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NUMERICAL SIMULATION OF SURFACE ACOUSTIC WAVE
ACTUATED ENANTIOMER SEPARATION BY THE FINITE

ELEMENT IMMERSED BOUNDARY METHOD

K. BELEKE-MAXWELL∗, T. FRANKE† , R.H.W. HOPPE‡ , AND C. LINSENMANN§

Abstract. Enantiomers are chiral objects such as chemical molecules that can be distinguished
by their handedness. They typically occur as racemic compounds of left- and right-handed species
which may have completely different properties. Therefore, in applications such as drug design in
pharmacology, enantiomer separation is an important issue. Here, we present a new technology for
enantiomer separation by surface acoustic wave generated vorticity patterns consisting of pairwise
counter-rotating vortices in a carrier fluid. The enantiomers are injected onto the surface of the
fluid between two counter-rotating vortices such that right-handed (left-handed) enantiomers get
attracted by left-rotating (right-rotating) vortices. In particular, we are concerned with the numerical
simulation of this separation process by an application of the finite element immersed boundary
method which relies on the solution of a coupled system consisting of the incompressible Navier-
Stokes equations and the equations of motion of the immersed enantiomers described with respect
to an Eulerian and a Lagrangian coordinate system. For a model system of deformable, initially
L-shaped enantiomers the results of the numerical simulations reveal a perfect separation.

Key words. enantiomer separation, surface acoustic waves, finite element immersed boundary
method
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1. Introduction. A geometric object is said to be chiral, if it is not identical
to its mirror image, and achiral, otherwise. A chiral object and its mirror image are
called enantiomers (or optical isomers). Since the word chiral stems from the Greek
’χειρ’ which means ’hand’, one distinguishes enantiomers by their handedness (right-
resp. left-handedness, or R- resp. L-form, or (+)- resp. (−)-form).
In chemistry, chirality refers to a molecule that is not superposable on its mirror image
(cf. Figure 1.1). Compounds consisting of molecules of the same handedness are called
single-enantiomeric, enantiopure, or unichiral, whereas compounds consisting of the
same amount of R- and L-form enantiomers are referred to as racemic. The discovery
of molecular chirality goes back to the nineteenth century when in 1815 the French
physicist J.-B. Biot [3] studied organic compounds and found that some of them ro-
tate polarized light in the noncrystalline state, i.e., in the liquid or solvent state. Biot
was aware that the optical rotation is due to structural properties of the molecules,
and he referred to them as ’substances moléculairement actives’. Three decades later,
in 1848 the French chemist and microbiologist Louis Pasteur [27] (see also [15]) dis-
covered hemihedrism in crystals of dextro-tartaric acid ((+)-tartaric acid), i.e., the
existence of small facets at alternate corners of the crystals that make the crystals dis-
symmetric (i.e., chiral). Pasteur [28] also examined racemic acid, earlier discovered by
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Fig. 1.1. Left- and right-handed enantiomer

