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Abstract

In this paper, we derive the monotonicity conditions for condensed
algebraic systems obtained by the discretization of the Poisson’s prob-
lem by the classical lowest order Raviart-Thomas (RTy) and the piece-
wise constant fluxes (PWCF) MFE methods on triangular and tetra-
hedral meshes. We also establish the correspondence between the con-
densed system matrices resulting from application of these two meth-
ods.

1 Introduction

In this paper, we study the monotonicity characteristics of two mixed
hybrid finite element methods [2] on unstructured triangular (2D) and
tetrahedral (3D) meshes. The methods we consider are the classical
lowest order Raviart-Thomas (RTp) MFE method [5], [6] and the piece-
wise constant fluxes (PWCF) MFE method [3], [1].

The diffusion problem we discretize using both method is as follows:

—Ap = [ inQ (1)
with Dirichlet boundary condition:
p =0 on0Q, (2)

where () is a simply connected domain either in 2D or 3D.

For the PWCF method, we derive the underlying algebraic system
and show the representation of the condensed system matrices that
allows to easily establish the monotonicity criteria for both triangular
and tetrahedral meshes. The similar study for the R7Ty method on
triangular meshes was presented in [4], we extend it to the case of
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tetrahedral meshes, and make the conclusion about the correspondence
of the condensed matrices for the two methods in 2D and 3D.

In Section 2 we give the description of the mixed finite element
method and the underlying algebraic system for problem (1), (2). We
derive the monotonicity conditions for the PWCF method on trian-
gular meshes in Section 3.1 and on tetrahedral meshes in Section 3.2.
The monotonicity result for RTy MFEM on triangular meshes is given
in Section 4.1, and the result on tetrahedral meshes, along with the
comparison of matrices to the ones resulting from the PWCF method,
is shown in Section 4.2.

2 Mixed Finite Element Method

2.1 Mixed hybrid formulation for a polygonal (2D)
or polyhedral (3D) cell

Let w = —Vp be the flux vector function, then the equivalent mixed
form of the problem (1), (2) is as follows:

u + Vp = 0 inQ,
Viu = f inQ, (3)
p = 0 ondf.

The weak formulation of (3) is as follows: Find (u,p) € V x P such
that
/u-vdx—/p(v-v)dx = 0,
¢ (4)
j(V-u)qda: = / fadx
Q Q

for all (v,q) € V x P. Here, V = Hg;, (), and P = Lo(9Q).

We partition € into m mesh cells E} with interfaces I'y; between
mesh cells Fy, and Fj, k < [, and faces I'; on the boundary 9. We can
m

write Q = Z E).. The the mixed variational macro-hybrid formulation
k=1
to (3), reads as follows: find (@, p, \) € V x P x A such that

ag(w,v) + by, v) + ca(\,v) = 0
bu (g, w) = (@) (®)
CH (ﬂ7 ﬂ) = 0



for all (U, q, @) € V x P x A, where
ap (B, D) = Y ani(vr, ur)
k=1

bu(p, ©) = ZbH,k(pk, o)
=1

CH(X7 ﬁ) = Z / (’U}C -nk))\kl ds
ki=1YTr
k<l

(@) = - fode
k=1

aH,k:/ uy - v dr, bH,k:—/ p(V-vp)de, k=1,....,m,
Ey Ey
(6)

and ny, is the outward unit normal to dF), which is the boundary of
Ek, k= L...,m.

Here,
V = Vix..xV,,
P = P x..xP,,
A = ] Au @)
k=1
k<l

with Vi, = Hgiw(Er), P = L2(Ey), and Ay = Lo(Tw), |[Twi| # 0,
1<k<l<m.

