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Adaptive finite elements for optimally controlled
elliptic variational inequalities of obstacle type
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Abstract. We are concerned with the numerical solution of distributed op-
timal control problems for second order elliptic variational inequalities by
adaptive finite element methods. Both the continuous problem as well as its
finite element approximations represent subclasses of Mathematical Programs
with Equilibrium Constraints (MPECs) for which the optimality conditions
are stated by means of stationarity concepts in function space [30] and in
a discrete, finite dimensional setting [50] such as (ε-almost, almost) C- and
S-stationarity. With regard to adaptive mesh refinement, in contrast to the
work in [28] which adopts a goal oriented dual weighted approach, we consider
standard residual-type a posteriori error estimators.
The first main result states that for a sequence of discrete C-stationary points
there exists a subsequence converging to an almost C-stationary point, pro-
vided the associated sequence of nested finite element spaces is limit dense in
its continuous counterpart. As the second main result, we prove the reliabil-
ity and efficiency of the residual-type a posteriori error estimators. Particular
emphasis is put on the approximation of the reliability and efficiency related
consistency errors by heuristically motivated computable quantities and on
the approximation of the continuous active, strongly active, and inactive sets
by their discrete counterparts.
A detailed documentation of numerical results for two representative test ex-
amples illustrates the performance of the adaptive approach.
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1. Introduction

This paper is devoted to the study of adaptive finite element methods for the ap-
proximation of optimally controlled elliptic variational inequalities of obstacle type.
Such problems can be formulated as Mathematical Programs with Complementar-
ity Constraints (MPCCs) representing a subclass of Mathematical Programs with
Equilibrium Constraints (MPECs) which have been investigated both in function
space [5, 30, 38, 41, 42, 43, 44, 45] as well as in finite dimensions [18, 37, 40,
49, 48, 50]. Due to the inherent non-convexity and non-differentiability, MPECs
are not amenable to classical approaches from optimal control/optimization the-
ory and thus require tools from non-smooth analysis such as generalized deriva-
tives. In particular, this leads to optimality systems in terms of various station-
arity concepts such as C(larke)-stationarity and S(trong)-stationarity (cf., e.g.,
[30] for MPECs in function space). For the spatial discretization of the problems
we use continuous, piecewise linear finite elements with respect to an adaptively
generated hierarchy of geometrically conforming simplicial triangulations of the
computational domain. Although adaptive mesh refinement relying on various a
posteriori error estimators has been extensively studied for elliptic variational in-
equalities (cf., e.g., [2, 13, 14, 15, 33, 35, 46, 54, 55]) as well as for unconstrained
and control and/or state constrained elliptic optimal control problems (cf., e.g.,
[8, 20, 22, 23, 24, 25, 26, 27, 32, 52, 57]), the only adaptive approach for optimally
controlled elliptic variational inequalities we are aware of is the one in [28] based
on goal oriented dual weighted residuals. Instead, here we study standard residual-
type a posteriori error estimators in terms of element and edge residuals and prove
both reliability and efficiency up to consistency errors and data oscillations.

The paper is organized as follows: After introducing basic notations and some
preliminary results, in section 2 we state the distributed optimal control problem
for a second order elliptic variational inequality of obstacle type, specify the as-
sociated active and inactive sets including a possible set of biactivity in case of
a lack of strict complementarity, and introduce the relevant stationarity concepts
in function space. Section 3 is devoted to the finite element approximation of the
problem under consideration giving rise to a discrete optimally controlled varia-
tional inequality, the specification of the discrete active and inactive sets, and the
discrete stationarity concepts. Particular emphasis is put on suitable extensions
of the discrete Lagrange multipliers which will play a significant role both in the
subsequent convergence analysis and in the a posteriori error analysis. In section
4, we prove the first main result of this paper. Under the assumption that the
sequence of nested finite element spaces is limit dense in the function space for the
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continuous state and adjoint state, we show that for a bounded sequence of dis-
crete C-stationary points there exists a subsequence which converges to an almost
C-stationary point (cf. Theorem 4.2). Section 5 is concerned with the a posteriori
error analysis based on residual-type a posteriori error estimators. As the second
main result, we establish reliability and efficiency of the error estimator up to con-
sistency errors due to a mismatch in complementarity and data oscillations (cf.
Theorem 5.1 and Theorem 5.5). Since in the original formulation the consistency
errors are not a posteriori, we provide heuristically motivated fully computable
quantities in terms of approximations of the characteristic functions of the con-
tinuous active and inactive sets as well as of the continuous states and multipliers
(cf. subsection 5.4). The final section 6 contains a documentation of numerical
results for two representative test examples, one with strict complementarity and
the other without. The numerical results exhibit experimental convergence rates
that asymptotically approach the expected optimal convergence rates. Moreover,
it is shown that at least some of the heuristically derived approximations of the
consistency errors provide close upper bounds.

2. The optimal control problem and stationarity concepts

2.1. Notations and preliminaries

For a bounded Lipschitz domain Ω ⊂ R2, we denote by D(Ω) the space of infinitely
often continuously differentiable functions with compact support in Ω, and we refer
to D(Ω)′ as the dual space of distributions. Further, we adopt standard notation
from Lebesgue and Sobolev space theory (cf., e.g., [1]). In particular, forD ⊆ Ω, we
denote by L2(D) the Hilbert space of square integrable functions on D with inner
product (·, ·)0,D and associated norm ∥·∥0,D. L2(D)+ refers to the positive cone of
L2(D) with respect to the partial order on L2(D), i.e., L2(D)+ := {v ∈ L2(D) | v ≥
0 a.e. in D}. For k ∈ N, we denote by Hk(D) the Sobolev space with inner product
(·, ·)k,D, seminorm |·|k,D, and norm ∥·∥k,D. We defineHk

0 (D) as the closure of D(D)
in Hk(D) and refer to H−k(D) as the dual space. In particular, we set V := H1

0 (Ω)
so that V ∗ = H−1(Ω), and we refer to ⟨·, ·⟩ as the dual pairing between V ∗ and
V . We define V+ as the positive cone of V with respect to the partial ordering
inherited from L2(Ω), i.e., V+ := {v ∈ V | v ≥ 0 a.e. in Ω} and we refer to V ∗

+ as
the positive cone of V ∗, i.e., V ∗

+ := {λ ∈ V ∗ | ⟨λ, v⟩ ≥ 0 for all v ∈ V+}.

As far as localizations of functionals λ ∈ V ∗ are concerned, we note that for a
distribution T ∈ D(Ω)′ and an open set ω ⊆ Ω it is said that T = 0 on ω, if T (v) = 0
for all v ∈ D(Ω) with supp(v) ⊆ ω (cf., e.g., [53]). Further, denoting by OT the
maximal open set where T = 0, the support of T is defined by supp(T ) := Ω \OT .
We set Vω := {v ∈ V | supp(v) ⊆ ω̄}. Since a functional λ ∈ V ∗ can be viewed as
a distribution, we introduce the set

Vω,0 := {v ∈ Vω | v|Ω\ω = 0 a.e., v|ω ∈ H1
0 (ω)} (2.1)
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of test functions and say that λ = 0 on ω, if ⟨λ, v⟩ = 0 for all v ∈ Vω,0 (for
alternative definitions see [30]). Further, we say that λ ≥ 0 (λ ≤ 0) on ω, if
⟨λ, v⟩ ≥ 0 (⟨λ, v⟩ ≤ 0) for all v ∈ Vω,0 ∩ V+. The support of λ ∈ V ∗ is defined by

supp(λ) := Ω \ Oλ. (2.2)

We note that Vω,0 ⊆ Vω. If ω is Lipschitz, we have Vω,0 = Vω (cf., e.g., [38]).
In the sequel, we will need characterizations of functionals λ ∈ V ∗ with restricted
support. To this end, we first consider the question of extension by zero of v|ω, v ∈
V , for ω ⊆ Ω. If ω is Lipschitz, we denote by ∂ω0(v) that part of the boundary
∂ω such that v = 0 a.e. on ∂ω0(v) and v ̸= 0 a.e. on ∂ω \ ∂ω0(v). Then, for
v ∈ V and an open Lipschitz domain ω ⊆ Ω there exist an open Lipschitz set ω̃
such that ω ⊆ ω̃ ⊆ Ω and a function vext

ω ∈ Vω̃,0 with vext
ω |ω = v|ω a.e. in ω. If

∂ω0(v) ̸= ∅, ω̃ can be chosen so that ∂ω̃ ∩ ∂ω = ∂ω0(v). If ω is non-Lipschitz, the
previous property remains true, if ω is replaced by Lip(ω) which is the minimal
open Lipschitz set with ω ⊆ Lip(ω).
The following result allows to make use of the restricted support of functionals in
V ∗ to describe their action on functions from V .

Proposition 2.1. For λ ∈ V ∗ set Λ := int(supp(λ)), if supp(λ) is Lipschitz, and
Λ := Lip(int(supp(λ)), otherwise. For any v ∈ V there exist an open Lipschitz

set Λ̃ with Λ ⊆ Λ̃ ⊆ Ω, ∂Λ̃ ∩ ∂Λ = ∂Λ0(v) and a function vext
Λ ∈ V

Λ̃,0
such that

vext
Λ |Λ = v|Λ a.e. in Λ and

⟨λ, v⟩ = ⟨λ, vext
Λ ⟩. (2.3)

Proof. Since Λ is an open Lipschitz domain, there exist Λ̃ with Λ ⊆ Λ̃ ⊆ Ω, ∂Λ̃ ∩
∂Λ = ∂Λ0(v) and a function vext

Λ ∈ V
Λ̃,0

such that vext
Λ |Λ = v|Λ a.e. in Λ. Hence,

it suffices to prove (2.3). Let v̄ ∈ V
Ω\Λ,0

be defined according to

v̄ =

{
0 in Λ,

v − vext
Λ in int(Ω \ Λ).

In view of the construction of Λ it holds int(Ω\Λ) ⊆ Oλ, where Oλ is the maximal
open set where λ vanishes, and hence, ⟨λ, v̄⟩ = 0. It follows that ⟨λ, v⟩ = ⟨λ, vext

Λ ⟩+
⟨λ, v̄⟩ = ⟨λ, vext

Λ ⟩. �

Remark 2.2. We note that ⟨λ, v⟩ = ⟨λ, v|supp(λ)⟩ only if v ∈ Vsupp(λ),0. Otherwise,
λ ’reaches’ the values of v slightly outside of int(supp(λ)).

2.2. The optimal control problem

Given a domain Ω ⊂ R2 with boundary Γ = ∂Ω, a bilinear form a(·, ·) : V ×V → R,
where V := H1

0 (Ω), a desired state yd, a shift control ud, a force density f , an
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upper obstacle ψ, and a regularization parameter α such that

Ω is a bounded, polygonal Lipschitz domain, (2.4a)

a(·, ·) : V × V → R is symmetric, bounded and V-elliptic, i.e.,

|a(y, v)| ≤ C∥y∥1,Ω ∥v∥1,Ω, γ ∥y∥2
1,Ω ≤ a(y, y), γ, C > 0, (2.4b)

yd ∈ L2(Ω), ud ∈ L2(Ω), f ∈ L2(Ω), (2.4c)

ψ ∈ V, α > 0, (2.4d)

we consider the following distributed optimal control problem with a variational
inequality constraint:

Minimize J(y, u) :=
1

2
∥y − yd∥2

0,Ω +
α

2
∥u− ud∥2

0,Ω (2.5a)

over (y, u) ∈ V × L2(Ω),

subject to a(y, y − v) ≤ (f + u, y − v)0,Ω, v ∈ K, (2.5b)

K := {v ∈ V | v ≤ ψ a.e. in Ω}.

Here, J is referred to as the objective functional, y and u stand for the state and
the control, and K denotes the constraint set which makes (2.5b) to a variational
inequality of obstacle type. We further denote by A : V → V ∗ the bounded
linear operator associated with the bilinear form a(·, ·). Although the subsequent
analysis can be carried out for a general second order elliptic differential operator
in divergence form, in the sequel we will restrict ourselves to the case A = −∆.
The optimal control problem (2.5) can be equivalently written in the so-called
control-reduced form by means of the control-to-state map S : L2(Ω) → V which
assigns to a control u ∈ L2(Ω) the unique solution of the variational inequality
(2.5b):

Minimize Jred(u) :=
1

2
∥Su− yd∥2

0,Ω +
α

2
∥u− ud∥2

0,Ω (2.6)

over u ∈ L2(Ω).

The existence of minimizers for (2.5) is guaranteed by the following result:

Theorem 2.3. Under the assumptions (2.4) on the data, the optimal control prob-
lem (2.5) admits an optimal solution.

Proof. We refer to [5],[42]. �

By introducing a slack variable σ ∈ V ∗, the variational inequality constraint (2.5b)
can be equivalently reformulated in terms of a complementarity system so that
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(2.5) reads:

Minimize J(y, u) :=
1

2
∥y − yd∥2

0,Ω +
α

2
∥u− ud∥2

0,Ω (2.7a)

over (y, σ, u) ∈ V × V ∗ × L2(Ω),

subject to a(y, v) = (f + u, v)0,Ω − ⟨σ, v⟩, v ∈ V, (2.7b)

ψ − y ∈ V+, σ ∈ V ∗
+, ⟨σ, ψ − y⟩ = 0.

The problem (2.7) is commonly referred to as a Mathematical Program with Com-
plementarity Constraints (MPCC).

2.3. Continuous active and inactive sets

For given u ∈ L2(Ω), (2.5b) represents an obstacle problem which, under the
assumptions (2.4), admits a unique solution (y, σ) ∈ V × V ∗ (cf., e.g., [36]). The
complementary behavior of y and σ according to (2.7b) gives rise to the following
definitions:

Definition 2.4. We define the active set A as the maximal open subset D ⊆ Ω
such that ψ− y = 0 a.e. in D. We denote by I :=

∪
ε>0Bε(ψ− y) the inactive set,

where Bε(ψ − y) is the maximal open set D ⊆ Ω such that ψ − y ≥ ε a.e. in D.
Finally, F(y) := Ω \ (A ∪ I) is said to be the free boundary with respect to y.

Obviously, the sets A, I, and F(y) provide a partition of Ω, i.e., it holds Ω =
A ∪ I ∪ F(y). An alternative partition can be achieved in terms of properties of
the multiplier σ:

Definition 2.5. The zero set Z is defined as the maximal open set D such that
⟨σ, v⟩ = 0 for all v ∈ VD,0, whereas the set C := int(supp(σ)) is referred to as
the strongly active set (for the definitions of VD,0 and supp(σ) see (2.1) and (2.2)
in subsection 2.1). The set F(σ) := Ω \ (Z ∪ C) is called the free boundary with
respect to σ.

Remark 2.6. If in addition to the assumptions (2.4) on the data of the problem
we suppose

Ω ⊂ R2 is convex or of class C1,1, (2.8a)

ψ ∈ V ∩H2(Ω), (2.8b)

the solution of the obstacle problem satisfies (y, σ) ∈ V ∩H2(Ω) × L2(Ω). In this
regular case, we define the active and the inactive set according to Areg := int({x ∈
Ω | ψ(x) − y(x) = 0}), Ireg := int(Ω \ Areg). Moreover, the zero set Zreg is the
maximal open set D ⊆ Ω such that σ = 0 a.e. in D, and the strongly active set is
given by Creg := int(Ω \ Zreg).

