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Abstract

In this paper, we derive the monotonicity conditions for condensed
algebraic systems obtained by the discretization of the Poisson’s prob-
lem by the classical lowest order Raviart-Thomas (RT0) and the piece-
wise constant fluxes (PWCF) MFE methods on triangular and tetra-
hedral meshes. We also establish the correspondence between the con-
densed system matrices resulting from application of these two meth-
ods.

1 Introduction

In this paper, we study the monotonicity characteristics of two mixed
hybrid finite element methods [2] on unstructured triangular (2D) and
tetrahedral (3D) meshes. The methods we consider are the classical
lowest order Raviart-Thomas (RT0) MFE method [5], [6] and the piece-
wise constant fluxes (PWCF) MFE method [3], [1].

The diffusion problem we discretize using both method is as follows:

−∆p = f in Ω (1)

with Dirichlet boundary condition:

p = 0 on ∂Ω , (2)

where Ω is a simply connected domain either in 2D or 3D.
For the PWCF method, we derive the underlying algebraic system

and show the representation of the condensed system matrices that
allows to easily establish the monotonicity criteria for both triangular
and tetrahedral meshes. The similar study for the RT0 method on
triangular meshes was presented in [4], we extend it to the case of
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tetrahedral meshes, and make the conclusion about the correspondence
of the condensed matrices for the two methods in 2D and 3D.

In Section 2 we give the description of the mixed finite element
method and the underlying algebraic system for problem (1), (2). We
derive the monotonicity conditions for the PWCF method on trian-
gular meshes in Section 3.1 and on tetrahedral meshes in Section 3.2.
The monotonicity result for RT0 MFEM on triangular meshes is given
in Section 4.1, and the result on tetrahedral meshes, along with the
comparison of matrices to the ones resulting from the PWCF method,
is shown in Section 4.2.

2 Mixed Finite Element Method

2.1 Mixed hybrid formulation for a polygonal (2D)
or polyhedral (3D) cell

Let u = −∇p be the flux vector function, then the equivalent mixed
form of the problem (1), (2) is as follows:

u + ∇p = 0 in Ω ,
∇ · u = f in Ω ,

p = 0 on ∂Ω .
(3)

The weak formulation of (3) is as follows: Find (u, p) ∈ V ×P such
that ∫

Ω

u · v dx −
∫

Ω

p(∇ · v) dx = 0 ,
∫

Ω

(∇ · u)q dx =

∫

Ω

fq dx
(4)

for all (v, q) ∈ V × P . Here, V = Hdiv(Ω), and P = L2(Ω).

We partition Ω into m mesh cells Ek with interfaces Γkl between
mesh cells Ek and El, k < l, and faces Γi on the boundary ∂Ω. We can

write Ω =

m∑

k=1

Ek. The the mixed variational macro-hybrid formulation

to (3), reads as follows: find (u, p, λ) ∈ V × P × Λ such that

aH(u, v) + bH(p, v) + cH(λ, v) = 0

bH(q, u) = lH(q)

cH(µ, u) = 0

(5)
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for all (v, q, µ) ∈ V × P × Λ, where

aH(u, v) =

m∑

k=1

aH,k(vk, uk)

bH(p, v) =

m∑

k=1

bH,k(pk, vk)

cH(λ, v) =

m∑

k,l=1
k<l

∫

Γkl

(vk · nk)λkl ds

lH(q) = −
m∑

k=1

fqk dx

aH,k =

∫

Ek

uk · vk dx , bH,k = −
∫

Ek

pk(∇ · vk) dx , k = 1, . . . ,m ,

(6)
and nk is the outward unit normal to ∂Ek, which is the boundary of
Ek, k = 1, . . . ,m.

Here,
V = V1 × ...× Vm ,
P = P1 × ...× Pm ,

Λ =

m∏

k,l=1
k<l

Λkl

(7)

with Vk = Hdiv(Ek), Pk = L2(Ek), and Λkl = L2(Γkl), |Γkl| 6= 0,
1 ≤ k < l ≤ m.

