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OPTIMAL CONTROL OF INDUCTIVE HEATING OF
FERROMAGNETIC MATERIALS

O. BOYARKIN*f AND R. H. W. HOPPE*1§

Abstract. Inductive heating is a technological process where a steel workpiece is surrounded
by an electromagnetic coil to which currents at various frequencies and time-varying amplitudes are
applied. The amplitudes are considered as the controls and the objective is to heat the workpiece
up to a desired temperature profile at the final time of the heating process. The workpiece is then
quenched which due to a phase transition in the crystallographic structure of the steel leads to a
hardening of the surface of the workpiece. For the inductive heating process, the state equations
represent a coupled system of nonlinear partial differential equations consisting of the eddy currents
equations in the coil, the workpiece, and the surrounding air, and a heat equation in the workpiece.
The nonlinearity stems from the temperature dependent nonlinear material laws for steel both with
regard to its electromagnetic and thermal behavior. Following the principle 'Discretize first, then
optimize’, we consider a semi-discretization in time by the implicit Euler scheme which leads to a
discrete-time optimal control problem. We prove the existence of a minimizer for the discrete-time
optimal control problem and derive the first order necessary optimality conditions.

Keywords: optimal control, inductive heating, eddy currents equations, heat
equation

AMS subject classification: 49M05, 65K10, 656M60, 78M10

1. Introduction. Induction heating of mechanical tools made from steel is a
modern processing technology used for surface hardening. The boundary layer of
the tool is rapidly heated up via electromagnetic waves to temperatures above the
Curie temperature where steel undergoes a phase transition. This is followed by
quenching which leads to a change in the crystallographic structure from austenite
to martensite and hence to an increased hardness of the tool in a region close to the
surface. Most contributions in the literature are concerned with numerical simulations
of the inductive heating process (cf., e.g., [2, 5, 6, 9, 13, 14, 17, 18, 19, 22]).

Fic. 1.1. Induction heating at high frequency (left) and medium frequency (right). At
high frequency only the tips of the teeth are heated up, whereas at medium frequency most
heating occurs at the interstitial space between the teeth (cf. region C in the left and right

figure)
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The apparatus consists of a copper made coil around the tool as shown in Figure 1.1.
Applying a voltage at the coil, an electromagnetic field is generated which penetrates
the tool. Electromagnetic energy is converted to Joule heat which primarily happens
in a region close to the surface due to the skin effect. For tools with a somewhat
complicated surface geometry such as a gear, the main goal is to guarantee a uniform
temperature distribution and thus a uniform hardness in the boundary layer. The
penetration depth essentially depends on the distance between the coil and the gear
and on the chosen frequency. Using just one frequency, a uniform temperature distri-
bution cannot be achieved: a high frequency (100 kHz) only leads to a heating of the
tips of the teeth, whereas the heating at a medium frequency (20 kHz) is restricted to
the base of the teeth (cf. Figure 1.1). Therefore, the current technology is based on
the simultaneous feed-in of currents of possibly time-varying amplitudes [23, 26]. It
is the purpose of this paper to study the optimal control of the amplitudes such that
at the final time of the inductive heating a desired temperature profile is achieved in
the workpiece. We note that from an engineering point of view the optimal control
of inductive heating processes has been addressed in [24], whereas a more analytical
oriented treatment can be found in [8], but not for a ferromagnetic material with its
inherent nonlinear material behavior. Here, we consider inductive heating processes
where the computational domain D is a bounded domain in R? containing the domain
Q1 occupied by the coil, the domain 25 occupied by the steel workpiece, and a domain
Q3 := D\ (Q;UQy) which contains the surrounding air. The state equations represent
a system of partial differential equations consisting of the eddy current equations in
D coupled with a heat equation in £2s.

The paper is organized as follows: Section 2 is devoted to the derivation of the state
equations. In particular, in subsection 2.1 we present the eddy currents equations
based on a generalized Frohlich’s model for the nonlinear relationship between the
magnetic induction and the magnetic field in ferromagnetic materials, whereas sub-
section 2.2 deals with the heat equation. Based on a semi-discretization in time of the
state equations and a linearization of the nonlinear material behavior, the discrete-
time optimal control problem is stated in section 3. We prove the existence and
uniqueness of a weak solution of the discrete-time state equations, whereas the exis-
tence of an optimal solution of the discrete-time control problem is shown in section 4.
In section 5 we are concerned with the derivation of the associated optimality system
in terms of the discrete-time adjoint system and the discrete-time gradient equation.
Finally, section 6 briefly discusses the spatial discretization by finite elements with
respect to a geometrically conforming simplicial triangulation of the computational
domain and provides a documentation of numerical results.

1.1. Preliminaries. We use standard notations from Lebesgue and Sobolev
space theory [28]. In particular, given a bounded Lipschitz domain 2 C R® with
boundary I' := 99, we refer to LP(€2),1 < p < 0o, as the Banach spaces of p-th power
integrable functions (p < 0o) and essentially bounded functions (p = co) on Q with
norm || - [Jo.p.0, respectively. In case p = 2, the space L?(Q) is a Hilbert space whose
inner product and norm will be referred to as (-,-)o,q and || - [|o,o. For s € Ry, we
denote by W*P(Q) the Sobolev spaces with norms || - ||s,p.0 and associated seminorms
| - |s,p.0- We refer to WyP(Q2) as the closure of C§°(Q) in W*P(Q). For s < 0, we
denote by W*P(Q) the dual space of W *9(Q),p~! + ¢~ = 1. In case p = 2, the
spaces W*2(Q)) are Hilbert spaces. We will write H*(f2) instead of W*2({2) and re-
fer to (+,+)s,0 and || - ||s,o as the inner products and associated norms. We denote
by C(£) the Banach space of continuous functions and refer to M() as its dual
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space of regular Borel measures. In case of vector-valued functions, the above func-
tion spaces can be defined analogously and will be denoted in boldface, e.g., L*(Q)
stands for the Hilbert space of vector-valued functions on €2 with square-integrable
components. In particular, H(curl, ) is the Hilbert space of functions q € L2(Q)
with curl q € L2(9), equipped with the graph norm.

