
Numerical Analysis and Scientific Computing

Preprint Seria

ILU preconditioners for non-symmetric
saddle point matrices with application to

the incompressible Navier-Stokes
equations

I.N. Konshin M.A. Olshanskii Yu.V. Vassilevski

Preprint #34

Department of Mathematics

University of Houston

March 2015

ILU PRECONDITIONERS FOR NON-SYMMETRIC SADDLE POINT
MATRICES WITH APPLICATION TO THE INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS∗

IGOR N. KONSHIN† , MAXIM A. OLSHANSKII‡ , AND YURI V. VASSILEVSKI§

Abstract. Motivated by the numerical solution of the linearized incompressible Navier–Stokes
equations, we study threshold incomplete LU factorizations for non-symmetric saddle point matrices.
The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method
applied to finite element discretizations of fluid dynamics problems in three space dimensions. The
paper presents and examines an extension for non-symmetric matrices of the Tismenetsky–Kaporin
incomplete factorization. It is shown that in numerically challenging cases of higher Reynolds number
flows one benefits from using this two-parameter modification of a standard threshold ILU precon-
ditioner. The performance of the ILU preconditioners is studied numerically for a wide range of flow
and discretization parameters, and the efficiency of the approach is shown if threshold parameters are
chosen suitably. The practical utility of the method is further demonstrated for the haemodynamic
problem of simulating a blood flow in a right coronary artery of a real patient.

Key words. iterative methods, preconditioning, threshold ILU factorization, Navier–Stokes
equations, finite element method, haemodynamics

AMS subject classifications. 65F10, 65N22, 65F50.

1. Introduction. This research is motivated by the numerical solution of the
Navier–Stokes equations governing the flow of viscous incompressible Newtonian flu-
ids. For a bounded domain Ω ⊂ Rd (d = 2, 3) with boundary ∂Ω, time interval [0, T],
and data f , g and u0, the goal is to find a velocity field u = u(x, t) and pressure field
p = p(x, t) such that





∂u

∂t
− ν∆u + (u · ∇)u +∇p = f in Ω× (0, T]

div u = 0 in Ω× [0, T]

u = g on Γ0 × [0, T], −ν(∇u) · n + pn = 0 on ΓN × [0, T]

u(x, 0) = u0(x) in Ω

(1.1)

where ν is the kinematic viscosity, ∆ is the Laplacian, ∇ is the gradient and div is the
divergence; ∂Ω = Γ0 ∪ ΓN and Γ0 6= ∅. Implicit time discretization and linearization
of the Navier–Stokes system (1.1) by Picard fixed-point iteration result in a sequence
of (generalized) Oseen problems of the form





αu− ν∆u + (w · ∇)u +∇p = f̂ in Ω

div u = ĝ in Ω

u = 0 on Γ0, −ν(∇u) · n + pn = 0 on ΓN

(1.2)

where w is a known velocity field from a previous iteration or time step and α is
proportional to the reciprocal of the time step (α = 0 for a steady problem), and the

∗This work has been supported by Russian Science Foundation through the grant 14-31-00024.
†Institute of Numerical Mathematics, Institute of Nuclear Safety, Russian Academy of Sciences,

Moscow; igor.konshin@gmail.com
‡Department of Mathematics, University of Houston; molshan@math.uh.edu
§Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow Institute of Physics

and Technology, Moscow; yuri.vassilevski@gmail.com

1

2 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

right-hand side accounts for non-homogenous boundary conditions in the non-linear
problem.

Finite element spatial discretization of (1.2) results in large, sparse systems of the
form (

A BT

B −C

)(
u
p

)
=

(
f
g

)
, (1.3)

where u and p represent the discrete velocity and pressure, respectively, A ∈ Rn×n
is the discretization of the diffusion, convection, and time-dependent terms, BT ∈
Rn×m is the discrete gradient, B is the (negative) discrete divergence, C ∈ Rm×m
is a matrix resulting from possible pressure stabilization terms, and f and g contain
forcing and boundary terms. If a discretization satisfies the LBB (‘inf-sup’) stability
condition [15], no pressure stabilization is required and so C = 0 holds. If the LBB
condition is not satisfied, the stabilization matrix C 6= 0 is symmetric and positive
semidefinite and the actual choice of C depends on the particular finite element pair
being used. For a symmetric positive definite A, solving (1.3) is equivalent to finding
the saddle point of a Lagrangian, and so the system (1.3) is often referred to as saddle
point system. In the literature, it is now common to refer to (1.3) as non-symmetric
or generalized saddle point system if A 6= AT .

The efficient solution of systems of the form (1.3) necessitates rapidly convergent
iterative methods. Thus, in the last decade, considerable work has been done in devel-
oping efficient preconditioners for Krylov subspace methods applied to incompressible
flow problems; see the comprehensive treatments in [3, 12, 29]. It is typical for the
preconditioning to exploit explicitly the block structure of the system (1.3). A pop-
ular approach builds upon preconditioners to the sub-matrix A and pressure Schur
complement matrix S = BA−1BT + C, see [13, 30, 41] for recent developments. Re-
lated to this class of methods are preconditioners based on the augmented Lagrangian
reformulation of the saddle point problem [5]. Block preconditioners based on an ad-
ditive splitting include the Hermitian and skew-Hermitian splitting approach [2] and
a dimensional split approach [4]. Constraint block preconditioners for nonsymmetric
saddle point matrices are treated in [7]. While the block preconditioners have proven
to be effective in many cases, they are not yet completely robust with respect to
variations of viscosity parameter, properties of advective velocity field w, grid size
and anisotropy ratio. The discussion of geometric and algebraic multigrid precondi-
tioners for the Oseen problem can be found in [39, 42]. For the assessment of block
preconditioners in the haemodynamics context we referee to the recent paper [10].

An interesting alternative to block preconditioners for the Oseen problem is the
preconditioning based on elementwise incomplete factorizations of the 2 × 2 block
matrix from (1.3). Relatively little research is found in the literature on ILU pre-
conditioners for the discrete Oseen system and, more general, for saddle point linear
algebraic systems. A review of incomplete Cholesky type preconditioners applicable
for symmetric saddle-point systems can be found in the recent report [33] (symmetric
system results from (1.2) if one sets w = 0). For non-symmetric saddle-point sys-
tems that arise from the finite element discretization of incompressible Navier–Stokes
equations the authors of [8,40] developed ILU preconditioners, where the fill-in is al-
lowed based on the connectivity of nodes rather than actual non-zeros in the matrix.
The papers [34,40] studied several reordering techniques for ILU factorization of (1.3)
and found that some of the resulting preconditioners are competitive with the most
advanced block preconditioners, while being more straightforward to implement in
standard finite element codes.

ILU preconditioners for the incompressible Navier–Stokes equations 3

The present paper focuses on incomplete LU factorizations with thresholds. As
far as we are aware, threshold ILU factorizations for non-symmetric saddle point
problems resulting from fluid dynamics applications have not been well studied in the
literature. The present paper carries out a systematic study of ILU(τ)-type precon-
ditioner performance depending on the threshold parameter τ , viscosity coefficient ν,
as well as mesh discretization and time step parameters. The properties of advective
velocity field w often also influence the performance of preconditioners, since the al-
gebraic connectivity of nodes may be strongly influenced by local direction of flow. To
assess the performance of ILU preconditioners, we experiment with unidirectional and
complex 3D circulating flows including those arising in haemodynamics applications.

The paper also devises estimates for the LU factorization numerical stability for
non-symmetric saddle-point matrices. We show that if the (1,1)-block A is a positive
definite matrix, then the (exact) LU factorization of the (1.3) exists and its numerical
stability is determined by the ellipticity constant of A and a quantity characterizing
a ratio of symmetric and skew-symmetric parts of A. The analysis is applied to the
discrete linearized Navier–Stokes equations and we discuss possible implications of
this analysis for the stability of incomplete LU factorizations.

While in many situations ILU(τ) with optimized τ provides inexpensive (in terms
of fill-in) and efficient (in terms of iteration counts) preconditioners for (1.3), for higher
Reynolds number flows (small ν) further developments are required. In such cases,
we show that a two-parameter variant of the threshold ILU factorization ILU(τ1,τ2)
may lead to a significant improvement. For symmetric positive definite matrices, this
factorization is also known in the literature as the second order or limited-memory or
Tismenetsky–Kaporin IC factorization. For both ILU(τ) and ILU(τ1,τ2), the choice
of optimal τ -s depends on problem parameters. Numerical experiments show that
a choice of quasi-optimal parameters is feasible, leading to a preconditioner perfor-
mance fairly insensitive to the variation of α, grid anisotropy, complexity of w and
depending mildly on ν. Finally, we consider a test case of a flow in a digitally recon-
structed right coronary artery of a real patient for a set of parameters describing a
physiologically relevant blood flow scenario. The paper reports on the performance
of ILU preconditioners for this practically interesting problem.

The remainder of the paper is organized as follows. In section 2 we give neces-
sary details on the discretization method. Section 3 discusses LU factorizations for
non-symmetric saddle point systems and its stability. Sufficient conditions on the
existence of the LU factorization and an estimate on the entries of the LU factors are
given here in terms of the properties of the (1,1)-block A. Further, this analysis is
applied to the discretized system (1.2). Here sufficient conditions for positive defi-
niteness of the A-block are derived. These conditions are sufficient for the existence
of an LU factorization without pivoting. In section 4, we introduce a two-parameter
Tismenetsky–Kaporin variant of the threshold ILU factorization for non-symmetric
non-definite problems, which is used further for numerical experiments. In section 5
we consider two benchmark problems: a 3D flow in a cylindrical vessel and a 3D ana-
log of the Beltrami flow proposed in [14]. For the discretization we use P2-P1 inf-sup
stable finite elements. For each of the problems we run experiments for a variety of
physical and discretization parameters and on a sequence of refined tetrahedral dis-
cretizations. Conclusions are made about the performance of preconditioners and the
suitable range of threshold parameters. Further we present results for the test case
of a flow in a right coronary artery. Section 6 collects conclusions and a few closing
remarks.