Next, we choose finite dimensional subspaces Vh ⊆ V , Ph ⊆ P ,
and Λh ⊆ Λ. With these definitions, the mixed hybrid finite element
discretization of (1), (2) reads as follows: find (uh, ph, λh) ∈ Vh ×
Ph × Λh such that

aH(uh, vh) + bH(ph, vh) + cH(λh, vh) = 0

bH(qh, uh) − σH(ph, qh) = lH(qh)

cH(µh, uh) = 0

(8)

for all (vh, qh, µh) ∈ Vh × Ph × Λh. The latter FE problem results in
the system of linear algebraic equations

A



u
p

λ


 =




0
F
0


 (9)

with the symmetric matrix

A =



M BT CT

B 0 0
C 0 0


 =

m∑

k=1

Nk Ak N T
k , (10)
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where

Ak =



Mk BT

k CT
k

Bk 0 0
Ck 0 0


 , (11)

each Mk, Bk, Ck are local matrices for a cell Ek, and Nk is an appro-
priate subassembling matrix, k = 1, . . . ,m.

2.2 Reduced algebraic system (Schur-complement)

To get the monotonicity condition for the algebraic system (9), we
perform the following condensation procedure:

First, eliminating the variable u, we get the system:

Spλ

(
p

λ

)
=

(
−F
0

)
, (12)

where

Spλ =

(
B
C

)
M−1

(
BT CT

)
=

m∑

k=1

Npλ,k Spλ,k N T
pλ,k (13)

is a symmetric positive definite (SPD) matrix.
Then, eliminating the variable p, we come to the Schur-complement

system:
Sλλ = φ (14)

with the Schur-complement matrix

Sλ =
(
BM−1BT −BM−1CT (CM−1CT )−1CM−1BT

)
=

m∑

k=1

Nλ,k Sλ,k N T
λ,k

(15)
and the right-hand side

φ = C
(
M−1BT (BM−1BT )−1

)
F . (16)

Here,

Spλ,k =

(
Bk

Ck

)
M−1

k

(
BT

k CT
k

)
,

Sλ,k =
(
BkM

−1
k BT

k −BkM
−1
k CT

k (CkM
−1
k CT

k )
−1CkM

−1
k BT

k

)
,
(17)

and Npλ,k and Nλ,k are the appropriate subassembling matrices, k =
1, m.
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3 Piece-Wise Constant Fluxes (PWCF) Method
on triangular and tetrahedral meshes

3.1 Monotonicity condition for PWCF method on
triangular meshes

Assume that the domain Ω is partitioned using a triangular mesh Ωh.
Let Ek be a mesh cell, we denote its faces by Γi, and we denote an
angle opposite to Γi by αi, i = 1, 3. In this Section we investigate
conditions under which the global system matrix for the problem (1)–
(2) is a singular M-matrix. Note that the global matrix Sλ is an M-
matrix if and only if local matrices Sλ,k are M-matrices for all mesh
cells Ek.

We consider a triangular cell Ek. Without the loss of generality,
we assume the height dropped onto the face Γ1 to be of length 1, i.e.
h1 = 1. As before, we denote the angle opposite to the face Γi by αi,
i = 1, 3. We denote the outward unit normal vector to Γi by ni.

There are two distinct geometries that can be described by the
measure of one of the angles, say, α2. The first is a triangle with three
acute angles, as shown on Figure 1. The second is a triangle with an
obtuse angle α2. An example of such triangle is given on Figure 2.

1

Γ2Γ3

α2 α3

α1

α2
α3

h
1

n
2

n
3 e

2
e

1

Γ

Figure 1: A triangle with three acute angles.

Regardless of the shape of α2, we have

|Γ1|(1) = cotα2 + cotα3 , |Γ2|(1) = 1
sinα3

, |Γ3|(1) = 1
sinα2

,

n
(1)
1 =

(
0
−1

)
, n

(1)
2 =

(
sinα3

cosα3

)
, n

(1)
3 =

(
− sinα2

cosα2

)
.

(18)
and

|Ek| =
1

2
(cotα2 + cotα3) . (19)

We use the PWCF method to discretize the problem (3) on E.
To do so, we split the cell Ek into two triangular subcells e1 and e2
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Figure 2: A triangle with an obtuse angle α2.

by passing the line through the node opposite to the face Γ1 and the
middle of the face Γ1. Clearly, |e1| = |e2| = 1

2 |E|.

