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ERROR ANALYSIS OF A SPACE-TIME FINITE ELEMENT
METHOD FOR SOLVING PDES ON EVOLVING SURFACES ∗

MAXIM A. OLSHANSKII† AND ARNOLD REUSKEN‡

Abstract. In this paper we present an error analysis of an Eulerian finite element method
for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd, d = 2, 3.
The method employs discontinuous piecewise linear in time – continuous piecewise linear in space
finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and
test surface finite element spaces consist of traces of standard volumetric elements on a space-time
manifold resulting from the evolution of a surface. We prove first order convergence in space and
time of the method in an energy norm and second order convergence in a weaker norm. Furthermore,
we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in
a duality argument used in the proof of the second order convergence estimate.

1. Introduction. Partial differential equations posed on evolving surfaces ap-
pear in a number of applications. Well-known examples are the diffusion and transport
of surfactants along interfaces in multiphase fluids [16, 22, 27], diffusion-induced grain
boundary motion [4, 21] and lipid interactions in moving cell membranes [12, 23]. Re-
cently, several numerical approaches for handling such type of problems have been
introduced, cf. [9]. In [7, 10] Dziuk and Elliott developed and analyzed a finite ele-
ment method for computing transport and diffusion on a surface which is based on a
Lagrangian tracking of the surface evolution. If a surface undergoes strong deforma-
tion, topological changes, or is defined implicitly, e.g., as the zero level of a level set
function, then numerical methods based on a Lagrangian approach have certain dis-
advantages. Methods using an Eulerian approach were developed in [1, 8, 28], based
on an extension of the surface PDE into a bulk domain that contains the surface. An
error analysis of this class of Eulerian methods for PDEs on an evolving surface is not
known.

In the present paper, we analyze an Eulerian finite element method for parabolic
type equations posed on evolving surfaces introduced in [15, 26]. This method does
not use an extension of the PDE off the surface into the bulk domain. Instead, it uses
restrictions of (usual) volumetric finite element functions to the surface, as first sug-
gested in [25, 24] for stationary surfaces. The method that we study uses continuous
piecewise linear in space – discontinuous piecewise linear in time volumetric finite ele-
ment spaces. This allows a natural time-marching procedure, in which the numerical
approximation is computed on one time slab after another. Moreover, spatial meshes
may vary per time slab and we only need (in the analysis) a mild matching condition
for meshes when crossing from one time slab to the next. Therefore, in our surface
finite element method one can use adaptive mesh refinement in space and time as
explained in [13] for the heat equation in Euclidean space. Numerical experiments in
[15, 26] have shown the efficiency of the approach and demonstrated second order ac-
curacy of the method in space and time. We consider this method to be a natural and
effective extension of the approach from [25, 24] for stationary surfaces to the case of
evolving surfaces. Until now, no error analysis of this (or any other) Euclidean finite
element method for PDEs on evolving surfaces is known. In this paper we present
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such an error analysis.
The paper is organized as follows. In section 2, we formulate the PDE that we

consider on an evolving hypersurface in Rd, recall a weak formulation and a cor-
responding well-posedness result. This weak formulation uses integration over the
space-time manifold in Rd+1 and is well suited for our surface finite element method.
This finite element method is explained in section 3. The error analysis starts with a
discrete stability result that is derived in section 4. In Section 5, a continuity estimate
for the bilinear form is proved. An error bound in a suitable energy norm is derived
in section 6. The analysis has the same structure as in the standard Cea’s lemma:
a Galerkin othogonality property is combined with continuity and discrete stability
properties and with an interpolation error bound. For the latter we need suitable
extensions of a function defined on a space-time smooth manifold. The error bound
in the energy norm guarantees first order convergence if spacial and time mesh sizes
are of the same order. In section 7, we derive a second order error bound in a weaker
norm. For this we use a duality argument and need a higher order regularity esti-
mate for the solution of a parabolic problem on a smoothly evolved surface. Such a
regularity estimate is proved in section 8. Concluding remarks are given in section 9.

2. Problem formulation. Consider a surface Γ(t) passively advected by a
smooth velocity field w = w(x, t), i.e. the normal velocity of Γ(t) is given by w · n,
with n the unit normal on Γ(t). We assume that for all t ∈ [0, T ], Γ(t) is a smooth
hypersurface that is closed (∂Γ = ∅), connected, oriented, and contained in a fixed
domain Ω ⊂ Rd, d = 2, 3. In the remainder we consider d = 3, but all results have
analogs for the case d = 2.

The conservation of a scalar quantity u with a diffusive flux on Γ(t) leads to the
surface PDE (cf. [20]):

u̇+ (divΓw)u− νd∆Γu = 0 on Γ(t), t ∈ (0, T ], (2.1)

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ = ∂u
∂t +w·∇u denotes

the advective material derivative, divΓ := tr
(
(I − nnT )∇

)
is the surface divergence

and ∆Γ is the Laplace-Beltrami operator, νd > 0 is the constant diffusion coefficient.
In the analysis of partial differential equations it is convenient to reformulate

(2.1) as a problem with homogenous initial conditions and a non-zero right-hand
side. To this end, consider the decomposition of the solution u = ũ + u0, where
u0(·, t) : Γ(t) → R, with t ∈ [0, T ], is chosen sufficiently smooth and such that
u0(x, 0) = u0(x) on Γ0, and d

dt

∫
Γ(t)

u0 ds = 0. Since the solution of (2.1) has the

mass conservation property d
dt

∫
Γ(t)

u ds = 0, the new unknown function ũ satisfies

ũ(·, 0) = 0 on Γ0 and has the zero mean property:
∫

Γ(t)

ũ ds = 0 for all t ∈ [0, T ]. (2.2)

For this transformed function the surface diffusion equation takes the form

˙̃u+ (divΓw)ũ− νd∆Γũ = f on Γ(t), t ∈ (0, T ],

ũ(·, 0) = 0 on Γ0.
(2.3)

The right-hand side is now non-zero: f := −u̇0 − (divΓw)u0 + νd∆Γu
0. Using the

Leibniz formula ∫

Γ(t)

v̇ + v divΓw ds =
d

dt

∫

Γ(t)

v ds, (2.4)
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and the integration by parts over Γ(t), one immediately finds
∫

Γ(t)
f ds = 0 for all

t ∈ [0, T ]. In the remainder we consider the transformed problem (2.3) and write u
instead of ũ. In the stability analysis in section 4 we will use the zero mean property
of f and the corresponding zero mean property (2.2) of u.

2.1. Weak formulation. In this paper we present an error analysis of a finite
element method for (2.3) and hence we need a suitable weak formulation of this
equation. While several weak formulations of (2.3) are known in the literature, see
[7, 16], the most appropriate for our purposes is the integral space-time formulation
of (2.3) proposed in [26]. In this section we recall this formulation. Consider the
space-time manifold

S =
⋃

t∈(0,T )

Γ(t)× {t}, S ⊂ R4.

Due to the identity
∫ T

0

∫

Γ(t)

f(s, t) ds dt =

∫

S
f(s)(1 + (w · n)2)−

1
2 ds, (2.5)

the scalar product (v, w)0 =
∫ T

0

∫
Γ(t)

vw ds dt induces a norm that is equivalent to

the standard norm on L2(S). For our purposes, it is more convenient to consider the
(·, ·)0 inner product on L2(S). Let ∇Γ denote the tangential gradient for Γ(t) and
introduce the space

H = { v ∈ L2(S) | ‖∇Γv‖L2(S) <∞}
endowed with the scalar product

(u, v)H = (u, v)0 + (∇Γu,∇Γv)0. (2.6)

We consider the material derivative v̇ of v ∈ H as a distribution on S. In [26] it is
shown that C1

0 (S) is dense in H. If u̇ can be extended to a bounded linear functional
on H, we write u̇ ∈ H ′. Define the space

W = {u ∈ H | u̇ ∈ H ′ }, with ‖u‖2W := ‖u‖2H + ‖u̇‖2H′ .
In [26] properties of H and W are analyzed. Both spaces are Hilbert spaces and
smooth functions are dense in H and W . We shall recall other useful results for
elements of H and W at those places in this paper, where we need them.

Define
◦
W := { v ∈W | v(·, 0) = 0 on Γ0 }.

The space
◦
W is well-defined, since functions from W have well-defined traces in

L2(Γ(t)) for any t ∈ [0, T ]. We introduce the symmetric bilinear form

a(u, v) = νd(∇Γu,∇Γv)0 + ( divΓw u, v)0, u, v ∈ H,
which is continuous on H ×H:

a(u, v) ≤ (νd + α∞)‖u‖H‖v‖H , with α∞ := ‖divΓw‖L∞(S).

The weak space-time formulation of (2.3) reads: Find u ∈
◦
W such that

〈u̇, v〉+ a(u, v) = (f, v)0 for all v ∈ H. (2.7)
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2.2. Well-posedness result and stability estimate. Well-posedness of (2.7)
follows from the following lemma from [26].

Lemma 2.1. The following properties of the bilinear form 〈u̇, v〉+ a(u, v) hold.
a) Continuity:

| 〈u̇, v〉+ a(u, v)| ≤ (1 + νd + α∞)‖u‖W ‖v‖H for all u ∈W, v ∈ H.

b) Inf-sup stability:

inf
06=u∈

◦
W

sup
06=v∈H

〈u̇, v〉+ a(u, v)

‖u‖W ‖v‖H
≥ cs > 0. (2.8)

c) The kernel of the adjoint mapping is trivial:

[
〈u̇, v〉+ a(u, v) = 0 for some v ∈ H and all u ∈

◦
W
]

=⇒ v = 0.