4 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

2. Finite element method. In this paper, we consider an inf-sup stable con-
forming Finite Element (FE) method. To formulate it, we first need the weak formu-
lation of the Oseen problem. Let V := {v ∈ H1(Ω)3 : v|Γ0

= 0}. Given f ∈ V′, find
u ∈ V and p ∈ L2(Ω) such that

L(u, p; v, q) = (f ,v)∗ + (g, q) ∀ v ∈ V, q ∈ L2(Ω) ,

L(u, p; v, q) := α(u,v) + ν(∇u,∇v) + ((w · ∇) u,v)− (p,div v) + (q,div u) ,

where (·, ·) denotes the L2(Ω) inner product and (·, ·)∗ is the duality paring for V′×V.
We assume Th to be a collection of tetrahedra which is a consistent tetrahedriza-

tion of Ω satisfying the regularity condition

max
τ∈Th

diam(τ)/ρ(τ) ≤ CT , (2.1)

where ρ(τ) is the diameter of a subscribed ball in τ . A constant CT measures the
maximum anisotropy ratio for Th. Further we denote hmin = minτ∈Th

diam(τ). Given
conforming FE spaces Vh ⊂ V and Qh ⊂ L2(Ω), the Galerkin FE discretization of
(1.2) is based on the weak formulation: Find {uh, ph} ∈ Vh ×Qh such that

L(uh, ph; vh, qh) = (f ,vh)∗ + (g, qh) ∀vh ∈ Vh, qh ∈ Qh . (2.2)

In our experiments we shall use P2-P1 Taylor–Hood FE pair, which satisfies the LBB
compatibility condition for Vh and Qh [15] and hence ensures well-posedness and full
approximation order for the FE linear problem. If one enumerates velocity unknowns
first and further pressure unknowns, then the resulting discrete system has the 2× 2-
block form (1.3).

3. LU factorization and properties of A and S. If the sub-matrices A and
C of (1.3) are positive definite and positive semi-definite, respectively, the whole 2×2-
block matrix is not sign definite. If C = 0, its diagonal has zero entries. In general,
LU factorization of such matrices requires pivoting (rows and columns permutations)
for stability reasons. However, exploiting the block structure and the properties of
blocks A and C, one readily verifies that the LU factorization

A =

(
A BT

B −C

)
=

(
L11 0
L21 L22

)(
U11 U12

0 −U22

)
(3.1)

with low (upper) triangle matrices L11, L22 (U11, U22) exists without pivoting, once
det(A) 6= 0 and there exist LU factorizations for the (1,1)-block

A = L11U11

and the Schur complement matrix S := BA−1BT + C is factorized as

S = L22U22.

To check (3.1), one lets U12 = L−1
11 B

T and L21 = BU−1
11 .

An LU factorization of A exists if the matrix is positive definite, however its
numerical stability (the relative size of entries in factors L11 and U11) may depend
on how large is the skew-symmetric part of A comparing to the symmetric part.
Indeed, denote AS = 1

2 (A+AT), AN = A−AS (we shall use similar notation for the

ILU preconditioners for the incompressible Navier–Stokes equations 5

symmetric and skew-symmetric parts of S). Denote by ‖ · ‖F the Frobenius matrix
norm. Theorem 4.2.4 from [16] gives the bound on the size of elements of L and U :

‖|L11||U11|‖F ≤ n
(
‖AS‖+ ‖ANA

−1
S AN‖

)
,

where |C| = {|cij |} for a matrix C = {cij}. Using ‖AS‖ ≤ ‖A‖, the symmetry and
negative definiteness of ANA

−1
S AN, one can estimate

‖ANA
−1
S AN‖ = − sup

x∈Rn

〈ANA
−1
S ANx, x〉
‖x‖2 = sup

x∈Rn

‖A−
1
2

S ANA
− 1

2

S x‖2

‖A−
1
2

S x‖2

≤ sup
x∈Rn

‖A−
1
2

S ANA
− 1

2

S x‖2‖A
1
2

S ‖2
‖x‖2 = ‖A−

1
2

S ANA
− 1

2

S ‖2‖A
1
2

S ‖2

= ‖A−
1
2

S ANA
− 1

2

S ‖2‖AS‖ ≤ ‖A−
1
2

S ANA
− 1

2

S ‖2‖A‖ .

Hence, we deduce the following stability bound for the LU-factorization of the positive
definite matrix A:

‖|L11||U11|‖F
‖A‖ ≤ n

(
1 + ‖A−

1
2

S ANA
− 1

2

S ‖2
)
. (3.2)

The positive definiteness of A implies that the Schur complement matrix is also pos-
itive definite, once BT has full column rank and C ≥ 0. This is easy to see from the
identity

〈Sq, q〉 = 〈Bv, q〉+ 〈Cq, q〉 = 〈v,BT q〉+ 〈Cq, q〉 = 〈Av, v〉+ 〈Cq, q〉, (3.3)

which is true for q ∈ Rm and v := A−1BT q ∈ Rn. Therefore, if A is positive definite,
then S is also positive definite and the factorization S = L22U22 enjoys the stability
bound similar to (3.2):

‖|L22||U22|‖F
‖S‖ ≤ m

(
1 + ‖S−

1
2

S SNS
− 1

2

S ‖2
)
.

Thus, in the case of positive definite (1,1)-block, the quotients ‖A−
1
2

S ANA
− 1

2

S ‖
and ‖S−

1
2

S SNS
− 1

2

S ‖ are largely responsible for the stability of the LU factorization for

(1.3). The following lemma shows that it is sufficient to estimate ‖A−
1
2

S ANA
− 1

2

S ‖.
Lemma 3.1. Let A ∈ Rn×n be positive definite, then it holds

‖S−
1
2

S SNS
− 1

2

S ‖ ≤ ‖A−
1
2

S ANA
− 1

2

S ‖ =: CA. (3.4)

Proof. Let ÃN = A
− 1

2

S ANA
− 1

2

S . We need the following identities [11]:

1

2

(
A−1 +A−T

)
= A

− 1
2

S (I − Ã2
N)−1A

− 1
2

S ,

1

2

(
A−1 −A−T

)
= A

− 1
2

S (I + ÃN)−1ÃN (I − ÃN)−1A
− 1

2

S .

(3.5)

Note that due to the skew-symmetry of S
− 1

2

S SNS
− 1

2

S it holds |λ| = |Im(λ)| for λ ∈
sp(S

− 1
2

S SNS
− 1

2

S), where we use sp(·) to denote the spectrum. We apply Bendixson’s

6 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

theorem [36] to estimate

‖S−
1
2

S SN S
− 1

2

S ‖ = max{|λ| : λ ∈ sp(S
− 1

2

S SNS
− 1

2

S)}
= max{|Im(λ)| : λ ∈ sp(S

− 1
2

S SNS
− 1

2

S)}

≤ sup
q∈Cm

|〈SNq, q〉|
〈SSq, q〉

.

(3.6)

Employing identities from (3.5), we can write

SS = BA
− 1

2

S (I − Ã∗N)−1(I − ÃN)−1A
− 1

2

S BT + C,

SN = BA
− 1

2

S (I − Ã∗N)−1ÃN (I − ÃN)−1A
− 1

2

S BT .

With the help of the substitution vq = (I − ÃN)−1A
− 1

2

S BT q in the right-hand side of
(3.6) and recalling that C is non-negative definite, we obtain

‖S−
1
2

S SN S
− 1

2

S ‖ ≤ sup
q∈Cm

∣∣∣〈ÃNvq, vq〉
∣∣∣

〈vq, vq〉+ 〈Cq, q〉 ≤ sup
q∈Cm

∣∣∣〈ÃNvq, vq〉
∣∣∣

‖vq‖2
≤ ‖ÃN‖.

An estimate on the entries of U12 and L21 factors in (3.1) would form a complete
picture of numerical stability of the factorization. The entries of these off-diagonal
blocks can be estimated as follows. Using ‖AB‖F ≤ ‖A‖‖C‖F we get

‖U12‖F = ‖L−1
11 B

T ‖F ≤ ‖L−1
11 ‖‖BT ‖F = ‖U11A

−1‖‖BT ‖F ≤ ‖U11‖‖A−1‖‖BT ‖F .

With the help of (3.5) and noting ‖(I − ÃN)−1‖ ≤ 1 for a skew-symmetric ÃN , one
also estimates

‖A−1‖ ≤ 1

2

(
‖A−1 +A−T ‖+ ‖A−1 −A−T ‖

)
≤ 1

2
‖A−

1
2

S ‖2(1 + CA) =
1 + CA

2cA
,

with the matrix A ellipticity constant cA = λmin(AS). Repeating same arguments to
estimate ‖L21‖F , we arrive at the following bound

‖U12‖F + ‖L21‖F
(‖U11‖+ ‖L11‖)‖B‖F

≤ m(1 + CA)

2cA
.

The above analysis indicates that to judge about the stability of the LU factor-
ization for (1.3) one should ensure the positive definiteness of the (1,1) block A and
estimate the constant CA which measures the ratio of skew-symmetry for A and the
ellipticity constant cA. In section 3.1 below, we estimate CA and cA for the discrete
linearized Navier–Stokes system. In section 4, we argue why these analysis is still of
interest if one focuses on incomplete factorization.

