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This computational study shows, for the first time, a clear transition to Hopf bifurcation
for laminar incompressible flows in symmetric plane contraction-expansion channels. Due
to the well-known extreme sensitivity of this study on computational mesh, the critical
Reynolds numbers for both the known symmetry-breaking (pitchfork) bifurcation and
Hopf bifurcation were investigated for several layers of mesh refinement. It is found that
under-refined meshes lead to an overestimation of the critical Reynolds number for the
symmetry-breaking and an underestimation of the critical Reynolds number for the Hopf
bifurcation.
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1. Introduction

The dynamics of an incompressible, Newtonian, and viscous fluid in a planar contraction-
expansion channel has long been of interest from both theoretical and practical perspec-
tives (see, e.g., Moffatt (1964); Durst et al. (1974); Cherdron et al. (1978); Drikakis
(1978); Sobey & Drazin (1986); Fearn et al. (1990); Hawa & Rusak (2001); Mishra &
Jayaraman (2002)). The simplicity of the geometry, which may be partially characterized
by the expansion ratio λ = W/w (see Fig. 1(a)), and the fact that it yields a complex flow
have made it a popular choice for use in testing computational models. See, e.g., Fearn
et al. (1990); Drikakis (1978); Hawa & Rusak (2001); Mishra & Jayaraman (2002) and
references therein. Practical applications include equipments such as heat exchangers,
combustion chambers, and mixing vessel.

In the two-dimensional geometry reported in Fig.1(a), as the Reynolds number Re
(see (2.3) for the definition) increases from zero, the sequence of events is as follows. For
sufficiently small value of Re (e.g., 0.01) a steady symmetric flow is observed. Moffatt
eddies form (see Moffatt (1964)) close to the corners both upstream of the contraction
and downstream of the expansion. See Fig. 2(a). The uniqueness of this solution is proved
in Serrin (1959). As the inertial effects of fluid become more important, the Moffatt ed-
dies upstream of the contraction gradually diminish in size and two recirculation regions
of equal size develop downstream of the expansion (see, e.g., the experimental studies
in Durst et al. (1974); Cherdron et al. (1978)). See Fig. 2(b). As the Reynolds number
increases, flow symmetry about the central line is initially maintained and the down-
stream recirculation length increases progessivey (see Durst et al. (1974); Cherdron et al.
(1978)). Above a certain critical Reynolds number denoted by Resb, a steady asymmetric
solution is observed: the downstream recirculation zone expands while the other shrinks



2 A. Quaini, R. Glowinski and S. Čanić

(see Drikakis (1978); Revuelta (2005)). See Fig. 2(c). This asymmetric solution remains
stable for a certain range of Re and asymmetries become stronger with the increasing
Reynolds number, as shown in Mishra & Jayaraman (2002). The formation of stable
asymmetric vortices in 2D planar expansion is attributed to the Coanda effect (see Wille
& Fernholz (1965)): an increase in velocity near one wall will lead to a decrease in pres-
sure near that wall and once a pressure difference is established across the channel it will
maintain the asymmetry of the flow. The value of Resb has been identified for different
expansion ratios λ. In particular, it was found that Resb decreases with increasing value
of λ (see Drikakis (1978); Revuelta (2005)).

The numerical computations of Sobey & Drazin (1986), and Fearn et al. (1990), to-
gether with the linear stability analysis of Shapira et al. (1990) indicate that the symme-
try breaking occurs as a result of a supercritical pitchfork bifurcation in the solution of
the Navier-Stokes equations, i.e., above Resb two stable solutions co-exist (see Battaglia
et al. (1997)). In Sobey & Drazin (1986) it was shown that an unstable solution also
exists. Bifurcation theory allows to clarify the nature of the multiplicity of possible flows,
whereas a (numerical or laboratory) experiment will give one or the other of the stable
symmetric solutions. Hawa & Rusak (2001) explain the loss of symmetric stability as
a result of the interaction between the effects of viscous dissipation, the downstream
convection of perturbations by the base symmetric flow, and the upstream convection
induced by 2D asymmetric disturbances.

At larger Reynolds numbers the flow becomes increasingly complex and other bifurca-
tions occur. See Fig. 2(d). In Sobey & Drazin (1986) it was found that as Re is increased
there is a turning point (a transition from a stable to an unstable steady flow, when a
simple real eigenvalue of a mode increases through zero as Re reaches a certain value)
and then four stable asymmetric steady solutions appear. At a further increase of Re, the
flow becomes unsteady and the existence of a Hopf bifurcation is deduced (see Sobey &
Drazin (1986)), although, to the best of our knowledge, the bifurcation point has never
been calculated for a given value of λ. In this work, we aim at showing that a Hopf
bifurcation does occur in the expansion channel: at a certain Reynolds number, that we
denote by ReH , the asymmetric solution loses its stability and a one-parameter family
of periodic solutions bifurcates from the steady solution. A Hopf bifurcation is encoun-
tered when a pair of complex conjugate eigenvalues of the linearization around the steady
solution crosses the imaginary axis of the complex plane as Re increases.

In order to identify the value of ReH for a given expansion ratio, the linear hydro-
dynamic stability of a steady solution needs to be studied. When the fluid domain is
characterized by two or three dimensions with nonperiodic boundary conditions (as in
our case), the formulation of the stability problem requires solving a partial differential
eigenvalue problem. In the particular case of 2D incompressible flows, the analysis of
the linear stability involves the solution of a biharmonic eigenvalue problem in 2D (see,
e.g., Bayly et al. (1988)). Another possibility is to write the eigenvalue problem for the
coupled system of equations for velocity and pressure, as in Fortin et al. (1997). An
alternative to the eigenvalue problem approach is the direct simulation of the flow to
characterize the asymptotic behavior (steady, periodic, quasiperiodic or chaotic) of the
solution depending on the value of the relevant parameter, i.e. the Reynolds number.
The direct simulation can be rather expansive in terms of computational time, since long
simulations are often required, but it has the advantage of making the flow beyond the
first Hopf bifurcation accessible.

The objectives of this work are: (i) to validate the critical Reynolds number of the
symmetry breaking bifurcation Resb in a plane contraction-expansion channel against
the results in Oliveira et al. (2008) (expansion ratio λ = 15.4) and Drikakis (1978)
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(λ = 6), (ii) to investigate, through direct simulation, the critical Reynolds number of
the Hopf bifurcation ReH in the channel with λ = 6, and (iii) to check the effect of mesh
refinement on the value of both Resb and ReH .

The outline of the paper is as follows. In Section 2 we state the problem, discuss the
numerical methods used for the time and space discretization and describe the solution
of the associated linear system. In Section 3, we report on the results of the validation
against Oliveira et al. (2008) and Drikakis (1978). In Section 4, we discuss the identifi-
cation of ReH for expansion ratio λ = 6. Finally, conclusions are in Section 5.

2. Numerical modeling

The motion of an incompressible viscous fluid in a spatial domain of dimension d
(denoted hereafter by Ω) over a time interval of interest (0, T ) is described by the incom-
pressible Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
−∇·σ = 0 in Ω× (0, T ), (2.1)

∇ · u = 0 in Ω× (0, T ), (2.2)

where ρ is the fluid density, u is the fluid velocity, and σ the Cauchy stress tensor. For
Newtonian fluids, σ has the following expression

σ(u, p) = −pI + 2µε(u),

where p is the pressure, µ is the fluid dynamic viscosity, and

ε(u) =
1

2
(∇u+ (∇u)T )

is the strain rate tensor. In eq. (2.1)-(2.2), it is supposed that no body force is applied
to the system.

Equations (2.1)-(2.2) need to be supplemented with initial and boundary conditions,
which will be specified in Sec. 3 for the each problem under consideration.

The Reynolds number Re can be used to characterize the flow regime. It is defined as:

Re =
ρLU

µ
, (2.3)

where L is a characteristic length and U is a characteristic velocity. The Reynolds number
can be thought of as the ratio of inertial forces to viscous forces. For large Reynolds
numbers inertial forces are dominant over viscous forces and vice versa.

The flow in the 2D geometry reported in Fig. 1(a) can be seen as the limiting case of
a 3D flow in the domain shown in Fig. 1(b) for channel depth H tending to infinity. For
the 3D problem, the characteristic length L is given by the hydraulic diameter of the
contraction channel, i.e. L = 2Hw/(H + w), thus (2.3) becomes:

Re =
ρU

µ

2Hw

H + w
. (2.4)

By letting H →∞ in eq. (2.4), we define the Reynolds number for the 2D problem

Re = 2
ρUw

µ
. (2.5)

We define Re as in (2.5) with the purpose of comparing our results with Oliveira et al.
(2008) (see Sec. 3). As characteristic velocity U in (2.5), we take the average velocity in the
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(a) 2D geometry (b) 3D geometry

Figure 1. (a) The computational domain considered in Oliveira et al. (2008), which is the
limit case of the 3D geometry in (b) for H →∞.

contraction channel. So, if we denote by Umax the maximum velocity in the contraction
channel and assume that the contraction channel is long enough to have a fully developed
parabolic velocity profile, we have U = 2Umax/3.

For the variational formulation of the fluid problem (2.1)-(2.2), we indicate with L2(Ω)
the space of square integrable functions in a spatial domain Ω and with H1(Ω) the space
of functions in L2(Ω) with first derivatives in L2(Ω). We use (·, ·)Ω and 〈·, ·〉Ω to denote
the L2 product and a duality pair in Ω, respectively. Moreover, let us define:

[H1
0 (Ω)]d =

{
v ∈ [H1(Ω)]d, v|ΓD

= 0
}
,

where ΓD is the part of the domain boundary on which a Dirichlet condition is imposed.
The variational formulation of the fluid problem (2.1)-(2.2) is: given t ∈ (0, T ), find

(u, p) ∈ [H1(Ω)]d × L2(Ω) such that

ρ

(
∂u

∂t
,v

)

Ω

+N (u; [u, p], [v, q])Ω = 0, ∀(v, p) ∈ [H1
0 (Ω)]d × L2(Ω), (2.6)

with

N (u; [u, p], [v, q])Ω = 2µ(ε(u), ε(v))Ω + ρ

∫

Ω

(u · ∇u) · vdΩ− (p,∇ · v)Ω + (∇ · u, q)Ω.

(2.7)

2.1. Discretization

For the space discretization, we introduce a conformal and quasi-uniform partition Th of
Ω made up of a certain number of triangles. Let Vh ⊂ [H1(Ω)]d, V0,h ⊂ [H1

0 (Ω)]d, Qh ⊂
L2(Ω) be the finite element spaces approximating [H1(Ωf0 )]d, [H1

0 (Ωf0 )]d, and L2(Ωf0 ),
respectively. In order to be able to use equal order velocity-pressure pairs (like the P1−P1

finite elements used in Sec. 3 and 4), we resort to a stabilized formulation. For more details
concerning the discretization of the Navier-Stokes problem, we refer to, e.g., Quarteroni
& Valli (1994).

The stabilization method that we adopt is the orthogonal subgrid scales (OSS) tech-
nique proposed in Codina (2002): it provides pressure stability and stabilizes the con-
vective term for high Reynolds numbers. Let uh and ph be the space discrete veloc-
ity and pressure. The stabilized version of the problem reads: given t ∈ (0, T ), find
(u, p) ∈ Vh ×Qh

ρ

(
∂uh
∂t

,vh

)

Ω

+Ns(uh; [uh, p], [vh, q])Ω = 0, ∀(vh, p) ∈ V0,h ×Qh,

where N (uh; [uh, p], [vh, qh])Ω in the discretization of (2.6) has been replaced by

Ns (uh; [uh, ph] , [vh, qh])Ω = N (uh; [uh, ph] , [vh, qh])Ω + S (uh; [uh, ph] , [vh, qh])Ω .
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The perturbation term S introduced by OSS (in its quasi-static form) reads

S (ah; [uh, ph] , [vh, qh])Ω =(τ1Π⊥(ah · ∇uh +∇ph),ah · ∇vh +∇qh)Ω

+ (τ2Π⊥(∇ · uh),∇ · vh)Ω. (2.8)

Here, Π⊥(·) is the L2 orthogonal projection onto the finite element space, i. e.: Π⊥(·) =
I(·) − Π(·), where Π(·) is the L2 projection onto the finite element space and I(·) the
identity operator. For the choice of the stabilization parameters τ1 and τ2 and for a
thorough description of this stabilization technique, we refer to Codina (2002).

For the time discretization of equations (2.1)-(2.2) we chose the Backward Differenti-
ation Formula of order 2 (BDF2, see Quarteroni et al. (2007)). Given ∆t ∈ R, let us set
tn = t0 + n∆t, with n = 0, ..., NT and T = t0 +NT∆t. Problem (2.1)-(2.2) discretized in
time reads: given un, for n > 1, find the solution (un+1, pn+1) of the system:

ρ
3un+1 − 4un + un−1

2∆t
+ ρun+1 · ∇un+1 −∇ · σ(un+1, pn+1) = 0 in Ω, (2.9)

∇ · un+1 = 0 in Ω. (2.10)

In order to deal with the convective term nonlinearity in eq. (2.9), we use a fixed-point
algorithm.

Let us denote by M the mass matrix, K the stiffness matrix, N the matrix associ-
ated with the discretization of the convective term, and B the matrix associated with
the discretization of the operator (−∇·). In these matrices we already include the corre-
sponding stabilization terms. Moreover, we indicate with Lτ the matrix associated with
the pressure stabilization. The linearization and full discretization of problem (2.1)-(2.2)
yields the following system

ρ
3

2∆t
MUn+1 + µKUn+1 + ρNUn+1 +BTPn+1 = bn+1

u , (2.11)

BUn+1 + LτP
n+1 = bn+1

p , (2.12)

where Un+1 and Pn+1 are the arrays of nodal values for velocity and pressure. The
arrays bn+1

u and bn+1
p account for the contributions of the solution at the previous time

steps and the contribution that the boundary nodes give to the internal nodes.
Set C = ρ 3

2∆tM + µK + ρN . We can rewrite (2.11)-(2.12) in the form

AXn+1 = bn+1, (2.13)

where

A =

[
C BT

B Lτ

]
, Xn+1 =

[
Un+1

Pn+1

]
, bn+1 =

[
bn+1
u

bn+1
p

]
.

At every fixed-point iteration, we use a multifrontal parallel sparse direct solver (see,
e.g., Davis & Duff (1997)) for system (2.13).

3. Symmetry breaking

In this section, we focus on identifying the critical Reynolds number for the symmetry
breaking Resb for two different values of the expansion ratio λ. The aim is to validate
our solver against the results reported in Oliveira et al. (2008) and in Drikakis (1978).

Let us start with the test case in Oliveira et al. (2008). The geometry under considera-
tion is shown in Fig. 1(a) with the upstream and downstream channel width W = 4, and
contraction width w = 0.26. Thus, the expansion ratio λ = W/w is 15.4. The length of
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(a) Re = 0.01 (b) Re = 7.8 (c) Re = 31.1

(d) Re = 71.3

Figure 2. Streamlines close to the steady state for expansion ratio λ = 15.4 and different values
of Reynolds number: (a) Re = 0.01, (b) Re = 7.8, (c) Re = 31.1, (d) Re = 71.3. The streamlines
are colored with the velocity magnitude, with blue corresponding to 0 and red corresponding
to 1.

the contraction Lc is set to 2. In this domain, we simulate the flow for different Reynolds
numbers (ranging from 0.01 to 71.3) to examine the onset of asymmetries.

Eq. (2.1)-(2.2) are supplemented with the following steady boundary conditions: parabolic
velocity profile at the inlet Γin, stress-free boundary condition at the outlet Γout, and
no-slip condition on the rest of the boundary. The channel upstream of the contraction
and the expansion channel need to be long enough so that the flow is fully established
when it reaches both the contraction and the outlet section. The fluid is initially at rest.
A time marching algorithm is used to approach the steady-state solution. The numerical
simulations were stopped when the relative L2-norm of the difference of two subsequent
solutions was less that a prescribed tolerance ε:

||un+1
h − unh||L2(Ω)

||un+1
h ||L2(Ω)

6 ε and
||pn+1

h − pnh||L2(Ω)

||pn+1
h ||L2(Ω)

6 ε, (3.1)

where un+1
h (resp., unh) and pn+1

h (resp., pnh) are the computed velocity and pressure at
time tn+1 (resp., tn). The value of ε was set to 10−8.

In Fig. 2, we report the streamlines close to the steady state for four different values
of Re. For very low Reynolds number (e.g., Re = 0.01), it is impossible to deduce the
flow direction from the streamlines: as shown in Fig. 2(a), the flow has both a horizontal
and vertical symmetry axis. As the Reynolds number is increased, the Moffatt eddies
downstream of the expansion grow while the vortices upstream of the contraction reduce
in size: we see in Fig. 2(b) that the flow at Re = 7.8 has lost the symmetry about the
vertical axis, while the symmetry about the horizontal axis is maintained. At a further
increase of the Reynolds number, the flow exhibits a supercritical bifurcation and it
becomes asymmetric also with respect to the horizontal symmetry axis of the domain;
see Fig. 2(c) which corresponds to Re = 31.1. In Fig. 2(c), the lower recirculation enlarged
and pushed the high velocity jet to the upper wall. Notice that the flow could have evolved
to its reflected image configuration with respect to the domain symmetry axis. A further
increase in Reynolds number generates a third vortex downstream on the side of the
smaller primary vortex, as the enlarged one grows and pushes the jet even closer to the
wall; see Fig. 2(d). Fig. 2 is in good qualitative agreement with Oliveira et al. (2008).

For a quantitative agreement, we report the bifurcation diagram shown in Fig. 3, which
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Figure 3. Bifurcation diagram for the geometry shown in Fig. 1(a) with λ = 15.4.

shows the effect of Reynolds number on the length of the recirculation zones formed
downstream of the expansion and it is identical to the one presented in Oliveira et al.
(2008). The lengths in Fig. 3 (r1 to r4, as marked in Fig. 2(d)) are normalized with
respect to the downstream channel width W . As in Oliveira et al. (2008), the critical
Reynolds number for the symmetry breaking Resb was found to be approximately 28.5,
which is in good agreement also with the results in Mishra & Jayaraman (2002). At Re
between 41 and 42, the third vortex appears.

For a further validation of the results, we consider a test case from Drikakis (1978).
Since we are only interested in the evolution of the vortices in the expansion channel as
Re varies, we are going to consider the domain reported in Fig. 4(a): the inlet Γin of
this new geometry is the outlet of the contraction channel in Fig. 1(a). Thus W = 1 and
contraction width w = 1/6, which implies λ = 6. In this domain, we examine the onset
of asymmetries by simulating the flow for Reynolds numbers ranging from 0.01 to 73.3.

As boundary conditions, we impose a parabolic velocity profile with maximum velocity
Umax = 1 on Γin, a stress-free boundary condition at the outlet Γout, and no-slip condition
on the rest of the boundary. We change the Reynolds number by varying the value of the
viscosity µ. The stopping tolerance for the fixed point iterations was set to 10−8, since
as the Reynolds number increases the convective term needs to be properly resolved.

For this second test case, we checked the influence of the mesh size on the value of
Resb. Three meshes with different levels of refinement were considered:

- a coarse mesh, obtained by setting the maximum element diameter h = 6 ·10−2, with
around 104 nodes and 1.9 · 104 triangles;

- a medium mesh, obtained by setting h = 4 · 10−2, with around 2.2 · 104 nodes and
4.3 · 104 triangles;

- a fine mesh, obtained by setting h = 2.8 · 10−2, with around 4.4 · 104 nodes and
8.7 · 104 triangles.
Special refinement was prescribed at the inlet: there the mesh size was reduced by an
order of magnitude. The bifurcation diagram in Fig. 4(b) shows the effect of Reynolds
number on the length of the recirculation zones. Since now W = 1, the normalized lengths
correspond to the actual lengths.

From Fig. 4(b) we see that for λ = 6 the third recirculation does not appear for Re 6
73.3, regardless of the mesh used, while for λ = 15.4 it appeared just past Re = 41. We
remark that the results for the medium mesh and the fine mesh are almost superimposed
and they both give a value of Resb approximately equal to 46.5. Notice that as the aspect
ratio λ decreases, the critical Reynolds number for the symmetry breaking increases, as
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(a) Geometry considered in Drikakis (1978) (b) bifurcation diagram for λ = 6

Figure 4. (a) Computational geometry considered in Drikakis (1978) and (b) bifurcation dia-
gram for the 2D flow in such geometry with λ = 6. The results refer to three different meshes:
coarse, medium, and fine.

(a) Re = 133.3

(b) Re = 266.7

(c) Re = 400

Figure 5. Streamlines close to the steady state for λ = 6 and different values of Reynolds
number: (a) Re = 133.3, (b) Re = 266.7, (c) Re = 400. The streamlines are colored with the
velocity magnitude, with blue corresponding to 0 and red corresponding to 1.

observed also in Drikakis (1978). The bifurcation graph in Fig. 4(b) is very similar to
the one in Drikakis (1978), taking into account the fact that we defined the Reynolds
number as in (2.5) with the characteristic velocity U = 2Umax/3, while in Drikakis (1978)
the Reynolds number is defined as in (2.3) with L = w and U = Umax, Umax being the
maximum inlet velocity. Fig. 4(b) shows that if the computations are performed on a
mesh that is under-refined, the value of Resb gets overestimated. The simulations on the
coarse mesh we used gave a value of Resb around 48.

Keeping λ = 6, we check how the flow structures evolve asRe is pushed to higher values.
In Fig. 5, we report the streamlines close to the steady state for Re = 133.3, 266.7, 400.
As mentioned earlier, the jet can attach to either the upper wall (as for Re = 133.3) or
the lower wall (as for Re = 266.7, 400).

4. Hopf bifurcation

In contrast with other works, in this work we push our investigation even further, past
the symmetry breaking bifurcation. As Re increases, the long portion of the jet between
recirculation 3 and recirculation 4 (see, e.g., Fig. 5(c)) loses its stability and breaks into
small vortices that are transported downstreams. To show this phenomenon, we report
in Fig. 6 the pressure contour lines for Re = 490 at three different times.

To estimate the value of the critical Reynolds number ReH at which the flow becomes
time dependent, we have first detected two values of Re, namely Re = 400 and Re = 490,
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(a) t = 1804

(b) t = 1806

(c) t = 1808

Figure 6. Pressure contour lines for Re = 490 at three different times: (a) t = 1804, (b)
t = 1806, (c) t = 1808. The contour lines are colored with the pressure, ranging from -0.095
(blue) to 0.035 (red).

for which the asymptotic solution is found to be steady and time-dependent, respectively.
This interval, assumed to include the first critical Reynolds number, has been reduced
by bisection. We repeated this procedure on the same three meshes as before in order to
understand the influence of the mesh size on the value of ReH and check convergence in
space to a given ReH . For all the simulations we used a time step δt = 10−2.

Remark 1. In finding the critical Reynolds number ReH the mesh plays a central
role, like in every other numerical study. In particular, we noticed that the so called
“criss-cross” or British flag mesh has scarce performances. This is confirmed by Picasso
et al. (2011), where it is shown that certain methods for approximating second derivatives
(i.e., the viscous term) do not exhibit convergence in space on the criss-cross mesh due
to its topology. The poor approximation of the viscous term makes the Reynolds number
of the simulated flow higher than the imposed value. For this reason, we decided to use
unstructured quasi-uniform meshes for our study.

It has been shown (e.g., in Goodrich et al. (1990); Shen (1990); Autieri et al. (2002))
that in the analysis of unsteady cavity flows the choice of the indicators suitable for
monitoring the evolution of the system toward an asymptotic solution represents a critical
aspect. In the above references, the total kinetic energy was considered a good indicator
of the system dynamics. Thus, we are going to track the total kinetic energy in time:

E(t) =
1

2

∫

Ω

|uh(t)|2dΩ. (4.1)

It is known (see, e.q., Autieri et al. (2002)) that carrying the simulations to convergence
with Re very close to ReH is extremely expensive because the system evolves to its
asymptotic state with a velocity that decreases as the Reynolds number approaches its
critical value. Therefore, instead of giving the value of ReH , for all the meshes under
consideration we give a range for ReH , which is reported in Table 1. In Table 1, we
also report the mean value and amplitude of the kinetic energy oscillation at Reynolds
number equal to the upper bound of the range.

With the simulations on the coarse mesh, we narrowed the interval containing ReH
to (413.3, 420): for Re = 413.3 the system evolves towards a steady state, while for
Re = 420 the solution is time-dependent. On the medium mesh we found that the interval
containing ReH is (466.7, 473.3), while on the fine mesh we found (470.7, 476). We see
that the effect of using an insufficiently refined mesh is to underestimate ReH . From
the coarse mesh to the medium mesh, there is a 11.3% difference in the first Reynolds
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mesh range of ReH mean value of E(t) amplitude

coarse 413.3 < ReH < 420 0.3701 2.5 · 10−4

medium 466.7 < ReH < 473.3 0.4054 2.3 · 10−3

fine 470.7 < ReH < 476 0.4057 2.4 · 10−3

Table 1. Range of critical Reynolds number ReH , mean value and amplitude of kinetic energy
oscillation at a Reynolds number equal to the upper bound of the range for the meshes under
consideration.

(a) Re = 413.3 (b) Re = 420 (c) Re = 420

Figure 7. Coarse mesh: evolution of the kinetic energy E(t), t ∈ [2000, 3400], for (a)
Re = 413.3 and (b) Re = 420. (c) Re = 240: zoom in for t ∈ [2800, 3000].

numbers at which E(t) shows sustained oscillations for several thousands of time units.
From the medium mesh to the fine one, this difference is reduced to 0.5%. As for the
mean value of E(t), there is a 8.7% difference between values found with the coarse and
medium mesh, reduced to 0.07% between the values found with medium and fine mesh
(see Table 1). These percentages show a (monotonic) convergence when refining the grid.

Regardless of the mesh, the Hopf bifurcation occurs in the sudden expansion channel
at a much smaller Reynolds number than in the lid-driven cavity, where it occurs in the
interval [8017.6, 8018.8) according to Autieri et al. Autieri et al. (2002).

In Fig. 7, we report the evolution of the kinetic energy computed on the coarse mesh for
Re = 413.3 and Re = 420 over time interval [2000, 3400]. For Re = 413.3, the amplitude
of the oscillations in Fig. 7(a) decreases over time as the system evolves to a steady
state, and the stopping criterion (3.1) is eventually satisfied for t ≈ 9900. For Re = 420
however, the oscillations do not get damped over a long period of time. A zoomed view
of the asymptotic oscillatory behavior is show in Fig. 7(c).

The periodic character of the asymptotic solution can be established by a Fourier
analysis of E(t). Fig. 8(a) displays the power spectral density of E(t) for Re = 420,
obtained from a time series of 60,000 points over a time interval of size 600. We see that
in Fig. 8(a) there is one isolated peak corresponding to frequency fc = 0.075, showing
that the asymptotic oscillations have only one fundamental frequency.

The periodic solution can be represented also in the two-dimensional phase plane. Fig.
8(b) shows the phase portrait having E(t) on the horizontal axis and E(t + τ) on the
vertical one, with τ = 0.73.

Next, we are going to consider the results obtained on the medium mesh. In Fig. 9,
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(a) Power spectral density (b) 2D phase portrait

Figure 8. Coarse mesh, Re = 420: (a) power spectral density and (b) two-dimensional phase
portrait of E(t).

(a) Re = 466.7 (b) Re = 466.7 (c) Re = 473.3

Figure 9. Medium mesh: asymptotic evolution of the kinetic energy E(t) for (a) Re = 466.7:
zoom in for t ∈ [200, 600], (b) Re = 466.7 for t ∈ [1400, 2000], and (c) Re = 473.3.

we report the asymptotic evolution of the kinetic energy for Re = 466.7 and Re = 473.3.
For Re = 466.7, E(t) initially displays oscillations (see Fig. 9(a)), but as time passes
the oscillations are damped out as shown in Fig. 9(b). Among the Reynolds number
we considered, the first one at which the oscillations do not get damped over time is
Re = 473.3. However, as shown in Fig. 9(c), the oscillations are not simply periodic with
one frequency, as the ones reported in Fig. 7(c).

This is confirmed by the power spectral density of E(t) for Re = 473.3 in Fig. 10(a):
the graph shows three main peaks for frequencies 0.02, 0.0375, and 0.075, the first two
of which are independent while the third is a multiple of the second one. Thus, the
asymptotic oscillations are quasi-periodic. With the medium mesh we were not able to
observe sustained monochromatic oscillations for several thousands time units at a given
value of Reynolds number. A possible explanation is that the second Hopf bifurcation is
very close to the first Hopf bifurcation, so it is not easy to isolate a Reynolds number
between the two.

The two-dimensional phase portrait of the asymptotic oscillations of E(t) for Re =
473.3 is shown in Fig. 10(b). Again, we set the value of τ = 0.73. Being the signal quasi-
period, it is not surprising that the 2D phase portrait in Fig. 10(b) is more complex that
one in Fig. 8(b), which is associated to a periodic signal.

Finally, in Fig. 11 we show the evolution of the kinetic energy computed on the fine
mesh for Re = 470.7 and Re = 476. For Re = 470.7, the E(t) initially displays oscilla-
tions, as shown in Fig. 11(a). Around t = 1900, the oscillations start to be damped out
rapidly and the system evolves towards a steady state, as shown in Fig. 11(b). Among
the Reynolds numbers that we considered, the first one at which the oscillations con-
tinue till t = 4000 is Re = 476. As it happened for the medium mesh, these oscillations
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(a) Power spectral density (b) 2D phase portrait

Figure 10. Medium mesh, Re = 473.3: (a) power spectral density and (b) two-dimensional
phase portrait of E(t).

(a) Re = 470.7 (b) Re = 470.7 (c) Re = 476

Figure 11. Fine mesh: asymptotic evolution of the kinetic energy E(t) for (a) Re = 470.7:
zoom in for t ∈ [200, 600] (b) Re = 470.7 for t ∈ [2000, 3500], and (c) Re = 476.

(a) Power spectral density (b) 2D phase portrait

Figure 12. Fine mesh, Re = 476: (a) power spectral density and (b) two-dimensional phase
portrait of E(t).

are quasi periodic. In fact, from the power spectral density in Fig. 12(a), we see that
the three main peaks are associated to frequencies 0.02, 0.0375, and 0.075. These are
the same frequencies having power peaks in Fig. 10(a). Similarly, the two-dimensional
phase portrait of the asymptotic oscillations of E(t) for Re = 476 reported in Fig. 12(b)
resembles the one in Fig. 10(b).