As a consequence of Lemma 2.1 one obtains:
Theorem 2.2. For any f ∈ L2(S), the problem (2.7) has a unique solution

u ∈
◦
W . This solution satisfies the a-priori estimate

‖u‖W ≤ c−1
s ‖f‖0.

Remark 2.1. We remark that Lemma 2.1 and Theorem 2.2 have been proved for
a slightly more general surface PDE than the surface diffusion problem (2.3), namely

u̇+ αu− νd∆Γu = f on Γ(t), t ∈ (0, T ],

u = 0 on Γ0,
(2.9)

with α ∈ L∞(S) and a generic right-hand side f ∈ H ′, not necessarily satisfying the
zero integral condition. The stability constant cs in the inf-sup condition (2.8) can be
taken as

cs =
νd√

2
(1+νd+α∞)−2e−2T (νd+c̃), c̃ = ‖α− 1

2
divΓw‖L∞(S), with α∞ := ‖α‖L∞(S).

This stability constant deteriorates if νd ↓ 0 or T →∞.

For the general problem (2.9), the key result (2.8) is proved by taking for u ∈
◦
W a

corresponding test function v = e−γtu+µz ∈ H, with sufficiently large constants γ, µ
and z the Ritz representation of u̇. This construction can not be used in the stability
analysis of the finite element method, since functions scaled with e−γt are not lying in
the finite element test space. In case of the pure diffusion problem, (2.3) or (2.7), the
zero mean property of f can be used to avoid such scaling in the proof of an inf-sup
inequality and leads to a better behavior of the stability constant, e.g. a constant cs
that is bounded away from zero uniformly in T . We outline the corresponding result
given in [26]. Functions u ∈ H obey the Friedrichs inequality

∫

Γ(t)

|∇Γu|2 ds ≥ cF (t)

∫

Γ(t)

(u− 1

|Γ(t)| ū)2 ds for all t ∈ [0, T ], (2.10)
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with cF (t) > 0 and ū(t) :=
∫

Γ(t)
u(s, t) ds. A smooth solution to problem (2.3)

satisfies the zero average condition (2.2) and so we may look for a weak solution from

the following subspace of
◦
W :

W̃ := {u ∈
◦
W |

∫

Γ(t)

u(·, t) ds = 0 for all t ∈ [0, T ] }.

Obviously, elements of W̃ satisfy the Friedrichs inequality with ū = 0. Exploiting
this, one obtains the following result.

Proposition 2.3. Assume f satisfies
∫

Γ(t)
f ds = 0 for almost all t ∈ [0, T ].

Then the solution u ∈
◦
W of (2.7) belongs to W̃ . Additionally assume that there exists

a c0 > 0 such that

divΓw(x, t) + νdcF (t) ≥ c0 for all x ∈ Γ(t), t ∈ [0, T ] (2.11)

holds. Then the inf-sup property (2.8) holds, with
◦
W replaced by the subspace W̃ and

cs = min{νd,c0}
2
√

2(1+νd+α∞)2
, where α∞ := ‖ divΓw‖L∞(S).

The assumption (2.11) will be important in our stability analysis of the finite
element method in section 4. Let γ(t) be a (small) connected subset of the surface
Γ(t). From the Leibniz formula we obain

∫
γ(t)

divΓw(s, t) ds = d
dt

∫
γ(t)

1 ds = d
dt |γ(t)|.

If the surface is not compressed anywhere (i.e., the local area is constant or increasing)
then divΓw ≥ 0 holds and the condition (2.11) is satisfied. In general, one has
expansion and compression in different parts of the surface. The condition in (2.11)
means that the surface compression should be sufficiently small compared to νdcF (t).

3. Finite element method. Consider a partitioning of the time interval: 0 =
t0 < t1 < . . . < tN = T , with a uniform time step ∆t = T/N . The assumption
of a uniform time step is made to simplify the presentation, but is not essential. A
time interval is denoted by In := (tn−1, tn]. The symbol Sn denotes the space-time
interface corresponding to In, i.e., Sn := ∪t∈InΓ(t) × {t}, and S := ∪1≤n≤NSn. We
introduce the following subspaces of H:

Hn := { v ∈ H | v = 0 on S \ Sn }

and define the spaces

Wn = { v ∈ Hn | v̇ ∈ H ′n }, ‖v‖2Wn
= ‖v‖2H + ‖v̇‖2H′n .

Our finite element method is conforming with respect to the broken trial space

W b := ⊕Nn=1Wn, with norm ‖v‖2W b =
N∑

n=1

‖v‖2Wn
.

For u ∈ Wn, the one-sided limits un+ = u+(·, tn) and un− = u−(·, tn) are well-defined
in L2(Γ(tn)) (cf. [26]). At t0 and tN only u0

+ and uN− are defined. For v ∈ W b, a
jump operator is defined by [v]n = vn+− vn− ∈ L2(Γ(tn)), n = 1, . . . , N − 1. For n = 0,
we define [v]0 = v0

+.
On the cross sections Γ(tn), 0 ≤ n ≤ N , of S the L2 scalar product is denoted by

(ψ, φ)tn :=

∫

Γ(tn)

ψφds.
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In addition to a(·, ·), we define on the broken space W b the following bilinear forms:

d(u, v) =
N∑

n=1

dn(u, v), dn(u, v) = ([u]n−1, vn−1
+ )tn−1

, 〈u̇, v〉b =
N∑

n=1

〈u̇n, vn〉 .

It is easy to check, see [26], that the solution to (2.7) also solves the following
variational problem in the broken space: Find u ∈W b such that

〈u̇, v〉b + a(u, v) + d(u, v) = (f, v)0 for all v ∈W b. (3.1)

This variational formulation uses W b as test space, since the term d(u, v) is not well-
defined for an arbitrary v ∈ H. Also note that the initial condition u(·, 0) = 0
is not an essential condition in the space W b but is treated in a weak sense (as is
standard in DG methods for time dependent problems). From an algorithmic point
of view this formulation has the advantage that due to the use of the broken space
W b = ⊕Nn=1Wn it can be solved in a time stepping manner. The discretization that
we introduce below is a Galerkin method for the weak formulation (3.1), with a finite
element space Wh ⊂W b.

To define this Wh, consider the partitioning of the space-time volume domain
Q = Ω × (0, T ] ⊂ R3+1 into time slabs Qn := Ω × In. Corresponding to each time
interval In := (tn−1, tn] we assume a given shape regular tetrahedral triangulation Tn
of the spatial domain Ω. The corresponding spatial mesh size parameter is denoted
by h. Then Qh =

⋃
n=1,...,N

Tn × In is a subdivision of Q into space-time prismatic

nonintersecting elements. We shall call Qh a space-time triangulation of Q. Note
that this triangulation is not necessarily fitted to the surface S. We allow Tn to
vary with n (in practice, during time integration one may wish to adapt the space
triangulation depending on the changing local geometric properties of the surface)
and so the elements of Qh may not match at t = tn.

For any n ∈ {1, . . . , N}, let Vn be the finite element space of continuous piecewise
linear functions on Tn. We define the volume space-time finite element space:

Vh := { v : Q→ R | v(x, t) = φ0(x) + tφ1(x) on every Qn, with φ0, φ1 ∈ Vn }.

Thus, Vh is a space of piecewise bilinear functions with respect to Qh, continuous in
space and discontinuous in time. Now we define our surface finite element space as
the space of traces of functions from Vh on S:

Wh := {w : S → R | w = v|S , v ∈ Vh }. (3.2)

The finite element method reads: Find uh ∈Wh such that

〈u̇h, vh〉b + a(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈Wh. (3.3)

As usual in time-DG methods, the initial condition for uh(·, 0) is treated in a weak
sense. Due to uh ∈ H1(Qn) for all n = 1, . . . , N , the first term in (3.3) can be written
as

〈u̇h, vh〉b =
N∑

n=1

∫ tn

tn−1

∫

Γ(t)

(
∂uh
∂t

+ w · ∇uh)vhds dt.

The method can be implemented with a time marching strategy.
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Recall that the solution of the continuous problem (2.3) satisfies the zero mean
condition (2.2), which corresponds to the mass conservation law valid for the original
problem (2.1). We investigate whether the condition (2.2) is preserved for the finite
element formulation (3.3).

Assume that uh is a solution of (3.3). Denote ūh(t) =
∫

Γ(t)
uhds. We have∫

Γ(t)
f ds = 0 for all t > 0. In (3.3), set vh = 1 for t ≤ tn and vh = 0 for t > tn. This

implies

ūh,− :=

∫

Γ(tn)

un− ds = 0 for n = 0, 1, . . . (3.4)

Setting vh = t − tn−1 for tn−1 ≤ t ≤ tn and vh = 0 otherwise, we additionally get∫ tn
tn−1

ūh(t) dt = 0. Summarizing, we obtain the following:

ūh,−(tn) = 0 and

∫ tn

tn−1

ūh(t) dt = 0, n = 1, 2, . . . . (3.5)

For a stationary surface, ūh(t) is a piecewise affine function and thus (3.5) implies
ūh(t) ≡ 0, i.e,. we have exact mass conservation on the discrete level. If the surface
evolves, the finite element method is not necessarily mass conserving: (3.5) holds, but
ūh(t) 6= 0 may occur for tn−1 ≤ t < tn. To enforce a better mass conservation and
enhance stability of the finite element method, we introduce a consistent stabilizing
term involving the quantity ūh(t) to the discrete bilinear form. More precisely, define

aσ(u, v) := a(u, v) + σ

∫ T

0

ū(t)v̄(t) dt, σ ≥ 0. (3.6)

Instead of (3.3) we consider the stabilized version: Find uh ∈Wh such that

〈u̇h, vh〉b + aσ(uh, vh) + d(uh, vh) = (f, vh)0 for all vh ∈Wh. (3.7)

As mentioned above, taking σ > 0 we expect both a stabilizing effect and an improved
discrete mass conservation property. Adding this stabilization term does not lead
to significant additional computational costs for computing the stiffness matrix and
improves the conditioning of the stiffness matrix.