Let wi, i = 1, 3, be the PWCF basis vector functions satisfying
the following:
In e1,

w1 · n1 = 1 , w1 · n2 = 0 ;
w2 · n1 = 0 , w2 · n2 = 1 ;
w3 ≡ 0 .

In e2,
w1 · n1 = 1 , w1 · n3 = 0 ;
w3 · n1 = 0 , w3 · n3 = 1 ;
w2 ≡ 0 .

Therefore, the basis vector functions can be written explicitly:

w1 =





(
cosα3

sinα3
−1
)T

in e1 ,
(
− cosα2

sinα2
−1
)T

in e2 ,

w2 =





(
1

sinα3
0
)T

in e1 ,

0 , in e2 ,

w3 =





(
− 1

sinα2
, 0
)T

in e2 ,

0 , in e1 .
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The resulting matrix blocks for the local system are as follows:

Mk =
|Ek|
2




1
sin2 α3

+ 1
sin2 α2

cosα3

sin2 α3

cosα2

sin2 α2

cosα3

sin2 α3

1
sin2 α3

0

cosα2

sin2 α2
0 1

sin2 α2




,

Bk = −
(
cotα2 + cotα3

1
sinα3

1
sinα2

)
,

Ck =




cotα2 + cotα3 0 0

0 1
sinα3

0

0 0 1
sinα2




.

(20)

Let

fk =
1

|Ek|

∫

Ek

f dx . (21)

Then, the local system for the cell E can be written as


Mk BT

k CT
k

Bk 0 0
Ck 0 0





u
p

λ


 =




0
−fk
0


 . (22)

Taking the Schur complement, we obtain the system in terms of p
and λ,

Spλ,k

(
p

λ

)
=

(
fk
0

)
(23)

with the system matrix

Spλ,k = 1
|Ek|




4 0 −2 −2
0 (cotα2+cotα3)

2 − cotα3(cotα2+cotα3) − cotα2(cotα2+cotα3)

−2 − cotα3(cotα2+cotα3) 1+ 1
sin2 α3

cotα2 cotα3

−2 − cotα2(cotα2+cotα3) cotα2 cotα3 1+ 1
sin2 α2




(24)
Taking the Schur complement again, we get the system in terms of

λ,
Sλ,kλ = F , (25)

where

Sλ,k = 1
|Ek|

(
(cotα2+cotα3)

2 − cotα3(cotα2+cotα3) − cotα2(cotα2+cotα3)

− cotα3(cotα2+cotα3)
1

sin2 α3
cotα2 cotα3−1

− cotα2(cotα2+cotα3) cotα2 cotα3−1 1
sin2 α2

)

(26)
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and

F =
fk
2



0
1
1


 . (27)

We assume that only α2 can be obtuse, therefore cotα3 > 0. Hence,
for matrix Sλ,k to be an M-matrix, we should have

α3 ≤ π
2 ,

α2 ≤ π
2 ,

α2 + α3 ≥ π
2 .

(28)

That condition can be written as

αi ≤
π

2
, i = 1, 3 . (29)

Note that unlike the matrix Sλ,k, the matrix Spλ,k is never an M-
matrix.

If condition 29 holds for all the cells Ek, k = 1,m, including the
cells adjacent to the boundary of Ω, i.e. Ek such that |∂Ek ∩ ∂Ω| 6= 0,
then the global matrix Sλ is also a singular M-matrix.

3.2 Monotonicity condition for PWCF method on
tetrahedral meshes

In this Section, we consider the problem (1)–(2) in the domain Ω ∈ R3.
We assume that Ω is partitioned into tetrahedral mesh cells Ek, and
consider the PWCF method on the corresponding tetrahedral mesh
Ωh.

3.2.1 PWCF basis vector functions

Let Ek be a tetrahedral mesh cell with vertices Vi and faces Γi, i =
1, 4. We set Γ1 = (V2V3V4), Γ2 = (V1V3V4), Γ3 = (V1V2V4), and
Γ4 = (V1V2V3). Let ni be the outward unit normal vector on a face
Γi, i = 1, 4. We partition the cell Ek into two tetrahedral subcells e1
and e2 with the internal triangular interface formed by the vertices V1,
V4 and the midpoint of the edge V2V3, as shown on Figure 3.