Moreover, for T > 0 we consider the space-time domain @ := Q x (0,7). Given a
Banach space X, we denote by LP((0,7), X),1 < p < oo, and C([0,T], X) the Banach
spaces of functions v : [0,7] — X. The spaces W*?((0,T), X) and H*((0,7),X),s €
R, are defined analogously.

2. The Inductive Heating Process. Let D := B,.(0) C R3 be a ball centered
at the origin with radius » > 0 containing a torus ©; := B, (a) x (0,27),a :=
(r2,0,0)T, 71 + ro < r, representing the coil, and a cylindrical domain s := S x
(=h/2,+h/2),h > 0, with cross section S centered at the origin such that diam(S) <
79, Tepresenting the steel workpiece. The domain Q3 := D\ (Q;UQ») is supposed to be
filled with air. We further refer to 0D, Ty := 9Q1, I's := 00, and I's := 0D UT; UT,
as the boundary of D, the boundary of €1, s, and of 3, respectively. We note
that the boundaries 9D and I'; are of class C'°°, whereas we assume I's to be of class
C?. Finally, for T > 0 we set Q := D x (0,T),Q; := Q; x (0,7),1 < i < 3, and
¥:=0D x (0,7),%;:=T; x(0,7),1 < <3.

The inductive heating processes can be described by Maxwell’s equations

D B
curlH=J+aa—t, curlE:faa—t, divB=0 inQ, (2.1)
coupled with a heat equation
00 . .
p c(9) 5 div (k(f)grad 0) = f in Q-. (2.2)

Here, E and H stand for the electric and the magnetic field, B, D, and J refer to the
magnetic flux density, the dielectric displacement, and the current density. Moreover,
6 denotes the temperature, p and ¢(6), k(#) are the mass density and the temperature
dependent heat capacity and thermal conductivity, respectively. Finally, the source
term f in (2.2) stands for the Joule heat.

2.1. The Eddy Currents Equations. In the non-magnetic domains €, (con-
ductor, made from copper) and Qg3 (air), the vector fields B,,H,,D,,E,, and J, are
related by the linear material laws

B,=wH,, D,=¢,E, J,=0,E, ve{l,3}. (2.3)

Here, €, and p, are positive constants denoting the electric permittivity and the
magnetic permeability, whereas o, stand for the electric conductivities which are
positive constants in 2, with o3 < o1. The positive constants &, := u ! and p, :=
o, v € {1,3}, are referred to as the magnetic susceptibilities and electric resistivities,
respectively.

However, in Qy (steel workpiece) there is a temperature dependent nonlinear B — H
relationship. Here, we use the generalized Frohlich’s model [27]

H,

B2 = 007 5(0) [l

(2.4)
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s Function o from the Froehlich model
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Fic. 2.1. Temperature dependence of the function a and the saturation flur density B in
the generalized Frohlich’s model.

where the function «(6) is a monotonically increasing function in 6 which approaches
a positive constant & = u;l after 6 has passed the Curie temperature ¢ (cf. Figure
2.1 (left)).

Moreover, the saturation flux density 3(f) is a continuous function in 6 which
first slightly increases and then monotonically decreases for § < ¢ and 3(6) = 0 for
0 > 0c with a jump discontinuity of its first derivative at ¢ (cf. Figure 2.1 (right)).
We use mollified versions of a(6) and 5(6) in terms of standard Friedrichs’ mollifiers
around 0¢. Solving for He, we obtain

a(0)
H, =&(60,|Bs|) B 0,|Bs|) = ——————. 2.
2 52( a| 2|) 25 52( 7| 2‘) 1_6(9) ‘B2| ( 5)
We assume that there exist constants 0 < ¢ < C such that
c<&(0,Ba]) <O, [&,0(0,|B2))] <O, |&2,B,(0, B2])| < C, (2.6)

over the whole range of the temperature 6 and the magnetic induction Bs during the
inductive heating process, where £2 9 and &3 |B,| stand for the derivatives of {3 with
respect to 6 and |Ba].

REMARK 2.1. An alternative to the generalized Frohlich’s model (2.5) is a model
suggested by Bristiel [3] which reads

B2 _ % (a — 1)7T,L1,2H2
i

(1 —exp((8 —6c)/C) arctan( > ) + poHoy, (2.7

where a,C, and Jg are suitably chosen parameters.
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Moreover, in 25 the conductivity o2 depends on the temperature 6 and represents
a smooth monotonically decreasing positive function o2(#) decreasing from approxi-
mately 4.5-10° S/m at § = 0°C to approximately 0.5-10° S/m at 1200°C' (cf. Figure
2.2). Hence, we may assume

c<o9(0) <C. (2.8)

over the whole range of the temperature # during the inductive heating process.