The special case where ψ − y and the slack variable σ are simultaneously zero in
some subset of Ω is taken care of by the definition of the so-called biactive set:
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Definition 2.7. The set B := int(A \ C) is called the biactive set. If meas(B) = 0,
the solution of the obstacle problem is said to satisfy the strict complementarity
condition. Otherwise, it is said that the solution exhibits a lack of strict comple-
mentarity.

The following results which were proven in [19] provide characterizations of the
active set, the inactive set, the zero set, and of the slack variable σ. They all refer
to the complementarity conditions (2.7b).

Proposition 2.8. For any v ∈ V+ let the zero set Ω0(v) be the maximal open set
D ⊆ Ω such that v = 0 a.e. in D and let Ω+(v) :=

∪
ε>0Bε(v) be the positive set,

where Bε(v) is the maximal open set D ⊆ Ω such that v ≥ ε a.e. in D. Then, it
holds

A = Ω0(ψ − y), I = Ω+(ψ − y). (2.9)

Moreover, for any v ∈ V+ such that ⟨σ, v⟩ = 0 it holds

Ω+(v) ⊆ Z. (2.10)

Corollary 2.9. For any v ∈ V such that ⟨σ, v+⟩ = 0 and ⟨σ, v−⟩ = 0 it holds

v = 0 in C and ⟨σ, v⟩ = 0. (2.11)

Proposition 2.10. The slack variable σ satisfies

σ = 0 in I, i.e., C ⊆ A, (2.12a)

σ = f + u−Aψ in A. (2.12b)

Corollary 2.11. A lack of strict complementarity of the solution of the obstacle
problem occurs if and only if there exists a set B ⊆ A such that f +u−Aψ = 0 in
B. Hence, there must hold ⟨Aψ, v⟩ = (f + u, v)0,B, i.e., Aψ|B ∈ L2(B).

2.4. Stationarity concepts

In this subsection, we present various concepts of stationarity associated with the
optimal control problem (2.5). We note that for MPCC in function space the
concepts of C(larke)-stationarity and S(trong)-stationarity have been introduced
in [30].



8 A. Gaevskaya, M. Hintermüller and R.H.W. Hoppe

Definition 2.12. For (y, σ, u) ∈ V × V ∗ × L2(Ω) assume that there exists a pair
(p, µ) ∈ V × V ∗ such that the following conditions hold true

a(y, v) = (f + u, v)0,Ω − ⟨σ, v⟩, v ∈ V, (2.13a)

ψ − y ∈ V+, σ ∈ V ∗
+, ⟨σ, ψ − y⟩ = 0, (2.13b)

a(p, v) = (yd − y, v)0,Ω − ⟨µ, v⟩, v ∈ V, (2.13c)

p = α (u− ud), (2.13d)

p = 0 a.e. in C, (2.13e)

⟨µ, p⟩ ≥ 0, (2.13f)

⟨µ, ψ − y⟩ = 0. (2.13g)

A triple (y, σ, u) ∈ V × V ∗ × L2(Ω) is called

(i) an ε-almost C-stationary point of (2.5), if (2.13a)-(2.13g) hold true and the
pair (p, µ) ∈ V × V ∗ satisfies:

For all ε > 0 there exists Uε ⊆ I with meas(I \ Uε) ≤ ε such that

⟨µ, v⟩ = 0, v ∈ VUε , (2.13h)

(ii) an almost C-stationary point of (2.5), if (2.13a)-(2.13g) hold true and the pair
(p, µ) ∈ V × V ∗ fulfills

⟨µ, v⟩ = 0, v ∈ VI,0, (2.13i)

(iii) a C-stationary point of (2.5), if (2.13a)-(2.13g) hold true and the pair (p, µ) ∈
V × V ∗ satisfies

⟨µ, v⟩ = 0, v ∈ VI . (2.13j)

Definition 2.13. Let (y, σ, u) ∈ V × V ∗ ×L2(Ω) be an ε-almost C-stationary point
(almost C-stationary, C-stationary) point of (2.5). Then, the triple (y, σ, u) is said
to be an ε-almost S-stationary (almost S-stationary, S-stationary) point of (2.5),
if the pair (p, µ) ∈ V × V ∗ additionally satisfies

⟨µ, v⟩ ≥ 0, v ∈ VB ∩ V+, (2.14a)

p ≥ 0 a.e. in B. (2.14b)

Remark 2.14. In the Definitions 2.12 and 2.13, the function p ∈ V is referred to
as the adjoint state and equation (2.13c) is called the adjoint state equation. The
functional µ ∈ V ∗ is said to be the Lagrange multiplier associated with the adjoint
state equation.

Remark 2.15. In the previous Definitions 2.12 and 2.13, S-stationarity is the stron-
gest and ε-almost C-stationarity is the weakest concept. The hierarchy of the above
introduced stationarity concepts is displayed in the commuting diagram below:
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S-stationarity =⇒ almost S-stationarity =⇒ ε-almost S-stationarity
⇓ ⇓ ⇓

C-stationarity =⇒ almost C-stationarity =⇒ ε-almost C-stationarity

The following result reveals local properties of almost C-stationary points with
respect to the sets C,B, and I defined in subsection 2.3.

Proposition 2.16. Let (y, σ, u) ∈ V × V ∗ × L2(Ω) be an almost C-stationary point
of (2.5) and let (p, µ) ∈ V × V ∗ be the associated adjoint state and Lagrange
multiplier. Then, with regard to the strongly active set C, the biactive set B, and
the inactive set I it holds

C B I
y = ψ a.e. = ψ a.e. –
p = 0 a.e. = −α (∆ψ + f + ud) a.e. –
u = ud a.e. = −∆ψ − f a.e. –
σ = f + ud + ∆ψ = 0 = 0
µ = yd − ψ = yd − ψ + α ∆(∆ψ + f + ud) = 0

Proof. In view of the definitions of the sets A, C, and B, we obviously have y =
ψ a.e. in A = C ∪ B. Taking VB,0

⊆ VZ,0
and VI,0

⊆ VZ,0
into account, it holds

⟨σ, v⟩ = 0, v ∈ VB,0
, ⟨σ, v⟩ = 0, v ∈ VI,0

.

Further, due to (2.13d) and (2.13e)

p = 0 a.e. in C, u = ud a.e. in C.
Hence, (2.13c) implies

⟨µ, v⟩ = (yd − ψ, v)0,C , v ∈ VC,0 ,

i.e., µ|C = yd − ψ ∈ L2(C). By (2.13a) it holds

⟨σ, v⟩ = (f + ud, v)0,C − a(ψ, v), v ∈ VC,0 ,

whence σ = f + ud + ∆ψ a.e. in C. Moreover, in B we have

(f + u, v)0,B = (∇ψ,∇v)0,B, v ∈ VB,0 .

Consequently, the weak divergence of ∇ψ in B exists and equals −(f + u)|B ∈
L2(B). It follows that −∆ψ = f + u a.e. in B. Hence,

u = −∆ψ − f a.e. in B,
and, due to (2.13d)

p = −α (∆ψ + f + ud) a.e. in B.
The previous equation gives rise to ∆ψ + f + ud ∈ H1(B). Hence, (2.13c) implies

⟨µ, v⟩ = (yd − ψ, v)0,B + α a(∆ψ + f + ud, v), v ∈ VB,0 .

�
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Stationarity in the regular case. If in addition to the assumptions (2.4) on the
data of the problem we suppose

Ω is either convex and polygonal or of class C1,1, (2.15a)

ψ ∈ V ∩H2(Ω), (2.15b)

for fixed u ∈ L2(Ω) the solution (y, σ) of the obstacle problem belongs to V ∩
H2(Ω) × L2(Ω). In this regular case, the optimal control problem (2.5) can be
rewritten according to:

Minimize J(y, u) :=
1

2
∥y − yd∥2

0,Ω +
α

2
∥u− ud∥2

0,Ω (2.16a)

over (y, σ, u) ∈ V × L2(Ω) × L2(Ω),

subject to a(y, y − v) = (f + u− σ, v)0,Ω, v ∈ V, (2.16b)

ψ − y ≥ 0 a.e. in Ω, σ ≥ 0 a.e. in Ω, (σ, ψ − y)0,Ω = 0.

The stationarity concepts can be formulated as in Definitions 2.12 and 2.13.

3. Finite element approximation

For a null sequence H of positive real numbers we assume {Th(Ω)}h∈H to be a
shape regular family of geometrically conforming simplicial triangulations of the
computational domain Ω. For D ⊂ Ω̄, we denote by Nh(D), Eh(D), and Th(D) the
sets of nodal points, edges, and triangles of Th(Ω) in D. For T ∈ Th(Ω), we refer
to hT and |T | as the diameter and the area of T , whereas for E ∈ Eh(Ω̄) we denote
by hE the length of the edge E. We further introduce the following patches of
triangles of Th(Ω):

ωa :=
∪

{T ∈ Th(Ω) | a ∈ Nh(T )}, (3.1a)

ωE :=
∪

{T ∈ Th(Ω) | E ∈ Eh(T )}, (3.1b)

ωT :=
∪

{T ′ ∈ Th(Ω) | Nh(T ′) ∩ Nh(T ) ̸= ∅}, (3.1c)

and the following set of edges of Eh(Ω):

Ea
h :=

∪
{E ∈ Eh(Ω) | a ∈ Nh(E)}. (3.2)

Moreover, for T ∈ Th(Ω) we refer to Pk(T ), k ∈ N0, as the linear space of polyno-
mials of degree ≤ k on T , and we define

S
(1)
h := {vh ∈ C(Ω̄) | vh|T ∈ P1(T ), T ∈ Th(Ω)} (3.3)

as the finite element space of continuous piecewise linear functions. We set

Vh := {vh ∈ S
(1)
h | vh|Γ = 0} (3.4)

and denote by φ
(a)
h the nodal basis function associated with a ∈ Nh(Ω) such that

Vh = span({φ(a)
h | a ∈ Nh(Ω)}) with dim Vh = Nh := card(Nh(Ω)). As the
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dual space of Vh we consider linear combinations of the Dirac delta functionals δa
associated with a ∈ Nh(Ω), i.e.,

Mh := {λh ∈ M(Ω̄) | λh =
∑

a∈Nh(Ω)

λh(a) δa, λh(a) ∈ R}. (3.5)

Here, M(Ω̄) stands for the space of regular Borel measures.

3.1. The discrete optimal control problem

For the finite element approximation of the optimal control problem (2.5) we

denote by ψh ∈ Vh and ud
h ∈ S

(1)
h the interpolants of ψ ∈ V and ud ∈ L2(Ω)

in Vh and S
(1)
h and refer to yd

h ∈ S
(1)
h and fh ∈ S

(1)
h as the L2-projections of

yd ∈ L2(Ω) and f ∈ L2(Ω) onto S
(1)
h . Approximating the state y ∈ V and the

control u ∈ L2(Ω) by finite element functions yh ∈ Vh and uh ∈ S
(1)
h , the discrete

optimal control problem is given as follows:

Minimize Jh(yh, uh) :=
1

2
∥yh − yd

h∥2
0,Ω +

α

2
∥uh − ud

h∥2
0,Ω (3.6a)

over (yh, uh) ∈ Vh × S
(1)
h ,

subject to a(yh, yh − vh) ≤ (fh + uh, yh − vh)0,Ω, vh ∈ Kh, (3.6b)

Kh := {vh ∈ Vh | vh ≤ ψh in Ω}.
We refer to Jh and Kh as the discrete objective functional and the discrete con-
straint set and to yh and uh as the discrete state and the discrete control.

Denoting by Sh : S
(1)
h → Vh the discrete control-to-state map which assigns to a

control uh ∈ S
(1)
h the unique solution yh ∈ Vh of the discrete variational inequality

(3.6b), the control-reduced form of (3.6) reads:

Minimize Jred
h (uh) :=

1

2
∥Shuh − yd

h∥2
0,Ω +

α

2
∥uh − ud

h∥2
0,Ω (3.7)

over uh ∈ S
(1)
h .

Theorem 3.1. The discrete optimal control problem (3.6) admits an optimal solu-

tion (yh, uh) ∈ Vh × S
(1)
h .

Proof. The proof can be given in much the same way as that of Theorem 2.3. �

As in the continuous regime, by introducing a slack variable σh ∈ Mh, the discrete
optimal control problem (3.6) can be equivalently reformulated as the discrete
complementarity problem:

Minimize Jh(yh, uh) :=
1

2
∥yh − yd

h∥2
0,Ω +

α

2
∥uh − ud

h∥2
0,Ω (3.8a)

over (yh, σh, uh) ∈ Vh ×Mh × S
(1)
h ,

subject to a(yh, vh) = (fh + uh, vh)0,Ω − ⟨⟨σh, vh⟩⟩, vh ∈ Vh, (3.8b)

yh ∈ Kh, σh ∈ Mh ∩ M+(Ω̄), ⟨⟨σh, ψh − yh⟩⟩ = 0,
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where ⟨⟨·, ·⟩⟩ refers to the dual pairing between C(Ω̄) and M(Ω̄).

3.2. Discrete active and inactive sets

For vh ∈ Vh we denote by

Zh(vh) := {a ∈ Nh(Ω̄) | vh(a) = 0}, Ch(vh) := Nh(Ω̄) \ Zh(vh) (3.9)

the sets of zero and non-zero nodal points with respect to vh ∈ Vh, and we partition
the triangulation Th(Ω) into the sets of zero, non-zero, and mixed triangles with
respect to vh ∈ Vh according to

Th(Ω) = T z
h (vh) ∪ T c

h (vh) ∪ T m
h (vh), (3.10)

where

T z
h (vh) := {T ∈ Th(Ω) | Nh(T ) ⊂ Zh(vh)}, (3.11a)

T c
h (vh) := {T ∈ Th(Ω) | Nh(T ) ⊂ Ch(vh)}, (3.11b)

T m
h (vh) := Th(Ω) \ (T z

h (vh) ∪ T c
h (vh)). (3.11c)

Definition 3.2. For yh ∈ Kh we denote by Ah := Zh(ψh − yh) ∩ Nh(Ω) and
Ih := Ch(ψh−yh)∩Nh(Ω) the sets of active and inactive nodal points. A nodal point
is said to be an isolated active (inactive) nodal point, if Nh(ωa)\{a} ⊂ Ih ∪Nh(Γ)
(Nh(ωa) \ {a} ⊂ Ah ∪ Nh(Γ)). Moreover, the sets

Ah :=
∪

{T ∈ T z
h (ψh − yh)}, (3.12a)

◦
Ih:=

∪
{T ∈ T c

h (ψh − yh)}, (3.12b)

Fh(yh) :=
∪

{T ∈ T m
h (ψh − yh)} (3.12c)

are referred to as the discrete active set, the discrete purely inactive set, and the
discrete free boundary with respect to yh. The set

Ih :=
◦
Ih ∪Fh(yh) (3.12d)

is said to be the discrete inactive set.
An edge E ∈ Eh(Ω̄) is called active (purely inactive), if Nh(E) ⊂ Ah (Nh(E) ⊂ Ih).

