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OPTIMAL CONTROL OF INDUCTIVE HEATING OF
FERROMAGNETIC MATERIALS

O. BOYARKIN∗‡ AND R. H. W. HOPPE∗†§

Abstract. Inductive heating is a technological process where a steel workpiece is surrounded
by an electromagnetic coil to which currents at various frequencies and time-varying amplitudes are
applied. The amplitudes are considered as the controls and the objective is to heat the workpiece
up to a desired temperature profile at the final time of the heating process. The workpiece is then
quenched which due to a phase transition in the crystallographic structure of the steel leads to a
hardening of the surface of the workpiece. For the inductive heating process, the state equations
represent a coupled system of nonlinear partial differential equations consisting of the eddy currents
equations in the coil, the workpiece, and the surrounding air, and a heat equation in the workpiece.
The nonlinearity stems from the temperature dependent nonlinear material laws for steel both with
regard to its electromagnetic and thermal behavior. Following the principle ’Discretize first, then
optimize’, we consider a semi-discretization in time by the implicit Euler scheme which leads to a
discrete-time optimal control problem. We prove the existence of a minimizer for the discrete-time
optimal control problem and derive the first order necessary optimality conditions.

Keywords: optimal control, inductive heating, eddy currents equations, heat
equation

AMS subject classification: 49M05, 65K10, 65M60, 78M10

1. Introduction. Induction heating of mechanical tools made from steel is a
modern processing technology used for surface hardening. The boundary layer of
the tool is rapidly heated up via electromagnetic waves to temperatures above the
Curie temperature where steel undergoes a phase transition. This is followed by
quenching which leads to a change in the crystallographic structure from austenite
to martensite and hence to an increased hardness of the tool in a region close to the
surface. Most contributions in the literature are concerned with numerical simulations
of the inductive heating process (cf., e.g., [2, 5, 6, 9, 13, 14, 17, 18, 19, 22]).

Fig. 1.1. Induction heating at high frequency (left) and medium frequency (right). At
high frequency only the tips of the teeth are heated up, whereas at medium frequency most
heating occurs at the interstitial space between the teeth (cf. region C in the left and right
figure)
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The apparatus consists of a copper made coil around the tool as shown in Figure 1.1.
Applying a voltage at the coil, an electromagnetic field is generated which penetrates
the tool. Electromagnetic energy is converted to Joule heat which primarily happens
in a region close to the surface due to the skin effect. For tools with a somewhat
complicated surface geometry such as a gear, the main goal is to guarantee a uniform
temperature distribution and thus a uniform hardness in the boundary layer. The
penetration depth essentially depends on the distance between the coil and the gear
and on the chosen frequency. Using just one frequency, a uniform temperature distri-
bution cannot be achieved: a high frequency (100 kHz) only leads to a heating of the
tips of the teeth, whereas the heating at a medium frequency (20 kHz) is restricted to
the base of the teeth (cf. Figure 1.1). Therefore, the current technology is based on
the simultaneous feed-in of currents of possibly time-varying amplitudes [23, 26]. It
is the purpose of this paper to study the optimal control of the amplitudes such that
at the final time of the inductive heating a desired temperature profile is achieved in
the workpiece. We note that from an engineering point of view the optimal control
of inductive heating processes has been addressed in [24], whereas a more analytical
oriented treatment can be found in [8], but not for a ferromagnetic material with its
inherent nonlinear material behavior. Here, we consider inductive heating processes
where the computational domain D is a bounded domain in R3 containing the domain
Ω1 occupied by the coil, the domain Ω2 occupied by the steel workpiece, and a domain
Ω3 := D\(Ω̄1∪Ω̄2) which contains the surrounding air. The state equations represent
a system of partial differential equations consisting of the eddy current equations in
D coupled with a heat equation in Ω2.
The paper is organized as follows: Section 2 is devoted to the derivation of the state
equations. In particular, in subsection 2.1 we present the eddy currents equations
based on a generalized Fröhlich’s model for the nonlinear relationship between the
magnetic induction and the magnetic field in ferromagnetic materials, whereas sub-
section 2.2 deals with the heat equation. Based on a semi-discretization in time of the
state equations and a linearization of the nonlinear material behavior, the discrete-
time optimal control problem is stated in section 3. We prove the existence and
uniqueness of a weak solution of the discrete-time state equations, whereas the exis-
tence of an optimal solution of the discrete-time control problem is shown in section 4.
In section 5 we are concerned with the derivation of the associated optimality system
in terms of the discrete-time adjoint system and the discrete-time gradient equation.
Finally, section 6 briefly discusses the spatial discretization by finite elements with
respect to a geometrically conforming simplicial triangulation of the computational
domain and provides a documentation of numerical results.

1.1. Preliminaries. We use standard notations from Lebesgue and Sobolev
space theory [28]. In particular, given a bounded Lipschitz domain Ω ⊂ R3 with
boundary Γ := ∂Ω, we refer to Lp(Ω), 1 ≤ p ≤ ∞, as the Banach spaces of p-th power
integrable functions (p < ∞) and essentially bounded functions (p = ∞) on Ω with
norm ‖ · ‖0,p,Ω, respectively. In case p = 2, the space L2(Ω) is a Hilbert space whose
inner product and norm will be referred to as (·, ·)0,Ω and ‖ · ‖0,Ω. For s ∈ R+, we
denote by W s,p(Ω) the Sobolev spaces with norms ‖ ·‖s,p,Ω and associated seminorms
| · |s,p,Ω. We refer to W s,p

0 (Ω) as the closure of C∞
0 (Ω) in W s,p(Ω). For s < 0, we

denote by W s,p(Ω) the dual space of W−s,q
0 (Ω), p−1 + q−1 = 1. In case p = 2, the

spaces W s,2(Ω) are Hilbert spaces. We will write Hs(Ω) instead of W s,2(Ω) and re-
fer to (·, ·)s,Ω and ‖ · ‖s,Ω as the inner products and associated norms. We denote
by C(Ω) the Banach space of continuous functions and refer to M(Ω) as its dual
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space of regular Borel measures. In case of vector-valued functions, the above func-
tion spaces can be defined analogously and will be denoted in boldface, e.g., L2(Ω)
stands for the Hilbert space of vector-valued functions on Ω with square-integrable
components. In particular, H(curl,Ω) is the Hilbert space of functions q ∈ L2(Ω)
with curl q ∈ L2(Ω), equipped with the graph norm.
Moreover, for T > 0 we consider the space-time domain Q := Ω × (0, T ). Given a
Banach space X , we denote by Lp((0, T ), X), 1 ≤ p ≤ ∞, and C([0, T ], X) the Banach
spaces of functions v : [0, T ] → X . The spaces W s,p((0, T ), X) and Hs((0, T ), X), s ∈
R+, are defined analogously.