Gay-Lussac in 1826 which does not rotate polarized light and is chemically inactive,
and found that there are two different crystals with hemihedral facets inclined to the
right and to the left. Pasteur managed to separate the two kind of crystals ((+)- and
(−)-tartaric acid) and found that in solvent state they rotate polarized light with
the rotations being equal in magnitude but opposite in direction. In 1858, Pasteur
also discovered enantiomer selectivity when he studied solutions of racemic acid en-
riched by microorganisms and found that the (+)-enantiomers were more rapidly
metabolized than the (−)-enantiomers concluding that this process must be due to a
selective interaction of enantiomers with key chiral molecules within the microorgan-
isms. Roughly twenty years after Pasteur’s fundamental work, the Dutch and French
chemists J.H. van ’t Hoff [17] and J.A. LeBel [24] independently discovered the tetra-
hedral carbon atom as a basis for molecular chirality and thus paved the way for the
elucidation of the structures of organic compounds.
During the first half of the last century, several attempts have been made to derive
appropriate models for chiral molecules based on electronic theories explaining their
optical activity. Among them are Born’s theory of coupled oscillators [6] and the
quantum mechanical one-electron theory due to Condon et al. [10] which - opposed
to Born’s assumption - proves that a single electron can be optically active under
the influence of a chiral potential. However, the quantum mechanical description
of chirality leads to a contradiction which already has been stated ten years before
Condon’s contribution by Hund [19] known as Hund’s paradox: stable ground energy
states of chiral molecules with respect to a two-well potential are achiral, whereas
the L- and R-states formed by eigenstates associated with the two local minima are
not stationary and can tunnel through the potential barrier such that an enantiomer
should permanently switch between its L- and R-form. Obviously, there must be
an additional coupling effect which destabilizes the achiral ground state of quantum
mechanics and stabilizes the L- and R-form once the molecule has been synthesized
accordingly. A possible effect is provided by electro-weak quantum chemistry: thirty
years ago, computations revealed that there is an energy difference between L- and
R-form enantiomers in achiral media (’parity violation’ resp. ’de lege symmetry break-
ing’) which dominates the tunneling effect. This result is of significant relevance for
the understanding of molecular chirality: only in case of parity violation the R- and
L-form of enantiomers can be observed in an absolute sense (cf., e.g., [32]). The
current status of spectroscopic experiments, confirming molecular parity violation, is
reviewed in [33].
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Nowadays, enantiomer separation and enantiomer selectivity play a significant role
in agrochemical, electronic, and pharmaceutical as well as food, flavor and fragrance
industries (cf., e.g., [2, 8, 9, 13, 23, 29]). The relevance of chirality in drug design
became apparent on occasion of the so-called ’Contergan scandal’ or ’thalidomide dis-
aster’ in the sixties of the last century when worldwide thousands of children were
born with extremely severe deformities after their mothers had taken this sleeping
drug in early pregnancy. Unfortunately, it was discovered too late that L-thalidomide
molecules cause malformations of the fetus, since they block the action of a chiral
enzyme regulating the synthesis of cartilage in the second month of the pregnancy.
The qualitative and quantitative analysis of chiral molecules relies on high-throughput
screening by fluorescence spectroscopy and mass spectroscopy with achiral reporter
molecules or antibodies and enzymes [7]. Since the chemical synthesis of enantiomers
usually gives rise to racemic compounds, chiral separation is of utmost importance.
Current approaches are based on direct gas chromatography [7] or HPLC (High
Pressure Liquid Chromatography) [39], capillary electrophoresis [34], or NMR (Nu-
clear Magnetic Resonance) anisotropy methods [40]. They suffer from the drawbacks
that they are slow and only yield endpoint results, i.e., they do not provide any infor-
mation about the dynamics of the separation process. Moreover, they mostly require
costly chiral media. Consequently, in order to guarantee a higher cost-effectiveness as
well as a significant speed-up and to allow for an in-situ investigation of the enantiomer
separation at a high time-resolution, there is the need for alternative techniques. Such
techniques have been provided by chiral separation in microfluidic devices taking ad-
vantage of the fact that enantiomers drift in microflows with a direction depending
on their chirality (cf., e.g., [7, 21, 22, 25, 26, 35]).

Fig. 1.2. Left: Vorticity pattern at the surface of the fluid. The optical path is slightly tilted
to gain a larger field of view. The image is a superposition of micrographs and shows parts of
the four quadrant flows induced by the SAWs. Right: Micrograph showing two of the counter-
rotating vortices. In the flow quadrant diagonally opposing vortices always have the same direction
of rotation.