We use the low frequency approximation of Maxwell’s equations, where the dielectric
field D is neglected. We introduce a magnetic vector potential A and a time integrated
electric scalar potential ¢ according to

0A dy

B = curl AA7 E = 75 - grad E (29)
Setting A, := Alq,, this results in the eddy currents equations
A,
oy 8(% + curl (§,curl Ay) + 0, grad %—f =0 €Q, (2.10a)

For a theoretical justification of the eddy currents equations we refer to [1]. The time
integrated scalar electric potential is of the form

t
0 inQ\Q

Here, h € C§° (1) and g;(7) = ui(7) U; cos(w;T),1 < i < 2,, where Uy, Uy are the

maximum voltage outputs corresponding to the high frequency w; and the medium

frequency wo and the functions wuq(t),us(t) stand for the fractions of the maximum

power outputs that are used to control the induction heating process.

For o3 = 0 we note that (2.10a) is not well defined in Q3 due to the nontrivial kernel
of the curl operator. We impose a Coulomb gauge

p(a,t) =

divA,=0 inQ,, 1<v<3, (2.12)
for all equations (2.10). Using (2.11) and (2.12) in (2.10) and setting
u(t) = (ui(t),u2 ()", P(t) = (i), v2(t))", 9i(t) := Uscos(wiT), 1 < i < 2,

and j := —grad h, we obtain

oy agu +curl (§,curl Aj) —grad div A, =6,1 u(t)-¥(()j inQ,. (2.13a)

The eddy currents equations (2.13a) have to be complemented by a boundary condi-
tion on %

A3 =0 onX, (2.13b)
transmission conditions on ¥;,1 <17 < 2,

A|§mri Ang = _A|§3m1“3 Ang,
n. A(§curl Alg (p o Ang ) =n. A& curl Alg, o, Ang) (2.13¢)

nFi ' A‘ﬁ,ﬂl‘, = _nl"g : A|§iﬂl—‘3
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and an initial condition at ¢t =0

A(,0)=0 inD. (2.13d)

REMARK 2.2. Instead of imposing the Coulomb gauge throughout the entire com-
putational domain, it suffices to enforce it weakly only in the subdomain s, i.e.,
we are looking for a pair (As,p3) € Hoap(curl,Q3) x H}(3) such that for all
q € Hyop(curl,Q3) and all ¢ € HE(Q3) it holds

(&3 curl As, curl q)o 0, + (q,grad ¢3)o.a, = ¢3(q), (2.14a)
(A3, grad ¥)o,0, =0, (2.14b)

where the right-hand side 3(q) in (2.14a) is given in terms of the second transmission

condition in (2.13c) and thus provides the coupling with the eddy current equations in
Ql and QQ.

2.2. The Heat Equation. The specific heat capacity ¢(0) := p ¢(6) in (2.2)
is a monotonically increasing function for § < ¢ and 6 > ¢, but exhibits a jump
discontinuity approximately at the Curie temperature ¢ (cf. Figure 2.3 (left)). We
use a mollified heat capacity in terms of a standard Friedrichs-type mollifier such that
q(0) = p ¢(0) becomes a smooth function in 6 satisfying

c<q(0) <C (2.15)

over the range of the temperature during the inductive heating process. The thermal
conductivity x depends on 6 as well and represents a continuous function that is
monotonically decreasing from approximately 43W/(mK) at room temperature to
27W/(mK) at the Curie temperature and then moderately increasing to 30W/(mK)
at 1200°C' (cf. Figure 2.3 (right)). We also smooth out the discontinuity of the
derivative of k(6) at O¢ such that () becomes a smooth function, and we assume

c<k(0) <C. (2.16)
. 1()S;:et:ili:: heat capacity c*p vs temperature 6 Thermal conductivity k vs temperature 8
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Fic. 2.3. Temperature dependence of the specific heat capacity ¢ = p ¢ (left) and of the
thermal conductivity k (right)

Moreover, the source f in (2.2) (Joule heat) is given by

0As

f(AQ) =09 |W (217)
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The heat equation takes the form:

q(9) % —div (k(f)grad 0) = f(Aa) in Qa. (2.18a)

It is complemented by the Robin-type boundary condition
n. -r(f)grad 0 +hs (0 —0,)" +0sp € (16 6 —62)=0 on X, (2.18b)
and by the initial condition
0(-,0) =0y in Qo. (2.18¢)

We note that (2.18b) takes into account heat losses by convective and radiation heat
transfer. Here, hy is the convection surface heat transfer coefficient, ogp is the Stefan-
Boltzmann constant, £ denotes the emissivity of the surface, and 6, stands for the
ambient temperature. For a steel/open air surface, we typically have hs ~ 1.54,
v =~ 1.33 and ¢ is varying between 0.03 and 0.7 depending on the properties of the
surface [7]. The ambient temperature ¢, and the initial temperature §y are supposed
to be positive constants.

3. The Optimal Control Problem.

3.1. The Discrete-Time Optimal Control Problem. We consider a parti-
tion T := {0 =:tp < t1 < --- < tar := T} of the time interval [0, T] into subintervals
[tm—1,tm],1 < m < M, of length At := T/M,M € N. The controls are vectors
u™ € R? at the time instants t,,,1 < m < M, of the partition 77. We denote by A™
and 0™ approximations of A and 6 at t = t,,,1 < m < M. We linearize the state
equations by ’freezing’ the coefficients o, ¢ in the eddy currents equations (2.13) and
the coefficients ¢, x in the heat equation (2.18) and by linearizing the convective and
radiative heat transfer in (2.18b).