The sets of active and purely inactive edges will be denoted by EAh
and

◦
EIh

. We set

EFh(yh) := Eh(Ω̄) \ (EAh
∪

◦
EIh

) and EIh
:=

◦
EIh

∪EFh(yh). An active edge E ∈ EAh

is called isolated, if E ∈ EAh
\ Eh(Ah).

Likewise, for λh ∈ Mh we denote by

Zh(λh) := {a ∈ Nh(Ω) | λh(a) = 0}, Ch(λh) := Nh(Ω) \ Zh(λh) (3.13)

the sets of zero and non-zero nodal points with respect to λh and we partition
Th(Ω) as follows

Th(Ω) = T z
h (λh) ∪ T c

h (λ) ∪ T m
h (λh), (3.14)
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where

T z
h (λh) := {T ∈ Th(Ω) | Nh(T ) ⊂ Zh(λh) ∪ Nh(Γ)}, (3.15a)

T c
h (λh) := {T ∈ Th(Ω) | T ∩ Γ = ∅ and Nh(T ) ⊂ Ch(λh)} ∪ (3.15b)

{T ∈ Th(Ω) | T ∩ Γ ̸= ∅ ∧ Nh(T ) ∩ Nh(Ω) ⊂ Ch(λh) ∧ T ⊂ Ah},
T m

h (λh) := Th(Ω) \ (T z
h (λh) ∪ T c

h (λh)). (3.15c)

Definition 3.3. For σh ∈ Mh∩M+(Ω̄) the sets Zh := Zh(σh) and Ch := Ch(σh) are
said to be the sets of zero and strongly active nodal points. Isolated zero (strongly
active) nodal points are defined analogously to Definition 3.2.
An edge E ∈ Eh(Ω̄) is said to be strongly active (purely zero), if Nh(E) ⊆ Ch

(Nh(E) ⊆ Zh). The sets of strongly active and purely zero edges are denoted by

ECh
and

◦
EZh

. We set EFh(σh) := Eh(Ω̄) \ (ECh
∪

◦
EZh

) and EZh
:=

◦
EZh

∪EFh(σh).
Moreover, the sets

◦
Zh:=

∪
{T ∈ T z

h (σh)}, (3.16a)

Ch :=
∪

{T ∈ T c
h (σh)}, (3.16b)

Fh(σh) :=
∪

{T ∈ T m
h (σh)} (3.16c)

are referred to as the discrete purely zero set, the discrete strongly active set, and
the discrete free boundary with respect to σh. The set

Zh :=
◦

Zh ∪Fh(σh) (3.16d)

is said to be the discrete zero set and the set

Bh := cl(Ah \ Ch) (3.16e)

is called the discrete biactive set. If Bh = ∅, we say that discrete strict comple-
mentarity holds true. Otherwise, there is a lack of discrete strict complementarity.
Zero (strongly active) edges and isolated zero (isolated strongly active) edges are
defined similarly to Definition 3.2.

3.3. Discrete stationarity concepts

The discrete (strongly) active sets Ah, Ch, the discrete biactive set Bh and the
discrete inactive set Ih will be used to classify stationary points in the discrete
regime.
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Definition 3.4. For (yh, σh, uh) ∈ Vh ×Mh ×S(1)
h assume that there exist (ph, µh) ∈

Vh ×Mh such that it holds

a(yh, vh) = (f + uh, vh)0,Ω − ⟨⟨σh, vh⟩⟩, vh ∈ Vh, (3.17a)

ψh − yh ≥ 0, σh ∈ Mh ∩ M+(Ω̄), ⟨⟨σh, ψh − yh⟩⟩ = 0, (3.17b)

a(ph, vh) = (yd − yh, vh)0,Ω − ⟨⟨µh, vh⟩⟩, vh ∈ Vh, (3.17c)

ph = α (uh − ud
h), (3.17d)

ph(a) = 0, a ∈ Ch, (3.17e)

µh(a) = 0, a ∈ Ih. (3.17f)

The triple (yh, σh, uh) ∈ Vh ×Mh × S
(1)
h is called

(i) a discrete C-stationary point of (3.6), if the pair (ph, µh) ∈ Vh ×Mh satisfies

µh(a) ph(a) ≥ 0, a ∈ Bh, (3.17g)

(ii) a discrete S-stationary point of (3.6), if the pair (ph, µh) ∈ Vh ×Mh fulfills

µh(a) ≥ 0, ph(a) ≥ 0, a ∈ Bh, (3.17h)

(iii) a discrete stationary point of (3.6), if Bh = ∅, i.e.,

Ch = Ah. (3.17i)

Remark 3.5. In view of (3.17e) and (3.17f), condition (3.17g) implies

⟨⟨µh, ph⟩⟩ ≥ 0. (3.18)

However, the reverse does not hold true. If ⟨⟨µh, ph⟩⟩ =
∑

a∈Nh(Bh) µh(a)ph(a) ≥ 0,

this does not imply that every summand is nonnegative. In other words, condition
(3.18) is weaker than (3.17g).

3.4. Extensions of the discrete Lagrange multipliers

In this subsection, we will first derive an explicit representation of the operation of
the discrete Lagrange multipliers σh and µh on functions vh ∈ Vh and then provide
two extensions σ̂h, µ̂h and σ̃h, µ̃h to functionals on V . The extensions σ̂h, µ̂h will
be used in the convergence analysis of the finite element approximations in Section
4, whereas the extensions σ̃h, µ̃h will play an essential role in the a posteriori error
analysis in Section 5.

For notational convenience, we introduce the operator IDh
: Vh → Vh, Dh ⊂

Nh(Ω), defined by means of

IDh
(vh)(a) :=

{
vh(a) , a ∈ Dh

0 , a ∈ Nh(Ω) \Dh
, vh ∈ Vh. (3.19)
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It follows that ICh
is the identity on Ch, vanishes on

◦
Zh, whereas for D = T ∈

Th(Fh(σh)) and D = E ∈ EFh(σh):

ICh
(vh)|D =

∑

a∈Nh(D)∩Ch

vh(a) φ
(a)
h .

Likewise, IAh
is the identity on Ah, vanishes on

◦
Ih, whereas for D = T ∈

Th(Fh(yh)) and D = E ∈ EFh(yh):

IAh
(vh)|D =

∑

a∈Nh(D)∩Ah

vh(a) φ
(a)
h .

Proposition 3.6. Let σh, µh be the discrete Lagrange multipliers from Definition
3.4, let Fh(yh),Fh(σh) be the discrete free boundaries with respect to yh and σh

according to (3.12d) and (3.16c), and let IDh
be given by (3.19). Then, for vh ∈ Vh

it holds

⟨⟨σh, vh⟩⟩ =
∑

T∈Th(Ch∪Fh(σh))

(
(f + uh, ICh

(vh))0,T − (∇yh,∇ICh
(vh))0,T

)
=

(3.20a)
∑

T∈Th(Ch∪Fh(σh))

(f + uh, ICh
(vh))0,T −

∑

E∈ECh
∪EFh(σh)

(νE · [∇yh]E , ICh
(vh))0,E ,

⟨⟨µh, vh⟩⟩ =
∑

T∈Th(Ah∪Fh(yh))

(
(yd − yh, IAh

(vh))0,T − (∇ph,∇IAh
(vh))0,T

)
=

(3.20b)
∑

T∈Th(Ah∪Fh(yh))

(yd − yh, IAh
(vh))0,T −

∑

E∈EAh
∪EFh(yh)

(νE · [∇ph]E , IAh
(vh))0,E .

Proof. In view of (3.17a) and (3.17c) we have

⟨⟨σh, φ
(a)
h ⟩⟩ = (f + uh, φ

(a)
h )0,ωa − (∇yh,∇φ(a)

h )0,ωa , a ∈ Ch,

⟨⟨µh, φ
(a)
h ⟩⟩ = (yd − yh, φ

(a)
h )0,ωa − (∇ph,∇φ(a)

h )0,ωa , a ∈ Ah.

Due to (3.16d) and (3.17f) σh(a) = 0, a ∈ Zh, and µh(a) = 0, a ∈ Ih, whence

σh(a) =





∑
T∈Th(ωa)

(
(f + uh, φ

(a)
h )0,T − (∇yh,∇φ(a)

h )0,T

)
, a ∈ Ch

0 , a ∈ Zh

, (3.21)

and

µh(a) =





∑
T∈Th(ωa)

(
(yd − yh, φ

(a)
h )0,T − (∇ph,∇φ(a)

h )0,T

)
, a ∈ Ah

0 , a ∈ Ih

. (3.22)
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Applying Green’s formula elementwise to the second terms on the right-hand side
in (3.21) and (3.22) yields

σh(a) =





∑
T∈Th(ωa)

(f + uh, φ
(a)
h )0,T − ∑

E∈Ea
h

(νE · [∇yh]E , φ
(a)
h )0,E , a ∈ Ch

0 , a ∈ Zh

,

(3.23)

and

µh(a) =





∑
T∈Th(ωa)

(yd − yh, φ
(a)
h )0,T − ∑

E∈Ea
h

(νE · [∇ph]E , φ
(a)
h )0,E , a ∈ Ah

0 , a ∈ Ih

.

(3.24)

Taking ⟨⟨σh, vh⟩⟩ =
∑

a∈Nh(Ch) σh(a)vh(a) into account, from (3.21) and (3.23) we

deduce

⟨⟨σh, vh⟩⟩ =
∑

a∈Nh(Ch)

( ∑

T∈Th(ωa)

(
(f + uh, vh(a) φ

(a)
h )0,T − (∇yh, vh(a)∇φ(a)

h )0,T

))

and

⟨⟨σh, vh⟩⟩ =
∑

a∈Nh(Ch)

( ∑

T∈Th(ωa)

(f + uh, vh(a)φ
(a)
h )0,T −

∑

E∈Eh(Ea
h)

(νE · [∇yh]E , vh(a)φ
(a)
h )0,E

)
.

Regrouping the summands in the above expressions gives (3.20a). The represen-
tation (3.20b) follows similarly. �

The first extensions σ̂h, µ̂h ∈ V ∗ of the discrete multipliers are defined in a sim-
ilar way to the finite element analysis of variational inequalities of obstacle type
(cf., e.g., [13]), whereas the second extensions σ̃h, µ̃h ∈ V ∗ are defined in view of
Proposition 3.6.

Definition 3.7. Let (yh, σh, uh, ph, µh) ∈ Vh ×Mh ×S
(1)
h ×Vh ×Mh satisfy (3.17a)-

(3.17f). We define functionals σ̂h, µ̂h ∈ V ∗ by means of

⟨σ̂h, v⟩ := (f + uh, v)0,Ω − a(yh, v), v ∈ V, (3.25a)

⟨µ̂h, v⟩ := (yd − yh, v)0,Ω − a(ph, v), v ∈ V, (3.25b)
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and functionals σ̃h, µ̃h ∈ V ∗ according to

⟨σ̃h, v⟩ := (3.26a)
∑

T∈Th(Zh)

(f + uh, v)0,T −
∑

E∈EZh

(νE · [∇yh]E , v)0,E + F
(σ)
h (PSZ

h v), v ∈ V,

⟨µ̃h, v⟩ := (3.26b)
∑

T∈Th(Ah)

(yd − yh, v)0,T −
∑

E∈EAh

(νE · [∇ph]E , v)0,E + F
(µ)
h (PSZ

h v), v ∈ V,

where PSZ
h stands for the Scott-Zhang interpolation operator (see, e.g., [16, 51])

and

F
(σ)
h (vh) := (3.26c)

∑

T∈Th(Fh(σh))

(f + uh, ICh
(vh))0,T −

∑

E∈EFh(σh)

(νE · [∇yh]E , ICh
(vh))0,E , (3.26d)

F
(µ)
h (vh) := (3.26e)

∑

T∈Th(Fh(yh))

(yd − yh, IAh
(vh))0,T −

∑

E∈EFh(yh)

(νE · [∇ph]E , IAh
(vh))0,E . (3.26f)

Remark 3.8. For later use in section 5, we recall the definition of the Scott-Zhang
interpolation operator: For each a ∈ Th(Ω) let T ∈ ωa be an arbitrarily but

fixed chosen element. Further, let {Φ
(a)
T | a ∈ Nh(T )} be the L2(T )-dual basis of

{φ(a)
h | a ∈ Nh(T )}. Then, PSZ

h : L2(Ω) → Vh is defined by means of

PSZ
h v :=

∑

a∈Nh(Ω)

(PSZ
h v)(a)φ

(a)
h , (3.27)

where the nodal coefficients (PSZ
h v)(a) are given by

(PSZ
h v)(a) :=

∫

T

Φ
(a)
T (x)v(x) dx. (3.28)

Proposition 3.9. The functionals σ̂h, µ̂h ∈ V ∗ and σ̃h, µ̃h ∈ V ∗ are extensions of
σh, µh ∈ Mh, i.e., for vh ∈ Vh it holds

⟨σ̂h, vh⟩ = ⟨σ̃h, vh⟩ = ⟨⟨σh, vh⟩⟩,
⟨µ̂h, vh⟩ = ⟨µ̃h, vh⟩ = ⟨⟨µh, vh⟩⟩.

Proof. The results are immediate consequences of (3.17) and Proposition 3.6. �
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Remark 3.10. Fine properties of the extensions σ̂h, µ̂h ∈ V ∗ in terms of localiza-
tions involving the discrete active/inactive sets are difficult to obtain, whereas the
extensions σ̃h, µ̃h ∈ V ∗ obviously satisfy

Ch ⊆ supp(σ̃h) ⊆ Ch ∪ Fh(σh), (3.29a)

supp(µ̃h) ⊆ Ah ∪ Fh(yh). (3.29b)

The precise structure of σ̃h ∈ V ∗ depends on the definition of the Scott-Zhang
interpolation operator PSZ

h . In particular, under the condition

For all a ∈ Ch there exists T (a) ⊂ ωa such that T (a) ⊂ Ch, (3.30)

we obtain supp(σ̃h) = Ch, if the triangles satisfying (3.30) are used in the defini-
tion of PSZ

h . We note that (3.30) excludes isolated strongly active nodal points
and edges. However, utilizing a Scott-Zhang interpolation operator defined by av-
eraging over edges instead of triangles (see [51]), allows to show supp(σ̃h) = Ch,
if we only exclude isolated strongly active nodal points. Similar remarks apply to
µ̃h, i.e., it is possible to achieve supp(µ̃h) ⊆ Ah instead of (3.29b), if no isolated
active nodal points occur and the modified PSZ

h is used.

4. Convergence analysis of the finite element approximation

In this section, we prove that for a sequence of discrete C-stationary points there
exists a subsequence converging to an almost C-stationary point. To this end, we
assume:

(A1) {(yh, uh, σh)}H is a sequence of global minima of (3.7) or the sequences
{yh}H and {uh}H are uniformly bounded in L2(Ω).

(A2) The obstacle ψ satisfies ∆ψ ∈ L2(Ω).

Remark 4.1. Under assumption (A2) we may restrict ourselves to the case ψ = 0,
since otherwise we can replace f by f + ∆ψ and yd by yd − ψ.