For the solution u ∈ W of (3.1), the stabilization term vanishes: ū(t) = 0.
Therefore the error e = u−uh of the finite element method (3.7) satisfies the Galerkin
orthogonality relation:

〈ė, vh〉b + aσ(e, vh) + d(e, vh) = 0 for all vh ∈Wh. (3.8)

4. Stability of the finite element method. We derive an ellipticity estimate
in the following mesh-dependent norm:

|||u|||h :=

(
‖uN−‖2T +

N∑

n=1

‖[u]n−1‖2tn−1
+ ‖u‖2H

) 1
2

.

Theorem 4.1. Assume (2.11) and take σ ≥ νd
2 max
t∈[0,T ]

cF (t)
|Γ(t)| , where cF (t) is defined

in (2.10). Then the ellipticity estimate

〈u̇, u〉b + aσ(u, u) + d(u, u) ≥ cs|||u|||2h for all u ∈W b (4.1)
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holds with cs = 1
2 min{1, νd, c0} and c0 from (2.11).

Proof. Applying partial integration on every time interval we get

〈u̇, u〉b =
1

2

N∑

n=1

(
‖un−‖2tn − ‖u

n−1
+ ‖2tn−1

)
− 1

2
( divΓw, u2)0.

It is also straightforward to derive

d(u, u) = −1

2

N∑

n=1

(
‖un−‖2tn − ‖un−1

+ ‖2tn−1

)
+

1

2
‖uN−‖2T +

1

2

N∑

n=1

‖[u]n−1‖2tn−1
.

The Friedrichs inequality (2.10) yields
∫

Γ(t)

|∇Γu|2 ds ≥ cF (t)
( ∫

Γ(t)

u2 ds− 1

|Γ(t)| ū
2(t)

)
.

Using this, we get for u ∈W b

aσ(u, u) = νd‖∇Γu‖20 + ( divΓw, u2)0 + σ

∫ T

0

ū(t)2 dt

≥ 1

2
(νdcF + 2 divΓw, u2)0 +

∫ T

0

(σ − νd
2

cF (t)

|Γ(t)| )ū(t)2 dt+
νd
2
‖∇Γu‖20

≥ 1

2
(νdcF + 2 divΓw, u2)0 +

νd
2
‖∇Γu‖20.

Combining the relations above and using (2.11), we get

〈u̇, u〉b + aσ(u, u) + d(u, u)

≥ 1

2

(
‖uN−‖2T +

N∑

n=1

‖[u]n−1‖2tn−1
+ c0‖u‖20 + νd‖∇Γu‖20

)
.

Since Wh ⊂W b, the result in (4.1) also holds on the finite element subspace.
Remark 4.1. In certain applications the transport equation (2.1) may include

an additional positive definite reaction term. In this case, for the equation in the
more general form (2.9) the following condition may be reasonable:

α− 1

2
divΓw ≥ c0 > 0. (4.2)

If this condition is satisfied, one can prove the ellipticity estimate (4.1) for the finite
element method (3.3) by following the arguments of the proof of Theorem 4.1, with
cs = min{ 1

2 , νd, c0}. In this case, however, the Friedrichs inequality is not used in
the proof and the analysis applies for σ = 0 in (3.7), i.e. stabilization is not needed.
Furthermore, condition (2.11) is also not required for the stability result.

The ellipticity result (4.1) is sufficient for existence of a unique solution. We summa-
rize this in the form of the following proposition.

Proposition 4.2. Assume (2.11) and take σ as in Theorem 4.1. Then the
discrete problem (3.7) has a unique solution uh ∈Wh. For uh the a priori estimate

|||uh|||h ≤ c−1
s ‖f‖0. (4.3)

holds, with cs as in Theorem 4.1. Assume (4.2), then for any f ∈ L2(S) the problem
(3.3) has a unique solution uh ∈Wh. For this solution the estimate (4.3) holds, with
cs as in Remark 4.1.
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5. Continuity result. We also need a continuity result for the bilinear form of
the finite element method. We formulate it in the next lemma.

Lemma 5.1. For any e ∈Wb and v ∈W the following holds:

| 〈ė, v〉b + aσ(e, v) + d(e, v)|

≤ |||e|||h
(
‖v‖2T + (2α∞ + σ max

t∈[0,T ]
|Γ(t)|)2‖v‖20 + ν2

d‖∇Γv‖20 + ‖v̇‖2H′
) 1

2

≤ c|||e|||h‖v‖W .

(5.1)

Proof. The stabilizing term in aσ(e, v) is estimated as follows:
∣∣∣∣∣σ
∫ T

0

∫

Γ(t)

edx

∫

Γ(t)

vdx dt

∣∣∣∣∣ ≤ σ
∫ T

0

|Γ(t)|
(∫

Γ(t)

e2dx

) 1
2
(∫

Γ(t)

v2dx

) 1
2

dt

≤ σ max
t∈[0,T ]

|Γ(t)|‖e‖0‖v‖0.
(5.2)

The material derivative term is treated using integration by part:

〈ė, v〉b =

N∑

n=1

(
(en−, v)tn − (en−1

+ , v)tn−1

)
− ( divΓw e, v)0 − 〈v̇, e〉b

= −
N∑

n=1

([e]n−1, v)tn−1
+ (eN− , v)T − ( divΓw e, v)0 − 〈v̇, e〉b

= −d(e, v) + (eN− , v)T − ( divΓw e, v)0 − 〈v̇, e〉b .
Now we use the relation 〈v̇, e〉b = 〈v̇, e〉 for v ∈ W and the Cauchy inequality to
estimate

| 〈ė, v〉b + d(e, v)| ≤ ‖eN−‖T ‖v‖T + α∞‖e‖0‖v‖0 + ‖e‖H‖v̇‖H′ . (5.3)

Combining (5.2), (5.3), and a(e, v) ≤ νd‖∇Γe‖0‖∇Γv‖0 + α∞‖e‖0‖v‖0, we get

| 〈ė, v〉b + aσ(e, v) + d(e, v)|
≤ ‖eN−‖T ‖v‖T + (2αinf +σ max

t∈[0,T ]
|Γ(t)|)‖e‖0‖v‖0 + ‖e‖H‖v̇‖H′ + νd‖∇Γe‖0‖∇Γv‖0.

The Cauchy inequality implies the first inequality in (5.1). In [26], Theorem 3.6 (ii), it
is shown that the trace operator u→ u|Γ(t) is a bounded: max0≤t≤T ‖u|Γ(t)‖L2(Γ(t)) ≤
c‖u‖W . Using this and |(2α∞+σ max

t∈[0,T ]
|Γ(t)|)2‖v‖20+ν2

d‖∇Γv‖20| ≤ c‖v‖2H , one obtains

the second inequality in (5.1).

The norm ||| · |||h is weaker than the norm ‖ · ‖W used for the stability analysis
of the original ‘differential’ weak formulation (2.7), since the latter norm provides
control over the material derivative in H ′. For the discrete solution we can establish
control over the material derivative only in a weaker sense, namely in a space dual to
the discrete space. Indeed, using estimates as in the proof of Lemma 5.1 we get

|aσ(uh, v)| ≤ |||uh|||h
(

(αinf + σ max
t∈[0,T ]

|Γ(t)|)2‖v‖20 + ν2
d‖∇Γv‖20

) 1
2

≤ c |||uh|||h‖v‖H ,

and thus for the discrete solution uh ∈Wh of (4.3) one obtains, using (3.7):

sup
v∈Wh

〈u̇h, v〉b + d(uh, v)

‖v‖H
= sup
v∈Wh

(f, vh)0 − aσ(uh, v)

‖v‖H
≤ c‖f‖0. (5.4)
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6. Discretization error analysis. In this section we prove an error bound for
the discrete problem (3.7). The analysis is based on the usual arguments, namely
the stability estimate derived above combined with the Galerkin orthogonality and
interpolation error bounds. The surface finite element space is the trace of an outer
volume finite element space Vh. For the analysis of the discretization error in the
surface finite element space we use information on the approximation quality of the
outer space. Hence, we need a suitable extension procedure for smooth functions on
the space-time manifold S. This topic is addressed in subsection 6.1.

6.1. Extension of functions defined on S. For a function u ∈ H2(S) we need
an extension ue ∈ H2(U), where U is a neighborhood in R4 that contains the space-
time manifold S. Below we introduce such an extension and derive some properties
that we need in the analysis. We extend u in a spatial normal direction to Γ(t) for
every t ∈ [0, T ]. For this procedure to be well-defined and the properties to hold, we
need sufficient smoothness of the manifold S. We assume S to be a three-dimensional
C3-manifold in R4.