To this end, we define |BJ*~!| and 6! as the average of |[BJ*"!| and "~ over Q.
Moreover, ég”*l refers to the average of ™! over ¥so:

By = 0] / IB| d, (3.1)
Q0
ot = |92|*1/9’"*1 da,
Q3
é;ﬂ_l = |232|_1 / Hm_l da,
Y32

In terms of these quantities we define:

Gyl = (0™, Gl = (0™ By Y, 3.2a)

qrli=g (0™, R = k(OMTY). (3.2b)

REMARK 3.1. We note that another linearization of the nonlinear B-H relation-
ship based on Frohlich’s model has been suggested in [16].
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The nonlinear terms from the convective and radiative heat transfer in (2.18b) are
linearized according to:

he(0™ = 00) ~ ha(B771 = 0,)7 + yhg(07 1 — 0,770 — G, (3.3a)

oene (020 — 0%) ~ (3.3b)

Oane (07 PO7 " — 02) + dowwe (07 PO ) (O™ — 07 )
For ease of notation we set

G = ke (07T = 0,7, G = dosee (100100,
gr =gl g
Bt = b0 = 007, B = e (A 61,
B?—l = (gmfl + gmfl)émfl _ Emfl o Bmfll

We may assume

cgg;l*lgo forall1<m < M, (3.4)

since we will have é;”_l > 0, due to the inductive heating process.
The boundary value problem for the time discretized eddy currents equation reads

Am _— Am—1 -
gmt — QA +curl(€™ ! curl A,,) —
grad(§™ ! div A™) =y, ju™-¢™ in D, (3.5a)
Am|ﬁmr,¢ A nri = —Am|§301—\3 A IlFi (35b)

n. A (€m=1 curl A™|g A, Anp ) =1, A (&m=1 curl A" G r, ADp),

n ~£~;“_1 A"g Ap, = N, -5;”‘1 A 1<4i<2,

Ty 3

A™ =0 ondD, (3.5¢)

where 9" = (P, YT Ym = (At) ! f:n’il cos(w;t)dt,1 <i < 2.
Likewise, the boundary value problem for the time discretized heat equation takes the
form

om — 9m—1 A™ — Am—l |2
At At
n, -&™ ' grad 0™ + g t0™ = b on T, (3.6b)

T2

qul

—div(F™ ! grad 0,,,) = 65 | in Qy, (3.6a)

Setting V := H} (D)™, V := H'(Q2)M, the discrete-time state space is given by Y :=
V xV. The discrete-time state y € Y readsy = (A, ) with A = (A% ... AM)T A0 =
0,A, cH}(D),1<m<M,and 0 = (6°,--- ,0M)T 00 = 0g,0™ € H (Q),1 <m <
M. Moreover, U := R?M stands for the control space with controls u € U of the
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formu= (ul, - ,uM)T u™ = (v, uf)T € R%1<m < M.
The discrete-time optimal control problem for the inductive heating process is then
given by:

y,u

M
. 1 o m
(DTOC) inf Ai(y) +2(w), Ni(y) =3 6% = 0allg g0 a(w) =5 m§=1 a2,
subject to the state equations (3.5),(3.6),

where Qg C €y is a subdomain of 9 around the surface 925 where a desired tem-
perature distribution 6, is prescribed and « > 0 is a regularization parameter.
We will briefly address the case of control constraints u € K,, where

Ky={ueR™|0<u" <o 1<i<2,1<m< M} (3.7)

with given constants u;*** > 0,1 < 7 < 2, and state constraints K, := Ka x Ky
where

Ka = {A | [A™] <A™ 1 <m < M}, (3.8)
Kp:={6]0<0m <™ 1<m< M}

with given constants A™% > (, #™** > (.
In the presence of control and state constraints the discrete-time optimal control
problem reads

(DTCOC) inf  Ji(y),

i
yeKy, ueKy
subject to the state equations (3.5),(3.6),

3.2. Existence, Uniqueness, and Regularity of a Weak Solution of the
Discrete-Time State Equations. The weak form of the discrete-time state equa-
tions can be written in terms of a map e : V. x V — V* x V* x L2(D) x L%(Qs)
according to

mAT — B — (4(Z)

ey = | AHAT AR L0

6% — 6y

1<m < M,

0. (3.9

m

Here, A7} : V — V* and AJ; : V — V* are the linear operators

(AT'AZ) := (6™ YA, Z)o.p + At (€™ curl A, curl Z) p +

At (§"71 div A, div Z)op, ZE€V, (3.10a)
<A’72ré€7 Z> = ((Ynilea Z)O,Qz + At (‘%mil grad 97 grad Z)O,Qz =+
GF 1 0,2)050, z€V, (3.10b)

AJL 'V — V* is the nonlinear operator
<'Agi(A)7Z> = _(5m_1(At)_1 ‘A_Am_1‘2vz)0,927 z€V, (311)
B : R?M 5 1.2(D) is the linear operator

(B™(u),Z)o,p == At (xo, w"-¥™ §,Z)op, ZEV, (3.12)



10 O. Boyarkin and R.H.W. Hoppe

and the linear functionals ¢; : V — R and ¢ : V' — R are given by
6(Z) == (6"TA™ T Z)o,p, (3.13a)
62(3) = — At (il?i?717 Z)U,Fzs + (qm_lem_lv Z)U,Sb' (3'13b)

In particular, for a given control u™, a pair (A™ 0™) € V x V is said to be a weak
solution of (3.5) and (3.6), if it satisfies

TTA™ = B™u™ + 4, (3.14a)
ASL(A™) + A0 = . (3.14b)

The following result establishes the existence and uniqueness of a weak solution.