In this paper, we are concerned with the separation of deformable vesicle-like enan-
tiomers by a specific flow pattern generated by surface acoustic waves (SAWs). The
experimental set-up consists of a fluid-filled container with an immersed SAW mi-
crochip at the ground. The SAW microchip is coated with a piezoelectric material
such as lithium niobate (LiNbO3) and features an Inter-Digital Transducer (IDT)
placed at the center of the bottom of the container with its aperture pointing up-
wards (cf. Figure 1.3 (left)). Applying a high-frequency signal to the IDT, acoustic
waves are generated that enter the fluid in the container and create a steady-state
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flow pattern at the fluid surface consisting of four counter-rotating vortices (cf. Figure
1.2 and Figure 1.3 (right)). Almost flat L-shaped enantiomers with hydrophobic top
and bottom are injected onto the surface of the fluid between two counter-rotating
vortices. It turns out that right-handed (left-handed) enantiomers get trapped by
left-rotating (right-rotating) vortices in the sense that they stably rotate around the
center of the vortex.

water IDT

particle

acoustic streamingsaw jets

sideview
top-view

Fig. 1.3. Left: Schematic sideview of the experimental setup. Right: Topview of the vorticity
pattern created at the fluid surface.

For the numerical simulation of the surface acoustic wave actuated enantiomer
separation we have used the Finite Element Immersed Boundary Method (FE-IB).
The Immersed Boundary Method (IB) is due to Peskin [30] (cf. the survey paper [31]
and the references therein) and has been extended to the FE-IB in [4, 5] (cf. also
[14, 18]). The FE-IB is based on a coupled system consisting of the incompressible
Navier-Stokes equations described in an Eulerian coordinate system and the equation
of motion of the immersed enantiomer described with respect to a Lagrangian coor-
dinate system.
The paper is organized as follows: Section 2 is devoted to a description of the FE-
IB, whereas section 3 deals with its numerical realization. Finally, section 4 contains
the results of numerical simulations illustrating the feasibility of SAW actuated enan-
tiomer separation.

2. The Finite Element Immersed Boundary Method. In this section, we
adopt standard notation from Lebesgue and Sobolev space theory (cf., e.g., [36]). In
particular, for D ⊂ R2 we refer to L2(D) and Hs(D) as the Hilbert space of Lebesgue
integrable functions in D with inner product (·, ·)0,D and associated norm ∥ · ∥0,D and
the Sobolev space of functions with inner product (·, ·)s,D and norm ∥ · ∥s,D. L2

0(D)
is the subspace of functions with zero integral mean. We further refer to H1

0 (D) as
the closure of C∞

0 (D) in H1(D) and to H−1(D) as the dual of H1
0 (D), denoting by

⟨·, ·⟩H−1,H1
0

the dual pairing. For Σ ⊆ ∂D and a function v ∈ Hs(D), we denote by

v|Σ the trace of v on Σ. We write L2(D) and Hs(D) in case of vector-valued functions.

Since the enantiomers float on the surface Ω := (0, L)2, L > 0, of the fluid, we are only
interested in the fluid flow and the motion of the enantiomers in Ω. The fluid flow in
Ω can be modeled by the incompressible Navier-Stokes equations with a source term
f = fq + fg consisting of a quadrupolar force density fq, reflecting the SAW induced
vorticity pattern on Ω, and a global force density fg, reflecting the impact of the
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enantiomers on the flow:

ρf
∂v

∂t
+ ρ(v · ∇)v − η∆v + ∇p = f in Ω × (0, T ), (2.1a)

∇ · v = 0 in Ω × (0, T ), (2.1b)

v = 0 on ∂Ω × [0, T ), (2.1c)

v(·, 0) = v̂ in Ω. (2.1d)

The quadrupolar force density fq and v̂ are given according to

fq := −η∆v̂, v̂ = (v̂1, v̂2)
T , v̂1 = ∂Ψ/∂x1, v̂2 = −∂Ψ/∂x2 (2.2)

in terms of the stream function

Ψ(x1, x2) = v0(f) L
sin(πx1/L) sin(πx2/L)

(2 − cos(πx1/L)) (2 − cos(πx2/L))
, (2.3)

where v0(f) > 0 depends on the frequency f of the IDT. We note that fq provides a
good approximation of the SAW generated vorticity pattern at the surface of the fluid
(cf. Figure 4.2 in section 4). The global force density fg will be specified by means of
the total energy of the immersed boundary in (2.6) below.