2. The Inductive Heating Process. Let D := Br(0) ⊂ R3 be a ball centered
at the origin with radius r > 0 containing a torus Ω1 := Br1(a) × (0, 2π), a :=
(r2, 0, 0)

T , r1 + r2 < r, representing the coil, and a cylindrical domain Ω2 := S ×
(−h/2,+h/2), h > 0, with cross section S centered at the origin such that diam(S) <
r2, representing the steel workpiece. The domain Ω3 := D\(Ω̄1∪Ω̄2) is supposed to be
filled with air. We further refer to ∂D,Γ1 := ∂Ω1, Γ2 := ∂Ω2, and Γ3 := ∂D∪Γ1 ∪Γ2

as the boundary of D, the boundary of Ω1, Ω2, and of Ω3, respectively. We note
that the boundaries ∂D and Γ1 are of class C∞, whereas we assume Γ2 to be of class
C2. Finally, for T > 0 we set Q := D × (0, T ), Qi := Ωi × (0, T ), 1 ≤ i ≤ 3, and
Σ := ∂D × (0, T ),Σi := Γi × (0, T ), 1 ≤ i ≤ 3.

The inductive heating processes can be described by Maxwell’s equations

curl H = J+
∂D

∂t
, curl E = −∂B

∂t
, div B = 0 in Q, (2.1)

coupled with a heat equation

ρ c(θ)
∂θ

∂t
− div (κ(θ)grad θ) = f in Q2. (2.2)

Here, E and H stand for the electric and the magnetic field, B,D, and J refer to the
magnetic flux density, the dielectric displacement, and the current density. Moreover,
θ denotes the temperature, ρ and c(θ), κ(θ) are the mass density and the temperature
dependent heat capacity and thermal conductivity, respectively. Finally, the source
term f in (2.2) stands for the Joule heat.

2.1. The Eddy Currents Equations. In the non-magnetic domains Ω1 (con-
ductor, made from copper) and Ω3 (air), the vector fields Bν ,Hν ,Dν ,Eν , and Jν are
related by the linear material laws

Bν = µν Hν , Dν = εν Eν , Jν = σν Eν , ν ∈ {1, 3}. (2.3)

Here, εν and µν are positive constants denoting the electric permittivity and the
magnetic permeability, whereas σν stand for the electric conductivities which are
positive constants in Ων with σ3 ≪ σ1. The positive constants ξν := µ−1

ν and ρν :=
σ−1
ν , ν ∈ {1, 3}, are referred to as the magnetic susceptibilities and electric resistivities,

respectively.
However, in Ω2 (steel workpiece) there is a temperature dependent nonlinear B−H
relationship. Here, we use the generalized Fröhlich’s model [27]

B2 =
H2

α(θ) + β(θ) |H2|
, (2.4)
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Fig. 2.1. Temperature dependence of the function α and the saturation flux density β in
the generalized Fröhlich’s model.

where the function α(θ) is a monotonically increasing function in θ which approaches
a positive constant ξ2 = µ−1

2 after θ has passed the Curie temperature θC (cf. Figure
2.1 (left)).

Moreover, the saturation flux density β(θ) is a continuous function in θ which
first slightly increases and then monotonically decreases for θ < θC and β(θ) = 0 for
θ ≥ θC with a jump discontinuity of its first derivative at θC (cf. Figure 2.1 (right)).
We use mollified versions of α(θ) and β(θ) in terms of standard Friedrichs’ mollifiers
around θC . Solving for H2, we obtain

H2 = ξ2(θ, |B2|) B2, ξ2(θ, |B2|) =
α(θ)

1− β(θ) |B2|
. (2.5)

We assume that there exist constants 0 < c < C such that

c ≤ ξ2(θ, |B2|) ≤ C, |ξ2,θ(θ, |B2|)| ≤ C, |ξ2,|B2|(θ, |B2|)| ≤ C, (2.6)

over the whole range of the temperature θ and the magnetic induction B2 during the
inductive heating process, where ξ2,θ and ξ2,|B2| stand for the derivatives of ξ2 with
respect to θ and |B2|.

Remark 2.1. An alternative to the generalized Fröhlich’s model (2.5) is a model
suggested by Bristiel [3] which reads

B2 =
2JS
π

(1 − exp((θ − θC)/C) arctan
( (a− 1)πµ2H2

2JS

)
+ µ2H2, (2.7)

where a, C, and JS are suitably chosen parameters.

Fig. 2.2. Temperature dependence of the electric conductivity σ
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Moreover, in Ω2 the conductivity σ2 depends on the temperature θ and represents
a smooth monotonically decreasing positive function σ2(θ) decreasing from approxi-
mately 4.5 · 106 S/m at θ = 0oC to approximately 0.5 · 106 S/m at 1200oC (cf. Figure
2.2). Hence, we may assume

c ≤ σ2(θ) ≤ C. (2.8)

over the whole range of the temperature θ during the inductive heating process.
We use the low frequency approximation of Maxwell’s equations, where the dielectric
fieldD is neglected. We introduce a magnetic vector potentialA and a time integrated
electric scalar potential ϕ according to

B = curl A, E = −∂A
∂t

− grad
∂ϕ

∂t
. (2.9)

Setting Aν := A|Ων , this results in the eddy currents equations

σν
∂Aν

∂t
+ curl (ξνcurl A1) + σν grad

∂ϕ

∂t
= 0 ∈ Q1, (2.10a)

For a theoretical justification of the eddy currents equations we refer to [1]. The time
integrated scalar electric potential is of the form

ϕ(x, t) =





h(x)
t∫
0

(g1(τ) + g2(τ)) dτ in Q1

0 in Q \Q1

. (2.11)

Here, h ∈ C∞
0 (Ω1) and gi(τ) = ui(τ) Ui cos(ωiτ), 1 ≤ i ≤ 2,, where U1, U2 are the

maximum voltage outputs corresponding to the high frequency ω1 and the medium
frequency ω2 and the functions u1(t), u2(t) stand for the fractions of the maximum
power outputs that are used to control the induction heating process.
For σ3 = 0 we note that (2.10a) is not well defined in Ω3 due to the nontrivial kernel
of the curl operator. We impose a Coulomb gauge

div Aν = 0 in Qν , 1 ≤ ν ≤ 3, (2.12)

for all equations (2.10). Using (2.11) and (2.12) in (2.10) and setting

u(t) = (u1(t), u2(t))
T , ψ(t) = (ψ1(t), ψ2(t))