THEOREM 3.2. Under the assumptions on the data of the problem, for all 1 <
m < M there ezists a unique weak solution (A™,0™) € V xV of (3.5) and (3.6)
which satisfies the energy estimates

Jeurl A™ (3, + [ldiv A™% , + [A™[3, < (3.150)

C (Ju™ 2 |l 13113 0, + IA™ 13 ),

lgrad 6™3 o, + 1013 0, < (3.15b)

C (I1A™ = A" 3 o, + |72 + 1073 0, )-

Proof. We note that (3.14) represents a staggered system, i.e., once (3.14a) has
been solved, A%} (A™) is known and can be shifted to the right-hand side in (3.14b).
Therefore, it suffices to show that the linear operators A7} and A3} are elliptic on V
and V, respectively.

Observing (2.6),(2.8), it follows that the operator A7] is elliptic on V, i.e., there exists
a constant y; > 0 such that

(A7 A™, A™) > 3 (fleurl A3+ [div A p + [A™F ) forall A™ € V.
(3.16)

Since the functional ¢; is bounded on V, the Lax-Milgram lemma guarantees the
existence and uniqueness of a weak solution of (3.5). The energy estimate (3.15a)
can be easily derived from (3.16) and a straightforward estimation of ¢;(A) using
Young’s inequality. Likewise, taking (2.15),(2.16), and (3.4) into account, we deduce
the ellipticity of the operator A%, on V, i.e., for some constant v2 > 0 it holds

(Ao, 0m) > 7, (llgrad 073 g, + 073 g,) forall o™ €V, (3.07)

Since we already know that A™ € V,1 < m < M,, due to the Sobolev embedding
theorem A™ — A™~! ¢ L*(D), and hence, both functionals (A3} (A),-) and fo(-) are
bounded on V. Again, the Lax-Milgram lemma asserts the existence and uniqueness
of a weak solution of (3.6), and the energy estimate (3.15b) follows from (3.17) and
straightforward estimation of the right-hand side. 0

We next show that the weak solutions A™ and 6,1 < m < M, enjoy 2-regularity
which will be important to prove the existence of an optimal control.
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THEOREM 3.3. Under the assumptions on the data of the problem, for all 1 <
m < M the unique weak solutions of (3.5) and (3.6) satisfy A™ € H2(D) N H{(D)
and 0™ € H?(Qy). In particular, we have the energy estimates

[curl® A™||2 |, + |lgrad div A™[§ , + [leurl A™|3 , + [|div A™|[5 , < (3.18a)
C (" [, [ldiv j3 g, + lourl A" 13 + lldiv A" p),

[A 675 0, + lgrad 0[5 o, < (3.18b)

C (IA™ 1, + 1A™ 30, + IA™ L0, + AT 0, + 107 1L 0, + 10" 3.0, )

Proof. The proof will be split into two parts. We will first establish 2-regularity
of A™ and then that of 6™.

(i) We approximate A™ according to
n
Al = Zag” p;, neN,
i=1

by a finite sum of eigenfunctions ¢, € C°(D),1 < i < n, of the eigenvalue problem

—AZ=curl>?Z-graddivZ=\Z in D,
Z=0 ondD.

which has a countable number of increasing positive eigenvalues \;,7 € N, with as-
sociated L2-orthonormal eigenfunctions. This results in an algebraic system in the
unknown coefficients a}*,1 <1 < n:

n
Za}” ((&mflcpﬁcpi)op + At (€™ eurl ¢;, curl ¢,)op + (3.19)
j=1

At (gmildiv P div ‘Pi)O,D) = At (um _,me J; 902')0,521 + (6m71Am717 Soi)O,Dv

which has a unique solution. We multiply (3.19) by A;, use —A, = A\, integrate
by parts, then multiply by a}*, sum over all 1 < ¢ < n, and finally pass to the limit
n — oo to obtain

(6™ teurl A™ curl A™)o p + (6™ 'div A™, div A™)op + (3.20)
At (€™ Leurl® A™, curl®> A™)y p + At (€™ 'grad div A™, grad div A™)op =
At (0™ - ™ div j,div A™)g.q, + (6™ tcurl A™ ! curl A™)op +
(6™ tdiv A™ div A™)o.p,
where we have used curl j = 0 due to j = —grad h.
The left-hand side in (3.19) can be estimated from below in view of (2.6),(2.8), whereas
the right-hand side can be estimated from above by the Cauchy-Schwarz and Young’s
inequality, which gives rise to (3.18a) and shows A™ € H2(D) N H}(D).
(ii) We proceed in the same way for ™, but this time approximate by a finite number
of eigenfunctions ¢; € C*(£3) of the eigenvalue problem

—Az=Xz in o,
n-grad z+2z=0 on I's3.
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This leads to

(" 'grad 0™, grad 6™)o p + At (™ 'grad div 6™, grad div ™)op +  (3.21)
At(gn~tgradd™, gradd™)o r,, = (At) "1 (6™ 'grad(|A™ — A7 ?), gradd™)o q,
+ (g™ 'grad 6™t grad 6™ g q,.

