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A NARROW-BAND UNFITTED FINITE ELEMENT METHOD FOR
ELLIPTIC PDES POSED ON SURFACES

MAXIM A. OLSHANSKII∗ AND DANIL SAFIN∗

Abstract. The paper studies a method for solving elliptic partial differential equations posed
on hypersurfaces in RN , N = 2, 3. The method allows a surface to be given implicitly as a zero
level of a level set function. A surface equation is extended to a narrow-band neighborhood of the
surface. The resulting extended equation is a non-degenerate PDE and it is solved on a bulk mesh
that is unaligned to the surface. An unfitted finite element method is used to discretize extended
equations. Error estimates are proved for finite element solutions in the bulk domain and restricted
to the surface. The analysis admits finite elements of a higher order and gives sufficient conditions for
archiving the optimal convergence order in the energy norm. Several numerical examples illustrate
the properties of the method.
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1. Introduction. Partial differential equations posed on surfaces arise in math-
ematical models for many natural phenomena: diffusion along grain boundaries [24],
lipid interactions in biomembranes [16], and transport of surfactants on multiphase
flow interfaces [20], as well as in many engineering and bioscience applications: vec-
tor field visualization [11], textures synthesis [29], brain warping [28], fluids in lungs
[21] among others. Thus, recently there has been a significant increase of interest in
developing and analyzing numerical methods for PDEs on surfaces.

One natural approach to solving PDEs on surfaces numerically is based on surface
triangulation. In this class of methods, one typically assumes that a parametrization
of a surface is given and the surface is approximated by a family of consistent regular
triangulations. It is common to assume that all nodes of the triangulations lie on the
surface. The analysis of a finite element method based on surface triangulations was
first done in [12]. To avoid surface triangulation and remeshing (if the surface evolves),
another approach was taken in [5]: It was proposed to extend a partial differential
equation from the surface to a set of positive Lebesgue measure in RN . The resulting
PDE is then solved in one dimension higher, but can be solved on a mesh that is
unaligned to the surface. A surface is allowed to be defined implicitly as a zero set of
a given level set function. However, the resulting bulk elliptic or parabolic equations
are degenerate, with no diffusion acting in the direction normal to the surface. A
version of the method, where only an h-narrow band around the surface is used to
define a finite element method, was studied in [8]. A fairly complete overview of finite
element methods for surface PDEs and more references can be found in the recent
review paper [13].

For an elliptic equation on a compact hypersurface, the present paper considers a
new extended non-degenerate formulation, which is uniformly elliptic in a bulk domain
containing the surface. We analyze a Galerkin finite element method for solving
the extended equation. The bulk domain is allowed to be a narrow band around
the surface with width proportional to a mesh size. Thus the number of degrees
of freedom used in computations stays asymptotically optimal, when the mesh size
decreases. The finite element method we apply here is unfitted: The mesh does not
respect the surface or the boundary of the narrow band. This property is important
from the practical point of view. No parametrization of the surface is required by the
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method. The surface can be given implicitly and the implementation requires only an
approximation of its distance function. We analyse the approximation properties of
the method and prove error estimates for finite element solutions in the bulk domain
and restricted to the surface. The analysis allows finite elements of higher order and
gives sufficient conditions for archiving optimal convergence order in the energy norm.
We remark that up to date the analysis of higher order finite element methods for
surface PDEs is largely an open problem: In [10] a higher order extension of the
method from [12] was analysed under the assumption that a parametrization of Γ
is known. The analysis of a coupled surface-bulk problem from [17] also admits a
higher order discretization by isoparametric finite elements on a triangulation fitted
to a given surface.

Another unfitted finite element method for elliptic equations posed on surfaces
was introduced in [26, 27]. That method does not use an extension of the surface
partial differential equation. It is instead based on a restriction (trace) of the outer
finite element spaces to a surface. We do not compare these two different approaches
in the paper.

The remainder of the paper is organized as follows. Section 2 collects some nec-
essary definitions and preliminary results. In section 3, we recall the extended PDE
approach from [5] and introduce a different non-degenerate extended formulation. In
section 4, we consider a finite element method. Finite element method error analysis
is presented in section 5. Section 6 shows the result of several numerical experiments.
Finally, section 7 collects some closing remarks.

2. Preliminaries. We assume that Ω is an open subset in RN , N = 2, 3 and
Γ is a connected C2 compact hypersurface contained in Ω. For a sufficiently smooth
function g : Ω→ R the tangential gradient (along Γ) is defined by

∇Γg = ∇g − (nΓ · ∇g)nΓ,

where nΓ is the outward normal vector on Γ. By ∆Γ we denote the Laplace–Beltrami
operator on Γ, ∆Γ = ∇Γ · ∇Γ.

This paper deals with elliptic equations posed on Γ. As a model problem, we
consider the Laplace–Beltrami problem:

−∆Γu+ αu = f on Γ, (2.1)

with some strictly positive α ∈ L∞(Γ). The corresponding weak form of (2.1) reads:
For given f ∈ L2(Γ) determine u ∈ H1(Γ) such that

∫

Γ

∇Γu∇Γv + αuv ds =

∫

Γ

fv ds for all v ∈ H1(Γ). (2.2)

The solution u to (2.2) is unique and satisfies u ∈ H2(Γ), with ‖u‖H2(Γ) ≤ c‖f‖L2(Γ)

and a constant c independent of f , cf. [12].

Further we consider a surface embedded in R3, i.e. N = 3. With obvious minor
modifications all results hold if Γ is a curve in R2. Denote by Ωd a domain consisting
of all points within a distance from Γ less than some d > 0:

Ωd = {x ∈ R3 : dist(x,Γ) < d }. (2.3)

Let φ : Ωd → R be the signed distance function, |φ(x)| := dist(x,Γ) for all x ∈ Ωd.
The surface Γ is the zero level set of φ:

Γ = {x ∈ R3 : φ(x) = 0}.
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We may assume φ < 0 on the interior of Γ and φ > 0 on the exterior. We define
n(x) := ∇φ(x) for all x ∈ Ωd. Thus, n = nΓ on Γ, and |n(x)| = 1 for all x ∈ Ωd. The
Hessian of φ is denoted by H:

H(x) = D2φ(x) ∈ R3×3 for all x ∈ Ωd.

The eigenvalues of H(x) are κ1(x), κ2(x), and 0. For x ∈ Γ, the eigenvalues κi(x),
i = 1, 2, are the principal curvatures.

We need the orthogonal projector

P(x) = I− n(x)⊗ n(x) for all x ∈ Ωd.