Fig. 2.1. Micrograph of a photoresist L-shaped enantiomer (left) and its length scales (right).

In the FE-IB an immersed enantiomer is modeled as a body consisting of an
elastic membrane enclosing a fluid which here is assumed to have the same density
and viscosity as the carrier fluid in the container. In practice, this can be achieved
by density and viscosity matching, i.e., adding chemical additives to the carrier fluid.
The immersed enantiomer is supposed to occupy a subdomain Bt ⊂ Ω, t ∈ [0, T ], with
boundary ∂Bt which is a non-selfintersecting closed curve. We further assume that
the boundary ∂B0 of the initial configuration B0 has length ℓ := |∂B0| and denote
by q ∈ [0, ℓ] the Lagrangian coordinate labeling a material point on ∂B0. Figure 2.1
shows the micrograph of a photoresist right-handed L-shaped enantiomer (left) and
its length scales (right). Here, the perimeter ℓ of the enantiomer is ℓ = 8.78 · 10−4m.
We refer to X(q, t) = (X1(q, t), X2(q, t))

T as the position vector of the point q at
time t ∈ (0, T ] which moves with the velocity v of the fluid such that the equation of
motion takes the form

dX

dt
(q, t) = v(X(q, t), t), q ∈ [0, ℓ], t ∈ [0, T ], (2.4a)

X(q, 0) = X0(q), q ∈ [0, ℓ], (2.4b)
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where X0 stands for the initial position.
The total elastic energy of the immersed boundary ∂Bt of the enantiomer is given by

E(t) := Ee(t) + Eb(t) , t ∈ (0, T ), (2.5)

Ee(t) :=

ℓ∫

0

Ee(X(q, t)) dq, Eb(t) :=

ℓ∫

0

Eb(X(q, t)) dq,

where Ee(t) and Eb(t) are the local energy densities with respect to elongation-
compression and bending. Denoting by fl the local force density according to fl(q, t) =
−E′(X(q, t)), where E′ is the Gâteaux derivative of E, the global force density fg in
(2.1a) is given in variational form by

⟨fg(t),w⟩H−1,H1
0

=

ℓ∫

0

fl(q, t) · w(X(q, t)) dq, w ∈ H1
0(Ω). (2.6)

The FE-IB is based on the variational formulation of (2.1) and (2.4). To this end, we
introduce the function spaces

V(0, T ) := H1((0, T ),H−1(Ω)) ∩ L2((0, T ),H1(Ω)),

W(0, T ) := {v ∈ V(0, T ) | v|∂Ω = v̂},

Q(0, T ) := L2((0, T ), L2
0(Ω)),

Y(0, T ) := H1((0, T ),L2([0, ℓ])) ∩ L2((0, T ),H3
per([0, ℓ])),

where H3
per([0, ℓ]) := {Y ∈ H3((0, ℓ)) | ∂kY(0)/∂qk = ∂kY(ℓ)/∂qk, k = 0, 1, 2}.

The weak formulation of the Navier-Stokes equations (2.1) requires the computation
of (v, p) ∈ W(0, T ) × Q(0, T ) such that for all w ∈ H1

0(Ω) and all q ∈ L2
0(Ω) there

holds

⟨ρ∂v

∂t
,w⟩H−1,H1

0
+ a(v,w) − b(p,w) = ℓ(w), (2.7a)

b(q,v) = 0, (2.7b)

(v(·, 0),w)0,Ω = (v̂,w)0,Ω. (2.7c)

Here, a(·, ·), b(·, ·), and the functional ℓ(·) are given by

a(v,w) := (ρf (v · ∇)v,w)0,Ω + (η∇v, ∇w)0,Ω (2.8a)

b(p,v) := (p, ∇ · v)0,Ω, ℓ(w) := (fq,w)0,Ω + ⟨fg,w⟩H−1,H1
0
. (2.8b)