3.1. Properties of A and S. To study matrix properties, we invoke the FE
formulation from section 2. Let {ϕi}1≤i≤n and {ψj}1≤j≤m be bases of Vh and Qh,
respectively. For arbitrary v ∈ Rn and corresponding vh =

∑n
i=1 viϕi, it holds:

〈Av, v〉 = α‖vh‖2 + ν‖∇vh‖2 +
1

2

∫

ΓN

(w · n)|vh|2 ds+
1

2
((div w)vh,vh), (3.7)

ILU preconditioners for the incompressible Navier–Stokes equations 7

where n is an outward normal on ΓN. We shall also need the velocity mass and
stiffness matrices M , K: Mij = (ϕi, ϕj), Kij = (∇ϕi,∇ϕj) and the pressure mass
matrix Mp: (Mp)ij = (ψi, ψj).

While the first two terms on the right-hand side of (3.7) are positive, handling
the rest terms requires some care. If ΓN is an outflow part of the boundary, i.e.
(w · n) > 0, then the boundary integral is non-negative. However, in practical fluid
dynamics simulations, it is not uncommon when (w · n) < 0 on a part of ΓN, and
one likely can find such vh that the boundary integral in (3.7) is negative. Hence, we
shall estimate this term using a FE trace inequality. We remark that modifications of
boundary conditions from (1.1) on ΓN are known, which insure the resulting boundary
integral to be always non-negative, see, e.g., [6]. Other artificial outflow boundary
conditions, which lead to Dirichlet conditions to be prescribed in (1.2) on the entire
boundary are also common in fluid dynamics, see, e.g., [28, 32], in this case ΓN = ∅.

Next, if one assumes the incompressibility condition (second equation in (1.1)) to
hold true for the advection velocity field w, then the fourth term on the right-hand
side vanishes. In practice, however, w is typically a finite element velocity field, i.e.,
w ∈ Vh, which satisfies only weak divergence free constraint: (div w, qh) = 0 ∀ q ∈
Qh. For most of stable FE for fluids and, in particular, for P2-P1 elements this weak
divergence free equation does not imply div w = 0 pointwise (see, however, [18, 27]
and references therein for recent attempts to deal with this problem). Another possi-
ble way of getting rid of the (div w)-dependent term in (3.7) is to ‘skew-symmetrize’
the bilinear form by adding the consistent term 1

2 ((div w)uh,vh) to the FE formula-
tion [37]. Otherwise the last term on the right-hand side of (3.7) should be controlled.
We make the above conclusions more precise in Theorem 3.2 below. The theorem gives
estimates on the ellipticity constant cA and the stability constant CA from (3.4).

To avoid the repeated use of generic but unspecified constants, in the remainder
of the paper the binary relation x . y means that there is a constant c such that
x ≤ c y, and c does not depend on the parameters which x and y may depend on, e.g.,
ν, α, mesh size, and properties of w. Obviously, x & y is defined as y . x.

Theorem 3.2. Assume that w ∈ L∞(Ω), problem and discretization parameters
satisfy (3.13). Then the matrix A is positive definite and it holds

〈Av, v〉 ≥ 1

4
〈(αM + νK)v, v〉 ∀ v ∈ Rn and CA . 1 +

‖w‖L∞(Ω)√
να+ ν + hminα

, (3.8)

where CA is the constant defined in (3.4), and hence cA ≥ 1
4λmin(αM + νK).

Furthermore, matrix S := BA−1BT + C is also positive definite and it holds

〈Sq, q〉 & 〈Mpq, q〉
(ν + α+ ‖w‖L∞(ΓN) + ‖div w‖L∞(Ω))(1 + C2

A)
∀ q ∈ Rm.

Proof. First, recall the trace inequality
∫

ΓN

|vh|2 ds ≤ C0‖∇vh‖2 ∀ vh ∈ Vh, (3.9)

which allows the control of the boundary term in (3.7) by the diffusion term, if ν is
sufficiently large. To exploit the zero order term in (3.7) , consider the FE trace and
inverse inequalities
∫

∂τ

v2
h ds ≤ Ctrh

−1
τ ‖vh‖2τ , ‖∇vh‖τ ≤ Cinh

−1
τ ‖vh‖τ ∀ τ ∈ Th, vh ∈ Vh, (3.10)

8 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

where the constants Ctr, Cin depend only on the polynomial degree k and the shape
regularity constant CT from (2.1). In addition, denote by Cf the constant from the
Friedrichs inequality:

‖vh‖ ≤ Cf‖∇vh‖ ∀ vh ∈ Vh. (3.11)

Let Cw := ‖(w · n)−‖L∞(ΓN). Applying (3.9) and (??) in (3.7), we deduce

〈Av, v〉 ≥ α‖vh‖2 + ν‖∇vh‖2 −
Cw

2

∫

ΓN

|vh|2 ds−
1

2
‖div w‖L∞(Ω)‖vh‖2

≥ α‖vh‖2 + ν‖∇vh‖2 −
Cw

2
min{C0‖∇vh‖2, Ctrh

−1
min‖vh‖2}

− 1

2
‖div w‖L∞(Ω)‖vh‖2.

(3.12)

To ensure the right-hand side is positive, we assume the following conditions on prob-
lem parameters and coefficients:





CwCtrh
−1
min ≤

α

4
or CwC0 ≤

ν

4
,

‖div w‖L∞(Ω) ≤
1

4
max{α, νC−1

f },
(3.13)

with constants defined in (3.9) and (3.11). Employing conditions (3.13) in (3.12), we
deduce

〈Av, v〉 ≥ 1

4

(
α‖vh‖2 + ν‖∇vh‖2

)
=

1

4
(α〈Mv, v〉+ ν〈Kv, v〉) ∀ v ∈ Rn . (3.14)

Further, we estimate

CA := ‖A−
1
2

S ANA
− 1

2

S ‖ = max{|λ| : λ ∈ sp(A
− 1

2

S ANA
− 1

2

S)}
= max{|λ| : λ ∈ sp(A−1

S AN)}
≤ ‖A−1

S AN‖∗,
(3.15)

and for ‖ · ‖∗ we choose a matrix norm induced by the vector norm 〈(αM + νK)·, ·〉 12 .
For a given v ∈ Rn and u = A−1

S AN v consider their finite element counterparts
vh,uh ∈ Vh. Then ASu = AN v can be written in a finite element form as

ν(∇uh,∇ϕh) + α(uh,ϕh) +
1

2

∫

ΓN

(w · n)uh ·ϕh ds+
1

2
((div w)uh,ϕh)

=
1

2
[(w·∇vh,ϕh)− (w·∇ϕh,vh)] ∀ϕh ∈ Vh. (3.16)

We set ϕh = uh. For the left-hand side of (3.16) the lower bound (3.14) holds. To
estimate the right-hand side, we apply the Cauchy–Schwarz inequality:

[(w·∇vh,ϕh)− (w·∇ϕh,vh)] ≤ ‖w‖L∞(Ω)(‖∇vh‖‖uh‖+ ‖∇uh‖‖vh‖) (3.17)

and estimate terms on the right-hand side by employing Young’s, Friedrichs, and finite

ILU preconditioners for the incompressible Navier–Stokes equations 9

element inverse inequalities:

‖w‖L∞(Ω)‖∇vh‖‖uh‖ ≤
1

16
(ν‖∇uh‖2 + α‖uh‖2)

+ 4‖w‖2L∞(Ω) min

{
1

αν
,
C2

f

ν2
,

C2
in

α2h2
min

}
(ν‖∇vh‖2 + α‖vh‖2),

‖w‖L∞(Ω)‖∇uh‖‖vh‖ ≤
1

16
(ν‖∇uh‖2 + α‖uh‖2)

+ 4‖w‖2L∞(Ω) min

{
1

αν
,
C2

f

α2
,
C2

f

ν2

}
(ν‖∇vh‖2 + α‖vh‖2).

(3.18)

From (3.14)–(3.18) we derive using min{a1, a2, a3} ≤ 3(a−1
1 + a−1

2 + a−1
3)−1, the

estimate

ν‖∇uh‖2 + α‖uh‖2 .
(

1 +
‖w‖2L∞(Ω)

να+ ν2 + h2
minα

2

)
(ν‖∇vh‖2 + α‖vh‖2).

Therefore, we proved

CA := ‖A−
1
2

S ANA
− 1

2

S ‖ ≤ ‖A−1
S AN‖∗ .

(
1 +

‖w‖L∞(Ω)√
να+ ν + hminα

)
. (3.19)

Denote c̃w := ‖w‖L∞(ΓN), ĉw = ‖div w‖L∞(Ω) To show the ellipticity estimate
for Schur complement matrix, we note that (3.7), (3.9), (3.11) and the LBB stability
of the finite element spaces yield the following relations,

〈BA−1
S BT q, q〉 = sup

v∈Rn

〈Bv, q〉2
〈ASv, v〉

≥ sup
vh∈Vh

(div vh, qh)2

ν‖∇vh‖2 + α‖vh‖2 + C0c̃w‖∇vh‖2 + ĉw‖vh‖2

& sup
vh∈Vh

(div vh, qh)2

(ν + α+ c̃w + ĉw)‖∇vh‖2
& ‖qh‖2
ν + α+ c̃w + ĉw

=
〈Mpq, q〉

ν + α+ c̃w + ĉw
.

(3.20)

With the help of the first identity from (3.5) and (3.20) we obtain

〈Sq, q〉 = 〈A−1BT q,BT q〉 = 〈(I − (A
− 1

2

S ANA
− 1

2

S)2)−1A
− 1

2

S BT q,A
− 1

2

S BT q〉

≥ 〈A
− 1

2

S BT q, A
− 1

2

S BT q〉
1 + ‖(A−

1
2

S ANA
− 1

2

S)2‖
=

〈BA−1
S BT q, q〉

1 + ‖(A−
1
2

S ANA
− 1

2

S)2‖

& 1

(ν + α+ c̃w + ĉw)(1 + ‖(A−
1
2

S ANA
− 1

2

S)‖2)
〈Mpq, q〉.