Theorem 4.2. Let {(yh, σh, uh)}H, (yh, σh, uh) ∈ Vh × Mh × S
(1)
h , h ∈ H, be a se-

quence of discrete C-stationary points of (3.6). Further, let {(ph, µh)}H, (ph, µh) ∈
Vh × Mh, h ∈ H, be the sequence of associated discrete adjoint states and multi-
pliers computed with respect to a sequence {Vh}H of nested finite element spaces.
Finally, let σ̂h ∈ V ∗ and µ̂h ∈ V ∗ be the extensions of the multipliers σh and µh

as given by (3.25).
If the assumptions (A1) and (A2) are satisfied and the sequence {Vh}H is limit
dense in V , then there exist a subsequence H′ ⊂ H and an almost C-stationary
point (y∗, σ∗, u∗) ∈ V × V ∗ × L2(Ω) of (2.5) with associated adjoint state p∗ ∈ V
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and multiplier µ∗ ∈ V ∗ such that for h ∈ H′, h → 0 it holds

yh → y∗ in V, (4.1a)

yh → y∗ in L2(Ω), (4.1b)

σ̂h → σ∗ in V ∗, (4.1c)

uh → u∗ in L2(Ω), (4.1d)

ph ⇀ p∗ in V, (4.1e)

ph → p∗ in L2(Ω), (4.1f)

µ̂h ⇀
∗ µ∗ in V ∗. (4.1g)

Moreover, if {S(1)
h }H is limit dense in H1(Ω), we have

⟨µ∗, y∗v⟩ = 0 for all v ∈ C1(Ω̄). (4.1h)

Proof. Assume that {(yh, σh, uh)}H is a sequence of global minima. The triple
(yh, σh, uh) = (0,−fh, 0) is a feasible point for (3.6) and hence, Jh(yh, uh) ≤
Jh(0,−fh). By the inverse triangle inequality and Young’s inequality it follows
that the sequences {yh}H and {uh}H are bounded in L2(Ω).
If {(yh, σh, uh)}H is a sequence of stationary points, the boundedness of {yh}H
and {uh}H in L2(Ω) follows from assumption (A1).
Choosing vh = yh in (3.17a) and vh = ph in (3.17c) and taking (2.4b),(3.17b), and
(3.18) into account, we obtain

γ ∥yh∥2
1,Ω ≤ a(yh, yh) = (f + uh, yh)0,Ω ≤

(
∥f∥0,Ω + ∥uh∥0,Ω

)
∥yh∥1,Ω,

γ ∥ph∥2
1,Ω ≤ a(ph, ph) = (yd − yh, ph)0,Ω − ⟨⟨µh, ph⟩⟩

≤ (yd − yh, ph)0,Ω ≤
(
∥yd∥0,Ω + ∥yh∥0,Ω

)
∥ph∥1,Ω.

In view of the boundedness of {yh}H and {uh}H in L2(Ω), the preceding two
inequalities imply the boundedness of {yh}H and {ph}H in V . Moreover, observing
(2.4b), for v ∈ V we have

|⟨σ̂h, v⟩| ≤ ∥f + uh∥0,Ω ∥v∥0,Ω + C ∥yh∥1,Ω ∥v∥1,Ω

≤ (∥f + uh∥0,Ω + C ∥yh∥1,Ω) ∥v∥1,Ω,

|⟨µ̂h, v⟩| ≤ ∥yd − yh∥0,Ω ∥v∥0,Ω + C ∥ph∥1,Ω ∥v∥1,Ω

≤ (∥yd − yh∥0,Ω + C ∥ph∥1,Ω) ∥v∥1,Ω,

whence

∥σ̂h∥V ∗ ≤ ∥f + uh∥0,Ω + C ∥yh∥1,Ω), ∥µ̂h∥V ∗ ≤ ∥yd − yh∥0,Ω + C ∥yh∥1,Ω).

This implies boundedness of the sequences {σ̂h}H and {µ̂h}H in V ∗. Consequently,
there exist a subsequence H′ ⊂ H and a point (y∗, σ∗, u∗, p∗, µ∗) ∈ V×V ∗×L2(Ω)×
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V × V ∗ such that for h ∈ H′, h → 0 it holds

yh ⇀ y∗ in V, ph ⇀ p∗ in V, (4.2a)

uh ⇀ u∗ in L2(Ω), (4.2b)

σ̂h ⇀
∗ σ∗ in V ∗, µ̂h ⇀

∗ µ∗ in V ∗. (4.2c)

Due to the Rellich-Kondrachov theorem V is compactly embedded in L2(Ω) and
hence, (4.2a) implies (4.1b),(4.1f).
For another subsequence, still denoted by H′, we further deduce that for h ∈
H′, h → 0 we have yh → y∗ and ph → p∗ pointwise almost everywhere. Hence,
yh ≤ 0, h ∈ H′, implies y∗ ≤ 0 almost everywhere (a.e.) in Ω.
Next, we show that the point (y∗, σ∗, u∗, p∗, µ∗) satisfies the state equation (2.13a),
the adjoint state equation (2.13c), and (2.13d). Since {Vh}H is limit dense in V ,
for any v ∈ V we find a sequence {vh}H, vh ∈ Vh, h ∈ H, such that vh → v for
h → 0. Observing (4.2), for h ∈ H′, h → 0, we deduce

a(yh, vh) → a(y∗, v), a(ph, vh) → a(p∗, v),

(f + uh, vh)0,Ω → (f + u∗, v)0,Ω, (yd − yh, vh)0,Ω → (yd − y∗, v)0,Ω,

⟨⟨σh, vh⟩⟩ = ⟨⟨σ̂h, vh⟩⟩ → ⟨σ∗, v⟩, ⟨⟨µh, vh⟩⟩ = ⟨⟨µ̂h, vh⟩⟩ → ⟨µ∗, v⟩.
Hence, passing to the limit in (3.17a) and (3.17c), we find that (y∗, σ∗, u∗, p∗, µ∗)
satisfies (2.13a) and (2.13c).
The limit density of {Vh}H in V further implies ud

h → ud, h → 0. Consequently,
(3.17d) and (4.2) imply that (4.1d) holds true and that the pair (p∗, u∗) fulfills
(2.13d).
Next, we verify σ∗ ∈ V ∗

+. Since {(Vh)+}H is limit dense in V+, for any v ∈ V+

there exists a sequence {vh}H, vh ∈ (Vh)+, h ∈ H, such that vh → v as h → 0.
Observing σh ∈ M+(Ω̄) and (4.2c), we find

0 ≤ ⟨⟨σh, vh⟩⟩ = ⟨σ̂h, vh⟩ → ⟨σ∗, v⟩,
whence ⟨σ∗, v⟩ for any v ∈ V+.
In order to establish strong convergence of the states in V , due to (3.6b) we have

a(yh, yh) ≤ a(yh, vh) + (f + uh, yh − vh)0,Ω, vh ∈ Vh ∩ V−. (4.3)

Since the sequence {Vh ∩ V−}H is limit dense in V−, there exists a sequence
{vh}H, vh ∈ Vh ∩ V−, h ∈ H, such that vh → y∗ ∈ V− as h → 0. Taking (2.4b) and
(4.3) into account, it holds

γ ∥yh − y∗∥2
1,Ω ≤ a(yh − y∗, yh − y∗) = a(yh, yh) − a(yh, y

∗) − a(y∗, yh − y∗)

≤ a(yh, vh) + (f + uh, vh)0,Ω − a(yh, y
∗) − a(y∗, yh − y∗).

Due to the already proven assertions (4.1b),(4.1d) and in view of (4.2a) the right-
hand side in the preceding inequality converges to zero which implies (4.1a). More-
over, observing (3.17b),(3.17f), and (4.1a), it follows that

0 = ⟨σ̂h, yh⟩ → ⟨σ∗, y∗⟩, 0 = ⟨µ̂h, yh⟩ → ⟨µ∗, y∗⟩,
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whence ⟨σ∗, y∗⟩ = ⟨µ∗, y∗⟩ = 0.
For the proof of (4.1c), we note that the compact embedding of L2(Ω) in V ∗

implies uh → u∗ in V ∗ as H′ ∋ h → 0. Since A ∈ L(V, V ∗) is bounded, we obtain

∥σ̂h − σ∗∥V ∗ ≤ ∥Ayh −Ay∗∥V ∗ + ∥uh − u∗∥V ∗

≤ ∥A∥L(V,V ∗) ∥yh − y∗∥V + ∥uh − u∗∥V ∗ → 0 (h → 0),

which implies (4.1c). Moreover, due to (3.17e),(4.1c), and (4.1e) we have

0 = ⟨σ̂h, ph⟩ → ⟨σ∗, p∗⟩ (H′ ∋ h → 0),

whence ⟨σ∗, p∗⟩ = 0.
Next, we show ⟨µ∗, p∗⟩ ≥ 0. To this end, setting vh = ph in (3.17c) and observing
⟨⟨µh, ph⟩⟩ ≥ 0, we find

0 ≥ a(ph, ph) − (yd − yh, ph)0,Ω. (4.4)

Since the functional v ∈ V 7→ a(v, v) is lower semicontinuous and convex, it is
weakly lower semicontinuous whence due to (4.2a)

a(p∗, p∗) ≤ lim inf a(ph, ph).

On the other hand, the already proven assertions (4.1b),(4.1f) imply

(yd − yh, ph)0,Ω → (yd − y∗, p∗)0,Ω (H′ ∋ h → 0).

Consequently, passing to the limit in (4.4) and taking into account that the triple
(y∗, σ∗, u∗) satisfies (2.13c), we obtain

0 ≥ a(p∗, p∗) − (yd − y∗, p∗)0,Ω = −⟨µ∗, p∗⟩,
which proves ⟨µ∗, p∗⟩ ≥ 0.
In order to verify that p∗ satisfies (2.13e), we show

⟨σ∗, (p∗)+⟩ = ⟨σ∗, (p∗)−⟩ = 0, (4.5)

which implies p∗ = 0 in C∗ = int(supp(σ∗)) by Corollary 2.9. We note that (4.2a)
gives rise to

(ph)+ ⇀ (p∗)+, (ph)− ⇀ (p∗)− in V as H′ ∋ h → 0

(cf., e.g., [38]). Together with (3.17e), this leads to

0 = ⟨⟨σh, (ph)+⟩⟩ → ⟨σ∗, (p∗)+⟩, 0 = ⟨⟨σh, (ph)−⟩⟩ → ⟨σ∗, (p∗)−⟩ (H′ ∋ h → 0),

which proves (4.5).
It remains to show that (y∗, σ∗, u∗) is an almost C-stationary point and to prove
(4.1h). In order to verify (4.1h), let v ∈ C1(Ω̄). We have y∗v ∈ V (cf., e.g.,

[21]). Since the sequence {S(1)
h }H is limit dense in H1(Ω), there exists a sequence

{vh}H, vh ∈ S
(1)
h , h ∈ H, such that vh → v (H ∋ h → 0). Observing vh ∈

C(Ω̄), yh ∈ C0(Ω), we have vhyh ∈ C0(Ω), h ∈ H, which together with (vhyh)|T ∈
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H1(T ), T ∈ Th(Ω), implies vhyh ∈ V, h ∈ H. Taking (4.1a) into account, we deduce
yhvh → y∗v in V as H′ ∋ h → 0. Since (yhvh)(a) = 0, a ∈ Ah, it follows that

0 = ⟨µ̂h, yhvh⟩ → ⟨µ∗, y∗v⟩ (H′ ∋ h → 0).

Hence, ⟨µ∗, y∗v⟩ = 0 which proves (4.1h), since v ∈ C1(Ω̄) was chosen arbitrarily.
In order to prove (2.13i), we note that (3.17f) yields

⟨µ̂h, vh⟩ = 0, vh ∈ Vh ∩ VIh∪Fh(yh)
. (4.6)

On the other hand, due to the pointwise a.e. convergence of {yh}H′ to y∗, for
sufficiently small h1 ∈ H′ we have

yh < 0 a.e. in I∗, H′ ∋ h ≤ h1, (4.7)

which shows I∗ ⊆ Ih for h ≤ h1. For h ≤ h1 we define

Ĩh :=
∪

{T ∈ Th(Ω) | int(T ) ⊆ I∗},

such that Ĩh ⊆ I∗ ⊆ Ih,H′ ∋ h ≤ h1. Since Ĩh may be empty, we choose h2 ∈ H′

sufficiently small so that Ĩh ̸= ∅ for H′ ∋ h ≤ h2. Setting h3 := min(h1, h2), we
thus have

∅ ≠ Ĩh ⊆ I∗ ⊆ Ih, H′ ∋ h ≤ h3. (4.8)

Now, let v ∈ CI∗,0 := {v ∈ C0(Ω) | v|I∗ ∈ C∞
0 (I∗), v|Ω\I∗ = 0} be chosen

arbitrarily, but fixed. Since supp(v) ⊆ I∗, there exists h(v) ∈ H′, h(v) ≤ h3, such
that

supp(v) ⊆ Ĩh ⊆ I∗ ⊆ Ih, H′ ∋ h ≤ h(v).

Obviously, we have v ∈ VĨh(v)
⊆ VI∗,0

and Ĩh(v) ⊆ Ih, h ≤ h(v), whence

Vh ∩ VĨh(v)
⊆ Vh ∩ VIh∪Fh(yh)

, h ≤ h(v).

Observing (4.6), it follows that

⟨µ̂h, vh⟩ = 0, vh ∈ Vh ∩ VĨh(v)
, h ≤ h(v). (4.9)

Since the sequence {Vh ∩ VĨh(v)
}h≤h(v) ⊂ VĨh(v)

is limit dense in VĨh(v)
, there

exists a sequence {vh}h≤h(v), vh ∈ Vh ∩ VĨh(v)
, h ≤ h(v), such that vh → v as

h(v) ≥ h → 0. In view of (4.2c) and (4.9), it follows that

0 = ⟨µ̂h, vh⟩ → ⟨µ∗, v⟩ (h(v) ≥ h → 0),

which gives ⟨µ∗, v⟩ = 0, v ∈ CI∗,0. The density of CI∗,0 in VI∗,0 implies (2.13i). �
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5. A posteriori error control

In this section, we want to derive a residual-type a posteriori error estimator for
the discretization errors in the state, the adjoint state, and the control

eh,y := y − yh, eh,p := p− ph, eh,u := u− uh (5.1)

that provides both an upper bound (reliability) and a lower bound (efficiency) up
to consistency errors and data oscillations. The total discretization error eh :=
(eh,y, eh,p, eh,u) will be measured in the norm

|∥eh∥| :=
(
∥eh,y∥2

1,Ω + ∥eh,p∥2
1,Ω + ∥eh,u∥2

0,Ω

)1/2

, (5.2)

and we will show

η2
h − ec

h,eff − osc2
h,eff . |∥eh∥|2 . η2

h + ec
h,rel + osc2

h,rel.

Here, ηh is the residual a posteriori error estimator, whereas ec
h,rel, e

c
h,eff and

osch,rel, osch,eff stand for the consistency errors and data oscillations associated
with the reliability and efficiency estimates.

5.1. Components of the reliability and efficiency estimates

In this subsection, we introduce the residual-type a posteriori error estimator con-
sisting of element and edge residuals, discuss the consistency errors due to a mis-
match in complementarity between the continuous and the discrete regime, and
present the data oscillations.