On the other hand, the weak formulation of (2.4) amounts to the computation of
X ∈ Y(0, T ) such that for all Z ∈ H3

per([0, ℓ]) it holds

(
dX

dt
(·, t),Z)0,(0,ℓ) = (v(X(·, t), t),Z)0,(0,ℓ), t ∈ [0, T ], (2.9a)

(X(·, 0),Z)0,(0,ℓ) = (X0,Z)0,(0,ℓ). (2.9b)

3. The Backward Euler/Forward Euler FE-IB. For the discretization in
space of the incompressible Navier-Stokes equations (2.7) we use Taylor-Hood P2/P1
elements with respect to a quasi-uniform simplicial triangulation Th(Ω) of Ω. For
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K ∈ Th(Ω), we denote by |K| the area of K, by hK the diameter of K, and we set
h := max{hK | K ∈ Th(Ω)}. Further, Pk(K), k ∈ N, refers to the set of polynomials
of degree ≤ k on K. The associated finite element spaces Vh for the velocity and Qh

for the pressure read

Vh :={vh ∈ C(Ω̄)|vh|K ∈ P2(K)2,K ∈ Th(Ω),vh|∂Ω = v̂h},

Qh :={wh ∈ C(Ω̄)|wh|K ∈ P1(K),K ∈ Th(Ω),

∫

Ω

whdx = 0},

where v̂h is the L2-projection of v̂ onto the space of piecewise polynomials of degree 2
on ∂Ω. For the discretization of the boundary of the immersed enantiomer we consider
a partition

T∆q := {0 =: q0 < q1 < · · · < qR := ℓ} , R ∈ N,

of the interval [0, ℓ] into subintervals Ii := [qr−1, qr], 1 ≤ r ≤ R, of length ∆qr :=
qr − qr−1 with ∆q := max{∆qr|1 ≤ r ≤ R}. We approximate X from (2.9) by
periodic cubic splines

Sh := {Zh ∈ C2([0, ℓ]) | Zh|Ir
∈ P3(Ir)

2, 1 ≤ r ≤ R,

Z
(k)
h (q0) = Z

(k)
h (qR), k = 0, 1, 2},

where P3(Ir) stands for the set of polynomials of degree ≤ 3 on Ir. For Zh ∈ Sh, we
set Zr := Zh(qr), 0 ≤ r ≤ R. The discrete immersed enantiomer occupies subdomains
Bh,t ⊂ Γs with boundaries ∂Bh,t that are C2 curves parameterized by the periodic
cubic spline Xh(·, t) ∈ Sh.
We define the discrete elastic energy Ee

h(t) and the discrete bending energy Eb
h(t)

according to

Ee
h(t) =

κe

2

ℓ∫

0

(∣∣∣∂Xh

∂q
(q, t)

∣∣∣
2

− 1
)

dq, (3.1a)

Eb
h(t) =

κb

2

R∑

r=1

qr∫

qr−1

∣∣∣∂
2Xh

∂q2
(q, t)

∣∣∣
2

dq. (3.1b)

Observing that ∂3Xh(q, t)/∂q3 is constant on Ir, the discrete force density takes the
form

⟨fh,g(·, t),wh⟩h = −κe

ℓ∫

0

∂Xh(q, t)

∂q
· ∂

∂q
wh(Xh(q, t)) dq (3.2)

+ κb

R∑

i=1

qi∫

qi−1

∂3Xh(q, t)

∂q3
· ∂

∂q
wh(Xh(q, t))dq =

− κe

ℓ∫

0

∂Xh(q, t)

∂q
· ∇wh(Xh(q, t))

∂Xh(q, t)

∂q
dq

+ κb

R∑

r=1

∂3Xh(q, t)

∂q3

∣∣∣
Ir

·
qr∫

qr−1

∇wh(Xh(q, t))
∂Xh(q, t)

∂q
dq.
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We thus obtain the following approximation of the right-hand side in (2.7a)

