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A SEMI-LARGANGIAN METHOD ON DYNAMICALLY ADAPTED
OCTREE MESHES ⇤

KIRILLM.TEREKHOV† , KIRILLD.NIKITIN‡ , MAXIMA.OLSHANSKII§ , AND

YURIV.VASSILEVSKI¶

Abstract. The paper develops a semi-Lagrangian method for the numerical integration of the
transport equation discretized on adaptive Cartesian cubic meshes. We use dynamically adaptive
graded Cartesian grids. They allows for a fast grid reconstruction in the course of numerical inte-
gration. The suggested semi-Lagrangian method uses a higher order interpolation with a limiting
strategy and a back-and-forth correction of the numerical solution. The interpolation operators have
compact nodal stencils. In a series of experiments with dynamically adapted meshes, we demonstrate
that the method has at least second order convergence and acceptable conservation and monotonicity
properties.
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1. Introduction. The well known higher order Eulerian methods TVD orWENO
[12,31] for the numerical integration of the transport equation require CFL time step
restrictions. Semi-Lagrangian advection schemes are not limited by the CFL condi-
tion and hence are more flexible in adapting time steps to accuracy requirements. For
non-uniform dynamically adapted Cartesian grids semi-Lagrangian schemes become
even more attractive since the construction of high order accurate non-oscillatory
Eulerian methods is more challenging in this case.

The goal of this paper is to develop a semi-Lagrangian method for octree meshes
allowing dynamic adaptation with coarsening and refinement performed according to
error indicators in the course of numerical integration. Octree grids enjoy a grow-
ing reliance in scientific computing community due to the simple Cartesian struc-
ture and embedded hierarchy, which makes mesh adaptation, reconstruction and
data access fast and easy. Such grids were used successfully for numerical simu-
lation of hyperbolic conservation laws in the frameworks of discontinuous Galerkin
and finite volume discretizations [9, 20, 29, 33]. Fast remeshing with octree grids
makes them a natural choice for the simulation of moving interfaces and free surface
flows [11, 16, 17, 21, 22, 27, 32] as well as more general non-Newtonian and high-speed
Newtonian flows, see, e.g., [1,2,18,23,25,26,36]. Semi-Lagrangian methods were pre-
viously employed for octree based simulations in [6,16,21–23,25]. The simplicity and
stability of semi-Lagrangian methods usually come at a price: lower order methods
are known to be numerically di↵usive whereas higher order methods behave non-
monotonically by trading numerical dissipation for numerical dispersion. To enhance
the performance of a lower order monotone semi-Lagrangian method, the authors
of [6,16] introduce a particle based correction mechanism. The particle correction im-
proves conservation properties and reduces numerical di↵usion of a semi-Lagrangian
method, however it may destroy certain smoothness properties of the recovered solu-
tion. Another possible approach is to use nonlinear WENO-type reconstruction [10] as
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an interpolation procedure for a semi-Lagrangian method as was done for structured
grids in [3, 28]. In the case of adaptive dynamic grids it will require costly matrix
inversions for each interpolation step. A higher order semi-Lagrangian method on
block-structured adaptive meshes (AMR) is discussed in [34]. Similar to the present
paper, the method of [34] uses a higher order interpolation with a limiter. A higher
order semi-Lagrangian method for the level set equation was introduced for non-
graded octree meshes [19]. That method employs the triquadratic interpolation. We
develop further these approaches by introducing a compact stencil tricubic interpola-
tion, refining the interpolation limiter from [34], applying back-and-forth correction
procedure [5] with the correction limiter [14] and validating the method for dynami-
cally reconstructed grids. As a result, the method derived here demonstrates a higher
order convergence on adaptive grids and acceptable conservation and monotonicity
properties. This makes the method e�cient for solving transport equations on dynam-
ically adapted grids. It can be used for simulation of mass transport and recovering
a free-surface evolution from the level set equation.

The rest of the paper is organized as follows. After a brief recall of basics for the
semi-Lagrangian method in section 2 we introduce the necessary ingredients of this
numerical technique: a numerical integrator in time (section 2.1), a back-and-forth
error compensation method (section 2.2) together with a suitable limiting strategy
(section 2.3). Section 3 deals with spatial discretization. First, we introduce dis-
cretizations of the second order derivatives in section 3.1. We use these finite dif-
ference derivatives further in section 3.2 to construct a higher order interpolation
operator with a compact nodal stencil. The interpolation operator invokes a lim-
iter defined in section 3.3. The gradient of a nodal grid function useful in local grid
adaptation is defined in section 3.4. Section 4 collects the results of several numer-
ical experiments. The experiments are aimed on assessing the performance of the
presented semi-Lagrangian method as the numerical tool for the simulation of mass
transport and level set function transport. We also compare the method with a few
more standard semi-Lagrangian techniques.

2. Semi-Lagrangian method. A passive advection of a scalar field ' with a
given velocity vector field u(x, t), x 2 R3, t 2 R+, is modeled by the transport
equation

@'

@t
+ u ·r' = 0 (2.1)

equipped with appropriate initial conditions.
A semi-Lagrangian method is a computational technique to solve (2.1). Within

the semi-Lagrangian approach the approximate solution is found in time instances
tn, n = 0, 1, 2, . . . by numerical integration backward in time of the characteristic
equations

dx(⌧)

d⌧
= u(x(⌧), ⌧), x(tn+1) = x0, ⌧ 2 [tn+1, tn] (2.2)

for all x0 lying in a computational domain at time tn+1. If 'n ⇡ '(·, tn) is known
everywhere, one sets 'n+1(x0) = 'n(x(tn)).

In practice, a spacial discretization is applied, for example by defining ' in a
finite number of nodes, which form a grid. Since x(tn) is not necessarily the grid
node, an interpolation 'n

I

from nodal values of 'n is done to define its value in x(tn),
'n+1(x0) = 'n

I

(x(tn)). The numerical integration of (2.2) and the interpolation error
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contribute to the numerical error of a semi-Lagrangian method. This error is not
monotonic with respect to time step �t and has the form [8,35]:

O

✓
(�t)k +

(�x)p+1

�t

◆
, (2.3)

where k refers to the order of numerical integration of (2.2), �x is the spacial mesh
step, and p is the interpolation order of 'n

I

.
The error estimate (2.3) calls for a higher order interpolation. However, standard

linear higher order interpolation techniques lead to the loss of the monotonicity prop-
erty, which is critical for numerical stability in many applications. Therefore, several
limiting and accuracy improving techniques have been suggested in the literature to
allow for accurate and stable semi-Lagrangian approach. We discuss a few of them
below.

Further we also need the reverse semi-Lagranigan method given by a numerical
integration forward in time:

dex(⌧)
d⌧

= u(ex(⌧), ⌧), ex(tn) = x0, ