 1/1024 at t = 16.

Figure 14: Problem Q2: Streamlines of the developed flow around a square cylinder for Re=100. The streamlines are
selected for two fluid layers entering the domain slightly above and below x = 0.21.

layers originating from two upstream edges of the cylinder rather than shed behind the cylinder.
These vortices are convected downstream and interact in a complicated way with each other and
smaller eddies created near upper and bottom walls. A flow in the recirculation region behind the
cylinder is close to chaotic. All these make an intricate picture of the (still laminar) flow over a
square cylinder in a channel at Re = 103. The computed solution is illustrated in Figure 16, where
we show spanwise vorticity isolines and isosurfaces for pressure and vorticity. For the vorticity,
we choose to show the isosurface |w| = 100 as a good illustration of vorticity generation around
the cylinder.

For Re = 104 we observe no regular flow pattern: An unstable boundary layer develops near
channel walls close to the inlet (approximately at z = 0.2), traveling vortices appear on many
scales and interact with each other in a stochastic way. We may conclude that the flow is turbulent.
Nevertheless, for this type of flow the method produces a numerically stable solution up to the time
t = 8, which was the final time of computations. A multiscale structure of the flow is illustrated in
Figure 17.
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Figure 15: Problem Q2 (Re=100): Pressure isosurfaces and vorticity isosurface |w| = 20 colored by the absolute
velocity. The plots illustrate solution computed with hmax = 1/256 and hmin = 1/1024 at t = 16.

We conclude that for turbulent flows the numerical dissipation produced by the present method
can be sufficient to diffuse the energy of resolved structures, although an additional modeling is
likely required to simulate the effect of unresolved scales in a proper way and recover meaningful
averaged statistics.

6. Conclusions

Octree cartesian grids are super-convenient for fast mesh adaptation, reconstruction and data
access. Finite difference and finite volume methods on octree grids provide a cost effective al-
ternative to discontinuous Galerkin methods. This efficiency, however, comes at a price: local
refinement does not lead automatically to better accuracy and higher order discretizations require
large nodal stencils and higher order interpolation. In this paper, we introduced an extension of
staggered grid MAC scheme such that specific instabilities stemming from local grid refinement
are suppressed. The discretization is second order accurate and stable. It involves the construction
of only planar second order polynomials and linear interpolation. The performance of the scheme
was studied for a set of smooth and non-smooth benchmark solutions. The method produces sta-
ble low dissipative second order accurate solutions and compares favorably to a scheme built on
semi-Lagrangian treatment of advection. The scheme was found to be numerically stable also for
certain high Reynolds number flows.
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