5.1.1. Residual-type a posteriori error estimator. The residual-type a posteriori
error estimator ηh is given by

ηh :=
(
(η

(1)
h )2 + (η

(2)
h )2

)1/2

, (5.3)

where η
(1)
h and η

(2)
h consist of element residuals and edge residuals associated with

the state equation (2.13a) and the adjoint state equation (2.13c)

η
(1)
h :=

( ∑

T∈Th(Zh)

(η
(1)
T )2 +

∑

E∈EZh

(η
(1)
E )2

)1/2

, (5.4a)

η
(2)
h :=

( ∑

T∈Th(Ih)

(η
(2)
T )2 +

∑

E∈EIh

(η
(2)
E )2

)1/2

. (5.4b)

In particular, the element residuals η
(ν)
T and the edge residuals η

(ν)
E , 1 ≤ ν ≤ 2, are

given by

η
(1)
T := hT ∥f + uh∥0,T , , η

(2)
T := hT ∥yd − yh∥0,T , (5.5a)

η
(1)
E := h

1/2
E ∥νE · [∇yh]E∥0,E , , η

(2)
E := h

1/2
E ∥νE · [∇ph]E∥0,E . (5.5b)

5.1.2. Consistency error (mismatch in complementarity). We distinguish between
reliability and efficiency related consistency errors.
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Consistency error for the reliability estimate.

ec
h,rel := e

(1)
h,σ + e

(2)
h,σ + e

(1)
h,µ + e

(2)
h,µ, (5.6)

where e
(ν)
h,σ, e

(ν)
h,µ, 1 ≤ ν ≤ 2, are given by

e
(1)
h,σ := ⟨σ̃h − σ, y − yh⟩, e

(2)
h,σ := −⟨σ̃h − σ, p− ph⟩, (5.7a)

e
(1)
h,µ := ⟨µ̃h − µ, y − yh⟩, e

(2)
h,µ := ⟨µ̃h − µ, p− ph⟩. (5.7b)

Consistency error for the efficiency estimate.

ec
h,eff :=

( ∑

T∈Th(Zh)

e
(σ)
T +

∑

T∈Th(Ih)

e
(µ)
T +

∑

E∈EZh

e(σ)
ωE

+
∑

E∈EIh

e(µ)
ωE

)
, (5.8)

where e
(σ)
T , e

(µ)
T , and e

(σ)
ωE , e

(µ)
ωE are given by

e
(σ)
T := |(fh + uh) bT |−1

1,T ⟨σ, (fh + uh) bT ⟩, (5.9a)

e
(µ)
T := |(yd

h − yh) bT |−1
1,T ⟨µ, (yd

h − yh) bT ⟩, (5.9b)

e(σ)
ωE

:= |νE · [∇yh]E bE |−1
1,ωE

⟨σ, νE · [∇yh]E bE⟩, (5.9c)

e(µ)
ωE

:= − |νE · [∇ph]E bE |−1
1,T ⟨µ, νE · [∇ph]E bE⟩, (5.9d)

and bT , bE stand for the element and edge bubble functions.

5.1.3. Data oscillations. As in case of the consistency errors, we distinguish be-
tween reliability and efficiency related data oscillations.

Data oscillations for the reliability estimate.

osch,rel :=
( ∑

T∈Th(Ω)

osc2
T (ud)

)1/2

, (5.10)

where oscT (ud) is given by

oscT (ud) := ∥ud − ud
h∥0,T . (5.11)

Data oscillations for the efficiency estimate.

osch,eff :=
( ∑

T∈Th(Zh)

osc2
T (f) +

∑

T∈Th(Ih)

osc2
T (yd)

)1/2

, (5.12)

where oscT (f) and oscT (yd) are given by

oscT (f) := hT ∥f − fh∥0,T , oscT (yd) := hT ∥yd − yd
h∥0,T . (5.13)
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5.2. Reliability of the error estimator

Theorem 5.1. Let (y, σ, u, p, µ) and (yh, σh, uh, ph, µh) be solutions of (2.13a)-
(2.13g) and (3.17a)-(3.17f) and let ηh, e

c
h,rel, osch,rel be the residual-type error es-

timator, the consistency error, and the data oscillations as given by (5.3),(5.6),
and (5.10). Then, it holds

|∥eh∥|2 . η2
h + ec

h,rel + osc2
h,rel. (5.14)

The proof of Theorem 5.1 will be given by a series of lemmas.
We note that neither eh,y nor eh,p satisfy Galerkin orthogonality due to the pres-
ence of u, uh in the right-hand sides of the continuous and discrete state equations
(2.13a),(3.17a) and of y, yh in in the right-hand sides of the continuous and dis-
crete adjoint state equations (2.13c),(3.17c). As in the case of the a posteriori
error analysis of finite element approximations of control and/or state constrained
distributed optimal control problems for second order elliptic PDEs, Galerkin or-
thogonality can be achieved with respect to an auxiliary state y(uh) ∈ V and an
auxiliary adjoint state p(yh) ∈ V which are defined as the unique solutions of the
variational equations

a(y(uh), v) = (f + uh, v)0,Ω − ⟨σ̃h, v⟩, v ∈ V, (5.15a)

a(p(yh), v) = (yd − yh, v)0,Ω − ⟨µ̃h, v⟩, v ∈ V. (5.15b)

In fact, it follows easily from (5.15a),(3.17a) and (5.15b),(3.17c) that

a(y(uh) − yh, vh) = 0, vh ∈ Vh, (5.16a)

a(p(yh) − ph, vh) = 0, vh ∈ Vh. (5.16b)

Lemma 5.2. Under the assumptions of Theorem 5.1 let y(uh), p(yh) be the aux-
iliary state and the auxiliary adjoint state as given by (5.15a) and (5.15b) and

let η
(1)
h and η

(2)
h be the components of the residual a posteriori error estimator

according to (5.4a) and (5.4b). Then, it holds

∥y(uh) − yh∥1,Ω . η
(1)
h , (5.17a)

∥p(yh) − ph∥1,Ω . η
(2)
h . (5.17b)

Proof. Denoting by PC
h Clément’s quasi-interpolation operator (cf., e.g., [56]), due

to Proposition 3.9 and (5.16a) for e := y(uh) − yh it holds

∥e∥2
1,Ω . a(e, e) = r(e− PC

h e), (5.18)

where the residual r(·) is given by

r(v) := (f + uh, v)0,Ω − ⟨σ̃h, v⟩ − a(yh, v), v ∈ V.
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In view of the representation (3.26a) of the extension σ̃h of the discrete multiplier
σh, by straightforward estimation we obtain

r(e− PC
h e) ≤ |

∑

T∈Th(Zh)

(f + uh, e− PC
h e)0,T | (5.19)

+ |
∑

E∈EZh

(νE · [∇yh]E , e− PC
h e)0,E | + |F (σ)

h (PSZ
h (e− PC

h e))|.

Taking advantage of the properties

∥e− PC
h e∥0,T . hT |e|1,ωT

h
, ∥e− PC

h e∥0,E . h
1/2
T |e|1,ωE

h

of Clément’s quasi-interpolation operator, for the first two terms on the right-hand
side of (5.19) it follows that

|
∑

T∈Th(Zh)

(f + uh, e− PC
h e)0,T | ≤ (5.20a)

∑

T∈Th(Zh)

∥f + uh∥0,T ∥e− PC
H e∥0,T .

∑

T∈Th(Zh)

η
(1)
T |e|1,ωT

h
,

|
∑

E∈EZh

(νE · [∇yh]E , e− PC
h e)0,E | ≤ (5.20b)

∑

E∈EZh

∥νE · [∇yh]E∥0,E ∥e− PC
h e∥0,E .

∑

E∈EZh

η
(1)
E |e|1,ωE

h
.

For the third term on the right-hand side in (5.19), in view of (3.26c) and the
definition of the Scott-Zhang interpolation operator PSZ

h we obtain

|F (σ)
h (PSZ

h (e− PC
h e))| ≤ (5.21)

∑

T∈Th(Fh(σh))

(
∥f + uh∥0,T

∑

a∈Nh(T )∩Ch

∥(PSZ
h (e− PC

h e))(a)φ
(a)
h ∥0,T

)

+
∑

E∈EFh(σh)

∥νE · [∇yh]E∥0,E ∥(PSZ
h (e− PC

h e))(a
′
E)φ

(a′
E)

h ∥0,E ,

where a′
E stands for the single nodal point in Nh(E) ∩Ch, E ∈ Eh(Fh(σh)). Using

elementary properties of nodal basis functions

∥φ(a)
h ∥0,T . hT , a ∈ Nh(T ), ∥φ(a)

h ∥0,E . h
1/2
E , a ∈ Nh(E), (5.22)

as well as the following property of PSZ
h (see, e.g., [51])

|(PSZ
h v)(a)| . h−1

T ∥v∥0,T , a ∈ Nh(T ), v ∈ L2(Ω), (5.23)
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it follows that

∑

a∈Nh(T )∩Ch

|(PSZ
h (e− PC

h e))(a)| ∥φ(a)
h ∥0,T . (5.24a)

hT

∑

a∈Nh(T )∩Ch

|(PSZ
h (e− PC

h e))(a)| .

hT

∑

a∈Nh(T )∩Ch

h−1
T (a) ∥e− PC

h e∥0,Ta . hT

∑

a∈Nh(T )∩Ch

|e|
1,ωT (a)

h

,

∥(PSZ
h (e− PC

h e))(a
′
E)φ

(a′
E)

h ∥0,E = (5.24b)

|(PSZ
h (e− PC

h e))(a
′
E)| ∥φ(a′

E)
h ∥0,E .

h
1/2
E h−1

T (a′
E

)
∥e− PC

h e∥0,T (a′
E

) . h
1/2
E |e|

1,ωT
(a′

E
)

h

,

where T (a) denotes the fixed element in ωa
h which is used in the computation of the

nodal coefficient (PSZ
h (e − PC

h e))(a) (cf. (3.28)). Using (5.24a),(5.24b) in (5.21)
yields

|F (σ)
h (PSZ

h (e− PC
h e))| . (5.25)

∑

T∈Th(Fh(σh))

η
(1)
T |e|1,ω̃T +

∑

E∈EFh(σh)

η
(1)
E |e|

1,ωT
(a′

E
)

h

,

where

ω̃T :=
∪

a∈Nh(T )∩Ch

ωT (a)

h .

Combining (5.20a),(5.20b), and (5.25), from (5.19) we deduce

|r(e− PC
h e)| .

∑

T∈Th(Zh)

η
(1)
T |e|1,ω̂T +

∑

E∈EZh

η
(1)
E |e|1,ω̂E , (5.26)

where

ω̂T :=

{
ω̃T ∪ ωT

h , T ∈ Th(Fh(σh))
ωT

h , otherwise
, ω̂E :=

{
ωT (a′

E)

h ∪ ωE
h , E ∈ EFh(σh)

ωE
h , otherwise

.
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Applying the Cauchy-Schwarz inequality in (5.26) and taking into account that
ωT

h and ωE
h have a finite overlap, it follows that

|r(e− PC
h e)| .

( ∑

T∈Th(Zh)

(η
(1)
T )2

)1/2( ∑

T∈Th(Zh)

|e|21,ω̂T

)1/2

+
( ∑

E∈EZh

(η
(1)
E )2

)1/2( ∑

E∈EZh

|e|21,ω̂E

)1/2

.

( ∑

T∈Th(Zh)

(η
(1)
T )2 +

∑

E∈EZh
∪EFh(σh)

(η
(1)
E )2

)1/2

·

( ∑

T∈Th(Zh)

|e|21,ω̂T +
∑

E∈EZh

|e|21,ω̂E

)1/2

. η
(1)
h |e|1,Ω.

Using the preceding inequality in (5.18) gives (5.17a)
For the proof of (5.17b) we set e := p(yh) − ph and obtain

∥e∥2
1,Ω . a(e, e) = r(e− PC

h e), (5.27)

where the residual r(·) is given by

r(v) := (yd − yh, v)0,Ω − ⟨µ̃h, v⟩ − a(ph, v), v ∈ V.

The representation (3.26b) of the extension µ̃h yields

r(e− PC
h e) =

∑

T∈Th(Ω)

(yd − yh, e− PC
h e)0,T −

∑

E∈Eh(Ω)

(νE · [∇ph]E , e− PC
h e)0,E

− ⟨µ̃h, e− PC
h e⟩ =

∑

T∈Th(Ih)

(yd − yh, e− PC
h e)0,T

−
∑

E∈EIh

(νE · [∇ph]E , e− PC
h e)0,E − F

(µ)
h (PSZ

h (e− PC
h e)).

The terms on the right-hand side can be estimated from above in much the same
way as before resulting in

|r(e− PC
h e)| . η

(2)
h |e|1,Ω, (5.28)

which together with (5.27) allows to conclude. �

Lemma 5.3. Under the assumptions of Theorem 5.1 let y, y(uh) be the state and
the auxiliary state and let p, p(yh) be the adjoint state and the auxiliary adjoint

state. Further, let η
(1)
h and η

(2)
h be the components of the residual a posteriori error

estimator according to (5.4a) and (5.4b) and let e
(1)
h,σ, e

(2)
h,µ be the consistency error

terms given by (5.7a),(5.7b). Then, it holds

∥y − y(uh)∥2
1,Ω . ∥eh,u∥2

0,Ω + (η
(1)
h )2 + e

(1)
h,σ, (5.29a)

∥p− p(yh)∥2
1,Ω . ∥eh,y∥2

0,Ω + (η
(2)
h )2 + e

(2)
h,µ. (5.29b)
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Proof. Subtracting (5.15a) from (2.13a) yields

a(y − y(uh), v) = (eh,u, v)0,Ω + ⟨σ̃h − σ, v⟩, v ∈ V. (5.30)

Choosing v = y − y(uh) and observing (2.4b), we get

γ ∥y − y(uh)∥2
1,Ω ≤ a(y − y(uh), y − y(uh)) = (5.31)

(eh,u, y − y(uh))0,Ω + ⟨σ̃h − σ, yh − y(uh)⟩ + e
(1)
h,σ.

The Cauchy-Schwarz inequality and Young’s inequality give

|(eh,u, y − y(uh))0,Ω| ≤ γ

4
∥y − y(uh)∥2

0,Ω +
1

γ
∥eh,u∥2

0,Ω. (5.32)

Moreover, if we choose v = yh − y(uh) in (5.30), we obtain

⟨σ̃h − σ, yh − y(uh)⟩ = (eh,u, y(uh) − yh)0,Ω + a(y − y(uh), yh − y(uh)).

Another application of the Cauchy-Schwarz inequality and Young’s inequality yield

|⟨σ̃h − σ, yh − y(uh)⟩| ≤ (5.33)

γ

4
∥y − y(uh)∥2

1,Ω +
2

γ
∥yh − y(uh)∥2

1,Ω +
γ

4
∥eh,u∥2

0,Ω.