T , ψi(t) := Uicos(ωiτ), 1 ≤ i ≤ 2,

and j := −grad h, we obtain

σν
∂Aν

∂t
+ curl (ξνcurl A1)− grad div Aν = δν1 u(t) ·ψ(t) j in Qν . (2.13a)

The eddy currents equations (2.13a) have to be complemented by a boundary condi-
tion on Σ

A3 = 0 on Σ, (2.13b)

transmission conditions on Σi, 1 ≤ i ≤ 2,

A|Ωi∩Γi
∧ n

Γi
= −A|Ω3∩Γ3

∧ n
Γi

n
Γi

∧ (ξi curl A|Ωi∩Γi
∧ n

Γi
) = n

Γ3
∧ (ξ3 curl A|Ω3∩Γ3

∧ n
Γ3
)

n
Γi

·A|Ωi∩Γi
= −n

Γ3
·A|Ωi∩Γ3

, (2.13c)
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and an initial condition at t = 0

A(·, 0) = 0 in D. (2.13d)

Remark 2.2. Instead of imposing the Coulomb gauge throughout the entire com-
putational domain, it suffices to enforce it weakly only in the subdomain Ω3, i.e.,
we are looking for a pair (A3, ϕ3) ∈ H0,∂D(curl,Ω3) × H1

0 (Ω3) such that for all
q ∈ H0,∂D(curl,Ω3) and all ψ ∈ H1

0 (Ω3) it holds

(ξ3 curl A3, curl q)0,Ω3 + (q,grad ϕ3)0,Ω3 = ℓ3(q), (2.14a)

(A3,grad ψ)0,Ω3 = 0, (2.14b)

where the right-hand side ℓ3(q) in (2.14a) is given in terms of the second transmission
condition in (2.13c) and thus provides the coupling with the eddy current equations in
Ω1 and Ω2.

2.2. The Heat Equation. The specific heat capacity q(θ) := ρ c(θ) in (2.2)
is a monotonically increasing function for θ < θC and θ > θC , but exhibits a jump
discontinuity approximately at the Curie temperature θC (cf. Figure 2.3 (left)). We
use a mollified heat capacity in terms of a standard Friedrichs-type mollifier such that
q(θ) = ρ c(θ) becomes a smooth function in θ satisfying

c ≤ q(θ) ≤ C (2.15)

over the range of the temperature during the inductive heating process. The thermal
conductivity κ depends on θ as well and represents a continuous function that is
monotonically decreasing from approximately 43W/(mK) at room temperature to
27W/(mK) at the Curie temperature and then moderately increasing to 30W/(mK)
at 1200oC (cf. Figure 2.3 (right)). We also smooth out the discontinuity of the
derivative of κ(θ) at θC such that κ(θ) becomes a smooth function, and we assume

c ≤ κ(θ) ≤ C. (2.16)

Fig. 2.3. Temperature dependence of the specific heat capacity q = ρ c (left) and of the
thermal conductivity κ (right)

Moreover, the source f in (2.2) (Joule heat) is given by

f(A2) := σ2 |∂A2

∂t
|2. (2.17)
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The heat equation takes the form:

q(θ)
∂θ

∂t
− div (κ(θ)grad θ) = f(A2) in Q2. (2.18a)

It is complemented by the Robin-type boundary condition

nΓ2
· κ(θ)grad θ + hs (θ − θa)

γ + σSB ε (|θ|3 θ − θ4a) = 0 on Σ2, (2.18b)

and by the initial condition

θ(·, 0) = θ0 in Ω2. (2.18c)

We note that (2.18b) takes into account heat losses by convective and radiation heat
transfer. Here, hs is the convection surface heat transfer coefficient, σSB is the Stefan-
Boltzmann constant, ε denotes the emissivity of the surface, and θa stands for the
ambient temperature. For a steel/open air surface, we typically have hs ≈ 1.54,
γ ≈ 1.33 and ε is varying between 0.03 and 0.7 depending on the properties of the
surface [7]. The ambient temperature θa and the initial temperature θ0 are supposed
to be positive constants.

3. The Optimal Control Problem.

3.1. The Discrete-Time Optimal Control Problem. We consider a parti-
tion TT := {0 =: t0 < t1 < · · · < tM := T } of the time interval [0, T ] into subintervals
[tm−1, tm], 1 ≤ m ≤ M, of length ∆t := T/M,M ∈ N. The controls are vectors
um ∈ R2 at the time instants tm, 1 ≤ m ≤M , of the partition TT . We denote by Am

and θm approximations of A and θ at t = tm, 1 ≤ m ≤ M . We linearize the state
equations by ’freezing’ the coefficients σ, ξ in the eddy currents equations (2.13) and
the coefficients q, κ in the heat equation (2.18) and by linearizing the convective and
radiative heat transfer in (2.18b).
To this end, we define |B̃m−1

2 | and θ̃m−1 as the average of |Bm−1
2 | and θm−1 over Ω2.

Moreover, θ̃m−1
s refers to the average of θm−1 over Σ32:

|B̃m−1
2 | := |Ω2|−1

∫

Ω2

|B2| dx, (3.1)

θ̃m−1 := |Ω2|−1

∫

Ω2

θm−1 dx,

θ̃m−1
s := |Σ32|−1

∫

Σ32

θm−1 dσ,

In terms of these quantities we define:

σ̃m−1
2 := σ2(θ̃

m−1), ξ̃m−1
2 := ξ2(θ̃

m−1, |B̃m−1
2 ), (3.2a)

q̃m−1 := q′(θ̃m−1), κ̃m−1 := κ(θ̃m−1). (3.2b)

Remark 3.1. We note that another linearization of the nonlinear B-H relation-
ship based on Fröhlich’s model has been suggested in [16].
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The nonlinear terms from the convective and radiative heat transfer in (2.18b) are
linearized according to:

hs(θ
m − θa)

γ ≈ hs(θ̃
m−1
s − θa)

γ + γhs(θ̃
m−1
s − θa)

γ−1(θm − θ̃m−1
s ), (3.3a)

σSBε(|θm|3θm − θ4a) ≈ (3.3b)

σSBε(|θ̃m−1
s |3θ̃m−1

s − θ4a) + 4σSBε(|θ̃m−1
s |2θ̃m−1

s )(θm − θ̃m−1
s ).