In view of (2.15),(2.16),(3.4), the left-hand side in (3.21) can be bounded from below
by a constant times the left-hand side in the energy estimate (3.18b). The estimation
of the right-hand side is a bit more elaborated. We have

grad(|A™ — A™ 2 = grad(A™ - A™ —2A™ - AL AL AT (3.22)
Taking into account that

grad Wi - W, =
(Wl . grad) Wy + (WQ . grad) Wi+ Wi Acurl Wy + Ws A curl Wy,

by an application of Holder’s inequality we find

|/ -grad) A™ - grad 0™ dz| = (3.23)

I/Am (VTA™ grad 0™) da| < A" o490, |A™ 140, [107]12.0.-

Q2

By the Sobolev embedding theorem, H! () and H2(£23) are continuously embedded
in L*(Q3) and W14(Qy), whence

[A™ 0,40, [A™lLa.0, 10" [l12,0, <C [|[A™[[1,0, 10" [0, [A"l2,0,-  (3.24)

Now, applying the generalized Young inequality

Haz < C 1/p1 1/P2 1/173 Zp’ =1,

with py = p2 = 1/4 and p3 = 1/2, (3.24) implies
[A™ 10, 167 11,0. A ]|2,0. < C (|A™ (|10, + [6™]1,0, + [A™]30,),

such that from (3.23) we deduce

I/(A -grad) A™ - grad 0™ dz| < C(|A™ 1 g, + 0710, + [A™]30,)- (3.25)
Qo
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Likewise, we obtain the upper bounds

|/(Am Acurl A™ - grad 6™ dz| < C(|A™||]q, + 6™
Qs
|/(Am_1 -grad) A™ - grad 0™ du| < C(|A"™ 1 q, + 0710, + |A™]30,),

Q3

1o, +IIA™]30,),

I/(AW1 Acurl A™ - grad ™ dz| < C(JA" i o, + 1071 o, + [A™]30,),

411,522 + HH’”H‘iQZ + A"

Qs
|/(Am - grad) A™ 1. grad e™ dz| < C(]|A™| 3792),
Q3

I/(Am Acurl A" grad ¢ da| < C(|A™[l{ g, + 07|}, + A3 q,)-

Q3

Summarizing the preceding estimates and (3.25), for the first term on the right-hand
side in (3.21) it follows that

|(At) "' (6™ tgrad(|A™ — A™ 12, grad ™) 0,| < (3.26)
C (IA™7 0, + [A™3 0, + IA™ 1 o, + [A™HE 0, + 16717 0,)-
For the second term on the right-hand side in (3.21) we obtain
|((jm_1grad ™1 grad Gm_1)0,92| <C \|9m_1||§792. (3.27)

Combining (3.26),(3.27) we deduce the upper bound in (3.18b) which shows that
0™ € H?(Q). O

4. Existence of a Solution of the Discrete-Time Optimal Control Prob-
lem. The preceding subsection provided all prerequisites to prove the existence of a
solution of the discrete-time optimal control problem (DTOC).

THEOREM 4.1. Under the assumptions on the data of the problem, the discrete-
time optimal control problem (DTOC) has a solution.

Proof. We denote by S : RM — V x V the control-to-state map which assigns to
a control vector u = (u',---,uM)7 the unique weak solutions A™ € V,0™ € V,1 <
m < M, of the state equations (3.5),(3.6). Then, the control-reduced formulation of
(DTOC) reads

igf Ju), J(u):=Ji(S()) + Jo(u). (4.1)

Let {u"}y,u™ = (ub”, ... uM™)T € R?M n € N, be a minimizing sequence. Due to
the coerciveness of the objective functional in u, the minimizing sequence is bounded
and hence, there exist a subsequence N’ C N and a vector u* € R?M such that u® —
u*(N' 3 n — o00). Since the objective functional is lower semicontinuous, it follows
that u* is a minimizer. Let now y” = S(u”) with y™ = (A", 0") € V x V,n € N/,
where A" = (A%" ... AMmT AOn = 0 and A™" € HY(D),1 < m < M, and
on = (0O, .-, oMmT g0n = gy and 0™ € HY(Q2),1 < m < M, are the unique
weak solutions of the state equations (3.5),(3.6) for the control u” € R*¥. Tt follows
from the results of section 3 that for each 1 < m < M the sequences {A™"},cn and
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{0™"} henv are bounded in H?(D) N H(D) and H?(s), respectively. Consequently,
there exist another subsequence N C N’ and functions A™* € H2(D) N H}(D) and
0+ € H2(Q,) such that A™" — A™* in H2(D) N HY(D) and §™" — ™* in
H2(€s) for N 5 n — co. Due to the Rellich-Kondrachov embedding theorems, we
have A™" — A™* in H}(D) and ™™ — 0™* in H'(Qy). This implies as well strong
convergence of the averages \1’3;"‘1’” ,gm—Ln 5;”*17”7 and thus strong convergence of
the coefficients g5~ 1™, £y~ g g1l and of g;l‘l’”, fLTTn_l’". Passing to the
limit in the equations satisfied by A™"™ and ™", it follows that the pair (A*,60*) is
the unique weak solution the state equations (3.5),(3.6) for the control u* € U, i.e.,
y* =S(u*). O

Likewise, we can prove the existence of a solution in case of the control and state
constrained discrete-time optimal control problem (DTCOC:
THEOREM 4.2. In addition to the assumptions of Theorem 4.1 suppose that

S(Ku) C Ky, (4.2)

which can be guaranteed by a proper choice of A™* and ™. Then, the control and
state constrained discrete-time optimal control problem (DTCOC) has a solution.