We define the PWCF basis vector functions, wi, i = 1, 4, as follows:
In e1,

w1 · n1 = 1 , w1 · n3 = 0 , w1 · n4 = 0 ;
w3 · n1 = 0 , w3 · n3 = 1 , w3 · n4 = 0 ;
w4 · n1 = 0 , w4 · n3 = 0 , w4 · n4 = 1 ;
w2 ≡ 0 .
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Figure 3: A tetrahedral cell Ek partitioned into subcells e1 and e2.

In e2,
w1 · n1 = 1 , w1 · n2 = 0 , w1 · n4 = 0 ;
w2 · n1 = 0 , w2 · n2 = 1 , w2 · n4 = 0 ;
w4 · n1 = 0 , w4 · n2 = 0 , w4 · n4 = 1 ;
w3 ≡ 0 .

Then, we can write the PWCF basis explicitly:

w1 =





n3 × n4

n1 · (n3 × n4)
in e1 ,

n2 × n4

n1 · (n2 × n4)
in e2 ,

w2 =

{
0 in e1 ,

n1 × n4
n2 · (n1 × n4)

in e2 ,

w3 =

{ n1 × n4

n3 · (n1 × n4)
in e1 ,

0 in e2 ,

w4 =





n1 × n3

n4 · (n1 × n3)
in e1 ,

n1 × n2
n4 · (n1 × n2)

in e2 .

(30)

The local matrices Mk, Bk and Ck can be written as:

Mk =
|Ek|
2




‖w1‖2 w1 ·w2 w1 ·w3 w1 ·w4

w2 ·w1 ‖w2‖2 w2 ·w3 w2 ·w4

w3 ·w1 w3 ·w2 ‖w3‖2 w3 ·w4

w4 ·w1 w4 ·w2 w4 ·w3 ‖w4‖2


 ,

Bk =
(
−|Γ1| −|Γ2| −|Γ3| −|Γ4|

)
,

Ck = diag {|Γ1|, |Γ2|, |Γ3|, |Γ4|} ,

(31)
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where |Ek| is the volume of the tetrahedron Ek, and |Γi| is the area of
face Γi, i = 1, ..., 4.

By calculation, we obtain the following result:

Statement 1 Let Sλ,k be the condensed matrix defined as in (15),
which is obtained by using PWCF method, then Sλ,k can be represented
as:

Sλ,k =
1

|Ek|




|Γ1|2‖n1‖2 |Γ1||Γ2|(n1 · n2) |Γ1||Γ3|(n1 · n3) |Γ1||Γ4|(n1 · n4)
|Γ2||Γ1|(n2 · n1) |Γ2|2‖n2‖2 |Γ2||Γ3|(n2 · n3) |Γ2||Γ4|(n2 · n4)
|Γ3||Γ1|(n3 · n1) |Γ3||Γ2|(n3 · n2) |Γ3|2‖n3‖2 |Γ3||Γ4|(n3 · n4)
|Γ4||Γ1|(n4 · n1) |Γ4||Γ2|(n4 · n2) |Γ4||Γ3|(n4 · n3) |Γ4|2‖n4‖2


 .

(32)
Therefore, Sλ,k is a singular M -matrix if and only if the angle

between any two faces is less or equal to π
2 .

Let us state the following facts:

Statement 2 Let a, b, c be vectors in R3, then

(a · (b× c))
2
= ‖a‖2‖b×c‖2−(a·b) ((b× c) · (a× c))+(a·c) ((b× c) · (a× b)) .

(33)

Statement 3 Let a, b, c, d be vectors in R3, then

(a · (c × d)) (b · (c × d))
= (a · b)‖c × d‖2 − (a · c) ((c × d) · (b× d)) + (a · d) ((c× d) · (b× c))
= (a · b)‖c × d‖2 − (b · c) ((c× d) · (a × d)) + (b · d) ((c× d) · (a× c)) .