Remark 2. As mentioned in Sec. 3, the homogeneous Neumann condition imposed at
the outlet requires the domain to be long enough so that the flow is fully established when
it reaches the outlet section. For the results in this section, we took a domain length equal
to 30 times the domain height W. The horizontal and vertical components of the velocity
along the domain axis for Re = 490 are plotted in Fig. 13, showing that the flow is fully
established for domain length 30W . Indeed, both the horizontal and vertical components
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(a) Horizontal velocity component (b) Vertical velocity component

Figure 13. (a) Horizontal and (b) vertical velocity components along the domain horizontal
axis for Re = 490.

Figure 14. Evolution of the enstrophy computed on the coarse mesh for Re = 420, on the
medium mesh for Re = 473.3, and on the fine mesh for Re = 476.

reach a plateau. It was also observed in Fortin et al. (1997) that a domain length of
30W is appropriate for Re less than a thousand. A shorter domain would not only be
inconsistent with the outlet condition, but it would modify the shape of the recirculations
which are not free to evolve. As a result, one would find different values for Resb and
ReH . For instance, when we performed the hydrodynamics stability study using a domain
length 10W and a mesh size h = 6 · 10−2, we found ReH of approximately 263, which is
slightly more than half of ReH found for domain length 30W with a comparable mesh.

We have seen that the coarse mesh we adopted led to an underestimation of the
critical Reynolds number and the mean value of the associated E(t) by 10%, roughly.
Other physical quantities are more grossly underestimated by a coarse mesh. An example
is enstrophy, which is defined as:

E(t) =
1

2

∫

Ω

|ωh(t)|2dΩ, (4.2)

where ωh is the computed vorticity. The enstrophy represents the intensity of rotation
of a flow and it is a relevant quantity in turbulent flows. Fig. 14 shows the evolution
of the enstrophy computed on the coarse mesh for Re = 420, on the medium mesh for
Re = 473.3, and on the fine mesh for Re = 476. The evolutions of E(t) computed on
the medium and fine mesh are almost superimposed over the whole time interval under
consideration. On the other hand, the mean value of E(t) computed on the coarse mesh
is 27.2% smaller.

Finally, we analyzed the spectrum of the ensprophy oscillations. Fig. 15 displays the
power spectral density for the same meshes and Reynolds numbers in Fig. 14. The en-
strophy spectrum shows peaks for the same frequency of the kinetic energy spectrum.
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(a) coarse mesh, Re = 420 (b) medium mesh, Re = 473.3 (c) fine mesh, Re = 476

Figure 15. Power spectral density for the enstrophy (a) for Re = 420 on the coarse mesh, (b)
Re = 473.3 on the medium mesh and (c) Re = 476 on the fine mesh.

5. Conclusions

We presented a numerical study for bifurcation phenomena in symmetric plane contraction-
expansion channels. The dynamics of this system was analyzed by means of direct numer-
ical simulation of the unsteady two-dimensional NavierStokes equations. Laminar flow
calculations were performed for two values of the expansion ratio, λ = 15.4 and λ = 6,
and several Reynolds numbers.

In contraction-expansion channels, a steady symmetric flow is observed for sufficiently
small value of the Reynolds number. Above a certain critical Reynolds number, a steady
asymmetric solution is observed: recirculation zones of different sizes form on the upper
and lower wall. We validated the critical Reynolds number for the symmetry-breaking
bifurcation given by our computations against the value in Oliveira et al. (2008) for
λ = 15.4 and the value in Drikakis (1978) for λ = 6. Excellent agreement was found.

For λ = 6, we studied the evolution of the flow as the Reynolds number is increased past
the symmetry-breaking bifurcation. The computations revealed that, as the Reynolds
numbers increases, the system initially continues to evolve towards a steady state and
the flow exhibits more and more complex flow structures. At a further increase of the
Reynolds number, the flow becomes unsteady, which indicates a Hopf bifurcation. By
means of a bisection technique we were able to locate the critical Reynolds number for
the Hopf bifurcation in the range (470.7, 476). We analyzed the time evolution of the
kinetic energy of the system at different Reynolds numbers in order to extract the power
spectral density and the 2D portrait of the system in the phase space.

Finally, we investigated the effect of mesh refinement on the critical Reynolds number
for both symmetry-breaking and Hopf bifurcations. Three meshes with different level of
refinement were considered. Computations on a under-refined mesh led to an overestima-
tion of the critical Reynolds number for the symmetry-breaking and an underestimation
of the critical Reynolds number for the Hopf bifurcation.
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