ℓh(wh, t) := (fq,wh)0,(0,ℓ) + ⟨fh,g(·, t),wh⟩h. (3.3)

The discretization in time is done with respect to an equidistant partition

T∆t := {0 =: t0 < t1 < · · · < tM := T} , M ∈ N,

of the time interval [0, T ] into subintervals of length ∆t := T/M . We denote by

v
(m)
h an approximation of vh ∈ Vh at t = tm. We further refer to D+

∆tv
(m)
h :=

(v
(m+1)
h − v

(m)
h )/(∆t) and D−

∆tv
(m)
h := (v

(m)
h − v

(m−1)
h )/(∆t) as the forward and

backward difference operator. We set

W
(m)
h := {w(m)

h ∈ C(Γ̄s) | w
(m)
h ∈ Vh, w

(m)
h |∂Γs = v̂h},

Q
(m)
h := {w

(m)
h ∈ C(Γ̄s) | w

(m)
h |K ∈ Qh,

∫

Γs

w
(m)
h dx = 0}.

The Backward Euler/Forward Euler FE-IB reads as follows: Given v
(0)
h = v̂h and

X
(0)
h ∈ Sh, for m = 0, . . . , M − 1 we perform the following two steps:

Step 1: Compute (v
(m+1)
h , p

(m+1)
h ) ∈ W

(m+1)
h × Q

(m+1)
h such that for all wh ∈

Vh,0 := {wh ∈ Vh | wh|∂Γs
= 0} it holds

(ρfD
+
∆tv

(m)
h ,wh)0,Γs + a(v

(m+1)
h ,wh) − b(p

(m+1)
h ,wh) = ℓ

(m)
h (wh), (3.4a)

b(wh,v
(m+1)
h ) = 0, (3.4b)

where ℓ
(m)
h (wh) := ℓh(wh, tm) is given by (3.3).

Step 2: Compute X
(m+1)
h ∈ Sh such that for all Zh ∈ Sh it holds

(D+
∆tX

(m)
r ,Zh)0,(0,ℓ) = (v

(m+1)
h (X(m)

r ),Zh)0,(0,ℓ), 1 ≤ r ≤ R. (3.5)

As has been shown in [14, 18], the Backward Euler/Forward Euler FE-IB is not
unconditionally stable, but has to satisfy the CFL-type stability condition

∆t

h
≤ η

4C(κeL1 + κbL2)
, (3.6)

where C > 0 is a constant depending on the size and shape of the immersed enantiomer
and L1, L2 are given by

L1 := max
0≤m≤M

max
q∈[0,ℓ]

|∂X
(m)
h

∂q
|, L2. = max

0≤m≤M
max

1≤r≤R
|∂

3X
(m)
h

∂q3
|Ir

|.

A widely used spring-model [37, 38] for the immersed body can be easily derived
from the discrete model introduced above. We approximate the boundary ∂Bh,t of an
immersed enantiomer by a closed polygon with vertices Xi(t) = Xh(qi, t), 0 ≤ i < R,
and denote by D±

∆qXi(t) the forward and backward difference quotient as given by

D+
∆qXi(t) :=

Xi+1(t) − Xi(t)

∆qi+1
, D−

∆qXi(t) :=
Xi(t) − Xi−1(t)

∆qi
. (3.7)
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αi

Xi−1

Xi

Xi+1

∆q

Fig. 3.1. A spring model for the immersed enantiomer

We assume that the vertices are connected by elastic springs (cf. Figure 3.1)
with spring constants κe > 0. Replacing ∂Xh/∂q in (3.1a) with its approximation
D+

∆qXi by the forward difference quotient and the integral in (3.1a) by the simplest
quadrature rule, we obtain the following discrete model for the dilation elastic energy:

Ee
h(t) =

κe

2

R−1∑

i=0

(
|D+

∆qXi(t)| − 1
)2

∆qi+1. (3.8)

Likewise, replacing the second derivative ∂2Xh/∂q2 in (3.1b) with its approximation
D2