(34)

Then, we derive the inverse of matrix Mk, which is as follows:

M−1
k =

1

|Ek|




‖n1‖2 n1·n2 n1·n3 n1·n4

n2·n1 ‖n2‖2+
(n2·(n1×n4))2

‖n1×n4‖2 n2·n3− (n2 ·(n1×n4))(n3 ·(n1×n4))

‖n1×n4‖2 n2·n4

n3·n1 n3·n2− (n3 ·(n1×n4))(n2 ·(n1×n4))

‖n1×n4‖2 ‖n3‖2+
(n3·(n1×n4))2

‖n1×n4‖2 n3·n4

n4·n1 n4·n2 n4·n3 ‖n4‖2


 .

(35)
Using the Statements (2), (3), one can verify by matrix multiplica-

tion that MM−1 = I4.
Let us state another fact used in our derivation:

Statement 4 In the notations used, we have the following relation-
ship:

|Γ2| (n2 · (n1 × n4)) = −|Γ3| (n3 · (n1 × n4)) (36)

Proof Let u1 =
−−→
V1V2, u2 =

−−→
V1V3, u3 =

−−→
V1V4, then we have

n1 =
(u3 − u2)× (u2 − u1)

|Γ1| , n2 = u2 × u3

|Γ2| ,

n3 = u3 × u1
|Γ3| , n4 = u1 × u2

|Γ4| .

(37)
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Consequently,

n2 · (n1 × n4) = n1 · (n4 × n2) = n1 · (u1 × u2)× (u2 × u3)
|Γ2||Γ4|

=
((u3 × u1).u2)(u2 · (u1 × u3))

|Γ1||Γ2||Γ4|
(38)

and

n3 · (n1 × n4) = n1 · (n4 × n3) = n1 · (u1 × u2)× (u3 × u1)
|Γ3||Γ4|

= − ((u3 × u2).u1)(u1 · (u2 × u3))
|Γ1||Γ3||Γ4|

(39)
The result follows.

Using the facts above, we derive

M−1BT (BM−1BT )−1BM−1 =

1
|Ek|




0 0 0 0

0 (n2·(n1×n4))
2

‖n1×n4‖2 − (n2·(n1×n4))(n3·(n1×n4))
‖n1×n4‖2 0

0 − (n2·(n1×n4))(n3·(n1×n4))
‖n1×n4‖2

(n3·(n1×n4)
2)

‖n1×n4‖2 0

0 0 0 0


 .

(40)
The result given in Statement (1) can then be easily obtained. If

the condition in the statement holds for all the cells Ek, k = 1,m,
including the cells adjacent to the boundary of Ω, i.e. Ek such that
|∂Ek ∩∂Ω| 6= 0, then the global matrix Sλ is also a singular M-matrix.

Additionally, let

α = n2.(n1×n4)
||n1×n4|| ,

β = n3.(n1×n4)
||n1×n4|| ,

(41)

then we can derive

BM−1BT = −4αβ|Γ2||Γ3|
|Ek|

, (42)

BM−1CT =
1

|Ek|
(
0 2αβ|Γ2||Γ3| 2αβ|Γ2||Γ3| 0

)
, (43)

and
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CM−1CT =

1
|Ek|




|Γ1|2‖n1‖2 |Γ1||Γ2|(n1·n2) |Γ1||Γ3|(n1·n3) |Γ1||Γ4|(n1·n4)

|Γ2||Γ1|(n2·n1) |Γ2|2(‖n2‖2+α2) |Γ2||Γ3|(n2·n3−αβ) |Γ2||Γ4|(n2n4)

|Γ3||Γ1|(n3·n1) |Γ3||Γ2|(n3·n2−αβ) |Γ3|2(‖n3‖2+β2) |Γ3||Γ4|(n3·n4)

|Γ4||Γ1|(n4·n1) |Γ4||Γ2|(n4·n2) |Γ4||Γ3|(n4·n3) |Γ4|2‖n4‖2


 .

(44)
This gives us the reduced matrix Spλ,k, first introduced in (13).

4 Lowest order Raviart-Thomas (RT0) Method
on triangular and tetrahedral meshes

4.1 Monotonicity condition for RT0 Method on tri-
angular meshes

Let us consider the problem (1)–(2) in the domain Ω ∈ R2. We assume
that Ω is partitioned into triangular mesh cells Ek, and consider the
RT0 method on the corresponding triangular mesh Ωh.