Next, we choose finite dimensional subspaces V;, C V., P, C P,
and Ay, € A. With these definitions, the mixed hybrid finite element
discretization of (1), (2) reads as follows: find (@Ws, Pr, An) € Vi x
Py, x Ay, such that

ag(@n, ©n) + ba®@,, n) + ca(An,vn) = 0
br(@n, wn) — ou(Pp, Gn) = 1u@) 6
CH(ﬁhv Hh) = 0

for all (Un, Gp,, Ti,) € Vi X Py x Ap. The latter FE problem results in
the system of linear algebraic equations

w 0
Alp|=|F 9)
A 0
with the symmetric matrix
M BT (OT m
A= B 0 0| =Y NadN], (10)
cC 0 0 k=1



where

M, BI cCF
Ak: Bk 0 0 ) (11)
Cp 0 0

each My, By, C} are local matrices for a cell Ey, and N}, is an appro-
priate subassembling matrix, k = 1,...,m.

2.2 Reduced algebraic system (Schur-complement)

To get the monotonicity condition for the algebraic system (9), we
perform the following condensation procedure:
First, eliminating the variable w, we get the system:

w@-(0.

B B m
Sy = (C) M1 (BT 7)) = E Nk Sp/\,k/\/pTA,k (13)
k=1

where

is a symmetric positive definite (SPD) matrix.
Then, eliminating the variable 7, we come to the Schur-complement
system:
S\l = ¢ (14)

with the Schur-complement matrix

Sy = (BM7'BT = BM'CT(CM'CT)T'\CMT'BT) = > Nax Sax Ny

k=1
(15)
and the right-hand side
¢=C (M 'BY"(BM'B")")F. (16)
Here,
B -
S = (er) b (81 ).
Sak = (BeM; 'BL — BM; 'CL(Cp M, 'CFHY~*Cx M, ' BF) ( |
17

and Ny, and N i are the appropriate subassembling matrices, k =
1, m.

)



3 Piece-Wise Constant Fluxes (PWCF) Method
on triangular and tetrahedral meshes

3.1 Monotonicity condition for PWCF method on
triangular meshes

Assume that the domain 2 is partitioned using a triangular mesh .
Let Ej be a mesh cell, we denote its faces by I';, and we denote an
angle opposite to I'; by a;, i = 1, 3. In this Section we investigate
conditions under which the global system matrix for the problem (1)-
(2) is a singular M-matrix. Note that the global matrix Sy is an M-
matrix if and only if local matrices Sy ; are M-matrices for all mesh
cells E,.

We consider a triangular cell Fy. Without the loss of generality,
we assume the height dropped onto the face I'; to be of length 1, i.e.
h1 = 1. As before, we denote the angle opposite to the face I'; by «,
i =1, 3. We denote the outward unit normal vector to I'; by n;.

There are two distinct geometries that can be described by the
measure of one of the angles, say, as. The first is a triangle with three
acute angles, as shown on Figure 1. The second is a triangle with an
obtuse angle as. An example of such triangle is given on Figure 2.

R

a2 a,

Figure 1: A triangle with three acute angles.

Regardless of the shape of s, we have

1 1

D1 = cotag + cotaz, [Fo| = sinasg [T = sin ap

a (0 (1) _ (sinag 1y _ [—sinas
= (—1)’ nyt = <cosa3)’ 3o = (COSOQ )

(18)

and
1
|Ex| = 3 (cotas + cotas) . (19)

We use the PWCF method to discretize the problem (3) on E.
To do so, we split the cell E} into two triangular subcells e; and es



Figure 2: A triangle with an obtuse angle .

by passing the line through the node opposite to the face I'y and the
middle of the face I'y. Clearly, |e1| = |e2| = $|E]|.

Let w;, i = 1, 3, be the PWCF basis vector functions satisfying
the following:

In e,
’11)1'7’1,1:1, wl'n2:0;
’11)2'77,1:0, ’LUQ'?’LQZI;
w3 = 0.

Ineg,
w;-ng =1, w;-ng = 0;
w3 nle, ’LU3'7’L3=1;
wo = 0.

Therefore, the basis vector functions can be written explicitly:

T
(—Com3 —1) in ey,

sin ag

w; = T
(— €08 a2 —1) in eg,
sin ao
. T
( - 0) inep,
w2 — Sin &3
0, in eg,
. T
w3 = (7 sin ag ? 0) n €z,
0, inej.



The resulting matrix blocks for the local system are as follows:

1 1 COs (3 COS (v
sin® a3 sin® o) sin® a3 sin® [P
E COs Q. 1
M, = | £ o2 — 0 ,
sin” ag sin® ag
COS (/9 0 1
sin? a9 sin? s
_ 1 20
B, = (cot ag + cot ag Sha; sn a2> , ( )
cot ag + cot ag 0 0
1
Cv = 0 sin aig 0
0 0 1
SN o
Let .
fi = — fdx. (21)
|Ekl| J g,

Then, the local system for the cell E can be written as

M, BF CI\ (u 0
By, 0 0 B = —fk . (22)
Cy O 0 A 0

Taking the Schur complement, we obtain the system in terms of p

and \,
() = ()

with the system matrix

E)l (cot azfcot a3)2 — cot ag(C(;Zangcot ag) — cot ag(cc;?)ngrcot as)
Sp)\’k = ﬁ —2 — cot az(cot aa+cot az) 1+5m21 . cot ag cot az
—2 — cot aa(cot aa+cot az) cot ag cot a3 1+sin21a2
(24)
Taking the Schur complement again, we get the system in terms of
X’
SxeA = F, (25)
where
(cot aa+-cot 043)2 — cot ag(cot ag+cot ag) — cot az(cot aa+cot ag)
S)\,k _ ﬁ ( — cot az(cot aa+cot az) Sin% = cot ap ci)t ag—1 )
— cot az(cot astcot auz) cot aix cot aeg—1 sinZap
(26)



and

_ e
2

F (27)

1

We assume that only ao can be obtuse, therefore cot ag > 0. Hence,
for matrix Sy 1 to be an M-matrix, we should have

(6%} S g 9
(&%) S % ) (28)
agtasz > 3.
That condition can be written as
T
aigg, i=1, 3. (29)

Note that unlike the matrix S, the matrix Sy ; is never an M-
matrix.

If condition 29 holds for all the cells Ey, k& = 1, m, including the
cells adjacent to the boundary of €, i.e. Ej such that |0E, NOQ| # 0,
then the global matrix S is also a singular M-matrix.

3.2 Monotonicity condition for PWCF method on
tetrahedral meshes

In this Section, we consider the problem (1)—(2) in the domain 2 € R3.
We assume that ) is partitioned into tetrahedral mesh cells Ejy, and
consider the PWCF method on the corresponding tetrahedral mesh
Qp,.

3.2.1 PWCF basis vector functions

Let Ej% be a tetrahedral mesh cell with vertices V; and faces I';, i =
T, 4. We set Ty = (VaVaVa), Ty = (ViVaVa), Ty = (ViV3Va), and
'y = (V112V3). Let n; be the outward unit normal vector on a face
T';, 2 =1, 4. We partition the cell E} into two tetrahedral subcells e
and e; with the internal triangular interface formed by the vertices V7,
V, and the midpoint of the edge V2V3, as shown on Figure 3.

We define the PWCF basis vector functions, w;, i = 1, 4, as follows:
In €1,

w1~n1:1, w1'7’L3:0, 'w1~n4:0;
w3~n1:0, 1.U3"I’L3:1, 'w3~n4:0;
wyg-ng =0, wyg-ng =0, wyg-ng = 1;
wo = 0.



N v,

Figure 3: A tetrahedral cell Ej partitioned into subcells e; and es.

Ineg7
w1~n1:1, w1 -Ny =
11)2'7l1:0, wo - Ny =
wy-ny =0, wy-ne
w3z = 0.

0, w1 Ny =
y W2 Ny
:0, Wy - Ny

1

Then, we can write the PWCEF basis explicitly:

’I’L3 X Ny
(ng X ny)
’I’L2 X Ny

(ne X ny)

O

71 X Ny
ns - n1 X n4)
0

7’1,1><7L3

wo = { n1 X My
{’I’LQ ’I’L1 X’I’L4)

- (n1 X ng)
1X712

n1 X TLQ)

in ey,
in eq,

in €1,

in eg,
in ey,

in €2,

in €1,

ines.

|
o

= 1;