Using (5.32),(5.33) in (5.31) and setting

C1 :=
γ2 + 4

2γ2
, C2 :=

4

γ2
, C3 :=

2

γ
, (5.34)

it follows that

∥y − y(uh)∥2
1,Ω ≤ C1 ∥eh,u∥2

0,Ω + C2 ∥yh − y(uh)∥2
1,Ω + C3 e

(1)
h,σ. (5.35)

The second term on the right-hand side in (5.35) can be estimated from above by
(5.17a) which results in (5.29a).
The estimate (5.29b) can be established by using similar arguments. In fact, sub-
tracting (5.15b) from (2.13c) yields

a(p− p(yh), v) = −(eh,y, v)0,Ω + ⟨µ̃h − µ, v⟩, v ∈ V. (5.36)

Choosing v = p− p(yh) and v = ph − p(yh), we obtain

γ ∥p− p(yh)∥2
1,Ω ≤ a(p− p(yh), p− p(yh))

= (eh,y, p(yh) − p)0,Ω + ⟨µ̃h − µ, ph − p(yh)⟩ + e
(2)
h,µ,

⟨µ̃h − µ, ph − p(yh)⟩ = (eh,y, ph − p(yh))0,Ω + a(p− p(yh), ph − p(yh)).

An application of the Cauchy-Schwarz inequality and Young’s inequality gives

∥p− p(yh)∥2
1,Ω ≤ C1 ∥eh,y∥2

0,Ω + C2 ∥ph − p(yh)∥2
1,Ω + C3 e

(2)
h,µ, (5.37)

from which (5.29b) can be deduced in view of (5.17b). �
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Lemma 5.4. Under the assumptions of Theorem 5.1 let ηh, e
c
h,rel, and osch,rel be

the residual-type error estimator (5.3), the consistency error term (5.6), and the
data oscillation (5.10). Then, it holds

∥eh,u∥2
0,Ω . η2

h + ec
h,rel + osc2

h,rel. (5.38)

Proof. Combining (2.13d) and (3.17d) we obtain

∥eh,u∥2
0,Ω = (eh,u, u− uh)0,Ω (5.39)

= (eh,u, u
d − ud

h)0,Ω + (eh,u, (u− ud) − (uh − ud
h))0,Ω

= (eh,u, u
d − ud

h)0,Ω + α−1 (eh,u, p− ph)0,Ω.

The first term on the right-hand side in (5.39) can be estimated from above by

|(eh,u, u
d − ud

h)0,Ω| ≤ 1

4
∥eh,u∥2

0,Ω + osc2
h(ud). (5.40)

The second term can be split according to

(eh,u, p− ph)0,Ω = (eh,u, p− p(yh))0,Ω + (eh,u, p(yh) − ph)0,Ω. (5.41)

For the estimation of the first term on the right-hand side in (5.41) we choose
v = p− p(yh) in (5.30) which gives

a(y − y(uh), p− p(yh)) = (eh,u, p− p(yh))0,Ω + ⟨σ̃h − σ, p− p(yh)⟩. (5.42)

On the other hand, choosing v = y − y(uh) in (5.36) yields

a(p− p(yh), y − y(uh)) = −(eh,y, y − y(uh))0,Ω + ⟨µ̃h − µ, y − y(uh)⟩. (5.43)

Combining (5.42) and (5.43) and using the symmetry of (·, ·), it follows that

(eh,u, p− p(yh))0,Ω = −(eh,y, y − y(uh))0,Ω + (5.44)

⟨σ̃h − σ, p(yh) − ph⟩ + ⟨µ̃h − µ, yh − y(uh)⟩ + e
(2)
h,σ + e

(1)
h,µ.

Now, choosing v = p(yh)−ph in (5.30) and v = yh −y(uh) in (5.36), for the second
and third term on the right-hand side in (5.44) we find

⟨σ̃h − σ, p(yh) − ph⟩ = − (eh,u, p(yh) − ph)0,Ω + a(y − y(uh), p(yh) − ph),

⟨µ̃h − µ, yh − y(uh)⟩ = (eh,y, yh − y(uh))0,Ω + a(p− p(yh), yh − y(uh)),

and hence,

(eh,u, p− p(yh))0,Ω = −∥eh,y∥2
0,Ω − (eh,u, p(yh) − ph)0,Ω + (5.45)

a(p− p(yh), yh − y(uh)) + a(y − y(uh), p(yh) − ph) + e
(2)
h,σ + e

(1)
h,µ.

Using (5.45) in (5.41) results in

(eh,u, p− ph)0,Ω = a(p− p(yh), yh − y(uh)) + (5.46)

a(y − y(uh), p(yh) − ph) − ∥eh,y∥2
0,Ω + e

(2)
h,σ + e

(1)
h,µ.
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For the first term on the right-hand side in (5.46), Young’s inequality gives

|a(p− p(yh), yh − y(uh))| ≤ ε

2
∥yh − y(uh)∥2

1,Ω +
1

2ε
∥p− p(yh)∥2

1,Ω.

Using (5.37) and choosing ε = C1/2, we get

|a(p− p(yh), yh − y(uh))| ≤ (5.47)

∥eh,y∥2
0,Ω +

C2

C1
∥ph − p(yh)∥2

1,Ω +
C1

4
∥yh − y(uh)∥2

1,Ω +
C3

C1
e
(2)
h,µ.

The second term on the right-hand side in (5.46) can be estimated from above
similarly:

|a(y − y(uh), p(yh) − ph)| ≤ ε

2
∥ph − p(yh)∥2

1,Ω +
1

2ε
∥y − y(uh)∥2

1,Ω.

Observing (5.35), we choose ε = 2C1/α and obtain

|a(y − y(uh), p(yh) − ph)| ≤ α

4
∥eh,u∥2

0,Ω +
αC2

4C1
∥yh − y(uh)∥2

1,Ω (5.48)

+
C1

α
∥ph − p(yh)∥2

1,Ω +
αC3

4C1
e
(1)
h,σ.

Using (5.40) and (5.46)-(5.48) in (5.39), it follows that

∥eh,u∥2
0,Ω . ∥ph − p(yh)∥2

1,Ω + ∥yh − y(uh)∥2
1,Ω + ec

h,rel + osc2
rel. (5.49)

The assertion (5.38) follows from (5.49) by taking (5.17a),(5.17b) from Lemma 5.2
into account. �

Proof of Theorem 5.1. In view of

eh,y = y − y(uh) + y(uh) − yh,

eh,p = p− p(yh) + p(yh) − ph,

the estimate (5.14) follows from the preceding Lemmas 5.2, 5.3, and 5.4. �

5.3. Efficiency of the error estimator

Theorem 5.5. Let (y, σ, u, p, µ) and (yh, σh, uh, ph, µh) be solutions of (2.13a)-
(2.13g) and (3.17a)-(3.17f) and let ηh, e

c
h,eff , osch,eff be the residual-type error

estimator, the consistency error, and the data oscillations as given by (5.3),(5.8),
and (5.12). Then, it holds

η2
h − ec

h,eff − osc2
h,eff . |∥eh∥|2. (5.50)

The proof of Theorem 5.5 will be provided by the subsequent two lemmas taking
into account the following well-known properties (cf., e.g., [56]) of the element
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bubble functions

∥qh∥2
0,T . (qh, qh bT )0,T , qh ∈ P1(T ), (5.51a)

∥qh bT ∥0,T . ∥qh∥0,T , qh ∈ P1(T ), (5.51b)

h−1
T ∥qh∥0,T . |qh bT |1,T . h−1

T ∥qh∥0,T , qh ∈ P1(T ), (5.51c)

and of the edge bubble functions

∥qh∥2
0,E . (qh, qh bE)0,E , qh ∈ P1(E), (5.52a)

∥qh bE∥0,E . h
1/2
E ∥qh∥0,E , qh ∈ P1(E), (5.52b)

h
−1/2
E ∥qh∥0,E . |qh bE |1,ωE

. h
−1/2
E ∥qh∥0,E , qh ∈ P1(E). (5.52c)

Lemma 5.6. Under the assumptions of Theorem 5.5 let η
(ν)
T , 1 ≤ ν ≤ 2, eσ

T , e
µ
T ,

and oscT (f), oscT (yd) be the element residuals (5.5a), the consistency error terms
(5.9a),(5.9b), and the data oscillations (5.13). Then, for all T ∈ Th(Zh) it holds

η
(1)
T . ∥eh,y∥1,T + hT ∥eh,u∥0,T + eσ

T + oscT (f), (5.53)

whereas for all T ∈ Th(Ih) we have

η
(2)
T . ∥eh,p∥1,T + hT ∥eh,y∥0,T + eµ

T + oscT (yd). (5.54)

Proof. Setting ψσ
T := (fh +uh) bT , using (5.51a), ∆yh|T = 0, Green’s formula, and

ψσ
T |∂T = 0, we obtain

h2
T ∥fh + uh∥2

0,T . h2
T (fh + uh, ψ

σ
T )0,T = (5.55)

h2
T (fh + uh + ∆yh, ψ

σ
T )0,T = h2

T (fh + uh, ψ
σ
T )0,T − h2

T a(yh, ψ
σ
T ).

On the other hand, since ψσ
T is an admissible test function in (2.13a), we have

a(y, ψσ
T ) − (f + u, ψσ

T )0,T + ⟨σ, ψσ
T ⟩ = 0. (5.56)

Using (5.56) in (5.55), it follows that

h2
T ∥fh + uh∥2

0,T . h2
T

(
a(y, ψσ

T ) − (f + u, ψσ
T )0,T + ⟨σ, ψσ

T ⟩
)

− (5.57)

h2
T

(
a(yh, ψ

σ
T ) − (fh + uh, ψ

σ
T )0,T

)
=

h2
T

(
a(y − yh, ψ

σ
T ) − (f − fh, ψ

σ
T )0,T − (u− uh, ψ

σ
T )0,T + ⟨σ, ψσ

T ⟩
)

≤

h2
T

(
|eh,y|1,T |ψσ

T |1,T + ∥eh,u∥0,T ∥ψσ
T ∥0,T + eσ

T |ψσ
T |1,T

)
.

In view of (5.51b) and (5.51c), it holds

h−1
T ∥fh + uh∥0,T . |ψσ

T |1,T = |(fh + uh) bT | . h−1
T ∥fh + uh∥0,T , (5.58)

∥ψσ
T ∥0,T . ∥fh + uh∥0,T .

Now, using (5.58) in (5.57), we get

h2
T ∥fh + uh∥2

0,T . hT ∥fh + uh∥0,T

(
∥eh,y∥1,T + hT ∥eh,u∥0,T + eσ

T + oscT (f)
)
.
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Combining the preceding estimate with η
(1)
T ≤ hT ∥fh + uh∥0,T + oscT (f) yields

(5.53). The assertion (5.54) can be shown by similar arguments. �

Lemma 5.7. Under the assumptions of Lemma 5.6 let η
(ν)
E , 1 ≤ ν ≤ 2, and

eσ
ωE
, eµ

ωE
be the edge residuals and consistency error terms as given by (5.5b) and

(5.9c),(5.9d). Further, for E = T+ ∩ T−, T± ∈ Th(Ω) let

η(1)
ωE

:= η
(1)
T+

+ η
(1)
T− , oscωE

(f) := oscT+(f) + oscT−(f), (5.59a)

η(2)
ωE

:= η
(2)
T+

+ η
(2)
T− , oscωE

(yd) := oscT+
(yd) + oscT−(yd). (5.59b)

Then, for E ∈ EZh
we have

η
(1)
E . ∥eh,y∥1,ωE + hE ∥eh,u∥0,ωE + η(1)

ωE
+ eσ

ωE
+ oscωE (f), (5.60)

whereas for all E ∈ EIh
it holds

η
(2)
E . ∥eh,p∥1,ωE + hE ∥eh,y∥0,ωE + η(2)

ωE
+ eµ

ωE
+ oscωE (yd). (5.61)

Proof. For E ∈ EZh
we set ψσ

E := νE · [∇yh]E bE . Then, (5.52a) implies

(η
(1)
E )2 = hE ∥νE · [∇yh]E∥2

0,E . hE (νE · [∇yh]E , ψ
σ
E)0,E (5.62)

= hE (ν∂T+ · ∇yh|∂T+ , ψ
σ
E)0,∂T+ + hE (ν∂T− · ∇yh|∂T− , ψ

σ
E)0,∂T− ,

where we have used that ψσ
E |E′ = 0, E′ ∈ ∂T± \ {E}. Further, Green’s formula

and ∆yh|T± = 0 yield

aT±(yh, ψ
σ
E) = (∇yh,∇ψσ

E)0,T± = (ν∂T± · ∇yh|T± , ψ
σ
E)0,T± . (5.63)

Using (5.63) in (5.62) gives

(η
(1)
E )2 . hE aωE

(yh, ψ
σ
E). (5.64)

Taking into account that ψσ
E is an admissible test function in (2.13a), we get

aωE (y, ψσ
E) − (f + u, ψσ

E)0,ωE + ⟨σ, ψσ
E⟩ = 0. (5.65)

Combining (5.64) and (5.65), we obtain

(η
(1)
E )2 . hE a(yh − y, ψσ

E) + hE (fh + uh, ψ
σ
E)0,ΩE

+ (5.66)

hE (f − fh, ψ
σ
E)0,ωE

+ hE (u− uh, ψ
σ
E)0,ωE

− hE ⟨σ, ψσ
E⟩

≤ hE |y − yh|1,ωE |ψσ
E |1,ωE + hE ∥ψσ

E∥0,ωE

(
∥fh + uh∥0,ωE +

∥u− uh∥0,ωE + ∥f − fh∥0,ωE

)
+ hE eσ

ωE
|ψσ

E |1,ωE .

Moreover, (5.52b) and (5.52c) imply

h
−1/2
E ∥νE · [∇yh]E∥0,E . |ψσ

E |1,ωE
= |νE · [∇yh]E bE |1,ωE

(5.67)

. h
−1/2
E ∥νE · [∇yh]E∥0,E ,

∥ψσ
E∥0,ωE

. h
1/2
E ∥νE · [∇yh]E∥0,E .
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Using (5.67) in (5.66) yields

η
(1)
E . ∥eh,y∥1,ωE + hE ∥eh,u∥0,ωE + hE ∥fh + uh∥0,ωE + eσ

ωE
+ oscωE (f).

Due to the shape regularity of the triangulation, for E ∈ Eh(T ) we have hE .
hT . hE and hence,

hE ∥fh + uh∥0,ωE ≤ hE ∥fh + uh∥0,T+ + hE ∥fh + uh∥0,T− .
hT+ ∥fh + uh∥0,T+ + hT− ∥fh + uh∥0,T− . η(1)

ωE
.

The preceding two estimates result in (5.60). The assertion (5.61) can be verified
by similar arguments. �
5.4. Estimation of the consistency error

In this subsection, we provide fully computable quantities for the approximation
of the reliability and efficiency related consistency errors.

5.4.1. Approximation of characteristic functions. In this paragraph, following [24,
26, 39] in case of adaptive finite element approximations of control and/or state
constrained optimally controlled second order elliptic boundary value problems,
we provide approximations of the characteristic functions χA and χZ of the active
set A and the zero set Z by means of the available finite element solutions. Here
and in the forthcoming paragraphs we will use realizations σ′

h, µ
′
h ∈ Vh of the

discrete multipliers σh, µh with respect to the finite element spaces Vh according
to

(σ′
h, vh)0,Ω = ⟨⟨σh, vh⟩⟩, (µ′

h, vh)0,Ω = ⟨⟨µh, vh⟩⟩, vh ∈ Vh.