For some δ > 0 let

U = {x := (x, t) ∈ R3+1 | dist(x,Γ(t)) < δ } (6.1)

be a neighborhood of S. The value of δ depends on curvatures of S and will be specified
below. Let d : U → R be the signed distance function, |d(x, t)| := dist(x,Γ(t)) for all
x ∈ U . Thus, S is the zero level set of d. The spatial gradient nΓ = ∇xd ∈ R3 is the
exterior normal vector for Γ(t). The normal vector for S is

nS = ∇d/‖∇d‖ =
1√

1 + V 2
Γ

(nΓ,−VΓ)T ∈ R4, VΓ = w · nΓ.

Recall that VΓ is the normal velocity of the evolving surface Γ(t). The normal nΓ has
a natural extension given by n(x) := ∇xd(x) ∈ R3 for all x ∈ U . Thus, n = nΓ on S
and ‖n(x)‖ = 1 for all x ∈ U . The spatial Hessian of d is denoted by H ∈ R3. The
eigenvalues of H are κ1(x, t), κ2(x, t), and 0. For x ∈ Γ(t) the eigenvalues κi(x, t),
i = 1, 2, are the principal curvatures of Γ(t). Due to the smoothness assumptions on
S, the principal curvatures are uniformly bounded in space and time:

sup
t∈[0,T ]

sup
x∈Γ(t)

(|κ1(x, t)|+ |κ2(x, t)|) ≤ κmax.

We introduce a local coordinate system by using the projection p : U → S:

p(x) = x− d(x)(n(x), 0)T =
(
x− d(x, t)n(x, t), t

)
for all x = (x, t) ∈ U.

For δ sufficiently small, namely δ ≤ κ−1
max, the decomposition x = p(x)+d(x)

(
n(x), 0

)

is unique for all x ∈ U ([5], Lemma 14.16).
The extension operator is defined as follows. For a function v on S we define

ve(x) := v(p(x)) for all x ∈ U, (6.2)

i.e., v is extended along spatial normals on S.
We need a few relations between surface norms of a function and volumetric norms

of its extension. Define

µ(x) :=
(
1− d(x)κ1(x)

)(
1− d(x)κ2(x)

)
, x ∈ U.
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From (2.20), (2.23) in [6] we have

µ(x)dx = ds(p(x)) dr x ∈ U,

where dx is the volume measure in R3, ds the surface measure on Γ(t), and r the
local coordinate at y ∈ Γ(t) in the (orthogonal) direction nΓ(y). Assume δ ≤ 1

4κ
−1
max.

Then using the relation κi(x) = κi(p(x))
1+d(x)κi(p(x)) , i = 1, 2, x ∈ U , ((2.5) in [6]) one

obtains 9
16 ≤ µ(x) ≤ 25

16 for all x ∈ U . Now let v be a function defined on S and w,
defined on U , given by w(x) = g(x)v(p(x)), with a function g that is bounded on
S: ‖g‖L∞(S) ≤ cg < ∞. An example is the pair w = ve and v given in (6.2), with
g ≡ 1. For v, w we have the following, with U(t) = {x ∈ R3 | dist(x,Γ(t)) < δ }
the cross-section of U for some t ∈ [0, T ] and a local coordinate system denoted by
x = (p(x), r):

‖w‖2L2(U) =

∫

U

w2(x) dx ≤ c
∫ T

0

∫

U(t)

w(x)2µ(x) dxdt

≤ c
∫ T

0

∫

U(t)

v(p(x))2µ(x) dxdt

= c

∫ T

0

∫ δ

−δ

∫

Γ(t)

v(p(x))2 ds(p(x))drdt

≤ c δ
∫ T

0

∫

Γ(t)

v2 dsdt ≤ cδ‖v‖2L2(S).

(6.3)

The constant c in the estimate above depends only on the smoothness of S and
on cg. If in addition it holds |g(x)| ≥ c0 > 0 on S, then we obtain the estimate
‖w‖2L2(U) ≥ cδ‖v‖2L2(S), with a constant c > 0 depending only on |VΓ| and c0. Using

these results applied to w = ve as in (6.2) (i.e., g ≡ 1), we obtain the equivalence

‖ue‖2L2(U) ' δ‖u‖2L2(S) for all u ∈ L2(S). (6.4)

In the remainder of this section, for u defined on S, we derive bounds on derivatives
of ue on U in terms of the derivatives of u on S. We first recall a few elementary
results. From

∇Su = (I4×4 − nSn
T
S )

(
∇xue
uet

)
, ∇Γ(t)u = (I3×3 − nΓnTΓ )∇xue,

one derives the following relations between tangential derivatives:

∇Γ(t)u = B∇Su, B := [I3×3,−VΓnΓ] ∈ R3×4, (6.5)

u̇ = (1 + V 2
Γ )(∇Su)4 + w · ∇Γ(t)u, (6.6)

where (∇Su)4 denotes the fourth entry of the vector ∇Su ∈ R4. The spatial deriva-
tives of the extended function can be written in terms of surface gradients (cf., e.g.
(2.13) in [6]):

∇xue(x) = (I−dH)∇Γ(t)u(p(x)) = (I−dH)B∇Su(p(x)) =: B1∇Su(p(x)), x ∈ U.
(6.7)
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This implies ∇xue(x) = ∇Γ(t)u(p(x)) = ∇Γ(t)u(x) for x ∈ S. For the time derivative
we obtain

uet (x) =
∂

∂t
(ue ◦ p)(x) =

∂

∂t
ue(x− d(x, t)n(x, t), t)

= uet (p(x))− (dtn + dnt) · ∇xue(p(x)) = uet (p(x))− (dtn + dnt) · ∇Γ(t)u(p(x)).
(6.8)

Time derivative uet on S can be represented in terms of surface quantities, cf. (6.6) :

uet = u̇−w · ∇xue = u̇−w · ∇Γ(t)u = (1 + V 2
Γ )(∇Su)4 on S.

Using this and (6.5) in (6.8) we obtain

uet (x) = (1+V 2
Γ )(∇Su(p(x)))4−(dtn+dnt)·B∇Su(p(x)) =: B2 ·∇Su(p(x)), x ∈ U.

(6.9)
The matrices B1, B2 in (6.7), (6.9) depend only on geometric quantities related to S
(d, dt, H, VΓ, n, nt). These quantities are uniformly bounded on S (or U) due to the
smoothness assumption on S. Hence, from (6.7) and the result in (6.3) we obtain

‖∇ue‖2L2(U) ≤ c δ‖∇Su‖2L2(S) for all u ∈ H1(S). (6.10)

We need a similar result for the H2 volumetric and surface norms. From (6.7) we get
∂ue

∂xi
(x) = bi · ∇Su(p(x)), x ∈ U , i = 1, 2, 3, with bi the i-th row of the matrix B1.

For z ∈ {x1, x2, x3, t} we get

∂2ue

∂z∂xi
(x) = (bi)z · ∇Su(p(x)) + bi(∇S∇Su)(p(x))

∂

∂z
p(x), x ∈ U.

Due to the smoothness assumption on S the vectors bi, (bi)z,
∂
∂zp(x) have bounded

L∞ norms on U and application of (6.3) yields

∥∥∥∥
∂2ue

∂z∂xi

∥∥∥∥
2

L2(U)

≤ cδ
( ∑

|µ|=2

‖Dµ
Su‖2L2(S) + ‖∇Su‖2L2(S)

)
.

With similar arguments, using (6.9), one can derive the same bound ‖∂2ue

∂z∂t ‖2L2(U).
Hence we conclude

‖ue‖2H2(U) ≤ cδ‖u‖2H2(S) for all u ∈ H2(S). (6.11)

6.2. Interpolation error bound. In this section, we introduce and analyze an
interpolation operator. For the analysis, it is convenient if the surface finite element
space allows a continuous interpolant. For this we introduce a (mild) assumption on
the triangulations Tn. For the finite element method presented above, it is allowed
that Tn+1 is completely independent of Tn. Hence, in general there does not exist
a nodal interpolant that is continuous at t = tn. In the remainder we assume the
following:

Assumption 6.1. For each tetrahedron T ∈ Tn with measd−1(T ∩ Γ(tn)) > 0 we
require T ∈ Tn+1.
Note that this assumption still allows the use of triangulations that vary from time-
slab to time-slab. The triangulation Qh of the space-time domain Q = Ω × [0, T ]
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consists of cylindrical elements K = T × In ⊂ R3+1, with T ∈ Tn for some n. The
subset of all elements that are intersected by the space-time manifold S is denoted by

QSh :=
⋃
{K ∈ Qh | measd(K ∩ S) > 0 }. (6.12)

The nonempty intersections are denoted by SK = K ∩ S. For the definition of the
trace finite element space Wh , cf. (3.2), only the outer space Vh on the “local”
triangulation QSh plays a role. Therefore, in the remainder we consider the outer
finite element space Vh to be defined only on the elements K ∈ QSh . Now let

Ih : C(QSh )→ Vh

be the nodal interpolation operator. Due to Assumption 6.1 this operator is well-
defined and for v ∈ C(QSh ), the interpolant Ihv is a continuous function on QSh .

In the remainder we take ∆t ∼ h. This assumption is made to avoid anisotropic
interpolation estimates, which would significantly complicate the analysis for the case
of surface finite elements.