Note that the tangential gradient can be written as ∇Γg(x) = P∇g(x) for x ∈ Γ. We
introduce a locally orthogonal coordinate system by using the projection p : Ωd → Γ:

p(x) = x− φ(x)n(x) for all x ∈ Ωd. (2.4)

Assume that d is sufficiently small such that the decomposition x = p(x) + φ(x)n(x)
is unique for all x ∈ Ωd. We shall use an extension operator defined as follows. For a
function v on Γ we define

ve(x) := v(p(x)) for all x ∈ Ωd. (2.5)

Thus, ve is the extension of v along normals on Γ, it satisfies n · ∇ve = 0 in Ωd, i.e.,
ve is constant along normals to Γ. Computing the gradient of ve(x) and using (2.4)
and (2.5) gives

∇ve(x) = (I− φ(x)H(x))∇Γv(p(x)) for x ∈ Ωd. (2.6)

For higher order derivatives, assume the surface is sufficiently smooth Γ ∈ Ck+1,
k = 2, 3, . . . . This yields φ ∈ Ck+1(Ωd), see [18], and hence p(x) ∈ [Ck(Ωd)]

3.
Differentiating (2.5) gives for a sufficiently smooth v

|Dαve(x)| ≤ c
k∑

l=1

∑

|µ|=l
|Dµ

Γv(p(x))| for x ∈ Ωd, |α| = k, (2.7)

where a constant c can be taken independent of x and v.
From (2.5) in [9] we have the following formula for the eigenvalues of H:

κi(x) =
κi(p(x))

1 + φ(x)κi(p(x))
for x ∈ Ωd. (2.8)

Since Γ ∈ C2 and Γ is compact, the principle curvatures of Γ are uniformly bounded
and d can be taken sufficiently small to satisfy

d ≤
(

2 max
x∈Γ

(|κ1(x)|+ |κ2(x)|)
)−1

. (2.9)

For such choice of d, we obtain using (2.8)

|φ(x)| = dist(x,Γ) ≤ d ≤ 1

2
‖H(x)‖−1

2 for x ∈ Ωd. (2.10)

The inequality (2.10) yields the bounds for the spectrum and the determinant of the
symmetric matrix I− φH:

sp(I− φH) ∈
[

1
2 ,

3
2

]
, 1

4 ≤ det(I− φH) ≤ 9
4 in Ωd. (2.11)

Therefore, the matrix (I− φH)−1 is well defined and uniformly bounded in Ωd.
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3. Extensions of the surface PDEs. In this section, we review some well-
known results for numerical methods based on surface PDEs extensions and define a
suitable extension of the surface equation (2.1) to a neighborhood of Γ.

3.1. Review of results. In [5] Bertalmio et al. suggested to extend a PDE off
a surface to every level set of the indicator function φ in some neighborhood of Γ.
Applied to (2.1) this leads to the problem posed in Ωd:

−|∇φ|−1 div |∇φ|P∇u+ αe u = fe in Ωd. (3.1)

The corresponding weak formulation of (3.1) was shown to be well-posed in [6]. The
weak solution is sought in the anisotropic space

HP = {v ∈ L2(Ωd) : P∇v ∈ (L2(Ωd))
3}.

On every level set of φ the solution to (3.1) does not depend on a data in a neighbor-
hood of this level set. Indeed, the diffusion in (3.1) acts only in the direction tangential
to level sets of φ and one may consider (3.1) as a collection of of independent surface
problems posed on every level set. Hence, the surface equation (2.1) is embedded in
(3.1) and if a smooth solution to (3.1) exists, then restricted to Γ it solves the original
Laplace-Beltrami problem (2.1). With no ambiguity, we shall denote by u both the
solutions to surface and extended problems.

The major numerical advantage of any extended formulation is that one may
apply standard discretization methods to solve equations in the volume domain Ωd
and further take the trace of computed solutions on Γ (or on a approximation of Γ).
Computational experiments from [5, 6, 19, 31] suggest that these traces of numerical
solutions are reasonably good approximations to the solution of the surface problem
(2.1).

Numerical analysis of surface equations discretization methods based on exten-
sions is by far not completed: Error estimates for finite element methods for (3.1)
were shown in [6, 8]. Error estimate in [6] was established in the integral volume
norm

‖v‖2HP
:= ‖v‖2L2(Ωd) + ‖P∇v‖2L2(Ωd),

rather than in a surface norm for Γ. In [8], a finite element method based on trian-
gulations not fitted to the curvilinear boundary of Ωd was studied. The first order
convergence was proved in the surface H1 norm, if the band width d in (2.3) is of the
order of mesh size and if a quasi-uniform triangulation of Ω is assumed. For linear
elements this estimate is of the optimal order in energy norm.

The extended formulation (3.1) is numerically convenient, but has a number of
potential issues, as noted already in [5] and reviewed in [8, 19]. No boundary condi-
tions are needed for (3.1), if the boundary of the bulk domain Ωd consists of level sets
of φ. However some auxiliary boundary conditions are often required by a numer-
ical method. The extended equation (3.1) is defined in a domain in one dimension
higher than the surface equation. This leads to involving extra degrees of freedom in
computations. If Ωd is a narrow band around Γ, then handling numerical boundary
conditions may effect the quality of the discrete solution. Finally, the second order
term in the extended formulation (3.1) is degenerate, since no diffusion acts in the
direction normal to level sets of φ. The current understanding of numerical methods
for degenerate elliptic and parabolic equations is still limited.
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An improvement to the original extension of surface PDEs was introduced by
Greer in [19]. Greer suggested to use the non-orthogonal scaled projection operator

P̃ := (I− φH)−1P (3.2)

on tangential planes of the level sets of φ instead of P. For a smooth Γ, one can
always consider small enough d > 0 such that P̃ is well defined in Ωd . If φ is the
singed distance function and all data (α and f for equations (3.1)) is extended to
the neighborhood of Γ according to (2.5), i.e. constant alone normals, then one can
easily show (see [19, 7]) that the solution to the new extended equation is constant in
normal directions:

(n · ∇)u = 0 a.e. in Ωd. (3.3)

The property (3.3) is crucial, since it allows to add diffusion in the normal direction
without altering solution. Doing this, one obtains a non-degenerated elliptic operator.
Thus, for solving the heat equation on a surface, it was suggested in [19] to include
the additional term −c2n div(n⊗ n)∇u in the extended formulation with a coefficient
c2n. For the planar case, Ωd ∈ R2, the recommendation was to set cn = (1 − φκ0),
κ0 = κ(p(x)), κ is the curvature of Γ (Γ is a curve in the planar case).

3.2. Non-degenerate extended equations. Here we deduce another exten-
sion of (2.1): Let φ be the singed distance function and µ = det(I − φH), αe and
fe are the normal extensions to α and f . We look for u solving the following elliptic
problem

−divµ(I− φH)−2∇u+ αeµu = feµ in Ωd

∂u

∂n
= 0 on ∂Ωd.

(3.4)

The Neumann boundary condition in (3.4) is the natural boundary condition. To see
this, note the identity Hn = 0 and that n coincides (up to a sign) with a normal
vector on the boundary of Ωd. Hence, one has (I−φH)−1n = n and for a sufficiently
smooth u:

((I− φH)−2∇u) · n = (∇u) · ((I− φH)−2n) = (∇u) · n =
∂u

∂n
= 0 on ∂Ωd.