Moreover, we introduce a mesh function h̄ ∈ S
(1)
h whose nodal values h̄(a) are

given by averaging over local patches:

h̄(a) := (card(ωa))−1
∑

T∈Th(ωa)

hT , a ∈ Nh(Ω̄).

The approximations of the characteristic functions are defined by means of

χh,A(a) := 1 − (ψh − yh)(a)

γh̄(a)r + (ψh − yh)(a)
, a ∈ Nh(Ω̄), (5.68a)

χh,Z(a) := 1 − σ′
h(a)

γh̄(a)r + σ′
h(a)

, a ∈ Nh(Ω̄), (5.68b)

where 0 < γ ≤ 1 and r > 0 are fixed. In case of uniform meshes with h̄ ≈ h =
maxT∈Th(Ω̄) hT , the following result reflects the approximation properties of χh,A
and χh,Z .

Proposition 5.8. For 0 ≤ ε < 1 and γ, r as in (5.68a),(5.68b) consider the partition

I ∩ Ih = I1 ∪ I2,

where the sets Iν , 1 ≤ ν ≤ 2, are given by

I1 := {x ∈ I | 0 < ψh(x) − yh(x) ≤ γhεr}, I2 := {x ∈ I | ψh(x) − yh(x) > γhεr}.
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Then, it holds

∥χA − χ
h,A∥0,ω





= 0 , ω ⊂ A ∩ Ah

< min(|ω|1/2, γ−1h−r∥ψh − yh∥0,Ω , ω ⊂ A ∩ Ih

= |ω|1/2 , ω ⊂ I ∩ Ah

< |ω|1/2 , ω ⊂ I1

< |ω|1/2hr(1−ε) , ω ⊂ I2

.

Proof. Without loss of generality we may assume h ≤ 1. For the proof we distin-
guish several cases.
Case 1 (ω ⊂ A ∩ Ah): Obviously, χA |ω = χ

h,A |ω = 1.
Case 2 (ω ⊂ A ∩ Ih): We have χA |ω = 1 and hence,

(χA − χ
h,A)|ω =

(ψh − yh)|ω
γhr + (ψh − yh)|ω

.

Since (ψh − yh)|ω > 0 and γhr > 0, it follows that

(χA − χ
h,A)|ω < γ−1h−r(ψh − yh)|ω and (χA − χ

h,A)|ω < 1,

which allows to conclude.
Case 3 (ω ⊂ I ∩Ah): The assertion follows readily from χA |ω = 0 and χ

h,A |ω = 1.
Case 4 (ω ⊂ I ∩ Ih): We have χA |ω = 0 and

(χA − χ
h,A)|ω =

γhr

γhr + (ψh − yh)|ω
.

For ω ⊂ I1 this implies (χA − χ
h,A)|ω < 1, and we conclude. On the other hand,

for ω ⊂ I2, taking h ≤ 1 into account, we find

(χA − χ
h,A)|ω < min(1, hr(1−ε)) = hr(1−ε),

which proves the assertion. �

5.4.2. Approximation of the continuous active/inactive sets. Based on the approx-
imations χ

h,A , χh,Z of the characteristic functions of the continuous sets A and Z,
we derive approximations of the continuous (strongly) active, biactive, inactive,
and zero sets. To this end, for 0 < κ ≤ 1 and 0 < r′ ≤ r we first define nodal
sets Āh, Īh, C̄h, Z̄h, and B̄h as approximations of their continuous counterparts
according to

Āh := {a ∈ Nh(Ω̄) | χ
h,A(a) ≥ 1 − κh̄(a)r′}, Īh := Nh(Ω̄) \ Āh,

C̄h :=
(
Nh(Ω) \ {a ∈ Nh(Ω) | χ

h,Z (a) ≥ 1 − κh̄(a)r′}
)

∩ Āh,

Z̄h := Nh(Ω) \ C̄h, B̄h := Āh ∩ Z̄h.
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These sets constitute a suitable basis for the specification of approximations Āh

of A, Īh of I, C̄h of C, and Z̄h of Z by means of

Āh :=
∪

{T ∈ Th(Ω) | T ∈ ĀT
h }, ĀT

h := {T ∈ Th(Ω) | Nh(T ) ⊆ Āh}, (5.69a)

Īh :=
∪

{T ∈ Th(Ω) | T ∈ ĪT
h ∪ F̄T

yh
}, (5.69b)

ĪT
h := {T ∈ Th(Ω) | Nh(T ) ⊆ Īh}, F̄T

yh
:= Th(Ω) \ (ĀT

h ∪ ĪT
h ),

C̄h :=
∪

{T ∈ Th(Ω) | T ∈ C̄T
h }, C̄T

h := {T ∈ Th(Ω) | Nh(T ) ⊆ C̄h} ∪ (5.69c)

{T ∈ Th(Ω) | T ∩ Γ ̸= ∅ ∧ Nh(T ) ∩ Nh(Ω) ̸= ∅ ∧ T ⊆ ĀT
h },

Z̄h :=
∪

{T ∈ Th(Ω) | T ∈ Z̄T
h ∪ F̄T

σh
}, (5.69d)

Z̄T
h := {T ∈ Th(Ω) | Nh(T ) ⊆ Z̄h ∪ Nh(Γ)}, F̄T

σh
:= Th(Ω) \ (C̄T

h ∪ Z̄T
h ).

The biactive set B and the free boundaries F(y) and F(σ) are approximated by

B̄h :=
∪

{T ∈ Th(Ω) | T ∈ B̄T
h }, B̄T

h := ĀT
h \ C̄T

h , (5.69e)

F̄yh
:=

∪
{T ∈ Th(Ω) | T ∈ F̄T

yh
}, (5.69f)

F̄σh
:=

∪
{T ∈ Th(Ω) | T ∈ F̄T

σh
}. (5.69g)

In the documentation of the numerical results in the following section 6, we will
measure the quality of the approximation of the active set A and the strongly
active set C by the a posteriori quantities

edva
ℓ,A := ∥χAℓ

− χĀℓ
∥L1(Ω), edva

ℓ,C := ∥χCℓ
− χC̄ℓ

∥L1(Ω), (5.70)

where the upper index ’dva’ stands for ’discrete versus approximate’, and compare
them with the quantities

eevd
ℓ,A := ∥χA − χAℓ

∥L1(Ω), eevd
ℓ,C := ∥χC − χCℓ

∥L1(Ω), (5.71a)

eeva
ℓ,A := ∥χA − χĀℓ

∥L1(Ω), eeva
ℓ,C := ∥χC − χC̄ℓ

∥L1(Ω). (5.71b)

Here, the upper indices ’evd’ and ’eva’ mean ’exact versus discrete’ and ’exact
versus approximate’. Obviously, these latter quantities are only available, if the
exact solution is known.

5.4.3. Approximation of the continuous states and multipliers. We derive approx-
imations of the state y and the adjoint state p as well as various approximations
of the multipliers σ and µ in terms of the approximations of the continuous ac-
tive/biactive, strongly active, inactive, zero nodal points (sets) and free boundaries
provided in the previous paragraph 5.4.2. Motivated by superconvergence results
through local averaging (cf., e.g., [3]), we define approximations ȳh ∈ Vh of y and
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p̄h ∈ Vh of p according to

ȳh(a) :=

{
card(Nh(ωa))−1

∑
a′∈Nh(ωa)

yh(a′) , a ∈ Īh

ψh(a) , a ∈ Āh

, (5.72a)

p̄h(a) :=

{
card(Nh(ωa))−1

∑
a′∈Nh(ωa)

ph(a′) , a ∈ Z̄h

0 , a ∈ C̄h

. (5.72b)

Likewise, we define approximations σ′′
h and µ′′

h of σ and µ by means of

σ′′
h(a) :=

{
card(Nh(ωa))−1

∑
a′∈Nh(ωa)

σ′
h(a′) , a ∈ C̄h

0 , a ∈ Z̄h

, (5.73a)

µ′′
h(a) :=

{
card(Nh(ωa))−1

∑
a′∈Nh(ωa)

µ′
h(a′) , a ∈ Īh

0 , a ∈ Āh

. (5.73b)

Remark 5.9. The functions ȳh, p̄h will replace y, p in the approximation of the
consistency error ec

h,rel, whereas σ′′
h, µ

′′
h will be used in the approximation of ec

h,eff

and in a further form of the approximation of ec
h,rel (cf. paragraph 5.4.4).

For the approximation of the multipliers σ, µ in the consistency error ec
h,rel we

will use an alternative approximation which relies on the structural properties of
the multipliers. If the sets C and A are the union of a finite number of connected
pairwise disjoint Lipschitz sets, for any v ∈ V Proposition 2.1 guarantees the
existence of sets C̃, Ã and functions vext

C , vext
A ∈ V such that C ⊆ C̃ ⊆ Ω,A ⊆ Ã ⊆ Ω

and

⟨σ, v⟩ = ⟨σ, vext
C ⟩ = (f + u, vext

C )0,C̃ − (∇y,∇vext
C )0,C̃ ,

⟨µ, v⟩ = ⟨µ, vext
A ⟩ = (yd − y, vext

A )0,Ã − (∇p,∇vext
A )0,Ã.

Employing the structural information provided in Proposition 2.16, we obtain

⟨σ, v⟩ = (5.74a)
(
(f + ud, v)0,C − (∇ψ,∇v)0,C

)
−

(
(∆ψ, vext

C )0,(C̃\C)∩B + (∇ψ,∇vext
C )0,(C̃\C)∩B

)

+
(
(f + ud + α−1p, vext

C )0,(C̃\C)∩I − (∇y,∇vext
C )0,(C̃\C)∩I

)
,

⟨µ, v⟩ = (yd − ψ, v)0,A (5.74b)

+ α (∇(∆ψ + f + ud),∇v)0,B +
(
(yd − y, vext

A )0,Ã\A − (∇p,∇vext
A )0,Ã\A

)
.

In order to provide a fully computable approximation, we replace the unknown
sets C,B,A, I, and the unknown functions y, p by their previously defined approx-
imations C̄h, B̄h, Āh, Īh, and ȳh, p̄h. Moreover, C̃, Ã are chosen according to

C̃ := C̄h ∪ F̄σh
, Ã := Āh ∪ F̄yh

, (5.75)
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whereas vext
C , vext

A are approximated by

vext
C̄h

:= I
C̄h

(vh), vext
Āh

:= I
Āh

(vh), vh ∈ Vh. (5.76)

Here, I
Dh
, Dh ⊆ Nh(Ω), is the operator from (3.19).

Using the previous approximations in (5.74) and assuming sufficient regularity of
the data in B̄h, we obtain the following approximations of the action of σ, µ on
functions in Vh:

⟨σ, vh⟩ ≈ ⟨σ̄(1)
h , vh⟩ =

∑

T∈Th(C̄h)

(
(f + ud, vh)0,T − (∇ψ,∇vh)0,T

)
(5.77a)

−
∑

T∈Th(F̄σh
∩B̄h)

(
(∆ψ, I

C̄h
(vh))0,T + (∇ψ,∇I

C̄h
vh)0,T

)

+
∑

T∈Th(F̄σh
∩Īh)

(
(f + ud + α−1p̄h, IC̄h

(vh))0,T − (∇ȳh,∇IC̄h
(vh))0,T

)
,

⟨µ, vh⟩ ≈ ⟨µ̄(1)
h , vh⟩ =

∑

T∈Th(Āh)

(yd − ψ, vh)0,T (5.77b)

+ α
∑

T∈Th(B̄h)

(∇(∆ψ + f + ud),∇vh)0,T

+
∑

T∈Th(F̄yh
)

(
(yd − ȳh, IĀh

(vh))0,T − (∇p̄h,∇IĀh
(vh))0,T

)
.

As far as the regularity of the data is concerned, in the proof of Proposition 2.16
we have seen that ∆ψ ∈ L2(B) and ∆ψ + f + ud ∈ H1(B). If B̄h ⊂ B or else
∆ψ ∈ L2(B̄h) and ∆ψ + f + ud ∈ L2(B̄h) hold true, (5.77a) and (5.77b) are
well defined. Otherwise, employing the values of ȳh and p̄h in B̄h, we can use the
following simplification of the approximations of the action of σ, µ on functions in
Vh:

⟨σ, vh⟩ ≈ ⟨σ̄(2)
h , vh⟩ =

∑

T∈Th(C̄h)

(
(f + ud, vh)0,T − (∇ψ,∇vh)0,T

)
(5.78a)

−
∑

T∈Th(F̄σh
∩B̄h)

(∇ψ,∇I
C̄h

(vh))0,T

+
∑

T∈Th(F̄σh
∩Īh)

(
(f + ud + α−1p̄h, IC̄h

(vh))0,T − (∇ȳh,∇IC̄h
(vh))0,T

)
,

⟨µ, vh⟩ ≈ ⟨µ̄(2)
h , vh⟩ =

∑

T∈Th(Āh)

(yd − ψ, vh)0,T −
∑

T∈Th(B̄h)

(∇p̄h,∇vh)0,T (5.78b)

+
∑

T∈Th(F̄yh
)

(
(yd − ȳh, IĀh

(vh))0,T − (∇p̄h,∇IĀh
(vh))0,T

)
.



Adaptive FE for optimally controlled elliptic variational inequalities 39

5.4.4. Approximation of the consistency errors. For the consistency error ec
h,rel

we will use three different types of approximations

ec
h,rel ≈ ē

c,(k)
h,rel := ē

1,(k)
h,σ + ē

2,(k)
h,σ + ē

1,(k)
h,µ + ē

2,(k)
h,µ , 1 ≤ k ≤ 3. (5.79)

For the first two approximations ē
c,(k)
h,rel, 1 ≤ k ≤ 2, we use the approximation of

the multipliers by (5.77) and (5.78):

ē
1,(k)
h,σ := ⟨σ̃h − σ̄

(k)
h , ȳh − yh⟩, ē

2,(k)
h,σ := ⟨σ̃h − σ̄

(k)
h , ph − p̄h⟩, (5.80a)

ē
1,(k)
h,µ := ⟨µ̃h − µ̄

(k)
h , ȳh − yh⟩, ē

2,(k)
h,µ := ⟨µ̃h − µ̄

(k)
h , p̄h − ph⟩. (5.80b)

The third approximation ē
c,(3)
h,rel is obtained by using the approximation of the

multipliers by local averaging (cf. (5.73)):

ē
1,(3)
h,σ := ⟨σ̃h − σ′′

h, ȳh − yh⟩, ē
2,(3)
h,σ := ⟨σ̃h − σ′′

h, ph − p̄h⟩, (5.81a)

ē
1,(3)
h,µ := ⟨µ̃h − µ′′

h, ȳh − yh⟩, ē
2,(3)
h,µ := ⟨µ̃h − µ′′

h, p̄h − ph⟩. (5.81b)

Further, we compute upper bounds ē
c,(k)
h,rel, 1 ≤ k ≤ 3, according to

ē
c,(k)
h,rel ≤ Ē

c,(k)
h,rel := Ē

1,(k)
h,σ + Ē

2,(k)
h,σ + Ē

1,(k)
h,µ + Ē

2,(k)
h,µ , 1 ≤ k ≤ 3, (5.82)

where Ē
ν,(k)
h,σ , Ē

ν,(k)
h,µ , 1 ≤ ν ≤ 2, are given by summing up the absolute values of

the elementwise contributions of ē
ν,(k)
h,σ , ē

ν,(k)
h,µ , 1 ≤ ν ≤ 2.