As shown in [4], the monotonicity condition for the local matrix
Sλ,k is as follows:
Sλ,k is a singular M-matrix if and only if none of the interior angles
of mesh cell Ek are obtuse angles.

Under the notations introduced in Section 3.1, it can be written as

αi ≤
π

2
, i = 1, 3 . (45)

Note that matrices Sλ and, therefore, the monotonicity conditions,
coincide for RT0 and PWCF methods on triangular meshes.

4.2 Monotonicity condition for RT0 Method on tetra-
hedral meshes

In this Section, we consider the problem (1)–(2) in the domain Ω ∈ R3.
We assume that Ω is partitioned into tetrahedral mesh cells Ek, and
consider the RT0 method on the corresponding tetrahedral mesh Ωh.

First, let us observe the following fact:

Statement 5 The condensed matrix Sλ,k is independent of basis choice
on RT0(K) space.

Proof Let {wi}, {ei} be two sets of basis vector functions for RT0(K),
then there exists a linear transformation P such that

P (w1,w2,w3,w4) = (e1, e2, e3, e4). (46)
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Therefore, for matrices M , B, C for two different basis, we have

Me = PTMwP , Be = BwP , Ce = CwP . (47)

Hence,

Se = CeM
−1
e

(
Me −BT

e (BeM
−1
e BT

e )
−1Be

)
M−1

e CT
e

= CwPP−1M−1
w P−T

(
PTMwP − PTBT

w(BwPP−1M−1
w P−TPTBw)

−1BwP
)
·

P−1M−1
w P−TPTCT

w

= CwM
−1
w

(
Mw −BT

w(BwM
−1
w BT

w)
−1Bw

)
M−1

w CT
w

= Sk.
(48)

Since Sλ,k is independent of basis choice on RT0(K) space, instead
of using classical basis {wi} for uh, s.t. wi ·nj = δij on Γj , we use the
following basis:

e1 =



1
0
0


 , e2 =



0
1
0


 , e3 =



0
0
1


 , e4 =



x1 − xc

1

x2 − xc
2

x3 − xc
3


 (49)

where xc = (xc
1, x

c
2, x

c
3)

T is the barycenter of Ek, i.e.

xc
1 = 1

|Ek|
∫

Ek

x1 dx,

xc
2 = 1

|Ek|
∫

Ek

x2 dx,

xc
3 = 1

|Ek|
∫

Ek

x3 dx.

(50)

As a result, the matrix Mk now becomes a diagonal matrix and can
be easily inverted:

Mk = |Ek|·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

|Ek|
∫
Ek

(x1 − xc
1)

2 + (x2 − xc
2)

2 + (x3 − xc
3)

2 dx




(51)
The corresponding matrices Bk and Ck are:

Bk = −
(
∇ · e1 ∇ · e2 ∇ · e3 ∇ · e4

)
=
(
0 0 0 −3|Ek|

)
,
(52)
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Ck =




∫
Γ1

e1·n1 dx
∫
Γ1

e2·n1 dx
∫
Γ1

e3·n1 dx
∫
Γ1

e4·n1 dx
∫
Γ2

e1·n2 dx
∫
Γ2

e2·n2 dx
∫
Γ2

e3·n2 dx
∫
Γ2

e4·n2 dx
∫
Γ3

e1·n3 dx
∫
Γ3

e2·n3 dx
∫
Γ3

e3·n3 dx
∫
Γ3

e4·n3 dx
∫
Γ4

e1·n4 dx
∫
Γ4

e2·n4 dx
∫
Γ4

e3·n4 dx
∫
Γ4

e4·n4 dx




=




|Γ1|n1,x1 |Γ1|n1,x2 |Γ1|n1,x3

∫
Γ1

n1,x1 (x1−xc
1)+n1,x2(x2−xc

2)+n1,x3 (x3−xc
3) dx

|Γ2|n2,x1 |Γ2|n2,x2 |Γ2|n2,x3

∫
Γ2

n2,x1 (x1−xc
1)+n2,x2(x2−xc

2)+n2,x3 (x3−xc
3) dx

|Γ3|n3,x1 |Γ3|n3,x2 |Γ3|n3,x3

∫
Γ3

n3,x1 (x1−xc
1)+n3,x2(x2−xc

2)+n3,x3 (x3−xc
3) dx

|Γ4|n4,x1 |Γ4|n4,x2 |Γ4|n4,x3

∫
Γ4

n4,x1 (x1−xc
1)+n4,x2(x2−xc

2)+n4,x3 (x3−xc
3) dx


 ,

(53)

where ni =
(
ni,x1 ni,x2 ni,x3

)T
, i = 1, 2, 3, 4.