The weak formulation of (3.4) reads: Find u ∈ H1(Ωd) satisfying

∫

Ωd

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx =

∫

Ωd

fevµ dx for all v ∈ H1(Ωd). (3.5)

Thanks to (2.11) the corresponding bilinear form

a(u, v) :=

∫

Ωd

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx

is continuous and coercive on H1(Ωd).
The next theorem states several results about the well-posedness of (3.4) and its

relation to the surface equations (2.1).
Theorem 3.1. Assume Γ ∈ C2, α ∈ L∞(Γ), f ∈ L2(Γ). The following asser-

tions hold:
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(i) The problem (3.4) has the unique weak solution u ∈ H1(Ωd), which satisfies
‖u‖H1(Ωd) ≤ C ‖fe‖L2(Ωd), with a constant C depending only on α and Γ;

(ii) For the solution u to (3.4) the trace function u|Γ is an element of H1(Ω) and
solves the weak formulation of the surface equation (2.2).

(iii) The solution u to (3.4) satisfies (3.3). Using the notion of normal extension,
this can be written as u = (u|Γ)e in Ωd;

(iv) Additionally assume Γ ∈ C3, then u ∈ H2(Ωd) and ‖u‖H2(Ωd) ≤ C ‖fe‖L2(Ωd),
with a constant C depending only on α, Γ and d;

Proof. Since the bilinear form a(u, v) is elliptic and continuous in H1(Ωd), the
Lax-Milgram lemma implies the result in (i). Assumption Γ ∈ C3 yields φ ∈ C3(Ωd),
see [18], and hence H, µ ∈ C1(Ωd) and ∂Ωd ∈ C3. The regularity theory for elliptic
PDEs with Neumann boundary data [15] implies the result in item (iv).

Now we are going to show how the bulk equation (3.4) relates to the surface
equation (2.1). For r ∈ (−d, d), denote by Γr the level set surface on distance r
from Γ:

Γr = {x ∈ Ωd : φ(x) = r}.

Since φ is the sign distance function, the coarea formula gives

∫

Ωd

f dx =

∫ d

−d

∫

Γr

f ds dr for f ∈ L1(Ωd). (3.6)

For area elements on Γr and Γ we have

µ(x) ds(x) = det(I− φ(x)H(x)) ds(x) = ds(p(x)) for x ∈ Γr. (3.7)

Denote by u ∈ H1(Γ) the unique solution to the surface equations (2.1). Recall
that ue ∈ H1(Ωd) denotes the normal extension of u. From the weak formulation of
the surface equation (2.2) and transformation formulae (2.6) and (3.7) we infer

∫

Γr

[
(I− φH)−2∇ue∇ve + αe ueve

]
µds =

∫

Γr

feve µds for any v ∈ H1(Γ).

Since ∇ve = P∇ve and P∇v is the tangential gradient which depends only on values
of v on Γr, but not on an extension, we can rewrite the above identity as

∫

Γr

[
(I− φH)−2∇ueP∇v + αe uev

]
µds =

∫

Γr

fev µds for any v ∈ H1(Γr). (3.8)

Assuming v is a smooth function on Ωd, and so v|Γr
∈ H1(Γr), we can integrate (3.8)

over all level sets for r ∈ (−d, d) and apply the coarea formula (3.6) to obtain

∫

Ωd

[
(I− φH)−2∇ueP∇v + αe uev

]
µds =

∫

Ωd

fev µds for any v ∈ C∞(Ωd).

(3.9)
Now we use P = PT and HP = PH ⇒ P(I − φH)−2 = (I − φH)−2P to get from
(3.9)

∫

Ωd

[
(I− φH)−2∇ue∇v + αe uev

]
µds =

∫

Ωd

fev µds for any v ∈ C∞(Ωd).
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Applying the density argument we conclude that the normal extension of the surface
solution ue solves the weak formulation (3.5) of the bulk problem (3.4). Since the
solution to (3.4) is unique, we have proved assertions (ii) and (iii) of the theorem.

The formulation (3.4) has the following advantages over (3.1): The equation (3.4)
is non-degenerate and uniformly elliptic, the extended problem has no parameters
to be defined, the boundary conditions are given and consistent with (3.3). One
theoretical advantage of the formulation (3.4) over (3.1) is that the Agmon-Douglis-
Nirenberg regularity theory is readily applicable if the data is smooth.

We remark that the volumetric formulation of surface equations can be easily
extended for the case of anisotropic surface diffusion. Indeed, let D(x) ∈ (L∞(Γ))

3×3

be a symmetric positive definite tensor acting in tangential subspaces of Γ, i.e. Dn = 0
on Γ. Consider the surface diffusion equation:

−divΓD∇Γu+ αu = f on Γ.

Thanks to D = DT , Dn = 0 ⇒ PDe = DeP = De, repeating the same arguments
as in the proof of Theorem 3.1 leads to the extended problem:

−divµD̃∇u+ αeµu = feµ in Ωd

∂u

∂n
= 0 on ∂Ωd,

with D̃ = (I − φH)−1[De + den ⊗ n](I − φH)−1, De is the componentwise normal
extension of D and d ∈ L∞(Γ) is arbitrary positive on Γ. A reasonable choice of d can
be the minimizer of the K-condition number 1 of the tensor: d = 1

N tr(D), N = 2, 3
is the outer space dimension. Note that the isotropic diffusion problem (2.1) fits this
more general case with D = P. Including anisotropic surface diffusion tensor would
not bring any additional difficulty to the analysis below. However, for the sake of
brevity we consider further only isotropic diffusion.

4. Finite element method. Let Γ ∈ C2, Γ ⊂ Ω, where Ω ⊂ R3 is a polyhedral
domain. Assume we a given a family {Th}h>0 of regular triangulations of Ω such
that maxT∈Th diam(T ) ≤ h. For a tetrahedron T denote by ρ(T ) the diameter of the
inscribed ball. Denote

β = sup
T∈Th

diam(T )/ inf
T∈Th

ρ(T ) . (4.1)

For the sake of analysis, we assume that triangulations of Ω are quasi-uniform, i.e., β
is uniformly bounded in h. The band width d satisfies (2.10) and such that Ωd ⊂ Ω.

It is computationally convenient not to align (not to fit) the mesh to Γ or ∂Ωd.
Thus, the computational domain Ωh will be a narrow band containing Γ with a piece-
wise smooth boundary which is not fitted to the mesh Th.

Let φh be a continuous piecewise smooth, with respect to Th, approximation of
the surface distance function. Assume φh is known and satisfies

‖φ− φh‖L∞(Ω) + h‖∇(φ− φh)‖L∞(Ω) ≤ c hq+1 (4.2)

with some q ≥ 1. Then one defines

Ωh = {x ∈ R3 : |φh(x)| < d }. (4.3)

1The definition of the K-condition number of a symmetric positive definite matrix A ∈ Rn×n is

K(A) =
(tr(A)/n)n

det(A)
, see [2].
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Note, that in some applications the surface Γ may not be known explicitly and only
a finite element approximation φh to the distance function φ is known. Otherwise,
one may set φh := Ih(φ), where Ih is a suitable piecewise polynomial interpolation
operator. If φh is a P1 continuous finite element function, then Ωh has a piecewise
planar boundary. In this practically convenient case, (4.2) is assumed with q = 1.