For the approximation of the consistency error ec
h,eff we use the approximation of

the multipliers by local averaging as given by (5.73):

ēc
h,eff . Ēc

h,eff :=
∑

T∈Th(Zh)

h2
T ∥σ′′

h∥2
0,T +

∑

T∈Th(Ih)

h2
T ∥µ′′

h∥2
0,T . (5.83)

6. Numerical results

In this section, we present numerical results for problems with and without strict
complementarity illustrating the performance of the suggested finite element ap-
proximation. We note that for adaptively refined meshes it is appropriate to mea-
sure the decay in the error err in terms of the degrees of freedom (DOF) provided
by the finite element mesh. In particular, if there exists a real number τ > 0 such
that err = O(DOF−τ ), then τ is said to be the convergence rate of the error with
respect to the degrees of freedom. In the numerical experiments, we are dealing
with a hierarchy {Thn(Ω)}n∈N of nested simplicial meshes with associated degrees
of freedom DOF (n). Denoting by err(n), n ∈ N, the error with respect to the
mesh Thn(Ω), we refer to

τn :=
log(err(n− 1)/err(n))

log(DOF (n)/DOF (n− 1))
, n ∈ N, (6.1)

as the experimental convergence rate in terms of the degrees of freedom. On a
double logarithmic scale, the numbers τn correspond to the negative slopes of
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the lines connecting log(err(n− 1)) and log(err(n)). In the subsequent numerical
examples, we will compare these lines both for uniform refinement and adaptive
refinement. In the regular case, we expect the slopes to be approximately the same,
whereas for less regular solutions the slope for adaptive refinement is expected to
be larger than in case of uniform refinement.

Example 6.1. We consider A = −∆ on the L-shaped domain Ω = (−2, 2)2\([0, 2]×
[−2, 0]). In polar coordinates, given

y∗(r, φ) = − γ(r) r2/3 sin(
2

3
φ),

σ∗(r) =

{
1 , r ≥ r̄ := 0.5
0 , otherwise

, u∗(r, φ) = y∗(r, φ),

where

γ(r) =

{
0 , r ≥ r̄

16r3 − 12r2 + 1 , otherwise
,

it can be easily verified that the triple (y∗, σ∗, u∗) with the adjoint state p∗ = y∗

and the multiplier µ∗ = σ∗ is an S-stationary point of (2.5) with respect to the
data

yd = µ∗ − ∆p∗ + y∗, ud = 0,

f = σ∗ − ∆y∗ − p∗, α = 1, ψ = 0.

Further, we have I∗ = {(r, φ) | r ∈ (0, r̄), φ ∈ (0, 3π/2)}, Z∗ = I∗, and hence,
B∗ = ∅. The state y∗ and the inactive set I∗ are displayed in Figure 1. The
adaptively generated final mesh with 33468 DOFs and a zoom into the vicinity of
the singularity of the state at the origin are shown in Figure 2.

Figure 1. Example 6.1. Optimal state y∗ (left) and inactive set
I∗, marked in black (right).

The convergence history is documented in Figure 3 (left) which shows the decrease
of the errors in the state ∥eh,y∥1,Ω and in the control ∥eh,u∥0,Ω as a function of
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Figure 2. Example 6.1. Final mesh (left) and zoom into the
vicinity of the singularity at the origin (right).

the DOFs on a logarithmic scale both for uniform refinement (UFEM) and for
adaptive refinement (AFEM). Likewise, Figure 3 (right) shows the decrease of
the total error |∥eh∥| and of the estimator ηh as a function of the DOFs on a
logarithmic scale, again both for uniform refinement (UFEM) and for adaptive
refinement (AFEM).
Table 1 contains the computed experimental convergence rates (cf. 6.1) for the
approximation of the state, the adjoint state, the control, and the total error in
case of uniform and adaptive refinement. We see that asymptotically the expected
optimal convergence rates are achieved.
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Figure 3. Example 6.1. Convergence history: Decrease of the
errors in the state ∥eh,y∥1,Ω and in the control ∥eh,u∥0,Ω as a
function of the DOFs on a logarithmic scale (for uniform (UFEM)
and adaptive (AFEM) refinement (left). Decrease of the estimator
ηh and the total error |||eh||| as a function of the DOFs on a
logarithmic scale (for uniform (UFEM) and adaptive (AFEM)
refinement (right).
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Table 1. Example 6.1: Experimental convergence rates (uniform
and adaptive refinement).

n ∥eh,y∥1,Ω ∥eh,p∥1,Ω ∥eh,u∥0,Ω |||eh|||
unif. adapt. unif. adapt. unif. adapt. unif. adapt.

3 0.26 1.11 0.26 1.11 0.68 2.15 0.28 1.15
4 0.41 0.76 0.41 0.76 0.76 1.48 0.42 0.78

5 0.43 0.56 0.43 0.56 0.88 1.06 0.44 0.57
6 0.44 0.68 0.44 0.68 0.83 1.40 0.45 0.69
7 0.45 0.57 0.45 0.57 0.82 1.15 0.45 0.57
8 0.41 0.64 0.41 0.64 0.82 1.21 0.41 0.64

9 0.42 0.51 0.42 0.51 0.78 1.09 0.43 0.51
10 0.40 0.57 0.40 0.57 0.76 1.07 0.40 0.57
11 0.40 0.49 0.40 0.49 0.75 1.04 0.40 0.50
12 0.39 0.54 0.39 0.54 0.73 1.02 0.39 0.54

13 0.38 0.49 0.38 0.49 0.72 1.03 0.38 0.49

As far as the consistency errors and their estimates are concerned, we have to dis-
tinguish between the reliability related consistency errors ec

h,rel (cf. (5.6)) and the

efficiency related consistency errors ec
h,eff (cf. (5.8)). Figure 4 displays the decay

of |ec
h,rel| and its estimates |ēc,(k)

h,rel|, Ē
c,(k)
h,rel, 2 ≤ k ≤ 3, as a function of the DOFs

on a logarithmic scale for uniform refinement (left) and for adaptive refinement

(right) (we note that ē
c,(1)
h,rel, Ē

c,(1)
h,rel and ē

c,(2)
h,rel, Ē

c,(2)
h,rel coincide for problems featuring

strict complementarity which is the case in Example 1).
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Figure 4. Example 6.1. Decrease of the reliability related con-
sistency error e = |ec

h,rel| (dotted line) and its estimates ek =

|ēc,(k)
h,rel|, Ek = Ē

c,(k)
h,rel, 2 ≤ k ≤ 3, (solid lines) as functions of the

DOFs on a logarithmic scale for uniform refinement (left) and
adaptive refinement (right).
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We observe that |ēc,(2)
h,rel| and Ē

c,(2)
h,rel provide upper bounds for |ec

h,rel| with approx-

imately the same decay rates. On the other hand, |ēc,(3)
h,rel| slightly underestimates

|ec
h,rel|, whereas Ē

c,(3)
h,rel grossly overestimates |ec

h,rel| with an insufficient decay rate
in particular for adaptive refinement.
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Figure 5. Example 6.1. Decrease of the efficiency related consis-
tency error e = ec

h,eff (dotted line) and its estimate E = Ēc,1
h,eff

(solid line) as functions of the DOFs on a logarithmic scale for
uniform refinement (left) and adaptive refinement (right).
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Figure 6. Example 6.1. Approximation of the active set A: quan-
tities eevd

h,A (dotted line) and edva
h,A, e

eva
h,A (solid lines) as functions of

the DOFs on a logarithmic scale for uniform refinement (left) and
adaptive refinement (right).

Similarly, in Figure 5 the decay of the efficiency related consistency errors ec
h,eff

and their estimates Ēc,1
h,eff are shown as functions of the DOFs on a logarithmic

scale for uniform refinement (left) and adaptive refinement (right). After a pre-

asymptotic phase, the estimates Ēc,1
h,eff represent close upper bounds of ec

h,eff
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featuring essentially the same decay rates.
Finally, Figure 6 displays the decay of the errors with regard to the approximation
of the active set A in terms of the quantities eevd

h,A, e
eva
h,A, and edva

h,A (cf. (5.70),(5.71)).

Recalling that the quantities eevd
h,A and eeva

h,A are the L1-norms of the difference
between the characteristic function of the continuous active set A on one hand
and the characteristic function of the discrete active set Ah resp. the characteristic
function of the approximate active set Āh on the other hand, we see that the a
posteriori quantity edva

h,A yields a close upper bound with approximately the same
decay rates.

Example 6.2. The second example which has been considered in [30, 28] features a
problem with lack of strict complementarity. We consider A = −∆ on Ω = (0, 1)2.
Given

y∗(x1, x2) =

{
−z1(x1)z2(x2) , (x1, x2) ∈ (0, 0.5) × (0, 0.8)

0 , else
,

σ∗(x1, x2) = 2 max(0,−|x1 − 0.8| − |(x2 − 0.2)x1 − 0.3| + 0.35),

u∗(x1, x2) = y∗(x1, x2),

where

z1(x1) := −4096 x6
1 + 6144 x5

1 − 3072 x4
1 + 512 x3

1,

z2(x2) := −244.140625 x6
2 + 585.9375 x5

2 − 468.75 x4
2 + 125 x3

2,

it can be easily verified that the triple (y∗, σ∗, u∗) with the adjoint state p∗ = y∗

and the multiplier µ∗ = σ∗ is an S-stationary point of (2.5) with respect to the
data

yd = µ∗ − ∆p∗ + y∗, ud = 0,

f = σ∗ − ∆y∗ − p∗, α = 1, ψ = 0.

Further, we have I∗ = {(x1, x2) | (x1, x2) ∈ (0, 0.5)×(0, 0.8)}, C∗ = {(x1, x2) | |x1−
0.8|+ |(x2 −0.2)x1 −0.3| ≤ 0.35}, and hence, B∗ = Ω\ (I∗ ∪C∗) ̸= ∅. The optimal
state y∗ and the optimal multiplier σ∗ are shown in Figure 7, whereas the inactive
set I∗ and the strongly active set C∗ are displayed in Figure 8. Figure 9 shows
the adaptively generated mesh at level n = 7 with 2439 DOFs and the final mesh
(level n = 11) with 34159 DOFs.

As in the first example, Figure 10 displays the decrease of the errors in the state, in
the control, in the total error, and in the estimator as functions of the DOFs on a
logarithmic scale, whereas Table 2 contains the associated computed experimental
convergence rates. Since the solution is smooth, uniform refinement is already
optimal, i.e., in Table 2 we observe almost the same rates for uniform and adaptive
refinement. However, as can be seen in Figure 10, the error reductions are slightly
less for adaptive refinement.
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Figure 7. Example 6.2. Optimal state y∗ (left) and optimal mul-
tiplier σ∗ (right).

Figure 8. Example 6.2. The inactive set I∗ (left) and the
strongly active set C∗, both marked in black (right).
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Figure 9. Example 6.2. Mesh at refinement level n = 7 (left)
and final mesh (right).
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Figure 11 shows the decrease of the reliability related consistency error e = |ec
h,rel|

(dotted line) and its estimates ek = |ēc,(k)
h,rel|, Ek = Ē

c,(k)
h,rel, 1 ≤ k ≤ 3, as functions

of the DOFs on a logarithmic scale both for uniform refinement (left) and for
adaptive refinement (right). We see a very similar behavior as in Example 1, i.e., for

1 ≤ k ≤ 2, the quantities ek = |ēc,(k)
h,rel| and Ek = Ē

c,(k)
h,rel provide close upper bounds,

whereas |ēc,(3)
h,rel| underestimates and Ē

c,(3)
h,rel grossly overestimates the consistency

error |ec
h,rel|.
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Figure 10. Example 6.2. Convergence history: Decrease of the
errors in the state ∥eh,y∥1,Ω and in the control ∥eh,u∥0,Ω as func-
tions of the DOFs on a logarithmic scale (for uniform (UFEM)
and adaptive (AFEM) refinement (left). Decrease of the estima-
tor ηh and the total error |||eh||| as a function of the DOFs on
a logarithmic scale (for uniform (UFEM) and adaptive (AFEM)
refinement (right).

Table 2. Example 6.2: Experimental convergence rates (uniform
and adaptive refinement).

n ∥eh,y∥1,Ω ∥eh,p∥1,Ω ∥eh,u∥0,Ω |||eh|||
unif. adapt. unif. adapt. unif. adapt. unif. adapt.

2 0.24 0.61 0.24 0.61 0.65 1.42 0.25 0.63
3 0.34 0.63 0.34 0.63 0.69 1.33 0.35 0.64

4 0.61 0.47 0.61 0.47 1.20 0.95 0.62 0.47
5 0.39 0.58 0.39 0.58 0.78 1.16 0.39 0.58
6 0.57 0.47 0.57 0.47 1.14 0.88 0.57 0.47
7 0.41 0.53 0.41 0.53 0.81 1.12 0.41 0.54

8 0.57 0.49 0.57 0.49 1.15 0.90 0.57 0.49
9 0.42 0.52 0.42 0.52 0.83 1.07 0.42 0.52

10 0.57 0.47 0.57 0.47 1.15 0.85 0.58 0.47
11 0.44 0.53 0.44 0.53 0.84 1.12 0.42 0.53
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Figure 11. Example 6.2. Decrease of the reliability related con-
sistency error e = |ec

h,rel| (dotted line) and its estimates ek =

|ēc,(k)
h,rel|, Ek = Ē

c,(k)
h,rel, 1 ≤ k ≤ 3, (solid lines) as functions of the

DOFs on a logarithmic scale for uniform refinement (left) and
adaptive refinement (right).

Figure 12 displays the decrease of the efficiency related consistency error ec
h,eff

and its estimate Ēc,1
h,eff as functions of the DOFs on a logarithmic scale for uniform

refinement (left) and adaptive refinement (right). As in Example 1, after some pre-
asymptotic phase in the adaptive regime, the estimates provide upper bounds of
the consistency error.
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Figure 12. Example 6.2. Decrease of the efficiency related con-
sistency error e = |ec

h,eff | (dotted line) and its estimate E =

Ē
c,(1)
h,eff (solid line) as functions of the DOFs on a logarithmic scale

for uniform refinement (left) and adaptive refinement (right).

Example 2 features the occurrence of a strongly active set C∗ and hence, we are
interested in how well the a posteriori quantities edva

h,A and edva
h,C coincide with

eeva
h,A, e

evd
h,A and eeva

h,C , e
evd
h,C , respectively. This is reflected in Figures 13 and 14.
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Figure 13. Example 6.2. Approximation of the active set A:
quantities eevd

h,A (dotted line) and edva
h,A, e

eva
h,A (solid lines) as func-

tions of the DOFs on a logarithmic scale for uniform refinement
(left) and adaptive refinement (right).
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Figure 14. Example 6.2. Approximation of the strongly active
set C: quantities eevd

h,C (dotted line) and edva
h,C , e

eva
h,C (solid lines) as

functions of the DOFs on a logarithmic scale for uniform refine-
ment (left) and adaptive refinement (right).
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