Proof. The proof follows the same pattern as the proof of Theorem 4.1. The
minimizing sequence {u” }y is bounded due to u™ € Ky,n € N and hence, there exist
a subsequence N’ C N and a vector u* € R*M such that u® — u*(N' > n — o).
Since K, is closed, we have u* € K. The rest of the proof is the same as before,
and at the end we deduce y* = (A*,0*) € K,, due to (4.2). O

5. The Discrete-Time Optimality System. The optimality conditions in-
voke an adjoint state

p=(W,0) with W := (W% ... WM) W™ cV, 0<m<M, and
0:=(0"....0M with®@™ e V,0<m < M —1, 0™ € L*(Qy).
In terms of the map e :=Y x U — Y* x L?(D) x L?(f23), we have [29]

ey(y,u)"'p = Jy(y.u), (5.1a)
eu(y,u)'p + Ju(y,u) =0, (5.1b)

where ey (y,u)* and ey(y,u)* stand for the adjoints of the Fréchet derivatives of e

with respect to y and u at (y,u) and Jy(y,u), Ju(y,u) are the partial Gateaux
derivatives of the objective functional with respect to y and u at (y,u).
The discrete-time adjoint state equations (5.1a) read

W™+ (Az)a(AT)O™ s s, ;
ALLO | 5.2
WM - 0 ' (5-2)
oM oM

Here, O™ = 0, — 0™ in Q¢ and OM = 0 in Q5 \ Q4. Moreover, (AJ)a(A™)* is the
adjoint of the Fréchet derivative of A5} with respect to A at A™

(A3)A(A™) 0™, Z) = =2 (A) ™ (557 O™ (A™ — A1), Z)o q,,
and the functionals f3: V — R and ¢4 : V — R are given by
eg(z) pp— (&mwm+l’ Z)O,D; 64(2’) = (qm@m+17z)0,92'
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In view of Jo in (DTOC) and (3.9), the optimality condition (5.1b) takes the form
O (WMo, +au* =0, 1<i<2. (5.3)

We have thus established the optimality system for the discrete-time optimal control
problem (DTOC):

THEOREM 5.1. Let (y,u) € Y x U withy = (A,0) € VXV and u € U be
a solution of the discrete-time optimal control problem (DTOC). Then, there exists
an optimal discrete-time adjoint state p € Y with p = (W,0) € V x V such that
the triple (y,p,u) satisfies the discrete-time state equations (3.9), the discrete-time
adjoint equations (5.2), and the gradient equation (5.3).

The discrete-time adjoint state equations (5.2) are solved backward in time from m =
M —1 tom = 1. They represent a staggered system such that for each M —1>m > 1
the equation for the discrete-time adjoint temperature ©™ is solved first followed by
the equation for the discrete-time adjoint magnetic vector potential W™,

REMARK 5.2. Reuwriting (5.2) in the strong form

Wm+1 _Wm M — 5.an1
_ (a_m—l 4
At At
grad({™ ! div W™) =2y, (At)™2 (651 @™ (A™ =A™ ") inD,  (5.4a)

Wm) + curl(€™! curl W,,,) —

Wl o, Amy, = ~Wlg p A, (5.4b)

n. A (é;”‘l curl Wm|§ml“¢3 A nris) =n. A (5;”‘1 curl Wm|ﬁsﬂl“31 Angp )

n.. 'Eim_l Wm|§mri3 =, - et Wm|§mr3iv I<i<2,

W™ =0 ondD, (5.4c)
and

o OO G =g N L m :
—(q N + AL €] ) —div(k grad O,,) =0 in Qy, (5.5a)

n,. -&""! grad @™ —|—§¥“1®m =0 on a3,

T23

(5.5b)

where WM =0 and ©M = (:)M, it can be interpreted as the time-discretized version
of a backward in time eddy currents equation and a backward in time heat equation.

REMARK 5.3. The optimality system of the discrete-time optimal control problem
(DTOC) can be solved by the gradient method. Starting from an initial control ug, we
first solve the discrete-time state equations (3.9), followed by the discrete-time adjoint
state equations (5.2), and then update the control via (5.3) combined with an Armijo
line search (cf., e.g., [15]).

Let us briefly present the optimality system in case of the control and state constrained
discrete-time optimal control problem (DTCOC). Denoting by Ik, , Ik, the indicator
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functions of the set K,, of control constraints and of the set K, of state constraints,
the unconstrained control reduced form of (DTCOC) is given by

inf Ji(S(u)) + Ik, (u) + Ik, (Su). (5.6)
The optimality condition for (5.6) reads
0 € Sy(u)*J1,y(S(u)) + d(Ik, o S)(u) + dlk, (u), (5.7)

where Sy (u) € £(U,Y) is the Fréchet derivative of S at u and 9(Ik, 0S)(u), 0k, (u)
are the subdifferentials of the indicator functions of Ik, oS and of Ik, at u. Since the
states A = (Al,--- JAM)T and § = (9%, -+ ,0M)T are continuous due to Theorem
3.3 and S(u) = (0,6) € int(Ky) for u = 0, the control u = 0 is a Slater point and
hence, it holds (cf., e.g., [10]):

d(Ix, o S)(u) = Sy(u)*dlk, (S(u)). (5.8)

We note that 9k , (A) € 2M®) M(D) = C(D)*, and dlk, () C 2M(2) M(Qy,) =
C(Q2)*. Hence, there exist a vector-valued regular Borel measure Ay € M(D),
a regular Borel measure Ay € M(Qy), and p € Ik, (u) C 28" such that with
A = (A1, A2) the optimality system for (DTCOC) can be written as

ey(y,u)'p=Jiy(y) + A, (5.9a)
eu(y,u)'p+p=0. (5.9b)