Alternatively, for Γ given explicitly one may build a piecewise planar approxima-
tion to ∂Ωd as suggested in [4]. We briefly recall it here. Assume d ≥ h (relaxing this
assumption is possible, but requires additional technical considerations). Consider all
tetrahedra that have vertices both inside Ωd, φ(xi) < d, and outside, φ(xj) > d. Let
p1 be a intersection point of Γ with the edge xixj . For any tetrahedra there can be
three or four such points p1, ..., pk. Inside each such tetrahedron, ∂Ωd is approximated
by either by the plane (p1, p2, p3), if k = 3, or by two pieces of planes (p1, p2, p3) and
(p2, p3, p4).

Denote by Td the set of all tetrahedra having nonempty intersection with Ωh:

Td =
⋃

T∈Th
{T : T ∩ Ωh 6= ∅}.

We always assume that Γ ⊂ Ωh ⊂ Td ⊂ Ωd′ ⊂ Ω, with some d′ ≤ c d satisfying (2.9).
The space of all continuous piecewise polynomial functions of a degree r ≥ 1 with

respect to Td is our finite element space:

Vh := {v ∈ C(Td) : v|T ∈ Pr(T ) ∀T ∈ Td}, r ≥ 1. (4.4)

The finite element method reads: Find uh ∈ Vh satisfying
∫

Ωh

[
(I− φhHh)−2∇uh · ∇vh + αe uhvh

]
µhdx =

∫

Ωh

fevh µhdx ∀ vh ∈ Vh. (4.5)

This is the method we analyse further in this paper.
If Γ is given explicitly, one can compute φ and H and set φh = φ, Hh = H and

µh = det(I − φhHh) in (4.5). Otherwise, if the surface Γ is known approximately
as, for example, the zero level set of a finite element distance function φh, then,
in general, φh 6= φ and one has to define a discrete Hessian Hh ≈ H and also set
µh = det(I − φhHh). A discrete Hessian Hh can be obtained from φh by a recovery
method, see, e.g., [1, 30]. At this point, we assume that some Hh is provided and
denote by p ≥ 0 the approximation order for Hh in the (scaled) L2-norm:

|Ωh|−
1
2 ‖H−Hh‖L2(Ωh) ≤ chp, (4.6)

where |Ωh| denotes the volume of Ωh.
Remark 1. From the implementation viewpoint, it is most convenient to use

polyhedral (polygonal) computation domains Ωh, which corresponds to the second
order approximation of ∂Ωd (q = 1 in (4.2)). It appears that in this case, the optimal
order convergence result with P1 finite elements in narrow-band domains, d = O(h),
holds already for p = 0 in (4.6), e.g. Hh = 0 is the suitable choice. This follows from
the error analysis below and supported by the results of numerical experiments in
Section 6.

Finally, we assume that φh and Hh satisfy condition (2.10), which is a reasonable
assumption once d and h are sufficiently small. Hence the h-dependent bilinear form

ah(uh, vh) =

∫

Ωh

[
(I− φhHh)−2∇uh · ∇vh + αe uhvh

]
µhdx

is continuous and elliptic uniformly in h.
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5. Error analysis. If φh = φ and Hh = H, then (4.5) is closely related to
the unfitted finite element method from [4] for an elliptic equation with Neumann
boundary conditions. However, applied to (4.5) the analysis of [4] does not account for
the anisotropy of computational domain and leads to suboptimal convergence results
in surface norms. Therefore, to prove an optimal order convergence in the H1(Γ)
norm, we use a different framework, which also allows to cover the case φh 6= φ,
Hh 6= H and higher order finite elements.

We need some further mild assumptions on how well the mesh resolves the ge-
ometry. Since Γ ⊂ Ωh the boundary of Ωh is decomposed into two disjoint sets,
∂Ωh = ∂Ω+

h ∪ ∂Ω−h , such that φ > 0 on ∂Ω+
h and φ < 0 on ∂Ω−h . We assume that

∂Ω+
h is a graph of a function η+(x), x ∈ Γ, in the local coordinates induced by the

projection (2.4). The same is assumed for ∂Ω−h and η−(x), x ∈ Γ.
To estimate the consistency error of the finite element method, we need results

in the next two lemmas.
Lemma 5.1. Consider Ωh as defined in (4.3) for some φh satisfying (4.2).

For sufficiently small h, there exists a one-to-one mapping Φh : Ωh → Ωd, Φh ∈(
W 1,∞(Ωh)

)3
such that

‖id− Φh‖L∞(Ωh) + h‖I−DΦh‖L∞(Ωh) ≤ c hq+1, (5.1)

where DΦh is the Jacobian matrix. Moreover, the mapping Φh is such that p(Φh(x)) =
p(x) for any x ∈ Ωh.

Proof. Since Γ ∈ C2 and ∂Ωh is piecewise smooth, we have η± ∈ W 1,∞(Γ).
Further in the proof we consider η+. Same conclusions would be true for η−.

Consider Ωh as defined in (4.3), then η+(x) is an implicit function given by

φh(x + η+(x)n(x)) = d, x ∈ Γ. (5.2)

For the distance function it holds φ(x+αn(x)) = α, for x ∈ Γ and α ∈ [−d, d]. Hence
from (5.2) and (4.2) we conclude

|η+(x)− d| = |φ(x + η+(x)n(x))− φh(x + η+(x)n(x))| ≤ c hq+1, x ∈ Γ. (5.3)

To compute the surface gradient of η+, we differentiate (5.2) and find using the chain
rule:

∇Γη+(x) = − (I + η+(x)H(x))∇Γφh(x′)
∇φh(x′) · ∇φ(x)

, x′ = x + nη+, x ∈ Γ.

Noting ∇Γφ = 0, ∇φ(x) = ∇φ(x′), and using (4.2) we estimate for sufficiently small
mesh size h

|∇Γη+(x)| =
∣∣∣∣
(I + η+(x)H(x))∇Γ(φh(x′)− φ(x′))

∇φh(x′) · ∇φ(x′)

∣∣∣∣

= 2

∣∣∣∣
(I + η+(x)H(x))∇Γ(φh(x′)− φ(x′))

|∇φh(x′)|2 + |∇φ(x′)|2 − |∇(φh(x′)− φ(x′))|2
∣∣∣∣

≤ c
∣∣∣∣

(I + η+(x)H(x))hq

|∇φh(x′)|2 + 1− ch2q

∣∣∣∣ ≤ chq a.e. on Γ.