(3.21)

Now we combine (3.21) and (3.19) to show the desired ellipticity estimate for S.

We are in position to discuss conditions (3.13), which guarantee the matrices A
and S to be positive definite and so the saddle-point matrix admits LU factorization
without pivoting. The first condition in (3.13) is effective only if ΓN 6= ∅. Also if the
entire ΓN is outflow boundary then Cw = 0 and the condition is trivially satisfied.

10 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

Otherwise, either the Reynolds number should be sufficiently small (creeping flows)
or a Courant type condition (∆t) ≤ c hmin should hold with a problem dependent
constant c (we recall that α ≈ (∆t)−1). From the first look, the second condition in
(3.13) is not restrictive. For example, for P2-P1 Taylor–Hood elements and a second
order time discretization, the FE velocity gradient converges quadratically to the one
of true solution, and hence one may expect that ‖div w‖L∞(Ω) ≤ C̃(h2 + (∆t)2). This
would make the left-hand side of the second condition small. On the other hand,
the constant C̃ is data dependent, and for ν small enough the constant can be large.
Fortunately, for any fixed unsteady problem one can choose such small ∆t that the
second condition holds due to α ∼ (∆t)−1.

4. A two-parameter threshold ILU factorization. In this section we pro-
ceed with incomplete LU factorizations of (1.3). Few remarks are in order.

Any threshold incomplete factorization can be written in the form A = LU − E,
with an error matrix E. How small is the matrix E is ruled by a threshold param-
eter τ > 0. The error matrix E largely defines the quality of preconditioning, see,
for example, [21] for estimates on GMRES method convergence written in terms of
‖E‖ and subject to a proper pre-scaling of A and the diagonalizability assumption.
Furthermore, if A is positive definite, then there exists such a small τ that LU is also
positive definite and so estimates from [16] can be applied to assess the numerical
stability of the incomplete factorization. For cA = λmin(AS), a sufficient condition is
τ < cAn

−1. Although in practice this estimate is often too pessimistic, for realistic
τ and non-symmetric matrices, non-positive or close to zero pivots may encounter,
and breakdown of an algorithm may happen. A number of remedies have been pro-
posed in the literature to deal with the problem of breakdown. A concise review of
these techniques and further references can be found in [1]. Although most of the
techniques were developed for the SPD case, some of them can be applied to non-
symmetric matrices. These are pivot modification, diagonal shifting, matrix scaling,
unknowns reordering, the Ajiz–Jennings modification. Among those, we found the
matrix two-side scaling to be the most important in our applications. We shall re-
view this technique later in this section. Now let us look at the situation with ILU
factorization for saddle point matrices with positive definite (1,1)-block.

It was observed in [33, 43] for symmetric saddle-point systems that the block
factorization as in (3.1) can be used to construct an incomplete factorization. One

way to do this is first to compute an ILU factorization for the (1,1)-block, A ≈ L̃11Ũ11,

set Ũ12 = L̃−1
11 B

T and L̃21 = BŨ−1
11 , and define L̃22 and Ũ22 as incomplete factors for

the inexact Schur complement:

B(L̃11Ũ11)−1BT + C ≈ L̃22Ũ22.

As we noted before, A > 0 implies L̃11Ũ11 > 0, at least for sufficiently small τ , and so
inexact Schur complement is also positive definite. In the present paper, we apply a
global incomplete factorization of the matrix instead of the above block-wise factor-
ization. We also avoid pivoting, i.e. we preserve the ordering when velocity unknowns
are numbered before pressure unknowns, and we still observe stable factorizations.

Theorem 3.2 shows that for certain flow regimes the stability constant CA from
(3.8) may become large and the ellipticity constant cA approaches zero, which means
the non-symmetric part of the matrix dominates over the symmetric one. Even for
advanced threshold ILU factorizations this drives the threshold parameter τ to be
smaller and hence increases the fill-in. Results of the next section demonstrate that

ILU preconditioners for the incompressible Navier–Stokes equations 11

exactly this behaviour of the algorithm is observed in numerical experiments. To
ameliorate the performance of the preconditioning in such extreme situations, we
consider the two-parameter Tismenetsky–Kaporin variant of the threshold ILU fac-
torization. The factorization was introduced and first studied in [20,38] for symmetric
positive definite case. Below we consider an extension of the Tismenetsky–Kaporin
factorization for the case of non-symmetric and saddle-point matrices and give further
motivation for it.

Given a matrix A ∈ Rn×n, consider the factorization of the form

A = LU + LRu +R`U − E, (4.1)

where Ru and R` are strictly upper and lower triangular matrices, while U and L
are upper and lower triangular matrices, respectively. Given two small parameters τ1
and τ2, we shall assume that the entries absolute values of R` and Ru do not exceed
τ1, and E is an error matrix with entries of order O(τ2). We shall call (4.1) the
ILU(τ1, τ2) factorization of A. Of course, a generic ILU(τ) can be viewed as (4.1)
with Ru = R` = 0 and τ2 = τ . The important improvement the two-parameter ILU
factorization gives over a generic ILU(τ) is that the fill-in of L and U is ruled by
the first threshold parameter τ1, while the quality of the resulting preconditioner is
mainly defined by τ2, once τ2

1 . τ2 holds. Roughly speaking, taking τ2 = τ2
1 := τ2 one

expects the fill-in of ILU(τ1, τ2) to be similar to that of ILU(τ), while the convergence
of preconditioned Krylov subspace method is better and asymptotically (for τ → 0)
can be comparable to the one with ILU(τ2) preconditioner. This statement is made
more precise in [20] for symmetric positive definite matrices, where estimates on the
eigenvalues and K-condition number of L−1AU−1 were derived with LT = U and
R` = RTu . However, not much analysis of the decomposition (4.1) is known for a
general non-symmetric case. We note that the estimate (2.5) from [17] applied to the
matrix (L+R`)(U +Ru) = A+R`Ru +E yields the low bound for the pivots of the
(4.1) factorization

|LiiUii| ≥ min
v∈Rn

〈(A+R`Ru + E)v, v〉
‖v‖2 ≥ cA − ‖R`Ru‖ − ‖E‖,

with the ellipticity constant cA and the norms ‖R`Ru‖, ‖E‖ proportional to τ2
1 and τ2,

respectively. Thus the stability of system solution with matrices L and U is ruled by
the values the second parameter and the square of the first parameter, while the fill-in
is defined by τ1 rather than τ2

1 . Using ILU(τ1, τ2) becomes important for the efficiency
of the ILU preconditioning, when the problem setup is such that the estimates from
Theorem 3.2 predicts that the stability constant CA is large and cA is small.

Similar to the situation with ILU(τ) factorization, an ILU(τ1, τ2) factorization
for the saddle-point matrix A can be built based on two-parameter ILU factorizations
(without pivoting) for the (1,1) block

A = L1U1 + L1Ru1 +R`1U1 − E1 (4.2)

and the inexact Schur complement matrix S̃ = C +B[(L1 +Rl1)(U1 +Ru1)]−1BT

S̃ = L2U2 + L2Ru2 +R`2U2 − E2. (4.3)

For a matrix C ∈ Rn×m and real τ ≥ 0 denote {C}τ ∈ Rn×m with entries {C}τij = Cij ,
if |Cij | ≥ τ , and {C}τij = 0 otherwise; let [C]τ = C−{C}τ . Given (4.2) and (4.3) one
may check the following factorization for the saddle-point matrix A:

A = LU + LRu +R`U − E (4.4)

12 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

with sparse block factors L and U :

L =

(
L1 0

{B(U1 +Ru1)−1}τ1 L2

)
, U =

(
U1 {(L1 +Rl1)−1BT }τ1
0 −U2

)
,

strictly upper triangle matrices RT` and Ru:

R` =

(
R`1 0[

B(U1 +Ru1)−1
]τ1

R`2

)
, Ru =

(
Ru1 [(L1 +Rl1)−1BT]τ1

0 −Ru2

)
,

and the error matrix

E =

(
E1 −R`1[(L1 +Rl1)−1BT]τ1

−[B(U1 +Ru1)−1]τ1Ru1 −E2 − [B(U1 +Ru1)−1]τ1 [(L1 +Rl1)−1BT]τ1

)
.

If (4.2) and (4.3) are ILU(τ1, τ2) factorizations, then the formulae above show the
existence of a Tismenetsky–Kaporin type incomplete factorization of (1.3), with the
error matrix having elements of order O(τ2 + τ2

1). In practice, we do not exploit the

block form and neither matrix S̃, nor factorization (4.3) are generated explicitly.

4.1. The algorithm. In what follows, the algorithm makes no specific use of
the block structure of the matrix A, but can be formally applied to a generic non-
symmetric A ∈ Rn×n (for a general matrix it can fail, of course). Thus, for the sake
of notation, we denote by A below some given non-symmetric square matrix, rather
than the (1,1)-block of A; and n = dim(A).

4.1.1. Two-side scaling of A. The derivation of the ILU(τ1,τ2) preconditioner
in SPD case assumes such a scaling of the matrix and unknowns that all diagonal
elements are equal to 1, see [20]. Clearly, in a non-symmetric case such scaling is
not always possible. However, for the performance of the method, we found it very
important to re-scale a given matrix. Thus, we look for a scaling vectors `, r ∈ Rn
such that the matrix A′ = diag(`)A diag(r) has nearly balanced Euclidean norms of
rows and columns. To accomplish this task, we apply the Sinkhorn algorithm [35] to
the nonnegative matrix F = [a2

kj]
n
kj=1. The Sinkhorn method is an iterative algorithm

recalled below. One iteration of the algorithm reads:

diag(r(k+1)) = diag(FT `(k))−1,

diag(`(k+1)) = diag(Fr(k+1))−1.