For ease of notation we set

g̃m−1
c := γhs(θ̃

m−1
s − θa)

γ−1, g̃m−1
r := 4σSBε(|θ̃m−1

s |2θ̃m−1
s ),

g̃m−1
T := g̃m−1

c + g̃m−1
r ,

h̃m−1
c := hs(θ̃

m−1
s − θa)

γ , h̃m−1
r := σSBε(|θ̃m−1

s |3θ̃m−1
s − θ4a),

h̃m−1
T := (g̃m−1

c + g̃m−1
r )θ̃m−1

s − h̃m−1
c − h̃m−1

r .

We may assume

c ≤ g̃m−1
T ≤ C for all 1 ≤ m ≤M, (3.4)

since we will have θ̃m−1
s ≥ θa due to the inductive heating process.

The boundary value problem for the time discretized eddy currents equation reads

σ̃m−1 Am −Am−1

∆t
+ curl(ξ̃m−1 curl Am) −

grad(ξ̃m−1 div Am) = χ
Ω1

j um · ψm in D, (3.5a)

Am|Ωi∩Γi
∧ n

Γi
= −Am|Ω3∩Γ3

∧ n
Γi

(3.5b)

n
Γi

∧ (ξ̃m−1
i curl Am|Ωi∩Γi

∧ n
Γi
) = n

Γ3
∧ (ξ̃m−1

3 curl Am|Ω3∩Γ3
∧ n

Γ3
),

n
Γi

· ξ̃m−1
i Am|Ωi∩Γi

= −n
Γ3

· ξ̃m−1
3 Am|Ωi∩Γ3

, 1 ≤ i ≤ 2,

Am = 0 on ∂D, (3.5c)

where ψm = (ψm
1 , ψ

m
2 )T , ψm

i := (∆t)−1
∫ tm
tm−1

cos(ωit)dt, 1 ≤ i ≤ 2.

Likewise, the boundary value problem for the time discretized heat equation takes the
form

q̃m−1 θ
m − θm−1

∆t
− div(κ̃m−1 grad θm) = σ̃m−1

2 |A
m −Am−1

∆t
|2 in Ω2, (3.6a)

n
Γ2

· κ̃m−1 grad θm + g̃m−1
T θm = h̃m−1

T on Γ2. (3.6b)

Setting V := H1
0(D)M , V := H1(Ω2)

M , the discrete-time state space is given by Y :=
V×V . The discrete-time state y ∈ Y reads y = (A, θ) withA = (A0, · · · ,AM )T ,A0 =
0,Am ∈ H1

0(D), 1 ≤ m ≤M, and θ = (θ0, · · · , θM )T , θ0 = θ0, θ
m ∈ H1(Ω2), 1 ≤ m ≤

M . Moreover, U := R2M stands for the control space with controls u ∈ U of the
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form u = (u1, · · · ,uM )T ,um = (um1 , u
m
2 )T ∈ R2, 1 ≤ m ≤M .

The discrete-time optimal control problem for the inductive heating process is then
given by:

(DTOC) inf
(y,u)

J1(y) + J2(u), J1(y) :=
1

2
‖θM − θd‖20,Ωd

2
, J2(u) :=

α

2

M∑

m=1

|um|2,

subject to the state equations (3.5),(3.6),

where Ωd
2 ⊂ Ω2 is a subdomain of Ω2 around the surface ∂Ω2 where a desired tem-

perature distribution θd is prescribed and α > 0 is a regularization parameter.
We will briefly address the case of control constraints u ∈ Ku where

Ku := {u ∈ R2M | 0 ≤ umi ≤ umax
i , 1 ≤ i ≤ 2, 1 ≤ m ≤M} (3.7)

with given constants umax
i > 0, 1 ≤ i ≤ 2, and state constraints Ky := KA × Kθ

where

KA := {A | |Am| ≤ Amax, 1 ≤ m ≤M}, (3.8)

Kθ := {θ | 0 ≤ θm ≤ θmax, 1 ≤ m ≤M}

with given constants Amax > 0, θmax > 0.
In the presence of control and state constraints the discrete-time optimal control
problem reads

(DTCOC) inf
y∈Ky,u∈Ku

J1(y),

subject to the state equations (3.5),(3.6),

3.2. Existence, Uniqueness, and Regularity of a Weak Solution of the
Discrete-Time State Equations. The weak form of the discrete-time state equa-
tions can be written in terms of a map e : V × V → V∗ × V ∗ × L2(D) × L2(Ω2)
according to

e(y,u) =




Am
11A

m −Bmum − ℓ1(Z)
Am

21(A
m) +Am

22θ
m − ℓ2(z)

, 1 ≤ m ≤M,

A0 −A0

θ0 − θ0


 = 0. (3.9)

Here, Am
11 : V → V∗ and Am

22 : V → V ∗ are the linear operators

〈Am
11A,Z〉 := (σ̃m−1A,Z)0,D +∆t (ξ̃m−1 curl A, curl Z)0,D +

∆t (ξ̃m−1 div A, div Z)0,D, Z ∈ V, (3.10a)

〈Am
22θ, z〉 := (q̃m−1θ, z)0,Ω2 +∆t (κ̃m−1 grad θ,grad z)0,Ω2 +

(g̃m−1
T θ, z)0,Σ32 , z ∈ V, (3.10b)

Am
21 : V → V ∗ is the nonlinear operator

〈Am
21(A), z〉 := −(σ̃m−1(∆t)−1 |A−Am−1|2, z)0,Ω2 , z ∈ V, (3.11)

Bm : R2M → L2(D) is the linear operator

(Bm(u),Z)0,D := ∆t (χ
Ω1

um ·ψm j,Z)0,D, Z ∈ V, (3.12)
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and the linear functionals ℓ1 : V → R and ℓ2 : V → R are given by

ℓ1(Z) := (σ̃m−1Am−1,Z)0,D, (3.13a)

ℓ2(z) := −∆t (h̃m−1
T , z)0,Γ23 + (q̃m−1θm−1, z)0,Ω2 . (3.13b)

In particular, for a given control um, a pair (Am, θm) ∈ V × V is said to be a weak
solution of (3.5) and (3.6), if it satisfies

Am
11A

m = Bmum + ℓ1, (3.14a)

Am
21(A

m) +Am
22θ

m = ℓ2. (3.14b)

The following result establishes the existence and uniqueness of a weak solution.