From this and (5.3) we infer

‖η+ − d‖L∞(Γ) + h‖∇Γη+‖L∞(Γ) ≤ c h2. (5.4)

9



Now the required mapping can be defined as

Φh(x) =





x− n(x)

(
ηe+(x)− d

)
φ(x)

ηe+(x)
if φ(x) ≥ 0

x− n(x)

(
ηe−(x) + d

)
φ(x)

ηe−(x)
if φ(x) < 0

x ∈ Ωh.

The property p(Φh(x)) = p(x) is obviously satisfied by the construction of Φh. Due
to the triangle inequality and (5.3) we have

d ≤ |η+(x)|+ |d− η+(x)| ≤ |η+(x)|+ chq+1 ≤ |η+(x)|+ cdhq x ∈ Γ

Therefore, for sufficiently small h there exists a mesh independent constant c > 0 such
that |ηe+(x)| ≥ cd ≥ c|φ(x)|. Hence the estimate for |x − Φh(x)| follows from (5.4).
The estimate for ‖I−DΦh‖2 also follows from (5.4) with the help of (2.6).

Lemma 5.2. For two symmetric positive definite matrices A,B ∈ RN×N , assume
‖A−B‖2 ≤ δ, where ‖ · ‖2 denotes the spectral matrix norm. Then it holds

‖A2 −B2‖2 ≤ δ‖A+B‖2, (5.5)

‖A−1 −B−1‖2 ≤ δ‖B−1‖2‖A−1‖2, (5.6)

|det(A)− det(B)| ≤ δN max{‖A‖N−1
2 , ‖B‖N−1

2 }. (5.7)

Proof. For completeness, we give the proof of these elementary results. For a
symmetric matrix A ∈ RN×N we have ‖A‖2 = sup

06=x∈R3

| 〈Ax, x〉 |/|x|2. Hence the

estimate (5.5) follows from

|
〈
(A2 −B2)x, x

〉
| = | 〈(A−B)x, (A+B)x〉 |

≤ |(A−B)x||(A+B)x| ≤ ‖A−B‖2‖A+B‖2|x|2.

We write A ≤ B if the matrix B − A is positive semidefinite and recall that for two
symmetric positive definite matrices A ≤ B yields B−1 ≤ A−1. Using this and that
‖A−B‖2 ≤ δ is equivalent to −δI ≤ A−B ≤ δI we obtain

A ≤ δI +B ⇒ A ≤ (δλ−1
min(B) + 1)B ⇔ B−1 ≤ (δλ−1

min(B) + 1)A−1

This implies

B−1 −A−1 ≤ δλ−1
min(B)A−1 ≤ δλ−1

min(B)λmax(A−1)I = δ‖B−1‖2‖A−1‖2I

Same arguments show A−1 −B−1 ≤ δ‖B−1‖2‖A−1‖2I.

To prove (5.7), note that det(A) =
∏N
k=1 λk(A) for eigenvalues 0 < λ1(A) ≤ · · · ≤

λN (A). Hence

|det(A)− det(B)| ≤ N max
k=1,...,N

|λk(A)− λk(B)|max{λN−1
N (A), λN−1

N (B)}.

The Courant–Fischer theorem gives for the kth eigenvalue of a symmetric matrix the
characterization

λk(A) = max
S∈Vk−1

min
06=y∈S⊥

〈Ay, y〉
|y|2 ,
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where Vk−1 denotes the family of all (k−1)-dimensional subspaces of RN . The inequal-
ity miny(a(y) + b(y)) ≤ miny a(y) + maxy b(y) implies that miny a(y) −miny b(y) ≤
maxy(a(y)− b(y)). Using this we estimate

λk(A)− λk(B) ≤ max
S∈Vk−1

max
y∈S⊥

〈(A−B)y, y〉
|y|2 ≤ max

y∈RN

〈(A−B)y, y〉
|y|2 ≤ ‖A−B‖2 ≤ δ.

One can estimate the difference λk(B)− λk(A) in the same way.

Now we are prepared for the error analysis of our finite element method. First
we prove an estimate for the error in a volume norm.

Theorem 5.3. Let Γ ∈ C3. Assume ue and uh solve problems (3.4) and (4.5),
respectively, and ue ∈W 1,∞(Ωd), f ∈ L∞(Γ). Then it holds

‖ue − uh‖H1(Ωh) ≤ C
(

inf
vh∈Vh

‖ue − vh‖H1(Ωh) + d
1
2hq + d

3
2 hp

)
, (5.8)

where q and p are defined in (4.2) and (4.6), respectively.
Proof. Since ue is constant along normals, we can consider a normal extension

of ue on Ωd′ . Then the bilinear form ah(ue, vh) is well defined and we can apply the
second Strang’s lemma. Hence, to show (5.8), we need to check the bound

|ah(ue, vh)−
∫

Ωh
fevhµh|

‖vh‖H1(Ωh)
≤ C (d

1
2hq + d

3
2hp). (5.9)

We introduce the auxiliary bilinear form

ah(u, v) :=

∫

Ωh

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx, for u, v ∈ H1(Ωh).

It holds

|ah(ue,vh)− ah(ue, vh)|
≤ ‖ue‖W 1,∞(Ωh)‖vh‖H1(Ωh)

×
(∫

Ωh

‖µ(I− φH)−2 − µh(I− φhHh)−2‖22 + |αe||µ− µh|2dx
) 1

2

.

(5.10)

Recall that matrices (I − φH) and (I − φhHh) are symmetric positive definite and
µ = det(I−φH), µh = det(I−φhHh). Since φ,H and φh,Hh both satisfy (2.10), for
the spectrum and detrminants of (I− φH) and (I− φhHh) the bounds in (2.11) hold
uniformly in x and h. We use this and Lemma 5.2 to estimate

‖µ(I− φH)−2 − µh(I− φhHh)−2‖2 + |αe||µ− µh|
≤ C ‖φH− φhHh‖2 ≤ C(|φ|‖H−Hh‖2 + ‖Hh‖2|φ− φh|)
≤ C(d ‖H−Hh‖2 + hq+1).

Applying (4.6) we get from (5.10)

|ah(ue, vh)− ah(ue, vh)| ≤ C|Ωh|
1
2 (d hp + hq+1)‖ue‖W 1,∞(Ωh)‖∇vh‖L2(Ωh)

≤ C d 1
2 (dhp + hq+1)‖vh‖H1(Ωh).