∆qXi by the central difference quotient D2
∆qXi := D+

∆qD
−
∆qXi and the integral in

(3.1b) by the trapezoidal rule, for the bending energy we get:

Eb
h(t) =

κb

2

R∑

i=1

|D2
∆qXi(t)|2∆qi, (3.9)

where XR+i := Xi, 1 ≤ i ≤ 2, and X−1 := XR−1. In case ∆qi = ∆q, 1 ≤ i ≤ R, a
simple calculation reveals

|D2
∆qXi(t)|2 = (∆q)−4 |(Xi+1 − Xi)(t)||(Xi − Xi−1)(t)|·

( |(Xi+1 − Xi)(t)|
|(Xi − Xi−1)(t)|

+
|(Xi − Xi−1)(t)|
|(Xi+1 − Xi)(t)|

− 2cos(αi(t))
)
,

where αi(t) is the angle formed by the vectors (Xi+1 −Xi)(t) and (Xi −Xi−1)(t) (cf.
Figure 3.1), i.e.,

cos(αi(t)) =
(Xi+1 − Xi)(t) · (Xi − Xi−1)(t)

|(Xi+1 − Xi)(t)||(Xi − Xi−1)(t)|
.

Assuming |(Xi+1−Xi)(t)| ≈ |(Xi−Xi−1)(t)| and using sin2(αi(t)/2) = (1−cos(αi(t))/2),
it follows that

|D2
∆qXi(t)|2 ≈

4(∆q)−4|(Xi+1 − Xi)(t)||(Xi − Xi−1)(t)| sin2(αi(t)/2).
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Hence, introducing local bending rigidities

κ
(i)
b := κb

|(Xi+1 − Xi)(t)|
∆q

|(Xi − Xi−1)(t)|
∆q

cos2(αi(t)/2),

we obtain

Eb
h(t) =

1

2

R∑

i=1

κ
(i)
b

( tan(αi(t)/2)

2∆q

)2

∆q. (3.10)

Since the immersed L-shaped enantiomers are only slightly deformable and feature a
different bending behavior at the corner points, the discrete bending energy has to be
modified such that the deviation from prescribed angles αd

i , 1 ≤ i ≤ R, is minimized.
We use

Eb
h(t) =

1

2

R∑

i=1

κ
(i)
b

( tan((αi(t) − αd
i )/2)

2∆q

)2

∆q, (3.11)

where the angles αd
i and the local bending rigidities κ

(i)
b are given by

αd
i :=

{
π/2 at corner points

0 otherwise
, (3.12)

κ
(i)
b := κb κi

|(Xi+1 − Xi)(t)|
∆q

|(Xi − Xi−1)(t)|
∆q

cos2((αi(t) − αd
i )/2),

κi :=

{
2.7 for corner points

1 otherwise
, 1 ≤ i ≤ R.

4. Numerical results. We present the results of numerical simulations of the
separation of photoresist L-shaped enantiomers by SAW generated vorticity patterns
consisting of four pairwise counter-rotating vortices at the surface of the fluid.

The production of the photoresist L-shaped enantiomers is shown in Figure 4.1. A
sacrificial layer of omnicoat is spincoated on a silicon wafer followed by a second spin
coating process where SU8-2 photoresist laden with 0.5mg/ml Nile Red is spun onto
the omnicoat layer at 3000 rounds per second achieving a film thickness of about 1.5
µm. After soft baking, the photoresist is exposed using a mask aligner and then baked
a second time. Then the substrate is cooled to room temperature and the unexposed
photoresist is developed using MR-DEV300 leaving the desired particles attached to
the sacrificial layer of omnicoat. In order to render the particles hydrophobic on one
side, a layer of Trichloro(octadecyl)silane (OTS) is applied by spin coating. To this
end 10µl OTS are dissolved in 3ml n-hexane and spun onto the particles at 1000 rpm
for 10 seconds. The layer of OTS renders the particles highly hydrophobic on the
top side. After these steps the particles are still firmly attached to the substrate. To
remove the particles from the wafer a lift-off procedure is performed using omnicoat
developer. The wafer is immersed in the solution until the omnicoat layer has been
sufficiently dissolved. The wafer is then transferred to the experimental setup and
the detached particles can be washed off using pure water. Due to the top side of the
particles being considerably more hydrophobic than the bottom side the orientation
of the particles is conserved during the lift off process and the particles float stably
on the surface of the fluid.
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Fig. 4.1. Schematic representation of the fabrication of photoresist particles (left) and mi-
croparticles of different shapes still attached to the silicon wafer. The scalebar represents 300µm
(right).