We take a fixed neighborhood U of S as in (6.1), with δ > 0 sufficiently small
such that the analysis presented in section 6.1 is valid (δ ≤ 1

4κ
−1
max). The mesh is

assumed to be fine enough to resolve the geometry of S in the sense that QSh ⊂ U .
We need one further technical assumption, which holds if the space time manifold S
is sufficiently resolved by the outer (local) triangulation QSh .

Assumption 6.2. For SK = K ∩ S, K ∈ QSh , we assume that there is a local
orthogonal coordinate system y = (z, θ), z ∈ R3, θ ∈ R, such that SK is the graph
of a C1 smooth scalar function, say gK , i.e., SK = { (z, gK(z)) | z ∈ ZK ⊂ R3 }.
The derivatives ‖∇gK‖L∞(ZK) are assumed to be uniformly bounded with respect to
K ∈ QSh and h . Finally it is assumed that the graph SK either coincides with one
of the three-dimensional faces of K or it subdivides K into exactly two subsets (one
above and one below the graph of gK).

The next lemma is essential for our analysis of the interpolation operator. This
result was presented in [17, 18]. We include a proof because the 4D case is not
discussed in [17, 18].

Lemma 6.1. There is a constant c, depending only on the shape regularity of the
tetrahedral triangulations Tn and the smoothness of S, such that it holds

‖v‖2L2(SK) ≤ c‖v‖L2(K)‖v‖H1(K) for all v ∈ H1(K), K ∈ QSh . (6.13)

Proof. We recall the following trace result (e.g. Thm. 1.1.6 in [3])

‖v‖2L2(∂K) ≤ c‖v‖L2(K)‖v‖H1(K) for all v ∈ H1(K), (6.14)

with a constant c that depends only on the shape regularity of K. Take K ∈ QSh
and let SK = { (z, g(z)) | z ∈ ZK ⊂ R3 } be as in Assumption 6.2. If SK coincides
with one of the three-dimensional faces of K then (6.13) follows from (6.14). We
consider the situation that the graph SK divides K into two nonempty subdomains
Ki, i = 1, 2. Take i such that SK ⊂ ∂Ki. Let n = (n1, . . . , n4)T be the unit outward
pointing normal on ∂Ki. For v ∈ H1(K) the following holds, where divy denotes the
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divergence operator in the y = (z, θ)-coordinate system (cf. Assumption 6.2),

2

∫

Ki

v
∂v

∂θ
dy =

∫

Ki

divy

(
0
v2

)
dy =

∫

∂Ki

n ·
(

0
v2

)
ds =

∫

∂Ki

n4v
2 ds

=

∫

SK
n4v

2 ds+

∫

∂Ki\SK
n4v

2 ds.

On SK the normal n has direction (−∇zg(z), 1)T and thus n4(y) = (‖∇zg(z)‖2+1)−
1
2

holds. From Assumption 6.2 it follows that there is a generic constant c such that
1 ≤ n4(z)−1 ≤ c holds. Using this we obtain

∫

SK
v2 ds ≤ c

∫

SK
n4v

2 ds ≤ c‖v‖L2(Ki)‖v‖H1(Ki) + c

∫

∂Ki\SK
v2 ds

≤ c‖v‖L2(K)‖v‖H1(K) + c

∫

∂K

v2 ds

≤ c‖v‖L2(K)‖v‖H1(K),

where in the last inequality we used (6.14).

We prove the following approximation result:
Theorem 6.2. For u ∈ H2(S) we have:

min
vh∈Wh

‖u− vh‖Hk(S) ≤ ‖u− Ihue‖Hk(S) ≤ ch2−k‖u‖H2(S), k = 0, 1. (6.15)

Proof. Define vh = (Ihu
e)|S ∈Wh. Using Lemma 6.1, we obtain for K ∈ QSh :

‖u− vh‖2L2(SK) ≤ c(h−1‖ue − Ihue‖2L2(K) + h‖ue − Ihue‖2H1(K)).

Standard interpolation error bounds for Ih and summing over all K ∈ QSh yields

‖u− vh‖2L2(S) ≤ ch3‖ue‖2H2(QSh ).

We use QSh ⊂ U and (6.11) to infer

‖u− vh‖2L2(S) ≤ cδh3‖u‖2H2(S).

Since we may assume δ ' h, the result in (6.15) follows for k = 0. The same technique
is applied to show the result for k = 1:

‖∇S(u− vh)‖2L2(SK) ≤ c‖∇(ue − Ihue)‖2L2(SK)

≤ c(h−1‖∇(ue − Ihue)‖2L2(K) + h|∇(ue − Ihue)|2H1(K))

≤ ch‖ue‖2H2(K).

Summing over all K ∈ QSh and using (6.11), with δ ' h, then yields (6.15).

6.3. Discretization error bound. The next theorem is a main result of this
paper. It shows optimal convergence in the ||| · |||h norm.

Theorem 6.3. Let u ∈
◦
W be the solution of (2.7) and assume u ∈ H2(S).

Furthermore, assume that the condition (2.11) is satisfied. Let uh ∈Wh be the solution
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of the discrete problem (3.7) with a stabilization parameter σ as in Theorem 4.1. The
following error bound holds:

|||u− uh|||h ≤ ch‖u‖H2(S).

Proof. For the solution u ∈ H2(S) let eI = u− (Ihu
e)|S denote the interpolation

error and e = u−uh the discretization error. Note that eI is continuous and eI ∈W .
Furthermore, e ∈W b holds. Using the interpolation error bound in Theorem 6.2 and
H ⊂ L2(S) we get

‖eI‖W =
(
‖ėI‖2H′ + ‖eI‖2H

) 1
2 ≤

(
‖ėI‖2L2(S) + ‖eI‖2H

) 1
2 ≤ c‖eI‖H1(S)

≤ ch‖u‖H2(S).
(6.16)

Using the ellipticity result in Theorem 4.1, the Galerkin orthogonality (3.8) and the
continuity estimate of Lemma 5.1, we obtain

cs|||e|||2h ≤ 〈ė, e〉b + aσ(e, e) + d(e, e) = 〈ė, eI〉b + aσ(e, eI) + d(e, eI)

≤ c|||e|||h‖eI‖W .

This together with (6.16) proves the theorem.

7. Second order convergence. The aim of this section is to derive an error
estimate ‖u − uh‖∗ ≤ ch2 for ∆t ∼ h in a suitable norm with the help of a duality
argument. To formulate an adjoint problem, we define a “reverse time” in the space-
time manifold S. Let X(t) be the Lagrangian particle path given by w and initial
manifold Γ0:

dX

dt
(t) = w(X(t), t), t ∈ [0, T ], X(0) ∈ Γ0.

Hence, Γ(t) = {X(t) | X(0) ∈ Γ0 }. Define, for t ∈ [0, T ]:

X̃(t) := X(T − t), Γ̃(t) := Γ(T − t), w̃(x, t) := −w(x, T − t), x ∈ Ω.

From

dX̃

dt
(t) = −dX

dt
(T − t) = −w(X(T − t), T − t) = w̃(X̃(t), t),

it follows that X̃(t) describes the particle paths corresponding to the flow w̃ with

X̃(0) = X(T ) ∈ Γ(T ). Hence, Γ̃(t) = { X̃(t) | X̃(0) ∈ Γ(T ) = Γ̃0 }. We introduce the
material derivative with respect to the flow field w̃:

v̌(x, t) :=
∂v

∂t
(x, t) + w̃(x, t) · ∇v(x, t), (x, t) ∈ S.

For a given f∗ ∈ L2(S) we consider the following dual problem

v̌ − νd∆Γ̃v + σ

∫

Γ̃(t)

v ds = f∗ on Γ̃(t), t ∈ [0, T ],

v(·, 0) = 0 on Γ̃0 = Γ(T ).

(7.1)
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The problem (7.1) is of integro-differential type. From the analysis of [26] it follows
that a weak formulation of this problem as in (2.7), with the bilinear form a(·, ·)
replaced by aσ(·, ·), has a unique solution v ∈

◦
W . As is usual in the Aubin-Nitsche

duality argument, we need a suitable regularity result for the dual problem (7.1). In
the literature we did not find the regularity result that we need. Therefore we derived
the result given in the following theorem. A proof is given in the next section.

Theorem 7.1. Consider the parabolic surface problem

u̇− νd∆Γu = f on Γ(t),

u(·, 0) = 0 on Γ0,
(7.2)

Let S be sufficiently smooth (precise assumptions are given in the proof) and f ∈
L2(S). Then the unique weak solution u ∈

◦
W of (7.2) satisfies u ∈ H1(S), u ∈

H2(Γ(t)) for almost all t ∈ [0, T ], and

‖u‖2H1(S) +

∫ T

0

‖u‖2H2(Γ(t))dt ≤ c‖f‖20, (7.3)

with a constant c independent of f . If in addition f ∈ H1(S) and f |Γ0
= 0, then

u ∈ H2(S) and

‖u‖H2(S) ≤ c‖f‖H1(S), (7.4)

with a constant c independent of f .
Proof. Given in Section 8.

Corollary 7.2. Let S be sufficiently smooth (as in Theorem 7.1). Assume
f∗ ∈ H1

0 (S). Then the unique weak solution v ∈W0 of (7.1) satisfies v ∈ H2(S) and

‖v‖H2(S) ≤ c‖f∗‖H1(S), (7.5)

with a constant c independent of f∗.
Proof. We have v ∈W0 ⊂ L2(S). Hence,

∫
Γ̃(t)

v ds ∈ L2(S) and

∥∥∥∥∥

∫

Γ̃(t)

v ds

∥∥∥∥∥
0

≤ ( max
t∈[0,T ]

|Γ̃(t)|)‖v‖0 ≤ c ‖f∗‖H′ ≤ c ‖f∗‖0.