Theorem 3.2. Under the assumptions on the data of the problem, for all 1 ≤
m ≤ M there exists a unique weak solution (Am, θm) ∈ V × V of (3.5) and (3.6)
which satisfies the energy estimates

‖curl Am‖20,D + ‖div Am‖20,D + ‖Am‖20,D ≤ (3.15a)

C
(
|um|2 |ψm|2 ‖j‖20,Ω1

+ ‖Am−1‖20,D
)
,

‖grad θm‖20,Ω2
+ ‖θm‖20,Ω2

≤ (3.15b)

C
(
‖|Am −Am−1|2‖20,Ω2

+ |h̃m−1
T |2 + ‖θm−1‖20,Ω2

)
.

Proof. We note that (3.14) represents a staggered system, i.e., once (3.14a) has
been solved, Am

21(A
m) is known and can be shifted to the right-hand side in (3.14b).

Therefore, it suffices to show that the linear operators Am
11 and Am

22 are elliptic on V
and V , respectively.
Observing (2.6),(2.8), it follows that the operatorAm

11 is elliptic onV, i.e., there exists
a constant γ1 > 0 such that

〈Am
11A

m,Am〉 ≥ γ1

(
‖curl Am‖20,D + ‖div Am‖20,D + ‖Am‖20,D

)
for all Am ∈ V.

(3.16)

Since the functional ℓ1 is bounded on V, the Lax-Milgram lemma guarantees the
existence and uniqueness of a weak solution of (3.5). The energy estimate (3.15a)
can be easily derived from (3.16) and a straightforward estimation of ℓ1(A) using
Young’s inequality. Likewise, taking (2.15),(2.16), and (3.4) into account, we deduce
the ellipticity of the operator Am

22 on V , i.e., for some constant γ2 > 0 it holds

〈Am
22θ

m, θm〉 ≥ γ2

(
‖grad θm‖20,Ω2

+ ‖θm‖20,Ω2

)
for all θm ∈ V. (3.17)

Since we already know that Am ∈ V, 1 ≤ m ≤ M,, due to the Sobolev embedding
theorem Am −Am−1 ∈ L4(D), and hence, both functionals 〈Am

21(A), ·〉 and ℓ2(·) are
bounded on V . Again, the Lax-Milgram lemma asserts the existence and uniqueness
of a weak solution of (3.6), and the energy estimate (3.15b) follows from (3.17) and
straightforward estimation of the right-hand side.

We next show that the weak solutions Am and θm, 1 ≤ m ≤ M, enjoy 2-regularity
which will be important to prove the existence of an optimal control.
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Theorem 3.3. Under the assumptions on the data of the problem, for all 1 ≤
m ≤ M the unique weak solutions of (3.5) and (3.6) satisfy Am ∈ H2(D) ∩H1

0(D)
and θm ∈ H2(Ω2). In particular, we have the energy estimates

‖curl2 Am‖20,D + ‖grad div Am‖20,D + ‖curl Am‖20,D + ‖div Am‖20,D ≤ (3.18a)

C
(
|um|2 |ψm|2 ‖div j‖20,Ω1

+ ‖curl Am−1‖20,D + ‖div Am−1‖20,D
)
,

‖∆ θm‖20,Ω2
+ ‖grad θm‖20,Ω2

≤ (3.18b)

C
(
‖Am‖41,Ω2

+ ‖Am‖22,Ω2
+ ‖Am−1‖41,Ω2

+ ‖Am−1‖22,Ω2
+ ‖θm‖41,Ω2

+ ‖θm−1‖21,Ω2

)
.

Proof. The proof will be split into two parts. We will first establish 2-regularity
of Am and then that of θm.

(i) We approximate Am according to

Am
n :=

n∑

i=1

ami ϕi, n ∈ N,

by a finite sum of eigenfunctions ϕi ∈ C∞
0 (D), 1 ≤ i ≤ n, of the eigenvalue problem

−∆ Z = curl2 Z− grad div Z = λ Z in D,

Z = 0 on ∂D.

which has a countable number of increasing positive eigenvalues λi, i ∈ N, with as-
sociated L2-orthonormal eigenfunctions. This results in an algebraic system in the
unknown coefficients ami , 1 ≤ i ≤ n:

n∑

j=1

amj

(
(σ̃m−1ϕj ,ϕi)0,D +∆t (ξ̃m−1curl ϕj , curl ϕi)0,D + (3.19)

∆t (ξ̃m−1div ϕj, div ϕi)0,D

)
= ∆t (um · ψm j,ϕi)0,Ω1 + (σ̃m−1Am−1,ϕi)0,D,

which has a unique solution. We multiply (3.19) by λi, use −∆ψi = λiψi, integrate
by parts, then multiply by ami , sum over all 1 ≤ i ≤ n, and finally pass to the limit
n→ ∞ to obtain

(σ̃m−1curl Am, curl Am)0,D + (σ̃m−1div Am, div Am)0,D + (3.20)

∆t (ξ̃m−1curl2 Am, curl2 Am)0,D +∆t (ξ̃m−1grad div Am,grad div Am)0,D =

∆t (um ·ψm div j, div Am)0,Ω1 + (σ̃m−1curl Am−1, curl Am)0,D +

(σ̃m−1div Am−1, div Am)0,D,

where we have used curl j = 0 due to j = −grad h.
The left-hand side in (3.19) can be estimated from below in view of (2.6),(2.8), whereas
the right-hand side can be estimated from above by the Cauchy-Schwarz and Young’s
inequality, which gives rise to (3.18a) and shows Am ∈ H2(D) ∩H1

0(D).

(ii) We proceed in the same way for θm, but this time approximate by a finite number
of eigenfunctions ϕi ∈ C∞(Ω2) of the eigenvalue problem

−∆ z = λ z in Ω2,

n · grad z + z = 0 on Γ23.
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This leads to

(q̃m−1grad θm,grad θm)0,D +∆t (κ̃m−1grad div θm,grad div θm)0,D + (3.21)

∆t(g̃m−1
T gradθm,gradθm)0,Γ23 = (∆t)−1(σ̃m−1grad(|Am −Am−1|2),gradθm)0,Ω2

+ (q̃m−1grad θm−1,grad θm−1)0,Ω2 .