Since the Borel measures occur on the right-hand side of the discrete-time adjoint
system, we cannot expect p = (W,0) € V x V, but rather W™ & Wé’S(D) and
O™ ¢ W5(Qy,) for some s < 2 [4]. In order to derive a discrete-time adjoint system
like (5.2) in the unconstrained case, we redefine the operators A7}, Az, and A3}
as operators A7} : Wi (D) — WL(D), A% : W' (D) = W—1"(Qy), and Aj
WLT(Qs) — WE7(€y) for r > 3 such that (A5})a (A™)* € LIWH$(Qy), W™Ls(D)),
where s is conjugate to r. Likewise, the functionals /35 and ¢4 have to be redefined as
functionals on W (D) and W17 (Qy), ie., £3 € W™15(D) and €4, € W—1%(Qy). In
more explicit form, the discrete-time adjoint state equations for (DTCOC) read

(Aﬂ)*wm+(Agi)A(A::):®: M—-1>m>1, bt M
(.A22) C) - ly+ )Xo 510
az) o S BT
@]\l é]\l

The optimality system can be solved by a primal-dual active set strategy based on a
Moreau-Yosida approximation of the subdifferentials of the indicator functions which
can be implemented as a semi-smooth Newton method (cf., e.g., [12]).

6. Numerical Results. For the spatial discretization of the optimality system
for the discrete-time optimal control problem (DTOC) and the optimality system
for the discrete-time control and state constrained optimal control problem (DT-
COC) we may use continuous, piecewise linear finite elements with respect to a
shape-regular family of geometrically conforming simplicial triangulations 75 (D) of
the computational domain D which aligns with the partition of D into the subdomains
Q;,1 <4 < 3, in the sense that T, (D) induces geometrically conforming simplicial
triangulations 75, (€;),1 <4 < 3.
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Fic. 6.1. Triangulation of a quarter-tooth of the workpiece.

Following Remark 2.2, an alternative is to use continuous, piecewise linear finite ele-
ments only for the discretization of the trial and test functions ¢, € H}(Q3) in the
weakly regularized magnetic vector potential equations (2.14a),(2.14b) as well as for
the temperature 0, whereas to use the lowest order edge elements of Nédélec’s first
family [20, 21] for the spatial discretization of A;,1 <4 < 3. The numerical results
reported in this section are based on the latter approach applied to the optimality
system for the discrete-time optimal control problem (DTOC) without considering
the convective and radiative heat transfer across 0Q. We have further assumed
e a simplified geometric configuration with the radii r, and r, of the base and
the tip circle of the workpiece given by r, = 18.15 mm, ry = 23.85 mm, the
distance d between the tip circle and the coil by d = 1.15 mm, the radii of
the coil by r; := 25 mm and r, := 33 mm, and the radius rp of the entire
computational domain by rp = 64 mm. The thickness of the workpiece and
the coil has been chosen as 8 mm,
e a high frequency of w; = 100 kH z with a maximum voltage of U; = 100 V and
a medium frequency of wy = 20 kHz with a maximum voltage of Us = 50 V,
e a preheated workpiece with an initial uniform temperature of 8y = 500 °C
and a desired temperature of §; = 800 °C in Q¢ := {z € Qy | dist(x, 0Q2) <
17 mm},
e a total duration of T = 2.0 s of the inductive heating process.
The actual discretization in time has been done using a time step size of §t = 1.25 -
1075 s for the eddy currents equations in ©; and - and a time step size of At =
0.04 s for the heat equation. Consequently, the freezing of the coefficients in the
eddy currents equations in {25 has been done with respect to time intervals of length
At. The eddy currents equations have been iterated until a nearly periodic solution
emerged which has then be used to compute the source term in the heat equation by
time averaging. For discretization in space, we have used a geometrically conforming
triangulation with an average mesh width of h = 0.8 mm for Q; (coil), h = 0.4 mm in
Q4 (fine part of the workpiece), h = 1.5 mm for 2\ Q4 (coarse part of the workpiece),
and h = 4 mum for Qg (air). The triangulation of a quarter-tooth of the workpiece is
displayed in Figure 6.1.
The optimality system for the fully discrete optimal control problem (DTOC) has
been solved by a gradient method with Armijo line search using an initial control
ul® = (u(10>7 uéo))T with all components of the initial high frequency control u§°> set
to 0.1 and all components of the initial medium frequency control uéo) set to 1.0.



18 O. Boyarkin and R.H.W. Hoppe
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F1G. 6.2. Optimal output voltages ui1Uy (high frequency; left) and uaUsz (medium frequency; right).

Figure 6.2 displays the computed optimal output voltages u1U; for the high frequency
(left) and uaUs for the medium frequency (right) at the time instances t,,, = mAt,0 <
m < M = 50. It turns out that it is optimal to use the highest output voltages for the
high frequency at the beginning of the heating process, whereas the highest output
voltages for the medium frequency should be applied towards the end.

In order to provide a documentation of the history of the inductive heating process,
Figure 6.3 shows the temperature distribution in a quarter-tooth of the workpiece at
various stages of the process from the beginning (top left) to the very end (bottom
right). One can clearly recognize the advantages of the optimally controlled dual
frequency method in so far as the desired temperature is almost uniformly achieved
in the prespecified region of interest.
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F1G. 6.3. History of the inductive heating process: Temperature distribution in a quarter-tooth
at t = 0.04 s (top left) , t = 0.80 s (top right), t = 1.40 s (bottom left), and t = 2.00 s (bottom
right).
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