Simple calculations lead to:

Gk = M−1
k BT

k =

(
0 0 0 − 3|Ek|∫

Ek

(x1 − xc
1)

2 + (x2 − xc
2)

2 + (x3 − xc
3)

2 dx

)T

,

gk = BkM
−1
k BT

k =
9|Ek|2∫

Ek

(x1 − xc
1)

2 + (x2 − xc
2)

2 + (x3 − xc
3)

2 dx
,

Hk = M−1
k − 1

gkGkG
T
k = 1

|Ek| · diag{1, 1, 1, 0},
(54)

and the condensed matrix Sλ,k = CkHkC
T
k with entries:

(Sλ,k)i,j =
1

|Ek|
|Γi||Γj |ni · nj , i, j = 1, 2, 3, 4. (55)

This matrix is exactly same as the condensed matrix in (32), there-
fore we can state the following:

Statement 6 The condensed matrices Sλ,k for PWCF and RT0 meth-
ods coincide, and, therefore, the monotonicity conditions for both meth-
ods are also the same.

Therefore, the global matrices Sλ also coincide for both methods,
with monotonicity conditions being the same as derived in Section 3.2.

Now, let

η =

∫

Ek

(x1 − xc
1)

2 + (x2 − xc
2)

2 + (x3 − xc
3)

2 dx, (56)

then

BM−1BT =
9|Ek|2

η
, (57)
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Let us first consider matrix Ck. The last column of Ck is composed
of
∫
Γi

e4 · ni dx, where

e4 =



x1 − xc

1

x2 − xc
2

x3 − xc
3


 . (58)

Since for any points on the face Γi, e4 · ni = dist(xc,Γi), we have
that

∫
Γi

e4 · ni dx equals three times the volume of subtetrahedrons
with vertices xc and three vertexes of Γi. One important property for
barycenter xc is that the the volumes of four subtetrahedrons obtained
by connecting xc and four faces are equal, therefore,

∫

Γ1

e4 · n1 dx =

∫

Γ2

e4 · n2 dx =

∫

Γ3

e4 · n3 dx =

∫

Γ4

e4 · n4 dx. (59)

Another important equation is:

4∑

i=1

∫

Γi

e4 · ni dx =

∫

E

∇ · e4 dx = 3|Ek|, (60)

therefore, ∫

Γi

e4 · ni dx =
3|Ek|
4

, i = 1, 2, 3, 4. (61)

Let us calculate Sp,λ as defined in (13). We have

BM−1CT =

(
−9|Ek|2

4η −9|Ek|2
4η −9|Ek|2

4η −9|Ek|2
4η

)
, (62)

and

CM−1CT = 1
|Ek|




|Γ1|2‖n1‖2 |Γ1||Γ2|(n1·n2) |Γ1||Γ3|(n1·n3) |Γ1||Γ4|(n1·n4)

|Γ2||Γ1|(n2·n1) |Γ2|2‖n2‖2 |Γ2||Γ3|(n2·n3) |Γ2||Γ4|(n2·n4)

|Γ3||Γ1|(n3·n1) |Γ3||Γ2|(n3·n2) |Γ3|2‖n3‖2 |Γ3||Γ4|(n3·n4)

|Γ4||Γ1|(n4·n1) |Γ4||Γ2|(n4·n2) |Γ4||Γ3|(n4·n3) |Γ4|2‖n4‖2




+ 1
|Ek|




9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η

9|Ek|3
16η




.

(63)
We can conclude the following:

Statement 7 Unlike the condensed matrices Sλ,k, the reduced matri-
ces Spλ,k for PWCF and RT0 methods do not coincide.
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