Therefore, v solves the parabolic surface problem

v̌ − νd∆Γ̃v = F on Γ̃(t),

v(·, 0) = 0 on Γ̃0,

with F := f∗−σ
∫

Γ̃(t)
v ds ∈ L2(S) and ‖F‖0 ≤ c‖f∗‖0. The first part of Theorem 7.1

yields v̌ ∈ L2(S) and ‖v̌‖0 ≤ c‖F‖0. Hence, employing the Leibniz formula we check
∂
∂t

∫
Γ̃(t)

v ds ∈ L2(S). This and v ∈ H yields
∫

Γ̃(t)
v ds ∈ H1(S) together with a cor-

responding a priori estimate. Therefore, F ∈ H1(S) and ‖F‖H1(S) ≤ c ‖f∗‖H1(S).

From v(·, 0) = 0 on Γ̃0 and f∗|Γ̃0
= 0 we get F |Γ̃0

= 0. Applying the second part of
the theorem completes the proof.
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Lemma 7.3. Assume v ∈ H2(S) solves (7.1) for some f∗ ∈ H1
0 (S). Define

v∗(x, t) := v(x, T − t), x ∈ Γ(t) = Γ̃(T − t). Then one has

〈ż, v∗〉b + aσ(z, v∗) + d(z, v∗) = (z, f∗)0 for all z ∈Wh +H1(S). (7.6)

Proof. From the definitions and using Leibniz rule we obtain (note that v∗ is
continuous, hence v∗,n− = v∗,n+ = v∗,n):

〈ż, v∗〉b + aσ(z, v∗) + d(z, v∗)

=
N∑

n=1

∫ tn

tn−1

∫

Γ(t)

żv∗ + zv∗ divΓw ds dt+
N∑

n=1

([z]n−1, v∗,n−1)tn−1

+ νd(∇Γz,∇Γv
∗)0 + σ

∫ T

0

∫

Γ(t)

z dx

∫

Γ(t)

v∗ dx dt

=
N∑

n=1

(
(zn−, v

∗,n)tn − (zn−1
+ , v∗,n−1)tn−1

)
−

N∑

n=1

∫ tn

tn−1

∫

Γ(t)

zv̇∗ ds dt

+

N∑

n=1

([z]n−1, v∗,n−1)tn−1 + νd(∇Γz,∇Γv
∗)0 + σ(z,

∫

Γ(t)

v∗ dx)0

= −(v̇∗ + νd∆Γv
∗ − σ

∫

Γ(t)

v∗ dx, z)0.

Now note that on S:

v̇∗(·, t) =
∂v∗

∂t
(·, t) + w(·, t)∇v∗(·, t) = −∂v

∂t
(·, T − t)− w̃(·, T − t) · ∇v(·, T − t)

= −v̌(·, T − t),

and ∆Γ(t)v
∗(·, t) = ∆Γ̃(T−t)v(·, T − t). From this and the equation for v in (7.1) it

follows that v̇∗ + νd∆Γv
∗ − σ

∫
Γ(t)

v∗ dx = f∗ on S. This completes the proof.

Denote by ‖ · ‖−1 a norm dual to the H1
0 (S) norm with respect to the L2-duality.

In the next theorem we present a main result of this paper.
Theorem 7.4. Assume that S is sufficiently smooth (as in Theorem 7.1) and

that the assumptions of Theorem 6.3 are satisfied. Then the following error estimate
holds:

‖u− uh‖−1 ≤ ch2‖u‖H2(S).

Proof. Take arbitrary f∗ ∈ H1
0 (S). Using the relation in (7.6), Galerkin or-

thogonality and the continuity result in Lemma 5.1 we obtain with e := u − uh,
eI = v∗ − Ih(v∗)e ∈W :

(e, f∗)0 = 〈ė, v∗〉b + aσ(e, v∗) + d(e, v∗)

= 〈ė, eI〉b + aσ(e, eI) + d(e, eI) ≤ c|||e|||h‖eI‖W (7.7)

≤ ch‖u‖H2(S)‖eI‖H1(S) ≤ ch2‖u‖H2(S)‖v∗‖H2(S) ≤ ch2‖u‖H2(S)‖f∗‖H1(S),

where in the last inequality we used the regularity estimate (7.5). From this the result
immediately follows.
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Remark 7.1. We proved the second order convergence in a norm weaker than the
commonly considered L2(S) norm. The reason is that our arguments use isotropic
polynomial interpolation error bounds on 4D space-time elements. Naturally, such
bounds call for isotropic space-time H2-regularity bounds for the solution. For our
problem class such regularity is more restrictive than in an elliptic case, since the
solution is generally less regular in time than in space. We can overcome this by
measuring the error in the weaker ‖ · ‖−1-norm.

8. Proof of Theorem 7.1. Without loss of generality we may set νd = 1. The

weak formulation of (7.2) is as follows: determine u ∈
◦
W such that

〈u̇, v〉+ (∇Γu,∇Γv)0 = (f, v)0 for all v ∈ H. (8.1)

The proof is based on techniques as in [7], [14]. We define a Galerkin solution in a
sequence of nested spaces spanned by a special choice of smooth basis functions. We
derive uniform energy estimates for these Galerkin solutions and based on a com-
pactness argument these estimates imply a bound in the ‖ · ‖H1(S) norm for the
weak limit of these Galerkin solutions. We use a known H2-regularity result for the
Laplace-Beltrami equation on a smooth manifold and energy estimates for the mate-
rial derivative of the Galerkin solutions to derive a bound on the ‖ · ‖H2(S) norm for
the weak limit of these Galerkin solutions.

1. Galerkin subspace and boundedness of L2-projection. We introduce Galerkin sub-

spaces of
◦
W , similar to those used in [7]. For this we need a smooth diffeomorphism

between S and the cylindrical reference domain Ŝ := Γ0 × (0, T ). We use a Lan-
grangian mapping from Γ0 × [0, T ] to the space-time manifold S, as in [26]. The
velocity field w and Γ0 are sufficiently smooth such that for all y ∈ Γ0 the ODE
system

Φ(y, 0) = y,
∂Φ

∂t
(y, t) = w(Φ(y, t), t), t ∈ [0, T ],

has a unique solution x := Φ(y, t) ∈ Γ(t) (recall that Γ(t) is transported with the
velocity field w). The corresponding inverse mapping is given by Φ−1(x, t) := y ∈ Γ0,
x ∈ Γ(t). The Lagrangian mapping Φ induces a bijection

F : Γ0 × [0, T ]→ S, F (y, t) := (Φ(y, t), t).

We assume this bijection to be a C2-diffeomorphism between these manifolds.
For a function u defined on S we define û = u ◦ F on Γ0 × (0, T ):

û(y, t) = u(Φ(y, t), t) = u(x, t).

Vice versa, for a function û defined on Γ0 × (0, T ) we define u = û ◦ F−1 on S:

u(x, t) = û(Φ−1(x, t), t) = û(y, t).

By construction, we have

u̇(x, t) =
∂û

∂t
(y, t). (8.2)

We need a surface integral transformation formula. For this we consider a local
parametrization of Γ0, denoted by µ : R2 → Γ0, which is at least C1 smooth. Then,
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Φ ◦ µ := Φ(µ(·), t) defines a C1 smooth parametrization of Γ(t). For the surface
measures d ŝ and ds on Γ0 and Γ(t), respectively, we have the relations

ds = γ(·, t) d ŝ, d ŝ = γ̃(·, t) ds, (8.3)

with functions γ and γ̃ that are both C1 smooth, bounded and uniformly bounded
away from zero: γ ≥ c > 0 on Γ0 × (0, T ) and γ̃ ≥ c > 0 on S, cf. section 3.3 in [26].

Denote by φ̂j , j ∈ N the eigenfunctions of the Laplace-Beltrami operator on Γ0.
Define φj : S → R

φj(Φ(y, t), t) := φ̂j(y),

and note that due to (8.2) one has φ̇j = 0. The set {φj(·, t) | j ∈ N} is dense in
H1(Γ(t)). We define the spaces

XN (t) = span{φ1(·, t), . . . , φN (·, t)},

XN = {
N∑

j=1

uj(t)φj(x, t) | uj ∈ H1(0, T ;R), uj(0) = 0, 1 ≤ j ≤ N }.

Below, in step 2, we construct a Galerkin solution in the subspace XN ⊂
◦
W . Note that

for v ∈ XN we have v(·, t) ∈ XN (t). In the analysis in step 6, we need H1-stability of
the L2-projection on XN (t). This stability result is derived in the following lemma.

Lemma 8.1. Denote by PXN (t) the L2-orthogonal projector on XN (t), i.e., for
ζ ∈ L2(Γ(t)):

∫

Γ(t)

PXN (t)ζ v ds =

∫

Γ(t)

ζv ds for all v ∈ XN (t).

For ζ ∈ H1(Γ(t)) the estimate

‖∇ΓPXN (t)ζ‖L2(Γ(t)) ≤ C ‖ζ‖H1(Γ(t)) (8.4)

holds with a constant independent of N and t.
Proof. Let γ be a smooth and positive function on Γ0, then (f, g)γ :=

∫
Γ0
fg γds

defines a scalar product on L2(Γ0). This scalar product induces a norm equivalent to
the standard L2(Γ0)-norm. For given f ∈ H1(Γ0) let fN be an (·, ·)γ-orthogonal pro-
jection on XN (0). Since ∆ΓfN ∈ XN (0), we have

∫
Γ0
γ f∆ΓfNds =

∫
Γ0
γ fN∆ΓfNds.