(5.11)
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It remains to estimate |ah(ue, vh) −
∫

Ωh
fevhµh|. Following [8] we consider vh ◦

Φ−1
h ∈ H1(Ωd) as a test function in (2.2). By the triangle inequality we have

|ah(ue, vh)−
∫

Ωh

fevhµh|

≤ |ah(ue, vh)− a(ue, vh ◦ Φ−1
h )|+

∣∣∣∣
∫

Ωd

fevh ◦ Φ−1
h µ−

∫

Ωh

fevhµh

∣∣∣∣ . (5.12)

Using the integrals transformation rule and the identities

∇(vh ◦ Φ−1
h ) = (DΦh)−T (∇vh) ◦ Φ−1

h ,

(∇ue) ◦ Φ−1
h = (DΦh)−T∇(ue ◦ Φ−1

h ) = (DΦh)−T∇ue,
αe ◦ Φh = αe, ue ◦ Φh = ue,

we calculate

a(ue, vh ◦ Φ−1
h ) =

∫

Ωd

[
(I− φH)−2∇ue · ∇(vh ◦ Φ−1

h ) + αe ue(vh ◦ Φ−1
h )
]
µdx

=

∫

Ωh

[
(I− φH)−2 ◦ Φh

(
(DΦh)−T∇ue

)
·
(
(DΦh)−T∇vh

)

+αe uevh] |det(DΦh)|µ ◦ Φhdx.

Thus, we have

a(ue, vh ◦ Φ−1
h )− ah(ue, vh) =

∫

Ωh

R1∇ue · ∇vh +R2u
evh dx, (5.13)

with

‖R1‖2 = ‖(DΦh)−1µ(I− φH)−2 ◦ Φh(DΦh)−T |det(DΦh)| − µ(I− φH)−2‖2
≤ C‖µ(I− φH)−2 − µ(I− φH)−2 ◦ Φh‖2

+ ‖(DΦh)−1µ(I− φH)−2(DΦh)−T |det(DΦh)| − µ(I− φH)−2‖2
≤ C sup

Ωd′
‖∇(µ(I− φH)−2)‖F ‖id− Φh‖2

+ C ‖µ(I− φH)−2‖2‖(DΦh)−1 − I‖2 |det(DΦh)| − 1|
≤ chq.

(5.14)

and

|R2| = |αe(|det(DΦh)|µ ◦ Φh − µ)| ≤ chq‖αe‖L∞(Ωh) ≤ c hq‖α‖L∞(Γ) ≤ c hq. (5.15)

The notion ‖ · ‖F was used above for the Frobenius norm of a tensor. The term
‖∇(µ(I − φH)−2)‖F is uniformly bounded on Ωd′ thanks to the assumption Γ ∈
C3 ⇒ φ ∈ C3(Ωd′)⇒ µ,H ∈ C1(Ωd′). From (5.13)–(5.15) we obtain

|a(ue, vh ◦ Φ−1
h )− ah(ue, vh)| ≤ c hq|Ωh|

1
2 ‖ue‖W 1,∞(Ωh)‖vh‖H1(Ωh)

≤ c d 1
2 hq‖vh‖H1(Ωh).

(5.16)

Since fe ◦ Φh = fe, we also have
∫

Ωd

fevh ◦ Φ−1
h µdx =

∫

Ωh

fevh|det(DΦh)|µ ◦ Φhdx.
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Hence∣∣∣∣
∫

Ωd

fevh ◦ Φ−1
h µ−

∫

Ωh

fevhµh

∣∣∣∣ ≤ c(hq‖fe‖L2(Ωh) + hpd
3
2 ‖fe‖L∞(Ωh))‖vh‖L2(Ωh)

≤ c(hq‖fe‖L2(Ωh) + hpd
3
2 ‖fe‖L∞(Ωh))‖vh‖L2(Ωh).

Since for the normal extension it holds ‖fe‖L2(Ωd′ ) ≤ c(d′)
1
2 ‖f‖L∞(Γ), and d′ ≤ c d,

we obtain∣∣∣∣
∫

Ωd

fevh ◦ Φ−1
h µ−

∫

Ωh

fevhµh

∣∣∣∣ ≤ c(d
1
2 hq + d

3
2 hp)‖vh‖L2(Ωh). (5.17)

Combining estimates in (5.11), (5.16), (5.17) we prove (5.9).

Remark 2. Note that the extra regularity assumption ue ∈W 1,∞(Ωd) was only
used to estimate the consistency error in (5.10) due to the Hessian approximation
and (5.16). If we alternatively assume the Hessian O(hp) approximation order in the
stronger norm L∞(Ωh), then it is suffice to let u ∈ H1(Γ) and employ the estimate

‖ue‖H1(Ωd′ ) ≤ c(d′)
1
2 ‖u‖H1(Γ) in (5.10) and (5.16). The same remark is valid for the

statement of Theorem 5.5 below.
Now we turn to proving the error estimate in the surface H1-norm. The result of

the lemma below follows from Lemma 3 in [22], see also Lemma 4.4 in [7].

Lemma 5.4. Let T ∈ Th. Denote K̃ = T ∩ Γ, then for any v ∈ H1(T ) it holds

‖v‖2
L2(K̃)

≤ C (h−1‖v‖2L2(T ) + h‖∇v‖2L2(T )), (5.18)

where the constant C may depend only on Γ and the minimal angle condition for Th.

Now we prove our main result concerning the convergence of the finite element
method (4.5).

Theorem 5.5. Let Γ ∈ Cr+2, d ≤ c h, f ∈ L∞(Γ), and assume u ∈ W 1,∞(Γ) ∩
Hr+1(Γ) solves the surface problems (2.1) and uh ∈ Vh solves (4.5). Then it holds

‖u− uh‖H1(Γ) ≤ C (hr + hp+1 + hq),

where a constant C is independent of h, and r ≥ 1, p ≥ 0, q ≥ 1 are the finite
elements, Hessian recovery, and distance function approximation orders defined in
(4.4), (4.2) and (4.6), respectively.

Proof. Since Γ ∈ C3, the regularity u ∈W 1,∞(Γ) ∪H2(Γ) implies for the normal
extension: ue ∈ W 1,∞(Ωd) ∪ H2(Ωd). Hence the assumptions of Theorem 5.3 are
satisfied.

We apply estimate (5.18) componentwise to v = ∇(ue − uh). This leads to the
bound

‖∇(ue − uh)‖2
L2(K̃)

≤ C (h−1|ue − uh|2H1(T ) + h|ue − uh|2H2(T )), (5.19)

Denote by Ihu
e the Lagrange interpolant for ue on Td ⊂ Ωd′ . Thanks to the inverse

inequality and approximation properties of finite elements we have

|ue − uh|H2(T ) ≤ |ue − Ihue|H2(T ) + |Ihue − uh|H2(T )

≤ C(hr−1|ue|Hr+1(T ) + h−1|Ihue − uh|H1(T ))

≤ C(hr−1|ue|Hr+1(T ) + h−1(|ue − Ihue|H1(T ) + |ue − uh|H1(T ))

≤ C(hr−1|ue|Hr+1(T ) + h−1|ue − uh|H1(T )).
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Substituting this estimate to (5.19) and summing up over all elements from Th with
non-empty intersection with Γ and using |∇Γ(u−uh)| = |∇Γ(ue−uh)| ≤ |∇(ue−uh)|
on Γ, we get

‖∇Γ(u− uh)‖2L2(Γ) ≤ C
∑

T ∈ TΓ

T ∩ Γ 6= ∅

(
h−1‖∇(ue − uh)‖2L2(T ) + h2r−1|ue|2Hr+1(T )

)

≤ C (h−1‖∇(ue − uh)‖2L2(Ωh) + h2r−1|ue|2Hr+1(Ωd′ )
).