We use the starting vector `(0) of all ones. All experiments in the next sections
perform 5 iterations to find the scaling vectors, before any incomplete factorization
was computed. The importance of a proper two-side scaling for a quality of ILU
factorizations for non-symmetric matrices is discussed in [21], see also [9, 22,25,26].

If an incomplete factorization is computed for the scaled matrix A′ so that L′U ′ ≈
A′, the triangular factors for the original matrix have to be re-scaled:

LU ≈ A, L = (diag(`))−1L′, U = U ′(diag(r))−1.

In what follows, we will refer to matrices diag(`) and diag(r) as the left and right
scaling matrices DL and DR, respectively.

ILU preconditioners for the incompressible Navier–Stokes equations 13

4.1.2. Row-wise ILU(τ1,τ2) factorization. In general, a two-parameter thresh-
old ILU factorization algorithm we are using is similar to that of RIC2 from [20]. It was
suggested and implemented by Sergei Goreinov in the open source software [23, 24].
The main differences with RIC2 are the row oriented data storage of involved matrices
and extention of the method to non-symmetric matrices.

Assume that the input matrix A ∈ Rn×n to be factorized is given in the com-
pressed sparse row (CSR) format. Dropping for a moment the error matrix, consider
the (i+ 1)-th step of the row-wise ILU(τ1,τ2) algorithm in the block-matrix form:



Ai ai Ãi

âi αi ãi

∗ ∗ ∗


 =



Li

li λi

∗ ∗ ∗





U i ui Ũ i

µi ũi

∗




+



Li

li λi

∗ ∗ ∗





Riu ri R̃i

0 r̃i

∗


+



Ri`
r̂i 0
∗ ∗ ∗





U i ui Ũ i

µi ũi

∗


 .

Here we use the convention to denote matrices and vectors (row or column) by Latin
uppercase (capitals) and lowercase letters, respectively, and scalars by Greek symbols.
All objects in the first row are known from the previous step, while li, λi, µi, ũi have
to be computed. The second row gives the set of equations:

âi = (li + r̂i)U i + liRiu, (4.5)

αi = (li + r̂i)ui + liri + λiµi, (4.6)

ãi = (li + r̂i)Ũ i + liR̃iu + λi(ũi + r̃i). (4.7)

Once one defines a rule for splitting a row vector z = li+ r̂i ∈ Ri into two structurally
orthogonal parts li and r̂i (i.e. likr̂

i
k = 0 for k = 1, . . . , i), the equation (4.6) is uniquely

solvable for li and r̂i. The ILU(τ1,0) method imposes the splitting: lik = zk if |zk| > τ1,
and lik = 0, otherwise. Recalling that Riu is strictly upper triangle, the vectors li and
r̂i can be computed as is shown in steps (3)-(4) of the ILU(τ1,τ2) algorithm below,
where vector z is a part of a full size accumulator vector v ∈ Rn.

After the vectors li and r̂i are found, µi, ũi can be computed from (4.6), (4.7)
up to the scaling of λi (ũi is determined from the vector z̃ = ũi + r̃i using the same
splitting rule). In our implementation, we set λi = ‖ũi‖`∞ . Finally, the entries of
the factors not exceeding τ2 are dropped out and ignored in computations as in the
standard threshold ILU strategy [31]. Pivots with absolute values smaller than τ2 are
modified. The pseudo-code of the resulting method is given below.

4.1.3. ILU(τ1, τ2) algorithm pseudo-code. Input: a sparse non symmetric
matrix A, left and right scaling diagonal matrices DL and DR (see section 4.1.1),
threshold parameters 0 < τ2 ≤ τ1 < 1. For a matrix C, P (C) denotes the subset
of indexes (i, j) such that Cij = 0. Since R` is not computed in the course of the
factorization, we use below the notation R for the upper triangular error factor Ru;
v ∈ Rn is an auxiliary vector initially set equal to 0.

(1) Main loop by rows of A to compute the rows of L and U :
for i = 1, . . . , n:

(2) Initialize the row accumulator vector v by the ith row of the balanced matrix A:
for j = 1, . . . , n and if (i, j) /∈ P (A):

vj := (DL)iiaij(DR)jj
end for

14 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

(3) Loop over all already computed rows of U :
for k = 1, . . . , i− 1 and if vk 6= 0:

(4) Update the accumulator vector:
vk := vk/Ukk

if |vk| > τ2 then
for j = k + 1, . . . , n and if (k, j) /∈ P (U):

vj := vj − vkUkj

end for
end if
if |vk| > τ1 then

for j = k + 1, . . . , n and if (k, j) /∈ P (R):
vj := vj − vkRkj

end for
end if

end for
(5) Rescale the ith row of U :

λi := max
k=i,...,n

|vk|
if λi < τ2 then

λi := τ2
end if
for j = i, . . . , n and if vj 6= 0:

vj := vj/λi

end for
(6) Compute the ith row of L:

Lii = λi

for j = 1, . . . , i− 1 and if |vj | > τ1:
Lij := vj

end for
(7) Compute the ith row of U and R:

if |vi| < τ2 then
vi := τ2 · sign(vi)

end if
Uii = vi
for j = i+ 1, . . . , n and if vj 6= 0:

if |vj | > τ1 then
Uij := vj

else if |vj | > τ2 then
Rij := vj

end if
end for

(8) Clear nonzero elements of the row accumulator v:
for j = 1, . . . , n and if vj 6= 0:

vj := 0
end for

end for
(9) Perform the final re-scaling of the incomplete factors L and U :

for i = 1, . . . , n:
for j = 1, . . . , i and if (i, j) /∈ P (L):

Lij := Lij/(DL)ii
end for
for j = i, . . . , n and if (i, j) /∈ P (U):

Uij := Uij/(DR)jj
end for

ILU preconditioners for the incompressible Navier–Stokes equations 15

Fig. 5.1. Cylindrical domain with mesh 5 is shown on the left. The right picture zooms the
mesh near the lateral boundary to show anisotropic elemets, otherwise not seen on the left picture.

end for

Note that the row-wise variant of the two-parameter ILU factorization drops off
elements of matrix R` after processing ith row of A. This essentially saves the required
working memory.

If an available working memory limit is exhausted in the course of computations,
one can discard those entries of Ru which are never used later in computations. There-
fore, the factorization can be continued with (partially) compressed factors. In the
present implementation of ILU(τ1,τ2), the sparsity of matrices is exploited as follows:
L and U are stored in the CSR format using separate integer pointers. All the inner
loops are made along the sparsity structure indices. Other loops over row accumulator
vector v are based on linked-list data structure.

We remark that ILU(τ1,τ2) with τ1 = τ2 is similar to the ILUT(p,τ) dual pa-
rameter incomplete factorization [31] with p = n (all elements passing the threshold
criterion are kept in the factors). If no small pivots modification is done, the only
differences between the algorithms, are the scaling of pivots, and a row dependent
scaling of threshold values used in ILUT. Recall that we also preprocess the matrix
by a proper two-side scaling.

5. Numerical results. In this section, we show results of several numerical
experiments with different values of fluid, discretization and threshold parameters.
We look for optimal values of ILU thresholds and how is sensitive the preconditioner
performance to deviations of τ -s from this optimal values. The stopping criterion in
all experiments is the decrease of the residual by 10 orders of magnitude. Three flow
problems of increasing computational complexity are considered in this section.

5.1. Pipe flow. First, we consider a flow in a cylinder of circular cross-section.
The length of the cylinder is 2, the diameter is 1, w is the Poiseuille flow with
maxΓ0

|w| = 1. We prescribe zero no-slip conditions on the lateral boundary of the
cylinder. The parabolic inflow profile is prescribed on the inlet of the cylinder and
−ν(∇u) · n + pn = 0 on the outlet.

To discretize the problem, we build several tetrahedra subdivisions of Ω (the
lateral boundary is approximated by a triangulated surface). First, three increasingly
fine meshes with regular tetrahadra elements are constructed. The corresponding
number of degrees of freedom and average number of non-zero entries per row in
the saddle-point matrix from (1.3) are the following: d.o.f. = 7330, nz(A)/n = 19.5
(Mesh 1), d.o.f. = 42066, nz(A)/n = 27.3 (Mesh 2), d.o.f. = 296715, nz(A)/n = 34.1
(Mesh 3). Further, two more meshes are build, each of these two contains 3 layers of

16 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

Table 5.1
The dependence of ILU(τ) performance on the choice of threshold parameter for the pipe flow;

results are shown for ν = 0.001, α = 1, Meshes 3 and 5.

τ fillLU #it Tbuild Tit TCPU fillLU #it Tbuild Tit TCPU

Mesh 3 Mesh 5
0.100 0.387 135 1.2 13.5 14.7
0.080 0.497 94 1.5 10.2 11.7 0.385 129 2.3 23.3 25.6
0.070 0.571 76 1.7 8.7 10.3 0.434 115 2.5 21.6 24.1
0.060 0.667 60 1.9 7.3 9.2 0.519 69 2.9 13.7 16.6
0.050 0.793 52 2.3 6.8 9.1 0.640 62 3.4 13.2 16.6
0.040 0.969 49 2.9 7.0 9.9 0.798 52 4.2 12.1 16.4
0.030 1.239 44 3.9 7.2 11.1 1.003 43 5.4 11.2 16.6
0.020 1.722 30 5.9 5.9 11.8 1.360 31 7.7 9.5 17.3
0.010 2.917 22 12.3 6.1 18.4 2.209 24 15.0 10.0 25.0
0.007 3.754 18 17.8 5.9 23.8 2.766 18 21.0 8.7 29.7
0.005 4.700 16 25.1 6.2 31.3 3.384 16 28.8 8.9 37.7
0.003 6.472 13 41.6 6.3 47.9 4.520 12 46.5 8.2 54.7
0.002 8.207 11 61.3 6.4 67.7 5.612 12 67.4 9.6 77.0
0.001 11.954 9 115.5 7.0 122.5 8.007 10 125.4 10.6 135.9

anisotropic elements aligned along the lateral boundary. These two meshes mimic the
situation when one has to adapt a mesh to a boundary layer. The data for these two
meshes are given by d.o.f. = 501639, nz(A)/n = 37.0, anisotropy ratio is equal to 5
(Mesh 4), d.o.f. = 528598, nz(A)/n = 37.1, anisotropy ratio is equal to 10 (Mesh 5).
The later mesh is illustrated in Figure 5.1.