Using this and integration by parts we obtain the identity:
∫

Γ0

|∇ΓfN |2 γds =

∫

Γ0

(∇ΓfN∇Γγ) (f − fN )ds+

∫

Γ0

(∇ΓfN∇Γf)γ ds.

Applying the Cauchy inequality, positivity and smoothness of γ, we get
∫

Γ0

|∇ΓfN |2ds ≤ c
∫

Γ0

f2 + |∇Γf |2 ds,

i.e. the (·, ·)γ-orthogonal projection on XN (0) is H1-stable. For ζ ∈ H1(Γ(t)) define

ζ̂ = ζ ◦ Φ ∈ H1(Γ0) and ζ̂N = ζN ◦ Φ ∈ XN (0). From
∫

Γ0

ζ̂N ψ̂Nγ dŝ =

∫

Γ(t)

ζNψN ds =

∫

Γ(t)

ζψN ds =

∫

Γ0

ζ̂ψ̂Nγ dŝ ∀ ψ̂N ∈ XN (0),
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it follows that ζ̂N is the (·, ·)γ-orthogonal projection of ζ̂. Using the H1-stability of
this projection, the smoothness of Φ and Φ−1 and (8.3), we obtain

‖∇ΓζN‖L2(Γ(t)) ≤ C ‖∇Γζ̂N‖L2(Γ0) ≤ C ‖ζ̂‖H1(Γ0) ≤ C ‖ζ‖H1(Γ(t)).

Thus, the estimate in (8.4) holds.

2. Existence of Galerkin solution uN ∈ XN and its boundedness in H1(S) uniformly
in N . We look for a Galerkin solution uN ∈ XN to (7.2). We consider the following
projected surface parabolic equation: determine uN = (u1, . . . uN ) ∈ H1(0, T ;RN )

such that for uN (x, t) :=
∑N
j=1 uj(t)φj(x, t) we have uN (·, 0) = 0 and

∫

Γ(t)

(u̇N −∆ΓuN )φds =

∫

Γ(t)

fφds for all φ ∈ XN (t), a.e. in t ∈ [0, T ]. (8.5)

In terms of uN this can be rewritten as a linear system of ODEs of the form

M(t)
duN
dt

+A(t)uN (t) = b(t), uN (0) = 0. (8.6)

The matrices M,A are symmetric positive definite. Since for the eigenfunctions
we have φ̂i ∈ C2(Γ0), see [2], and the diffeomorphism F is C2-smooth, we have
M,A ∈ W 1

∞(0, T ;RN×N ). The smallest eigenvalue of M(t) is bounded away from
zero uniformly in t ∈ [0, T ]. The right-hand side satisfies b ∈ L2(0, T ;RN ). By the
theory of linear ordinary differential equations, e.g., Proposition 6.5 in [19], we have
existence of a unique solution uN ∈ H1(0, T ;RN ). Moreover, if f ∈ H1(S), then
b ∈ H1(0, T ;RN ) and uN ∈ H2(0, T ;RN ). For the corresponding Galerkin solution

uN ∈ XN , given by uN (x, t) =
∑N
j=1 uj(t)φj(x, t), we derive energy estimates. Taking

φ = uN (·, t) ∈ XN (t) in (8.5) and applying integration by parts we obtain the identity

1

2

d

dt

∫

Γ(t)

u2
N ds+

∫

Γ(t)

|∇ΓuN |2 −
1

2
(divΓw)u2

N ds =

∫

Γ(t)

fuN ds.

Applying the Cauchy inequality to handle the term on the right-hand side and using
a Gronwall argument, with uN (·, 0) = 0, yields

sup
t∈(0,T )

∫

Γ(t)

u2
Nds+

∫ T

0

∫

Γ(t)

|∇ΓuN |2dsdt ≤ C‖f‖20,

and thus

‖uN‖H ≤ C‖f‖0, (8.7)

with a constant independent of N . Taking φ = u̇N (·, t) ∈ XN (t) in (8.5) and using
the identity
∫

Γ

∇Γv · ∇Γv̇ ds =
1

2

d

dt

∫

Γ

|∇Γv|2 ds− 1

2

∫

Γ

|∇Γv|2divΓw ds+

∫

Γ

D(w)∇Γv · ∇Γv ds,

with the tensor D(w)ij = 1
2

(∂wj

∂xi
+ ∂wi

∂xj

)
(cf. (2.11) in [7]) yields

∫

Γ(t)

u̇2
N ds+

1

2

d

dt

∫

Γ(t)

|∇ΓuN |2 ds

=
1

2

∫

Γ(t)

|∇ΓuN |2divΓw ds−
∫

Γ(t)

D(w)∇ΓuN · ∇ΓuN ds+

∫

Γ(t)

fu̇N ds.
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Employing the Cauchy inequality and a Gronwall inequality, with uN (·, 0) = 0, we
obtain

sup
t∈(0,T )

∫

Γ(t)

|∇ΓuN |2ds+

∫ T

0

∫

Γ(t)

|u̇N |2dsdt ≤ C‖f‖20, (8.8)

with a constant independent of N . From the results in (8.7) and (8.8) we obtain the
uniform boundedness result

‖uN‖H1(S) ≤ C‖f‖0. (8.9)

3. The weak limit u solves (8.1) and ‖u‖H1(S) ≤ C‖f‖0 holds. From the uniform
boundedness (8.9) it follows that there is a subsequence, again denoted by (uN )N∈N,
that weakly converges to some u ∈ H1(S):

uN ⇀ u in H1(S). (8.10)

As a direct consequence of this weak convergence and (8.9) we get

‖u‖H1(S) ≤ c‖f‖0. (8.11)

We recall an elementary result from functional analysis. Let X, Y be normed spaces,
T : X → Y linear and bounded and (xn)n∈N a sequence in X, then the following
holds:

xn ⇀ x in X ⇒ Txn ⇀ Tx in Y. (8.12)

Hence, from (8.10) we obtain the following, which we need further on:

u̇N ⇀ u̇ in L2(S), uN ⇀ u in H. (8.13)

We now show that u is the solution of (8.1). Define X̂N := span{φ̂1, . . . , φ̂N} and note

that ∪N∈NX̂N is dense in H1(Γ0). The set Ĉ = { t→∑n
j=0 t

jψ̂j | ψ̂j ∈ X̂N , n,N ∈
N } is dense in L2(0, T ;H1(Γ0)). Using this and Lemma 3.3 in [26] it follows that
C = {∑n

j=0 t
jψj(x, t) | ψj(·, t) ∈ XN (t), n,N ∈ N } is dense in H. Consider ψ(x, t) =

tjφk(x, t). From (8.5) it follows that for N ≥ k we have

∫ T

0

∫

Γ(t)

u̇Nψ +∇ΓuN · ∇Γψ dsdt =

∫ T

0

∫

Γ(t)

fψ dsdt

and using (8.10) it follows that this equality holds with uN replaced by u. From
linearity and density of C in H we conclude that u ∈ H1(S) ⊂ W solves (8.1). It
remains to check whether u satisfies the homogeneous initial condition.

From the weak convergence in H1(S), the boundedness of the trace operator
T : H1(S)→ L2(Γ0), Tv = v(·, 0) and (8.12) it follows that uN (·, 0) converges weakly
to u(·, 0) in L2(Γ0). From the property uN (·, 0) = 0 for all N it follows that u(·, 0) = 0

holds. Hence u ∈
◦
W holds.

4. The estimate ‖∇2
Γu‖0 ≤ c‖f‖0 holds. The function u is a (weak) solution of

−∆Γu = f − u̇ on Γ(t), with f(·, t) − u̇(·, t) ∈ L2(Γ(t)) for almost all t ∈ [0, T ].
The H2-regularity theory for a Laplace-Beltrami equation on a smooth manifold (see
[2]) yields u ∈ H2(Γ(t)) and ‖u‖H2(Γ(t)) ≤ Ct‖f(·, t) − u̇(·, t)‖L2(Γ(t). Due to the
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smoothness of S we can assume Ct to be uniformly bounded w.r.t. t. Using this and
(8.11) we get

‖∇2
Γu‖20 ≤

∫ T

0

‖u‖2H2(Γ(t))dt ≤ c
∫ T

0

‖f(·, t)− u̇(·, t)‖2L2(Γ(t) dt ≤ c‖f‖20. (8.14)

From this and (8.11) the result (7.3) follows.

5. The estimate ‖∇Γu̇‖0 ≤ c‖f‖H1(S) holds. We will use the assumptions f ∈
H1(S) and f |t=0 = 0. We need a commutation formula for the material deriva-
tive and the Laplace-Beltrami operator. To derive this, we use the notation ∇Γg =
(D1g, . . . , Ddg)T for the components of the tangential derivative and the following
identity, given in Lemma 2.6 of [11]:

˙(Dig) = Diġ −Aij(w)Djg, with Aij(w) = Diwj − νiνsDjws, nΓ = (ν1, . . . , νd)
T .