In view of (2.15),(2.16),(3.4), the left-hand side in (3.21) can be bounded from below
by a constant times the left-hand side in the energy estimate (3.18b). The estimation
of the right-hand side is a bit more elaborated. We have

grad(|Am −Am−1|2 = grad(Am ·Am − 2Am ·Am−1 +Am−1 ·Am−1). (3.22)

Taking into account that

grad W1 ·W2 =

(W1 · grad) W2 + (W2 · grad) W1 +W1 ∧ curl W2 +W2 ∧ curl W1,

by an application of Hölder’s inequality we find

|
∫

Ω2

(Am · grad) Am · grad θm dx| = (3.23)

|
∫

Ω2

Am · (∇TAm grad θm) dx| ≤ ‖Am‖0,4,Ω2 ‖Am‖1,4,Ω2 ‖θm‖1,2,Ω2 .

By the Sobolev embedding theorem, H1(Ω2) and H2(Ω2) are continuously embedded
in L4(Ω2) and W1,4(Ω2), whence

‖Am‖0,4,Ω2 ‖Am‖1,4,Ω2 ‖θm‖1,2,Ω2 ≤ C ‖Am‖1,Ω2 |θm‖1,Ω2 ‖Am‖2,Ω2 . (3.24)

Now, applying the generalized Young inequality

3∏

i=1

ai ≤ C (a
1/p1

1 + a
1/p2

2 + a
1/p3

3 ),

3∑

i=1

pi = 1,

with p1 = p2 = 1/4 and p3 = 1/2, (3.24) implies

‖Am‖1,Ω2 ‖θm‖1,Ω2 ‖Am‖2,Ω2 ≤ C (‖Am‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am‖22,Ω2
),

such that from (3.23) we deduce

|
∫

Ω2

(Am · grad) Am · grad θm dx| ≤ C(‖Am‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am‖22,Ω2
). (3.25)
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Likewise, we obtain the upper bounds

|
∫

Ω2

(Am ∧ curl Am · grad θm dx| ≤ C(‖Am‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am‖22,Ω2
),

|
∫

Ω2

(Am−1 · grad) Am · grad θm dx| ≤ C(‖Am−1‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am‖22,Ω2
),

|
∫

Ω2

(Am−1 ∧ curl Am · grad em dx| ≤ C(‖Am−1‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am‖22,Ω2
),

|
∫

Ω2

(Am · grad) Am−1 · grad em dx| ≤ C(‖Am‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am−1‖22,Ω2
),

|
∫

Ω2

(Am ∧ curl Am−1 · grad em dx| ≤ C(‖Am‖41,Ω2
+ ‖θm‖41,Ω2

+ ‖Am−1‖22,Ω2
).

Summarizing the preceding estimates and (3.25), for the first term on the right-hand
side in (3.21) it follows that

|(∆t)−1(σ̃m−1grad(|Am −Am−1|2),grad θm)0,Ω2 | ≤ (3.26)

C (‖Am‖41,Ω2
+ ‖Am‖22,Ω2

+ ‖Am−1‖41,Ω2
+ ‖Am−1‖22,Ω2

+ ‖θm‖41,Ω2
).

For the second term on the right-hand side in (3.21) we obtain

|(q̃m−1grad θm−1,grad θm−1)0,Ω2 | ≤ C ‖θm−1‖21,Ω2
. (3.27)

Combining (3.26),(3.27) we deduce the upper bound in (3.18b) which shows that
θm ∈ H2(Ω2).

4. Existence of a Solution of the Discrete-Time Optimal Control Prob-
lem. The preceding subsection provided all prerequisites to prove the existence of a
solution of the discrete-time optimal control problem (DTOC).

Theorem 4.1. Under the assumptions on the data of the problem, the discrete-
time optimal control problem (DTOC) has a solution.

Proof. We denote by S : RM → V× V the control-to-state map which assigns to
a control vector u = (u1, · · · ,uM )T the unique weak solutions Am ∈ V, θm ∈ V, 1 ≤
m ≤ M, of the state equations (3.5),(3.6). Then, the control-reduced formulation of
(DTOC) reads

inf
u

Ĵ(u), Ĵ(u) := J1(S(u)) + J2(u). (4.1)

Let {un}N,un = (u1,n, · · · ,uM,n)T ∈ R2M , n ∈ N, be a minimizing sequence. Due to
the coerciveness of the objective functional in u, the minimizing sequence is bounded
and hence, there exist a subsequence N′ ⊂ N and a vector u∗ ∈ R2M such that un →
u∗(N′ ∋ n → ∞). Since the objective functional is lower semicontinuous, it follows
that u∗ is a minimizer. Let now yn = S(un) with yn = (An, θn) ∈ V × V, n ∈ N′,
where An = (A0,n, · · · ,AM,n)T ,A0,n = 0 and Am,n ∈ H1

0(D), 1 ≤ m ≤ M, and
θn = (θ0,n, · · · , θM,n)T , θ0,n = θ0, and θm,n ∈ H1(Ω2), 1 ≤ m ≤ M, are the unique
weak solutions of the state equations (3.5),(3.6) for the control un ∈ R2M . It follows
from the results of section 3 that for each 1 ≤ m ≤M the sequences {Am,n}n∈N′ and
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{θm,n}n∈N′ are bounded in H2(D) ∩H1
0(D) and H2(Ω2), respectively. Consequently,

there exist another subsequence N′′ ⊂ N′ and functions Am,∗ ∈ H2(D) ∩H1
0(D) and

θm,∗ ∈ H2(Ω2) such that Am,n ⇀ Am,∗ in H2(D) ∩ H1
0(D) and θm,n ⇀ θm,∗ in

H2(Ω2) for N′′ ∋ n → ∞. Due to the Rellich-Kondrachov embedding theorems, we
haveAm,n → Am,∗ in H1

0(D) and θm,n → θm,∗ in H1(Ω2). This implies as well strong
convergence of the averages |B̃m−1,n

2 |, θ̃m−1,n, θ̃m−1,n
s , and thus strong convergence of

the coefficients σ̃m−1,n
2 , ξ̃m−1,n

2 , q̃m−1,n, κ̃m−1,n, and of g̃m−1,n
T , h̃m−1,n

T . Passing to the
limit in the equations satisfied by Am,n and θm,n, it follows that the pair (A∗, θ∗) is
the unique weak solution the state equations (3.5),(3.6) for the control u∗ ∈ U, i.e.,
y∗ = S(u∗).

Likewise, we can prove the existence of a solution in case of the control and state
constrained discrete-time optimal control problem (DTCOC:

Theorem 4.2. In addition to the assumptions of Theorem 4.1 suppose that

S(Ku) ⊂ Ky, (4.2)

which can be guaranteed by a proper choice of Amax and θmax. Then, the control and
state constrained discrete-time optimal control problem (DTCOC) has a solution.

Proof. The proof follows the same pattern as the proof of Theorem 4.1. The
minimizing sequence {un}N is bounded due to un ∈ Ku, n ∈ N and hence, there exist
a subsequence N′ ⊂ N and a vector u∗ ∈ R2M such that un → u∗(N′ ∋ n → ∞).
Since Ku is closed, we have u∗ ∈ Ku. The rest of the proof is the same as before,
and at the end we deduce y∗ = (A∗, θ∗) ∈ Ky due to (4.2).

5. The Discrete-Time Optimality System. The optimality conditions in-
voke an adjoint state

p = (W,Θ) with W := (W0, · · · ,WM ),Wm ∈ V, 0 ≤ m ≤M, and

Θ := (Θ0, · · · ,ΘM ) with Θm ∈ V, 0 ≤ m ≤M − 1, ΘM ∈ L2(Ω2).

In terms of the map e := Y ×U → Y∗ × L2(D)× L2(Ω2), we have [29]

ey(y,u)
∗p = Jy(y,u), (5.1a)

eu(y,u)
∗p+ Ju(y,u) = 0, (5.1b)

where ey(y,u)
∗ and eu(y,u)

∗ stand for the adjoints of the Fréchet derivatives of e
with respect to y and u at (y,u) and Jy(y,u), Ju(y,u) are the partial Gâteaux
derivatives of the objective functional with respect to y and u at (y,u).
The discrete-time adjoint state equations (5.1a) read




Am
11W

m + (Am
21)A(Am)∗Θm

Am
22Θ

m ,M − 1 ≥ m ≥ 1,

WM

ΘM


 =




ℓ3
ℓ4
0

Θ̃M


 . (5.2)

Here, Θ̃M = θd − θM in Ωd
2 and Θ̃M = 0 in Ω2 \ Ω̄d

2. Moreover, (Am
21)A(Am)∗ is the

adjoint of the Fréchet derivative of Am
21 with respect to A at Am

〈(Am
21)A(Am)∗Θm,Z〉 = −2 (∆t)−1 (σ̃m−1

2 Θm (Am −Am−1),Z)0,Ω2 ,

and the functionals ℓ3 : V → R and ℓ4 : V → R are given by

ℓ3(Z) := (σ̃mWm+1,Z)0,D, ℓ4(z) := (q̃mΘm+1, z)0,Ω2 .
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In view of J2 in (DTOC) and (3.9), the optimality condition (5.1b) takes the form

ψm
i (j,Wm)0,Ω1 + αumi = 0, 1 ≤ i ≤ 2. (5.3)

We have thus established the optimality system for the discrete-time optimal control
problem (DTOC):

Theorem 5.1. Let (y,u) ∈ Y × U with y = (A, θ) ∈ V × V and u ∈ U be
a solution of the discrete-time optimal control problem (DTOC). Then, there exists
an optimal discrete-time adjoint state p ∈ Y with p = (W,Θ) ∈ V × V such that
the triple (y,p,u) satisfies the discrete-time state equations (3.9), the discrete-time
adjoint equations (5.2), and the gradient equation (5.3).

The discrete-time adjoint state equations (5.2) are solved backward in time from m =
M−1 to m = 1. They represent a staggered system such that for eachM−1 ≥ m ≥ 1
the equation for the discrete-time adjoint temperature Θm is solved first followed by
the equation for the discrete-time adjoint magnetic vector potential Wm.

Remark 5.2. Rewriting (5.2) in the strong form

−
(
σ̃m−1 Wm+1 −Wm

∆t
+
σ̃m − σ̃m−1

∆t
Wm

)
+ curl(ξ̃m−1 curl Wm) −

grad(ξ̃m−1 div Wm) = 2χ
Ω2

(∆t)−2 (σ̃m−1
2 Θm (Am −Am−1) in D, (5.4a)

Wm|Ωi∩Γi
∧ n

Γi
= −Wm|Ω3∩Γ3

∧ n
Γi

(5.4b)

n
Γi3

∧ (ξ̃m−1
i curl Wm|Ωi∩Γi3

∧ n
Γi3

) = n
Γ3i

∧ (ξ̃m−1
3 curl Wm|Ω3∩Γ3i

∧ n
Γ3i

),

n
Γi3

· ξ̃m−1
i Wm|Ωi∩Γi3

= −n
Γ3i

· ξ̃m−1
3 Wm|Ωi∩Γ3i

, 1 ≤ i ≤ 2,

Wm = 0 on ∂D, (5.4c)

and

−
(
q̃m

Θm+1 −Θm

∆t
+
q̃m − q̃m−1

∆t
Θm

)
− div(κ̃m−1 grad Θm) = 0 in Ω2, (5.5a)

nΓ23
· κ̃m−1 grad Θm + g̃m−1

T Θm = 0 on Γ23,

(5.5b)

where WM = 0 and ΘM = Θ̃M , it can be interpreted as the time-discretized version
of a backward in time eddy currents equation and a backward in time heat equation.

Remark 5.3. The optimality system of the discrete-time optimal control problem
(DTOC) can be solved by the gradient method. Starting from an initial control u0, we
first solve the discrete-time state equations (3.9), followed by the discrete-time adjoint
state equations (5.2), and then update the control via (5.3) combined with an Armijo
line search (cf., e.g., [15]).

Let us briefly present the optimality system in case of the control and state constrained
discrete-time optimal control problem (DTCOC). Denoting by IKu , IKy the indicator



16 O. Boyarkin and R.H.W. Hoppe

functions of the set Ku of control constraints and of the set Ky of state constraints,
the unconstrained control reduced form of (DTCOC) is given by

inf
u

J1(S(u)) + IKu(u) + IKy (Su). (5.6)

The optimality condition for (5.6) reads

0 ∈ Su(u)
∗J1,y(S(u)) + ∂(IKy ◦ S)(u) + ∂IKu(u), (5.7)

where Su(u) ∈ L(U,Y) is the Fréchet derivative of S at u and ∂(IKy ◦S)(u), ∂IKu(u)
are the subdifferentials of the indicator functions of IKy ◦S and of IKu at u. Since the
states A = (A1, · · · ,AM )T and θ = (θ1, · · · , θM )T are continuous due to Theorem
3.3 and S(ū) = (0, θ0) ∈ int(Ky) for ū = 0, the control ū = 0 is a Slater point and
hence, it holds (cf., e.g., [10]):

∂(IKy ◦ S)(u) = Su(u)
∗∂IKy (S(u)). (5.8)