The material data and the numerical data have been chosen as follows:
The fluid with density ρf = 1.1 · 103 kg/m3 and the viscosity η = 1.01 · 10−6 m2/s
occupied a domain D = (0, L)2 × (0,H) with L = 4.0 · 10−2 m and H = 5.0 · 10−3

m. The material moduli of the enantiomers were given by κe = 3.0.10−2 N/m and
κb = 2.5.10−17 Nm, and we used a spring model (cf. (3.11) with αd

i , κi, 1 ≤ i ≤ R, as
in (3.12).
The operating frequency f of the IDT was chosen according to f = 1.42 · 102 MHz.
The associated parameter v0(f) in (2.3) has been calibrated on the basis of an exper-
imentally measured flow field. It turned out that v0(f) = 2.0 · 10−3m/s provided a
good approximation of the resulting velocity pattern at the surface of the fluid (cf.
Figure 4.2).

Fig. 4.2. Experimentally measured flow field and trajectories (left) and numerically computed
flow field and trajectories (right) in the upper right quadrant of the fluid surface (for square shaped
and L-shaped photoresist particles).

For the numerical solution of the coupled system (2.7),(2.9) by the Backward Eu-
ler/Forward Euler FE-IB we have used different uniform simplicial triangulations of
the surface of the fluid by right isosceles with h ∈ {L/20, L/30, L/40} and different
uniform partitions of [0, ℓ] with ∆q ∈ {1/100, 1/200, 1/400}. We have further used a
uniform partition of the time interval with time step size ∆t = 1/2000 satisfying the
CFL-condition (3.6). All computations have been performed under Linux featuring
Intel(R)Core(TM) i3-2100 CPU 3.10 GHz and 7.7 GB RAM.

Simulation Results: Since the different meshes for Ω and partitions of [0, ℓ] pro-
duced essentially identical trajectories of the enantiomers, the following simulation
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results, displayed in Figures 4.3-4.5, are those obtained for h = L/40, ∆q = 1/200,
and ∆t = 1/2000.
Five left-handed L-shaped enantiomers have been injected onto the surface of the fluid
approximately in the middle between two counter-rotating vortices. The motion of
the enantiomers is such that they get attracted by the right-rotating fluid vortex. Af-
ter the completion of the first cycle around the center of the vortex, new cycles begin
with pathes of the enantiomers similar to the first one (cf. Figure 4.3). Figure 4.4
displays the pathes of five right-handed L-shaped enantiomers which get attracted by
the left-rotating vortex. A more realistic scenario is displayed in Figure 4.5 with two
right-handed and two left-handed L-shaped enantiomers initially placed in the middle
between the lower two counter-rotating vortices. The upper left-handed enantiomer
and the upper right-handed enantiomer get attracted by the upper left right-rotating
and the upper right left-rotating vortex, whereas the lower right-handed enantiomer
and the lower left-handed enantiomer circle around the lower left left-rotating and the
lower right right-rotating vortex, respectively. We emphasize that also in this case we
achieve a perfect separation in the sense that left-handed/right-handed enantiomers
get attracted by right-rotating/left-rotating vortices.
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Fig. 4.3. Velocity field and motion of five left-handed L-shaped enantiomers initially placed in
the middle between two counter-rotating vortices
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