Let ∇Γw = (∇Γw1 . . .∇Γwd) ∈ R3×3, A = ∇Γw − nΓnTΓ (∇Γw)T and ei the i-th

basis vector in R3. This relation can be written as ˙(Dig) = Diġ − eTi A∇Γg. For

a vector function g = (g1, . . . , gd)
T this yields ˙(divΓg) = divΓġ − tr(A∇Γg). For a

scalar function g the relation yields ˙(∇Γg) = ∇Γġ − A∇Γg. Taking g = ∇Γf thus
results in the following relation:

˙(∆Γg)−∆Γġ = −divΓ(A∇Γg)− tr(A∇2
Γg) =: R(w, g). (8.15)

We take φ = φi (1 ≤ i ≤ N) in (8.5). Recall that from f ∈ H1(S) and smooth-
ness of S it follows that for b,M,A in (8.6) we have b ∈ H1(0, T ;RN ) and M,A ∈
W 1
∞(0, T ;RN×N ) and thus uN ∈ H2(0, T ;RN ). Hence, differentiation w.r.t. t of (8.5),

with φ = φi, is allowed and using the Leibnitz formula, φ̇i = 0 and the commutation
relation (8.15) we obtain, with vN := u̇N ,

∫

Γ(t)

(v̇N −∆ΓvN )φids

= −
∫

Γ(t)

(u̇N −∆ΓuN )φidivΓwds+

∫

Γ(t)

(ḟ + fdivΓw +R(w, uN ))φids.

(8.16)

We multiply this equation by u̇i(t) and sum over i to get

1

2

d

dt

∫

Γ(t)

v2
N ds+

∫

Γ(t)

|∇ΓvN |2 ds (8.17)

= −
∫

Γ(t)

(u̇N −∆ΓuN )vNdivΓwds+

∫

Γ(t)

(ḟ + fdivΓw +R(w, uN ))vNds

+
1

2

∫

Γ(t)

v2
NdivΓw ds.

To treat the first term on the right-hand side, we apply integration by parts and the
Cauchy inequality:

|
∫

Γ(t)

(u̇N −∆ΓuN )vNdivΓwds|

≤ c(‖u̇N‖2L2(Γ(t)) + ‖∇ΓuN‖2L2(Γ(t))) +
1

4
‖∇ΓvN‖2L2(Γ(t)).
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For the second term we eliminate the second derivatives of uN that occur in R(w, uN )
using the partial integration identity

∫

Γ

fD2
i g ds = −

∫

Γ

DifDig ds+

∫

Γ

fDigκνi ds.

Thus we get

|
∫

Γ(t)

(ḟ + fdivΓw +R(w, uN ))vNds|

≤ c(‖ḟ‖L2(Γ(t)) + ‖f‖L2(Γ(t)))‖vN‖L2(Γ(t)) + c‖uN‖H1(Γ(t))‖vN‖H1(Γ(t))

≤ c
(
‖ḟ‖2L2(Γ(t)) + ‖f‖2L2(Γ(t)) + ‖uN‖2H1(Γ(t)) + ‖u̇N‖2L2(Γ(t))

)
+

1

4
‖∇ΓvN‖2L2(Γ(t)).

The two terms 1
4‖∇ΓvN‖2L2(Γ(t)) can be absorbed by the term ‖∇ΓvN‖2L2(Γ(t)) on the

left-hand side in (8.17). Using the estimates (8.8), (8.9) and a Gronwall inequality,
we obtain from (8.17)

sup
t∈(0,T )

∫

Γ(t)

v2
Nds+

∫ T

0

∫

Γ(t)

|∇ΓvN |2dsdt ≤ C(‖f‖2H1(S) + ‖vN‖2Γ0
). (8.18)

Since uN ∈ H2(0, T ;RN ), the function duN

dt is continuous and from (8.6) we get
duN

dt (0) = M(0)−1b(0) = 0, due to the assumption f(·, 0) = 0 on Γ0. Therefore,

vN (x, 0) =
∑N
j=1

duj

dt (0)φj(x, 0) = 0 on Γ0. Using this in (8.18) we get

‖vN‖H = ‖u̇N‖H ≤ C‖f‖H1(S) (8.19)

uniformly in N . Hence for a subsequence, again denoted by (vN )N∈N, we have vN ⇀ v
in H. This implies, cf. (8.12), vN ⇀ v in L2(S). Due to (8.13) and uniqueness of
weak limits we obtain v = u̇, i.e.

vN ⇀ u̇ in H (8.20)

holds. Passing to the limit in (8.19) we get ‖u̇‖H = ‖v‖H ≤ C‖f‖H1(S), which implies

‖∇Γu̇‖0 ≤ C‖f‖H1(S). (8.21)

6. The estimate ‖ü‖0 ≤ c‖f‖H1(S) holds. First we show ü ∈ H ′. For arbitrary
ζ ∈ C1(S) and ζN = PXN (t)ζ(·, t) ∈ XN (t), with PXN (t) the orthogonal projection
defined in Lemma 8.1, using the relation (8.16) we obtain

〈üN , ζ〉 =

∫ T

0

∫

Γ(t)

üNζ dsdt =

∫ T

0

∫

Γ(t)

üNζNdsdt =

∫ T

0

∫

Γ(t)

v̇NζNdsdt

=

∫ T

0

∫

Γ(t)

[(ḟ + ∆ΓvN )− (u̇N −∆ΓuN )divΓw + fdivΓw +R(w, uN )]ζNdsdt.

Applying integration by parts, the Cauchy inequality, Lemma 8.1 and the estimates
(8.8) and (8.18), we get

| 〈üN , ζ〉 | ≤ c ‖f‖H1(S)

(∫ T

0

‖ζN‖2L2(Γ(t)) + ‖∇ΓζN‖2L2(Γ(t))dt

) 1
2

≤ c ‖f‖H1(S)‖ζ‖H .
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Since C1(S) is dense in H, we get üN ∈ H ′ and ‖üN‖H′ ≤ c ‖f‖H1(S), uniformly in
N . Take ζ ∈ C1

0 (S). Recall that u̇N ⇀ u̇ in L2(S), cf. (8.13). Using this we get

〈ü, ζ〉 := −
∫ T

0

∫

Γ(t)

u̇ζ̇ + u̇ζdivΓw dsdt = − lim
N→∞

∫ T

0

∫

Γ(t)

u̇N ζ̇ + u̇NζdivΓw dsdt

= − lim
N→∞

〈üN , ζ〉 ≤ sup
N
‖üN‖H′‖ζ‖H ≤ c‖f‖H1(S)‖ζ‖H .

Therefore, ü ∈ H ′ and ‖ü‖H′ ≤ c ‖f‖H1(S) and üN ⇀ ü in H ′. Thus, for vN = u̇N ,
v = u̇ we have, cf. (8.20),

vN ⇀ v in H, v̇N ⇀ v̇ in H ′. (8.22)

We take test function ψ(x, t) = tjφk(x, t) as in step 3. Using the relation (8.16), we
get for N ≥ k:

〈v̇N , ψ〉+ (∇ΓvN ,∇Γψ)0 = (ḟ +R(w, uN ), ψ)0

−
[
(u̇N , ψdivΓw)0 + (∇ΓuN ,∇Γ(ψdivΓ)w)0 − (f, ψdivΓw)

]
.

For N → ∞, due to uN ⇀ u in H1(S), we can replace uN by u and since u is the
solution of (8.1) the term between square brackets vanishes. Using the weak limit
results in (8.22) and applying a density argument (as in step 3) we thus obtain

〈v̇, ξ〉+ (∇Γv,∇Γξ)0 = (ḟ +R(w, u), ξ)0 for all ξ ∈ H.

From vN ⇀ v in W , boundedness of the trace operator from W to L2(Γ0) we obtain
vN (·, 0) ⇀ v(·, 0) in L2(Γ0). Hence, due to vN |Γ0

= 0 we obtain v|Γ0
= 0. Therefore,

for the function v := u̇, we have v ∈W0 is the weak solution of the surface parabolic
equation (8.1) with the right hand side f∗ = ḟ + R(w, u) from L2(S). Hence we
can apply the regularity result in (8.11) and get v̇ ∈ L2(S). Thus, ü ∈ L2(S) and

‖ü‖0 ≤ C‖f∗‖0 ≤ ‖ḟ‖0 +
( ∫ T

0
‖u‖2H2(Γ(t)) dt

) 1
2 ≤ C‖f‖H1(S). Finally note that from

this estimate and the results in (7.3) and (8.21) we obtain the H2-regularity estimate
in (7.4).

9. Concluding remarks. We proved first and second order discretization error
bounds for an Eulerian surface finite element method. The method is based on traces
on the space-time manifold of standard bilinear space-time finite elements. To the
best of our knowledge, this is the first Eulerian finite element method which is proved
to be second order accurate for PDEs on evolving surfaces. Both the method and the
analysis can easily be generalized to higher order finite elements. In the applications
that we consider, we typically use bilinear finite elements, due to the fact that the
approximation of the evolving surface causes an error (“geometric error”) that is of
the order h2. Results of numerical experiments, which illustrate the second order
convergence, are presented in [15, 26]. Numerical experiments indicate that the stabi-
lization term (σ > 0 in (3.6)) improves the discrete mass conservation of the method,
but is not essential for stability or accuracy. Furthermore, numerical experiments also
show that the condition (2.11) that we need in our analysis seems not to be critical
for the performance of the method. Hence, maybe an error analysis that needs weaker
assumptions can be developed. Another open problem is the derivation of rigorous
error estimates for the case when the smooth space-time manifold S is approximated,
e.g., by a piecewise tetrahedral surface.
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