In all experiments in this section, the resulting linear algebraic systems are solved
by the preconditioned BiCGstab method with either ILU(τ) or ILU(τ1, τ2) precon-
ditioners, with zero initial guess. The ILU(τ1,τ2) preconditioner is computed by the
algorithm from section 4.1.3, and ILU(τ):=ILU(τ ,τ). All presented results are com-
puted with 5 iterations to balance the matrix, as described in section 4.1.1. Using only
1 iteration we experienced slightly worse performance of preconditioners. However,
without the pre-processing both ILU(τ) and ILU(τ1, τ2) fail for most of the examples
treated in the numerical section.

In our first series of experiments, we study the τ -dependence of the ILU(τ) precon-
ditioner performance. The computations were run on the finest mesh 3 for ν = 0.001
and α = 1. The results are presented in Table 5.1. Tbuild and Tit show CPU time
spent for building ILU factorization (including the two-side scaling) and iterations,
respectively; TCPU = Tbuild+Tit, and #it is the number of BiCGstab iterations needed
to satisfy the stoping criterion. The ratio of fill-in is computed from

fillLU = (nz(L) + nz(U))/ nz(A), nz(A) =
∑

ij

sign|Aij |.

Note that fillLU ≤ 1 means that the number of non-zero elements in factors is less
then in ILU(0), the commonly used ILU factorization by position. For smaller values
of τ we observe the increase of fill-in and Tbuild, but the decrease of iteration numbers
and Tit; both facts are expected. The optimal τ is found to be 0.05 and its variation
(τ ∈ [0.03, 0.08]) gives a minor increase of total computation time. We repeated the
same experiments with Mesh 5, which contains anisotropic elements. The results are
shown in Table 5.1. We observe that the performance of the preconditioner does not
change significantly, the optimal value of τ was found to be about the same. We run

ILU preconditioners for the incompressible Navier–Stokes equations 17

Fig. 5.2. The dependence of the optimal values of the threshold parameter τ in ILU(τ) on the
viscosity ν (left) and α = 1

∆t
(right). Both plots also show the bounds on τ where the efficiency of

the preconditioner is at least 70% of the optimal case.

the same set of experiments with meshes 1, 2, and 4, and observed that the optimal
values of all τ -s are almost grid independent.

Further, we study the dependence of optimal threshold parameters with respect
to the variation of ν and α. The results are presented in Figure 5.2: on the left plot
we vary ν for fixed α = 10 and given mesh 3, while on the right plot we vary α for
fixed ν = 0.01 and the same mesh. Optimal τ -s were found with respect to total
computational time, i.e. TCPU = Tbuild + Tit. We also compute a range of “quasi-
optimal” τ -s, which is defined as the set of all parameters τ such that the efficiency
of ILU(τ) decreases at most by 30% compared to the case of the optimal value. From
the plots we see that the optimal threshold values do depend on ν and α. However,
the range of acceptable values is rather wide, though it decreases for the diffusion
dominated case. For further experiments, we choose a quasi-optimal value τ = 0.03,
independent of parameters. Table 5.2 collects the results of experiments with this
quasi-optimal threshold value, showing the rate of fill-in, the number of iterations and
TCPU for all five meshes, different ν-s, and α-s. One observes convergent iterations for
all meshes and parameters, with certain loss of performance for the strongly convection
dominated Oseen problem discretized on strongly anisotropic mesh. It is interesting
that a moderately convection dominated problem, i.e. ν ∈ {0.1; 0.01; 0.001} appear
to be more amenable for efficient ILU preconditioning than diffusion dominated case.

We repeat the same set of experiments, but now with the two-parameter ILU
preconditioner. We set τ1 = 0.03 (equal to the quasi-optimal value in ILU(τ) precon-
ditioner) and τ2 = c0τ

2
1 , with c0 = 7. We note that in the symmetric positive definite

case, the author of [20] recommends an ad hoc choice of c0 = 10, while we found some
decreasing of c0 beneficial for the ILU(τ1,τ2) performance. The results are reported in
Table 5.3 and they appear to be largely comparable to those obtained with ILU(τ).

5.2. The Ethier–Steinman problem. Next we consider the well known Ethier-
Steinman solution for the Navier-Stokes equations from [14]. For chosen parameters
a, d and viscosity ν, the exact solution is given in [−1, 1]3 by

u1 = −a (eax sin(ay + dz) + eaz cos(ax+ dy)) e−νd
2t

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd
2t

u3 = −a (eaz sin(ax+ dy) + eay cos(az + dx)) e−νd
2t

18 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

Table 5.2
The performance of the one-parameter ILU(τ = 0.03) preconditioner for the pipe flow test case.

The results are shown for various values of viscosity ν, α, and different meshes.

ν: 1 10−1 10−2 10−3 10−4

Mesh α: 10 100 10 100 10 100 10 100 10 100

fillLU

1 0.88 0.73 0.74 0.80 0.80 1.06 1.06 1.18 1.17 1.20
2 0.89 0.78 0.78 0.62 0.72 0.94 1.26 1.19 1.71 1.24
3 0.89 0.85 0.85 0.66 0.72 0.72 1.24 1.08 2.86 1.25
4 0.89 0.86 0.86 0.74 0.77 0.71 1.00 0.92 1.83 1.14
5 0.83 0.81 0.80 0.70 0.73 0.73 1.00 0.99 1.91 1.02

#it
1 12 10 9 12 11 14 13 15 15 15
2 48 21 19 19 19 25 23 26 27 26
3 170 61 59 34 32 38 44 42 79 52
4 169 62 56 34 31 43 41 67 87 73
5 177 67 59 36 32 50 43 59 99 136

TCPU

1 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06
2 0.82 0.44 0.42 0.38 0.42 0.58 0.71 0.68 1.00 0.70
3 25.1 10.2 10.0 5.86 5.91 7.15 11.0 9.33 33.2 11.8
4 43.8 18.2 16.8 10.7 10.3 13.0 15.6 21.0 44.2 25.1
5 51.4 19.6 17.7 11.4 10.7 15.3 16.9 20.5 51.8 41.9

and

p = −a
2

2
(e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t.

In our experiments we set a = π/4, d = π/2 and vary ν. This problem was developed
as a 3D analogue to the Taylor vortex problem, for the purpose of benchmarking.
Although unlikely to be physically realized, it is a good test problem because it has
analitically known solution, the flow has no principle direction, but has a non-trivial
vortical structure.

For the purpose of testing the algebraic solver, we do not perform time-stepping,
but linearize the Navier–Stokes equation over the analytical solution at t = 0.1. For
the discretization, a regular tetrahedrization of the cube [−1, 1]3 is build. The coarsest
mesh is uniformly refined three times. This results in four gradually refined meshes.
The corresponding number of degrees of freedom and average number of non-zero
entries per row in the saddle-point matrix from (1.3) were the following: d.o.f. = 2251,
nz(A)/n = 17.3 (Mesh 1), d.o.f. = 12420, nz(A)/n = 25.8 (Mesh 2), d.o.f. = 75660,
nz(A)/n = 32.5 (Mesh 3), d.o.f. = 522220, nz(A)/n = 37.5 (Mesh 4). Similar to the
previous test, the resulting linear algebraic system was solved by BiCGstab method
with either ILU(τ1) or ILU(τ1, τ2) preconditioners and zero initial guess.

Figure 5.3 demonstrates the dependence of ILU(τ) performance with respect to
the choice of the threshold parameter τ . The experiments were run with ν = 0.01,
α = 10, and for all four meshes. The vertical axis shows the total CPU time per
degree of freedom. We observe certain dependence of optimal τ on the mesh size,

ILU preconditioners for the incompressible Navier–Stokes equations 19

Table 5.3
The performance of the two-parameter ILU(τ1 = 0.03, τ2 = 7τ2

1) preconditioner for the pipe
flow test case. The results are shown for various values of viscosity ν, α and different meshes.