To estimate the first term on the righthand side, we apply the volume error estimate
from Theorem 5.3, a standard approximation result for finite element functions from
Vh and recall d = O(h). This leads to

‖∇Γ(u− uh)‖2L2(Γ) ≤ C (h2q + h2p+2 + h2r−1|ue|2Hr+1(Ωd′ )
). (5.20)

Finally, integrating (2.7) for k = r+1 over Ωd′ and repeating arguments of Lemma 3.2
in [26] we find

|ue|2Hr+1(Ωd′ )
≤ C d′ ‖u‖2Hr+1(Γ). (5.21)

Estimate (5.20), (5.21) and d′ ≤ ch yield

‖∇Γ(u− uh)‖2L2(Γ) ≤ C ((h2q + h2p+2 + h2r).

To show an estimate for the surface L2-norm of the error, we apply the estimate
(5.18) for v = ue − uh and proceed with similar arguments.

6. Numerical examples. In this section, we present results of several numerical
experiments. They illustrate the performance of the method and the analysis of the
paper. In all experiments the band width, d = γh, is ruled by the parameter γ and
always stays proportional to the mesh width. Results of a few experiments with a
fixed mesh-independent band width and fitted meshes can be found in [7].

If Ωh is a polyhedral domain (the approximation order equals q = 1 in (4.2)),
then the implementation of the method is straightforward and this is what we use
in all numerical examples. In this case, already P1 finite elements deliver optimal
convergence results. The technical difficulty of using higher order approximations of
Ω is the need to define a suitable numerical integration rule over a part of tetrahedra
T ∈ Fd bounded by a zero level set of φh, where φh is a polynomial of degree ≥ 2
on T . This is a non-standard task (see, however, a recent paper [25]) and we do not
address it in the present paper.

Experiment 1. We start with the example of the Laplace–Beltrami problem (2.1) on
a unit circle in R2 with a known solution so that we are able to calculate the error
between the continuous and discrete solutions. We set α = 1 and consider

u(r, φ) = cos(5φ)

in polar coordinates, similar to the Example 5.1 from [8].
We perform a regular uniform triangulation of Ω = (−2, 2)2 and h here denotes

an maximal edge length of triangles. Thus the grid is not aligned with ∂Ωd. We use
piecewise affine continuous finite elements, r = 1, and Ωh is a polygonal approximation
of Ωd as described in [4], q = 1. Convergence results in H1(Γ) and L2(Γ) norms are
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shown in Tables 6.1 and 6.2 for the choices φhHh = φH and Hh = 0, respectively.
Error reduction inH1(Γ) perfectly confirms theoretical analysis. The optimal order L2

error estimate was not covered by the theory. In experiments, we observe a somewhat
less regular behaviour of L2(Γ) error for the band width d = h. It becomes more
regular if the bandwidth slightly growth, and for d = 5h we already see the optimal
second order of convergence. Results for Hh = 0 are very much similar to the ’exact’
choice φhHh = φH. We note that this would not be the case if the band width d
is chosen to be h independent. In this case, setting Hh = 0 leads to suboptimal
convergence rates.

Table 6.1
Error norms and estimated convergence orders in Experiment 1 with φhHh = φH.

d = h d = 5h

h L2(Γ) H1
0 (Γ) L2(Γ) H1

0 (Γ)

1.00E-1 1.53E-1 3.99E-3 1.69E-1 4.03E-3
5.00E-2 3.91E-2 1.97 1.98E-3 1.01 4.14E-2 2.03 2.00E-3 1.01
2.50E-2 1.04E-2 1.91 1.01E-3 0.97 1.04E-2 1.99 1.02E-3 0.97
1.25E-2 2.89E-3 1.85 5.07E-4 0.99 2.59E-3 2.01 5.10E-4 1.00
6.25E-3 6.89E-4 2.07 2.53E-4 1.00 6.44E-4 2.01 2.54E-4 1.01
3.13E-3 2.02E-4 1.77 1.26E-4 1.01 1.66E-4 1.96 1.27E-4 1.00
1.56E-3 8.54E-5 1.24 6.32E-5 1.00 4.08E-5 2.02 6.36E-5 1.00
7.81E-4 1.69E-5 2.34 3.16E-5 1.00 9.99E-6 2.03 3.18E-5 1.00
3.91E-4 7.04E-6 1.26 1.58E-5 1.00 2.65E-6 1.91 1.59E-5 1.00
1.95E-4 2.72E-6 1.37 7.89E-6 1.00 6.22E-7 2.09 7.94E-6 1.00
9.77E-5 1.35E-6 1.01 3.94E-6 1.00 1.83E-7 1.77 3.96E-6 1.00
4.88E-5 3.39E-7 1.99 1.96E-6 1.01 3.21E-8 2.51 1.97E-6 1.01

Table 6.2
Error norms and estimated convergence orders in Experiment 1 with φhHh = 0.

d = h d = 5h

h L2(Γ) H1
0 (Γ) L2(Γ) H1

0 (Γ)

1.00E-01 3.98E-3 1.55E-1 1.45E-1 3.89E-3
5.00E-02 1.98E-3 1.96 3.98E-2 1.01 4.50E-2 1.69 1.95E-3 1.00
2.50E-02 1.01E-3 1.91 1.06E-2 0.97 1.27E-2 1.83 1.01E-3 0.95
1.25E-02 5.07E-4 1.85 2.94E-3 1.00 3.30E-3 1.94 5.09E-4 0.99
6.25E-03 2.53E-4 2.06 7.04E-4 1.00 8.30E-4 1.99 2.54E-4 1.00
3.13E-03 1.26E-4 1.77 2.06E-4 1.00 2.13E-4 1.96 1.27E-4 1.00
1.56E-03 6.32E-5 1.26 8.59E-5 1.00 5.26E-5 2.02 6.36E-5 1.00
7.81E-04 3.16E-5 2.33 1.71E-5 1.00 1.29E-5 2.03 3.18E-5 1.00
3.91E-04 1.58E-5 1.27 7.07E-6 1.00 3.33E-6 1.95 1.59E-5 1.00
1.95E-04 7.89E-6 1.38 2.72E-6 1.00 8.06E-7 2.05 7.94E-6 1.00
9.77E-05 3.94E-6 1.02 1.35E-6 1.00 2.26E-7 1.83 3.96E-6 1.00
4.88E-05 1.96E-6 2.00 3.38E-7 1.01 4.59E-8 2.30 1.97E-6 1.01

Experiment 2. The second experiment is still for a 2D problem, but now we test the
method for a PDE posed on a surface with boundary. This case was not covered by
the theory in this paper. Let Γ be a part of the curve y =

√
x for s ∈ (0, 2), where s

is the arc length of Γ from the origin. We are looking for the solution to the problem

−∆Γu+ u = f on Γ, u′(0) = u′(2) = 0
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The right hand side f(s) is taken such that the exact solution is u(s) = cos(4πs).
In this experiment, φh was used to define the narrow band Ωh in (4.3). The

approximate signed distance function was computed using the Matlab implementation
of the closest point method from [23], which also gives the approximate projection
p needed to find the extension fe on Ωh. The extended problem uses approximate
Hessian matrix recover from the distance function.