We note that ∂IKA(A) ⊂ 2M(D),M(D) = C(D)∗, and ∂IKθ
(θ) ⊂ 2M(Ω2),M(Ω2) =

C(Ω2)
∗. Hence, there exist a vector-valued regular Borel measure λ1 ∈ M(D),

a regular Borel measure λ2 ∈ M(Ω2), and µ ∈ IKu(u) ⊂ 2R
2M

such that with
λ = (λ1, λ2) the optimality system for (DTCOC) can be written as

ey(y,u)
∗p = J1,y(y) + λ, (5.9a)

eu(y,u)
∗p+ µ = 0. (5.9b)

Since the Borel measures occur on the right-hand side of the discrete-time adjoint
system, we cannot expect p = (W,Θ) ∈ V × V , but rather Wm ∈ W1,s

0 (D) and
Θm ∈ W 1,s(Ω2) for some s < 2 [4]. In order to derive a discrete-time adjoint system
like (5.2) in the unconstrained case, we redefine the operators Am

11,A21, and Am
22

as operators Am
11 : W1,r

0 (D) → W−1,r(D), Am
21 : W1,r

0 (D) → W−1,r(Ω2), and Am
22 :

W 1,r(Ω2) →W−1,r(Ω2) for r > 3 such that (Am
21)A(Am)∗ ∈ L(W 1,s(Ω2),W

−1,s(D)),
where s is conjugate to r. Likewise, the functionals ℓ3 and ℓ4 have to be redefined as
functionals on W1,r

0 (D) and W 1,r(Ω2), i.e., ℓ3 ∈ W−1,s(D) and ℓ4 ∈ W−1,s(Ω2). In
more explicit form, the discrete-time adjoint state equations for (DTCOC) read




(Am
11)

∗Wm + (Am
21)A(Am)∗Θm

(Am
22)

∗Θm ,M − 1 ≥ m ≥ 1,

WM

ΘM


 =




ℓ3 + λ1

ℓ4 + λ2
0

Θ̃M


 . (5.10)

The optimality system can be solved by a primal-dual active set strategy based on a
Moreau-Yosida approximation of the subdifferentials of the indicator functions which
can be implemented as a semi-smooth Newton method (cf., e.g., [12]).

6. Numerical Results. For the spatial discretization of the optimality system
for the discrete-time optimal control problem (DTOC) and the optimality system
for the discrete-time control and state constrained optimal control problem (DT-
COC) we may use continuous, piecewise linear finite elements with respect to a
shape-regular family of geometrically conforming simplicial triangulations Th(D) of
the computational domainD which aligns with the partition ofD into the subdomains
Ωi, 1 ≤ i ≤ 3, in the sense that Th(D) induces geometrically conforming simplicial
triangulations Th(Ωi), 1 ≤ i ≤ 3.
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Fig. 6.1. Triangulation of a quarter-tooth of the workpiece.

Following Remark 2.2, an alternative is to use continuous, piecewise linear finite ele-
ments only for the discretization of the trial and test functions ϕ, ψ ∈ H1

0 (Ω3) in the
weakly regularized magnetic vector potential equations (2.14a),(2.14b) as well as for
the temperature θ, whereas to use the lowest order edge elements of Nédélec’s first
family [20, 21] for the spatial discretization of Ai, 1 ≤ i ≤ 3. The numerical results
reported in this section are based on the latter approach applied to the optimality
system for the discrete-time optimal control problem (DTOC) without considering
the convective and radiative heat transfer across ∂Ω2. We have further assumed

• a simplified geometric configuration with the radii rb and rt of the base and
the tip circle of the workpiece given by rb = 18.15 mm, rt = 23.85 mm, the
distance d between the tip circle and the coil by d = 1.15 mm, the radii of
the coil by ri := 25 mm and ro := 33 mm, and the radius rD of the entire
computational domain by rD = 64 mm. The thickness of the workpiece and
the coil has been chosen as 8 mm,

• a high frequency of ω1 = 100 kHz with a maximum voltage of U1 = 100 V and
a medium frequency of ω2 = 20 kHz with a maximum voltage of U2 = 50 V ,

• a preheated workpiece with an initial uniform temperature of θ0 = 500 oC
and a desired temperature of θd = 800 oC in Ωd

2 := {x ∈ Ω2 | dist(x, ∂Ω2) <
17 mm},

• a total duration of T = 2.0 s of the inductive heating process.

The actual discretization in time has been done using a time step size of δt = 1.25 ·
10−6 s for the eddy currents equations in Ω1 and Ω2 and a time step size of ∆t =
0.04 s for the heat equation. Consequently, the freezing of the coefficients in the
eddy currents equations in Ω2 has been done with respect to time intervals of length
∆t. The eddy currents equations have been iterated until a nearly periodic solution
emerged which has then be used to compute the source term in the heat equation by
time averaging. For discretization in space, we have used a geometrically conforming
triangulation with an average mesh width of h = 0.8 mm for Ω1 (coil), h = 0.4 mm in
Ωd

2 (fine part of the workpiece), h = 1.5mm for Ω2\Ωd
2 (coarse part of the workpiece),

and h = 4 mm for Ω3 (air). The triangulation of a quarter-tooth of the workpiece is
displayed in Figure 6.1.
The optimality system for the fully discrete optimal control problem (DTOC) has
been solved by a gradient method with Armijo line search using an initial control

u(0) = (u
(0)
1 , u

(0)
2 )T with all components of the initial high frequency control u

(0)
1 set

to 0.1 and all components of the initial medium frequency control u
(0)
2 set to 1.0.
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Fig. 6.2. Optimal output voltages u1U1 (high frequency; left) and u2U2 (medium frequency; right).

Figure 6.2 displays the computed optimal output voltages u1U1 for the high frequency
(left) and u2U2 for the medium frequency (right) at the time instances tm = m∆t, 0 ≤
m ≤M = 50. It turns out that it is optimal to use the highest output voltages for the
high frequency at the beginning of the heating process, whereas the highest output
voltages for the medium frequency should be applied towards the end.
In order to provide a documentation of the history of the inductive heating process,
Figure 6.3 shows the temperature distribution in a quarter-tooth of the workpiece at
various stages of the process from the beginning (top left) to the very end (bottom
right). One can clearly recognize the advantages of the optimally controlled dual
frequency method in so far as the desired temperature is almost uniformly achieved
in the prespecified region of interest.
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Fig. 6.3. History of the inductive heating process: Temperature distribution in a quarter-tooth
at t = 0.04 s (top left) , t = 0.80 s (top right), t = 1.40 s (bottom left), and t = 2.00 s (bottom
right).
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