ν: 1 10−1 10−2 10−3 10−4

Mesh α: 10 100 10 100 10 100 10 100 10 100

fillLU

1 0.91 0.73 0.74 0.76 0.77 0.96 1.01 1.07 1.11 1.09
2 0.93 0.79 0.80 0.62 0.72 0.84 1.21 1.03 1.65 1.09
3 0.93 0.88 0.88 0.67 0.73 0.70 1.20 0.95 2.59 1.10
4 0.91 0.88 0.87 0.74 0.77 0.69 0.97 0.84 1.69 1.01
5 0.86 0.83 0.83 0.71 0.74 0.71 0.97 0.88 1.74 0.94

#it
1 10 9 7 11 9 12 11 15 12 13
2 36 19 16 15 14 20 20 20 22 25
3 157 50 42 30 24 35 31 36 47 39
4 171 50 44 32 24 35 30 51 54 63
5 127 55 42 29 22 36 32 53 45 83

TCPU

1 0.06 0.05 0.05 0.06 0.06 0.08 0.10 0.10 0.11 0.09
2 0.95 0.62 0.58 0.49 0.59 0.81 1.39 0.99 2.11 1.08
3 26.9 11.7 10.7 7.21 7.27 8.75 17.9 12.7 61.1 15.0
4 49.5 20.0 18.6 13.5 12.5 14.4 23.0 22.7 68.6 29.5
5 39.7 21.5 18.3 13.1 12.2 15.5 24.2 24.3 68.3 34.3

Fig. 5.3. Dependence of ILU(τ) on the threshold parameter τ for the Ethier–Steinman test
case; ν = 0.01, α = 10.

but the range of quasi-optimal parameters is wide and τ ∈ [0.02, 0.08] would be a
reasonable choice for all meshes. We set τ = 0.02 and run computation with ILU(τ)
and ILU(τ, 7τ2) for different values of viscosity coefficient ν ∈ {1, 0.1, 0.01, 0.001} and
parameter α ∈ {1, 0.1, 0.01}. The results for two fine meshes are collected in Table 5.4.
From the results in this table, we see that in the range of moderate viscosity values,
both preconditions demonstrate very similar behaviour with ILU(τ) being somewhat
cheaper during the setup phase. For the diffusion dominated case (ν = 1, α = 1),
when the matrix becomes more symmetric, the two-parameter preconditioning wins
in terms of iteration number and total CPU time. The convection dominated case

20 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

Table 5.4
The performance of the ILU(τ = 0.02) and ILU(τ1 = 0.02, τ2 = 7τ2

1) preconditioners for the
Ethier–Steinman flow. The results are shown for various values of ν, α and two different meshes.

ν: 1 10−1 10−2 10−3

Mesh α: 1 10 100 1 10 100 1 10 100 1 10 100 ILU

fillLU

3 1.22 1.20 1.07 1.19 1.08 0.81 1.97 1.47 1.21 79.96 5.83 1.78 ILU1
3 1.21 1.19 1.07 1.20 1.08 0.81 1.98 1.46 1.12 20.62 4.93 1.64 ILU2
4 1.22 1.22 1.17 1.21 1.17 0.93 1.48 1.27 0.97 n/c 6.53 1.89 ILU1
4 1.20 1.20 1.16 1.20 1.16 0.93 1.53 1.30 0.96 9.28 5.33 1.80 ILU2

#it
3 72 46 18 29 14 17 12 15 24 n/c 38 28 ILU1
3 58 37 16 24 14 13 12 14 15 58 19 17 ILU2
4 337 296 50 119 38 26 27 22 31 n/c 83 44 ILU1
4 201 158 36 95 31 26 22 24 26 47 38 31 ILU2

TCPU

3 4.4 3.4 1.5 2.2 1.4 1.3 2.1 1.7 1.8 n/c 13.6 2.9 ILU1
3 4.2 3.5 2.8 3.3 2.7 2.0 7.6 5.2 3.4 492 46.1 6.2 ILU2
4 170.1 149.7 31.0 58.5 25.7 17.5 20.8 16.7 16.8 n/c 234.1 38.4 ILU1
4 93.8 96.9 35.7 69.9 35.1 26.8 51.2 42.8 35.1 2174 735 89.5 ILU2

appears to be the hardest. Here ILU(τ) fails for α ∈ {1, 10}, while the usage of the
two-parameter preconditioner leads to a convergent method.

Finally we have a closer look at the most hard case from Table 5.4, i.e. ν = 0.001
and α = 1, and experiment with different values of the threshold parameters. Table 5.5
shows the result of this experiments for ν = 0.001 and α = 1 on a fixed given Mesh
3. We see that similar to the pipe flow case, optimal parameter for ILU(τ) decreases.
Interesting enough, that the decrease of ν and α by 10 times resulted in the 10
times decrease of τopt, which is consistent with the ellipticity bound on matrix A in
Theorem 3.2. Also a ‘comfortable’ zone around τopt shrinks making an overshoot in
choosing quasi-optimal τ easily possible. For this convection dominated problem, one
clearly benefits from using the two-parameter ILU preconditioner. For two-parameter
ILU, we fixed τ1 = 0.02 and vary the scaling factor c0 in τ2 = c0τ

2
1 . The optimal

c0 = 8 is close to c0 = 7 we found suitable in the case of pipe flow. Overall, the two-
parameter ILU factorization leads to more efficient preconditioner in terms of memory
usage (fill-in) and iteration counts, but with more expensive set-up stage, compared to
the standard ILU(τ).

5.3. Flow in a right coronary artery. Finally, we study the performance
of the ILU preconditioner for a model hemodynamic problem of a blood flow in a
right coronary artery. The geometry of the flow domain was recovered from a real
patient coronary CT angiography, the ANI3D package [24] was used to generate the
tetrahedral mesh (see Figure 5.5) and to build the finite element systems (1.3). The
diameter of the inlet cross-section is about 0.27 cm and the whole domain can be
embedded in a parallelogram with sides 6.5 cm × 6.8 cm × 5 cm. The mesh consists
of 120 191 tetrahedra leading to the discrete Navier–Stokes system with 623 883 of
unknowns. Other model parameters are ν = 0.04 cm2/s, ρ = 1 g/cm, one cardiac
cycle period was 0.735 s. The inlet velocity waveform is shown in Figure 5.4 (top-
left); it was suggested in [19] on the basis of clinical measurements. This waveform

ILU preconditioners for the incompressible Navier–Stokes equations 21

Table 5.5
The performance of ILU(τ) and ILU(τ1, τ2) depending on the choice of threshold parameters

for the Ethier–Steinman flow; results are shown for ν = 0.001, α = 1, Mesh 3.

τ fillLU #it TCPU τ c0 fillLU #it TCPU

ILU(τ) ILU(τ, c0τ
2)

0.0065 76.041 n/c
0.0060 76.816 107 656.8 0.02 12.5 27.239 n/c
0.0055 78.068 55 632.5 0.02 10 23.764 553 570.7
0.0050 79.769 34 655.2 0.02 9 22.609 145 450.8
0.0045 82.126 26 676.0 0.02 8 21.537 86 438.2
0.0040 85.046 18 724.1 0.02 7.5 21.084 73 439.7
0.0030 93.718 12 868.7 0.02 7 20.616 58 440.1
0.0020 108.269 8 1135.7 0.02 6 19.963 50 448.8
0.0015 119.858 7 1383.4 0.02 5 18.967 45 470.1
0.0010 137.594 5 1781.1 0.02 4 18.108 39 508.4

Fig. 5.4. Right coronary artery test case: The top-left plot shows the velocity waveform on the
inflow, the top-right plot shows the number of BiCGStab iterations, the bottom-left plot shows the
fill-in ratio, and the bottom-right plot shows linear system solution CPU times. All shown data are
functions of time.

was used to define the flow rate through the inflow cross-section, while for the inflow
velocity profile we prescribed the Poiseuille flow. The Neumann boundary condition
−ν(∇u) ·n + pn = 0 was imposed on all outflow boundaries. No elasticity model was
used for the vessel walls, i.e., the walls were treated as rigid.

The Navier–Stokes system (1.1) was integrated in time using a semi-implicit sec-
ond order method with ∆t = 0.005. The Oseen problem (1.2) was solved on every
time step with the preconditioned BiCGstab method. The solution from the pre-
vious time step was used as the initial guess. For the preconditioner we used the
two-parameter ILU factorization with the choice of parameters τ1 = 0.03, τ2 = 7τ2

1 .
Recall that these are quasi-optimal parameters for pipe flows from section 5.1. This
choice of the preconditioner and parameters results in stable computations over the

22 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

whole cardiac cycle. The preconditioner performance data is shown in Figure 5.4.
It is interesting to note that the graph of the fill-in rate for the LU-factors repeats
remarkably well the waveform of the inflow velocity. Thanks to this adaptive feature
of the threshold factorization, the variations of the iteration numbers and computa-
tional times per linear solve are rather modest, see the right plots in Figure 5.4. The
computed solution was physiologically relevant; it is illustrated in Figure 5.5.

6. Closing remarks and conclusions. In this paper, we studied threshold ILU
preconditioners for the discrete linearized Navier-Stokes system. Incomplete elemen-
twise factorization preconditioners have a clear advantage of being rather insensitive
to several factors, such as a choice of discretization, boundary conditions for gov-
erning PDEs, domain geometry, and flow directions, which otherwise influence the
performance of many other algebraic solvers for the fluid dynamics problem. Further-
more, the presented method does not need a choice of subsolvers or inner iterations
in contrast to many block preconditioners. It is well-known that for discrete elliptic
problems, ILU preconditioners do not scale optimally with respect to the number of
unknowns. We observed this non-optimality in our numerical experiments as well.
However, in numerical experiments this mesh dependence was more pronounced for
diffusion dominated flows and less evident when convection plays an important role.
For 3D problems, when the number of grid refinement levels is not large, such depen-
dence can be an acceptable price for other robustness properties of the preconditioner.

Small values of viscosity parameters cause problems for most, if not all, known
preconditioners for (1.3). Our results show that the threshold ILU is not an excep-
tion. At the same time, we found that the performance range with respect to ν of
ILU(τ) and, especially, of ILU(τ1, τ2) is rather impressive, and likely covers most of
laminar flows. Introducing subgrid models for higher Re numbers (e.g., turbulent)
flows changes the discrete system, and since such models are commonly dissipative,
this improves algebraic properties of discrete system and should make the presented
preconditioning also feasible. We observed such an improvement if SUPG stabilization
added to the finite element formulation of the Ethier–Steinman problem for ν = 10−3,
but do not include these extra results in the report.