The unfitted finite element scheme is slightly modified to allow for Neumann con-
ditions on both part of the boundary {(x, y) : ‖φ(x, y)‖ = kh} and {(x, y) : s =
0 or s = 2}, and to handle the end points of Γ, as shown in Figure 6.1(a). H1(Γ) and
L2(Γ) error norms for this experiment are shown in Table 6.3. The optimal conver-
gence order is clearly seen in the energy norm. In the L2(Γ) norm the convergence
pattern is slightly less regular, but close to the optimal order as well. Same conclusions
hold if we set Hh = 0 in Ωh.

Table 6.3
Error norms and estimated convergence orders in Experiment 2 with d = 3h.

φhHh ≈ φH Hh = 0

h L2(Γ) H1(Γ) L2(Γ) H1(Γ)

1.00E-1 8.54E-4 2.70E-2 8.95E-4 2.66E-2
5.00E-2 2.22E-4 1.95 1.18E-2 1.19 2.10E-4 2.09 1.16E-2 1.20
2.50E-2 7.13E-5 1.64 5.69E-3 1.06 9.73E-5 1.11 5.42E-3 1.10
1.25E-2 1.64E-5 2.12 2.82E-3 1.01 2.01E-5 2.28 2.66E-3 1.03
6.25E-3 3.67E-6 2.16 1.41E-3 1.00 4.60E-6 2.13 1.33E-3 1.00
3.13E-3 1.04E-6 1.82 7.01E-4 1.01 1.69E-6 1.44 6.63E-4 1.00
1.56E-3 8.14E-7 0.35 3.48E-4 1.01 1.55E-6 0.13 3.28E-4 1.02
7.81E-4 1.36E-7 2.58 1.72E-4 1.02 2.80E-7 2.47 1.62E-4 1.02
3.91E-4 1.53E-8 3.15 8.38E-5 1.04 3.67E-8 2.93 7.88E-5 1.04

Fig. 6.1. Left: Unfitted narrow-band mesh for a surface with boundary in Experiment 2 ; Right:
Cutaway of a narrow band domain and numerical solution (full active tetrahedra from Fd are shown,
while integration is performed over cut tetrahedra, i.e. over Ωh).

Experiment 3. As the next test problem, we consider the Laplace–Beltrami equation
(2.1) on the unit sphere, Γ = {x ∈ R3 | ‖x‖2 = 1}. The source term f is taken such
that the solution is given by

u(x) =
12

‖x‖3
(
3x2

1x2 − x3
2

)
, x = (x1, x2, x3) ∈ Ω.
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Note that u and f are constant along normals at Γ.

We perform a regular uniform tetrahedra subdivision of Ω = (−2, 2)3 . Thus
the grid is not aligned with ∂Ωd. We further refine only those elements which have
non-empty intersection with Ωd. As before, we use piecewise affine continuous finite
elements. Optimal convergence rates in H1(Γ) and L2(Γ) norms are observed with
the narrow band width d = h both with the exact choice of Hh = H and Hh = 0, see
Table 6.4. The cutaway of Ωh and computed solution with d = h are illustrated in
Figure 6.1.

Table 6.4
Error norms and estimated convergence orders in Experiment 3 with d = h.

φhHh = φH Hh = 0

h L2(Γ) H1(Γ) L2(Γ) H1(Γ)

2.00E-1 4.28E-1 3.34E+0 4.51E-1 3.68E+0
1.00E-1 1.14E-1 1.91 1.02E+0 1.71 1.24E-1 1.86 1.04E+0 1.82
5.00E-2 3.23E-2 1.82 4.38E-1 1.22 3.49E-2 1.83 4.42E-1 1.23
2.50E-2 8.35E-3 1.95 2.08E-1 1.07 9.05E-3 1.95 2.09E-1 1.08

Experiment 4. We repeat the previous experiment, but now for the equation posed
on a torus instead of the unit sphere. Let Γ = {x ∈ Ω | r2 = x2

3 + (
√
x2

1 + x2
2 −R)2}.

We take R = 1 and r = 0.6. In the coordinate system (ρ, φ, θ), with

x = R




cosφ
sinφ

0


+ ρ




cosφ cos θ
sinφ cos θ

sin θ


 ,

the ρ-direction is normal to Γ, ∂x
∂ρ ⊥ Γ for x ∈ Γ. The following solution u and the

corresponding right-hand side f are constant in the normal direction:

u(x) = sin(3φ) cos(3θ + φ),

f(x) = r−2(9 sin(3φ) cos(3θ + φ))

+ (R+ r cos(θ))−2(10 sin(3φ) cos(3θ + φ) + 6 cos(3φ) sin(3θ + φ))

− (r(R+ r cos(θ)))−1(3 sin(θ) sin(3φ) sin(3θ + φ)) + u(x).

(6.1)

Near optimal convergence rates in H1(Γ) and L2(Γ) norms are observed with the
narrow band width d = h, both with the exact choice of Hh = H and Hh = 0. The
surface norms of approximation errors for the example of torus are given in Table 6.5.
The solution is visualized in Figure 6.

Table 6.5
Error norms and estimated convergence orders in Experiment 4 with d = h.

φhHh = φH Hh = 0

h L2(Γ) H1(Γ) L2(Γ) H1(Γ)

1.00E-1 7.64E-2 4.29 7.16E-2 3.03
5.00E-2 2.04E-2 1.90 1.60 1.42 1.93E-2 1.89 1.35 1.17
2.50E-2 5.28E-3 1.95 0.66 1.27 4.95E-3 1.96 0.63 1.10
1.25E-2 1.26E-3 2.07 0.30 1.16 1.31E-3 1.91 0.30 1.05
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Fig. 6.2. Cutaway of a narrow band domain and numerical solution for experiment 4 (full
active tetrahedra are shown, while integration is performed over cut tetrahedra).

7. Conclusions. We studied a formulation and a finite element method for el-
liptic partial differential equation posed on hypersurfaces in RN , N = 2, 3. The
formulation uses an extension of the equation off the surface to a volume domain
containing the surface. The extension introduced in the paper results in uniformly
elliptic problems in the volume domain. This enables a straightforward application
of standard discretization techniques, including higher order finite element methods.
The method can be applied in a narrow band (although this is not a necessary require-
ment) and can be used with meshes not fitted to surface or computational domain
boundary. Numerical analysis reveals the sufficient conditions for the method to have
optimal convergence order in the energy norm. For P1 finite elements and h-narrow
band, the optimal convergence is achieved for a particular simple formulation. For
higher order elements, as efficient implementation of the method is a subject of current
research.
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