The local matrices My, By and C), can be written as:

wi|*  w;-ws

M, [Ex| | w2-wr [wz?
w3 - w; W3- Wy
wy - W1 wy - Wo

Br = (=i —[Fa2| —|Ty

Cp = diag{lrll7|F2|7|F3|7|F4|}7

w1 - w3 W1 Wy

wo - W3 W2 Wy

ws|*  ws-wy

wy - ws [Jwyl]?
—|T4l) ,

)

(31)



where | Ej| is the volume of the tetrahedron Fj, and |T';] is the area of
face I';, 1 =1, ..., 4.
By calculation, we obtain the following result:

Statement 1 Let Sy be the condensed matriz defined as in (15),
which is obtained by using PWCF method, then Sy can be represented
as:

ISR IT1[|T2|(n1 - n2)  |T1f|Ts|(ny - m3)  [Ti]|Tal(n - 1)
_ 1 [ Def[Dif(ne - ma)  [Dofnef® [D2f[Ts)(n2 - ns)  [T2f[Taf(n2 - n)
|Ex| | IT3l[C1](ns - na)  |Ts][T2f(ns - n2) T |?(|7es]|? IT3|[T4|(n3 - 14)
ITa|[T1|(ng - m1)  [Daf[T2f(na - n2)  [Taf|Ts](n4 - n3) T4 ]? (|7 |?
(32)
Therefore, Sx is a singular M-matriz if and only if the angle

between any two faces is less or equal to 7.

Sk

Let us state the following facts:

Statement 2 Let a, b, ¢ be vectors in R3, then
(a-(bxc)” = |al?bxcll*~(a-b) (b x ¢) - (ax c))+(ac)((bxc)- (axb)).
(33)
Statement 3 Let a, b, ¢, d be vectors in R3, then
(a-(exd))(b-(cxd))

(a-b)llexd|? —(a-c)((cxd)-(bxd)+(a-d)((cxd)-(bxe)
(a-b)llex d? ~ (b-¢) (e x d)-(axd)+(b-d)((cxd)-(axc) .

(34)
Then, we derive the inverse of matrix Mj, which is as follows:
H'ﬂlH2 7112 ni-ns3 1My
. 2, (no-(ngxng)? . (o (ng Xny))(ng-(ng Xng)) .
M= L frem In2l™+ = i n2ns Try xma 2 na
k (ng-(nqx . X - X 2

|Bi] | mama namg— (ras(ramaing g | 28 A
T4 M T4 Mo T4 M3 H"4H2

(35)

Using the Statements (2), (3), one can verify by matrix multiplica-
tion that MM~—! = I,.
Let us state another fact used in our derivation:

Statement 4 In the notations used, we have the following relation-
ship:
T2| (n2 - (n1 x n4)) = —[I's] (n3 - (N1 X nyg)) (36)

Proof Let uy = V1V§, Uo = Vl‘/g,, Uz = V1V41, then we have

(uz —uz) X (ug —ug) _ us Xug
ni |F1| ) n2 - |F2| )
(37)
_ Uz Xuy _ up X U2
N | Y N | VY

10



Consequently,

(ul X ’LLQ) X (’U,Q X ’U,3)

no-(ny Xny) = ni-(ngxXng) =ng- 51Tl
_ ((’U,g X 'u,l).u2)(u2 . (U1 X U3))
L1 [|T2f|Ts
(38)
and
ny- (N1 xnay) = mi-(ngxng)=n; - (w1 X uz) x (u3z X uy)

L3Iy

((u?, X UQ).Ul)(Ul . (U2 X U3))

T2 [[Ls[ [Ty
(39)
The result follows.
Using the facts above, we derive
M~—1BT(BM~'BT)"'BM~! =
0 0 0 0
0 (n2-(nixna4))? _ (n2:(nixn4))(ns-(n1xns))
1 nixna? Tryxnal?
[Ex| 0 _(n2(nixng))(ns (nixn.)) n3-(n1xXn4) 0
[ Xyl [EEREAR
0 0
(40)

The result given in Statement (1) can then be easily obtained. If
the condition in the statement holds for all the cells Ey, k = 1,m,
including the cells adjacent to the boundary of €2, i.e. FEj such that
|OE, N0 # 0, then the global matrix Sy is also a singular M-matrix.

Additionally, let

na.(nixXng)

5 _ malmrnn (41)
- [[n1xnal] 2
then we can derive
4 s ||T
BM BT = _M, (42)
| Ek|
1
BM*CT:m(o 208[Ts||Ts| 2aB[Ts|[Ts| 0),  (43)

and

11



CM~ICT =

T4 % |[m ||? [T1]|T2|(n1m2) [IT1[|Ts|(nr1ms)  [T1][Tal(nimna)

_1 | IP2lITil(n2-my)  [T2?([nz)®+a®)  |T2||Ts|(no-ns—af) T2|[Ta|(rnamna)

[Ek| | ITslITil(na-n) [Ts|[Te|(ngme—aB)  [Tal*([nall*+8%)  |Ts|[Tal(na-na)
[T4||IT1|(ram1)  [Tal[T2](nanz) [T4||Ts|(14 m3) [Ta]? | al?

This gives us the reduced matrix Sy , first introduced in (13).

4 Lowest order Raviart-Thomas (R7;) Method
on triangular and tetrahedral meshes

4.1 Monotonicity condition for R7; Method on tri-
angular meshes

Let us consider the problem (1)—(2) in the domain 2 € R%. We assume
that € is partitioned into triangular mesh cells Ej, and consider the
RTy method on the corresponding triangular mesh .

As shown in [4], the monotonicity condition for the local matrix
Sy k is as follows:
Sxk 18 a singular M-matriz if and only if none of the interior angles
of mesh cell Ey are obtuse angles.

Under the notations introduced in Section 3.1, it can be written as

Oéig 5 1217 3. (45)

vl 3

Note that matrices Sy and, therefore, the monotonicity conditions,
coincide for RTy and PWCF methods on triangular meshes.

4.2 Monotonicity condition for R7; Method on tetra-
hedral meshes

In this Section, we consider the problem (1)—(2) in the domain 2 € R3.

We assume that €2 is partitioned into tetrahedral mesh cells Ej, and

consider the RTy method on the corresponding tetrahedral mesh €y,.
First, let us observe the following fact:

Statement 5 The condensed matriz Sy j 1s independent of basis choice
on RTy(K) space.

Proof Let {w;}, {e;} be two sets of basis vector functions for RTy(K),
then there exists a linear transformation P such that

P(w17w23w37w4) = (61762763764)' (46)

12



Therefore, for matrices M, B, C for two different basis, we have

M., = P"M,P, B.= B,P, C.=C,P. (47)

Se = C.M;' (M, - BT(B.M;'BT)"'B.) M;'CT
— C PP M, P~ (PTM,P — PTBT(B,PP~'M;'P~"PTB,)"
P IM L PTPTCT
= CuMy' (M, — BL(B,M,'BL)"'B,) M;'CL
= Sk
(48)

Since S)  is independent of basis choice on RTy(K) space, instead
of using classical basis {w;} for uy, s.t. w;-n; = d;; on I';, we use the
following basis:

1 0 0 Ty — ]
er=\(0], e=|1], es=[0], es=[a2—25 (49)
0 0 1 T3 — T4

where ¢ = (2§, x5, 25)7T is the barycenter of Ey, i.e.

r§ = —Z% / 1 dx,
x5 = EL/ o dx, (50)
T35 = —L% / x3dx.

As a result, the matrix M} now becomes a diagonal matrix and can
be easily inverted:

1 00 0

010 0

Me=1E- g o 1 0
00 0 \E—lkl Jg, (@1 = 29)* + (z2 — 25)* + (23 — 2§)* dz
(51)

The corresponding matrices By, and C}, are:

By=-(V-er V-es Vees Veesd) = (0 0 0 —3|E),

(52)

13
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fFl e1-nydr fFl es-nydr fFl es-nidx fFl es nydr
fF2 e nodr jl"z esno dr jF2 e3 o dr ‘]FQ esmo dr
fFS €e1:'n3 dx fFS €2:M3 dx fFS €3:'Mn3 dx fFB €4:M3 dx

fl"4 €1:-MNg dx fF4 €2:My dx fF4 €3:Ty dx fF4 €4:Ty dx

[T1ln1,e; T1ln1,eq [T1ln1,eq fl-l n1,zq (T1—27) 411 2y (T2—25) 401 25 (T3 —25) dx
_ IT2|n2,2, [T2|n2zy [T2|n2a, frz n9,zq (#1—35) 412 oo (T2 —25)+n2 oy (23 —25) d
- [Pslng ey [Tsns,ay [Tslna.es [, 7801 (01=25) 403,05 (T2 —25) 43,05 (w3 —25) dz |
[Talna,zy [Talna ey [Talna z, fr4 N4 oy (T1—27) N4, 00 (T2 —25)+n4 25 (T3—25) da
(53)
T .
where n; = (n,-vgc1 N s ni,xs) , i1 =1,2,3,4.
Simple calculations lead to:
000 — 31Ex| ’
_ —1pT _ ; ) )
G, = M, "By = / (1 — :cﬁ)2 + (22 — x§)2 + (23 — x§)2 dx )
Ey
_ 9| Ey|?
g = BiM;'BT = 15| ,
1= (a5 (o - ) o
Ey
_ -1 1 T_ 1 3
H, = M, ngka = B diag{1,1,1,0},
(54)
and the condensed matrix Sy, = Cy HyC{ with entries:
1 o
(Sxk)ij = mlFillelm ny, 0,5 =1,2,3,4 (55)

This matrix is exactly same as the condensed matrix in (32), there-
fore we can state the following:

Statement 6 The condensed matrices Sy i for PWCF and RTy meth-
ods coincide, and, therefore, the monotonicity conditions for both meth-
ods are also the same.

Therefore, the global matrices Sy also coincide for both methods,
with monotonicity conditions being the same as derived in Section 3.2.
Now, let

0= / (11— 25)% + (22 — 25)° + (23— 25)*dx,  (56)
Ey
then )
9|F
py1pT = AEL (57)
n

14



Let us first consider matrix Cj. The last column of C}, is composed
of [ e4-m;dz, where

1 — 2§
ey = |x2—2§|. (58)
T3 — x5

Since for any points on the face I';, e4 - n; = dist(z¢,I';), we have
that fl“i e4 - n; dx equals three times the volume of subtetrahedrons
with vertices ¢ and three vertexes of I';. One important property for
barycenter € is that the the volumes of four subtetrahedrons obtained
by connecting ¢ and four faces are equal, therefore,

/64'n1dl‘:/ 64'n2d$:/ e4-n3dac:/ 64'n4d.’L‘. (59)
' Ty I's Iy

Another important equation is:

4
Z/ e4-nidm=/v-e4d$=3‘Ek|’ (60)
i=1 7T 2

therefore,

3|E
/ e, -n;dr = | ’“', i=1,2,3,4. (61)
Let us calculate S), » as defined in (13). We have

BM10T2<_9|Ek|2 CIEL 9B _95;;2), (62)

an an an
and
[T1?[nafI? [T1||T2](n1n2) [T1]|Ts|(n1-mg) |T1|[Tal(n1-n4)
cM-lcT — 1 [T2||T1|(r2m1)  [D2f?nz|®  [T2||Ts|(n2-ms) [T2||Tal(n2ma)

[Ex] | ITsliTil(ns-ma) |Ts|T2l(nsn2)  Ts?(ns|®  |Ts|[Tal(nana)
[Ta||T1|(ra-m1) [T4|[T2|(ra-n2) [Ta||Ts](namg)  [Tal?||nall?

E:®  9Ex®  9Ex®* 9IEx®

16 167 167 167
1 9EL®  9E®  9E:®  9E?
16m 167 16m 167
TOTET | 9Bl 0B 9lE 9B
16 167 16
Ex®  9E.®  9Ex[®> 9B’
167 167 167 167

(63)
We can conclude the following:

Statement 7 Unlike the condensed matrices Sy i, the reduced matri-
ces Spx, i for PWCF and RTy methods do not coincide.

15
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