Incomplete threshold factorization is not a black-box method. A user should make
at least a choice of threshold parameter(s), and many techniques have been suggested
in the literature to improve the performance of ILU preconditioners. For fluid flows
treated in this paper, we found that natural u-p ordering of unknowns and matrix
two-side scaling is sufficient for numerically stable factorizations. Further performance
improvements by using, for example, matrix-band diminishing re-ordering of velocity
unknowns, could be possible. Although optimal threshold parameters appear to be
flow-dependent, quasi-optimal τ -s can be chosen and successfully used for a wide range
of flow and discretization parameters.

We considered a Tismenetsky–Kaporin type incomplete two-parameter factoriza-
tion for non-symmetric matrices and tested it for matrices arising in computational
fluid dynamics. While for modest values of ν (leading to a parity between convection
and diffusion terms) the performance of ILU(τ1,τ2) was similar to that of ILU(τ), for
larger and smaller ν-s ILU(τ1,τ2) was found to provide a more efficient preconditioner.
It was observed that ILU(τ1, τ2) preconditioner has a low fill-in and leads to faster
convergent iterations for the expense of more time consuming set-up phase. This
properties may make it an ideal choice for time-dependent computations, when one
can re-use a preconditioner over several time steps.

A numerical analysis of incomplete factorizations for non-symmetric matrices is

ILU preconditioners for the incompressible Navier–Stokes equations 23

Fig. 5.5. Right coronary artery: Top picture shows selected steamlines colored by the velocity
absolute value at time 0.4s; Middle picture shows the pressure distribution at time 0.4s; Bottom
picture illustrates the grid for this test case.

24 I.N. Konshin, M.A. Olshanskii, and Yu.V. Vassilevski

still limited. This paper proves numerical stability bounds for the exact LU factor-
ization of non-symmetric saddle-point matrices. We estimated the dependence of the
constants in these bounds on the flow problem parameters. This might give some
insight into the performance of incomplete factorizations applied to flow problems.

The two-parameter ILU preconditioner was applied to simulate a blood flow in
a right coronary artery reconstructed from a real patient coronary CT angiography.
We found the performance of the preconditioner satisfactory.

Acknowledgements. The authors thank Tatiana Dobroserdova and Alexan-
der Danilov for the assistance in building tetrahedral meshes and finite element sys-
tems, and Sergei Goreinov for sharing his implementation of the row-wise variant of
the ILU(τ1,τ2) factorization. Numerical implementation and experiments in sections
5.1, 5.2 have been supported by RFBR grant 14-01-00830. We are grateful to Igor
Kaporin for his insightful comments on a draft of this report.

REFERENCES

[1] M. Benzi, Preconditioning techniques for large linear systems: a survey, Journal of Computa-
tional Physics, 182 (2002), pp. 418–477.

[2] , A generalization of the hermitian and skew-hermitian splitting iteration, SIAM Journal
on Matrix Analysis and Applications, 31 (2009), pp. 360–374.

[3] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numerica, 14 (2005), pp. 1–137.

[4] M. Benzi, M. Ng, Q. Niu, and Z. Wang, A relaxed dimensional factorization preconditioner
for the incompressible Navier–Stokes equations, Journal of Computational Physics, 230
(2011), pp. 6185–6202.

[5] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian precondition-
ers for the incompressible Navier–Stokes equations, International Journal for Numerical
Methods in Fluids, 66 (2011), pp. 486–508.

[6] M. Braack, P. B. Mucha, and W. M. Zajaczkowski, Directional do-nothing condition for
the Navier–Stokes equations, Journal of Computational Mathematics, 32 (2014), pp. 507–
521.

[7] Z.-H. Cao, A class of constraint preconditioners for nonsymmetric saddle point matrices,
Numerische Mathematik, 103 (2006), pp. 47–61.

[8] O. Dahl and S. Ø. Wille, An ILU preconditioner with coupled node fill-in for iterative so-
lution of the mixed finite element formulation of the 2D and 3D Navier-Stokes equations,
International Journal for Numerical Methods in Fluids, 15 (1992), pp. 525–544.

[9] V. F. de Almeida, A. M. Chapman, and J. J. Derby, On equilibration and sparse fac-
torization of matrices arising in finite element solutions of partial differential equations,
Numerical Methods for Partial Differential Equations, 16 (2000), pp. 11–29.

[10] S. Deparis, G. Grandperrin, and A. Quarteroni, Parallel preconditioners for the unsteady
Navier–Stokes equations and applications to hemodynamics simulations, Computers &
Fluids, 92 (2014), pp. 253–273.

[11] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier–
Stokes equations, SIAM Journal on Scientific Computing, 17 (1996), pp. 33–46.

[12] H. C. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics, Oxford University Press, 2014.

[13] H. C. Elman and R. S. Tuminaro, Boundary conditions in approximate commutator precon-
ditioners for the Navier–Stokes equations, Electronic Transactions on Numerical Analysis,
35 (2009), pp. 257–280.

[14] C. R. Ethier and D. Steinman, Exact fully 3D Navier–Stokes solutions for benchmarking,
International Journal for Numerical Methods in Fluids, 19 (1994), pp. 369–375.

[15] V. Girault and P.-A. Raviart, Finite element approximation of the navier-stokes equations,
Lecture Notes in Mathematics, Berlin Springer Verlag, 749 (1979).

[16] G. H. Golub and C. v. Loan, Matrix computations, Baltimore, MD: Johns Hopkins University
Press, 1996.

[17] G. H. Golub and C. Van Loan, Unsymmetric positive definite linear systems, Linear Algebra
and its Applications, 28 (1979), pp. 85–97.

ILU preconditioners for the incompressible Navier–Stokes equations 25

[18] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimen-
sions, IMA Journal of Numerical Analysis, 34 (2014), pp. 1489–1508.

[19] J. Jung, A. Hassanein, and R. W. Lyczkowski, Hemodynamic computation using multiphase
flow dynamics in a right coronary artery, Annals of biomedical engineering, 34 (2006),
pp. 393–407.

[20] I. E. Kaporin, High quality preconditioning of a general symmetric positive definite matrix
based on its UTU + UTR+RTU-decomposition, Numerical Linear Algebra with Applica-
tions, 5 (1998), pp. 483–509.

[21] , Scaling, reordering, and diagonal pivoting in ilu preconditionings, Russian Journal of
Numerical Analysis and Mathematical Modelling rnam, 22 (2007), pp. 341–375.

[22] , Scaling, preconditioning, and superlinear convergence in gmres-type iterations, Matrix
Methods: Theory, Algorithms, Applications (V. Olshevsky, E. Tyrtyshnikov, eds.), World
Scientific Publ, (2010), pp. 273–295.

[23] K. Lipnikov, Y. Vassilevski, A. Danilov, et al., Advanced Numerical Instruments 2D,
http://sourceforge.net/projects/ani2d.

[24] , Advanced Numerical Instruments 3D, http://sourceforge.net/projects/ani3d.
[25] O. E. Livne and G. H. Golub, Scaling by binormalization, Numerical Algorithms, 35 (2004),

pp. 97–120.
[26] J. Mayer, Symmetric permutations for i-matrices to delay and avoid small pivots during

factorization, SIAM Journal on Scientific Computing, 30 (2008), pp. 982–996.
[27] M. A. Olshanskii and A. Reusken, Grad-div stablilization for Stokes equations, Mathematics

of Computation, 73 (2004), pp. 1699–1718.
[28] M. A. Ol’shanskii and V. M. Staroverov, On simulation of outflow boundary conditions in

finite difference calculations for incompressible fluid, International Journal for Numerical
Methods in Fluids, 33 (2000), pp. 499–534.

[29] M. A. Olshanskii and E. E. Tyrtyshnikov, Iterative methods for linear systems: theory and
applications, SIAM, 2014.

[30] M. A. Olshanskii and Y. V. Vassilevski, Pressure Schur complement preconditioners for the
discrete Oseen problem, SIAM Journal on Scientific Computing, 29 (2007), pp. 2686–2704.

[31] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[32] R. L. Sani and P. M. Gresho, Résumé and remarks on the open boundary condition minisym-

posium, International Journal for Numerical Methods in Fluids, 18 (1994), pp. 983–1008.
[33] J. Scott and M. Tuma, On signed incomplete Cholesky factorization preconditioners for

saddle-point systems, SIAM Journal on Scientific Computing, 36 (2014), pp. A2984–A3010.
[34] A. Segal, M. ur Rehman, and C. Vuik, Preconditioners for incompressible Navier–Stokes

solvers, Numerical Mathematics: Theory, Methods and Applications, 3 (2010), pp. 245–
275.

[35] G. W. Soules, The rate of convergence of Sinkhorn balancing, Linear Algebra and its Appli-
cations, 150 (1991), pp. 3–40.

[36] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer, New York, 1993.
[37] R. Temam, Navier–Stokes equations: theory and numerical analysis, vol. 343, American Math-

ematical Soc., 2001.
[38] M. Tismenetsky, A new preconditioning technique for solving large sparse linear systems,

Linear Algebra and its Applications, 154 (1991), pp. 331–353.
[39] S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Compu-

tational Approache, vol. 6, Springer Science & Business Media, 1999.
[40] C. Vuik, G. Segal, et al., A comparison of preconditioners for incompressible Navier–Stokes

solvers, International Journal for Numerical Methods in Fluids, 57 (2008), pp. 1731–1751.
[41] , Simple-type preconditioners for the Oseen problem, International Journal for Numerical

Methods in Fluids, 61 (2009), pp. 432–452.
[42] M. Wabro, AMGe—coarsening strategies and application to the Oseen equations, SIAM Jour-

nal on Scientific Computing, 27 (2006), pp. 2077–2097.
[43] J. Zhao, The generalized Cholesky factorization method for saddle point problems, Applied

Mathematics and Computation, 92 (1998), pp. 49–58.

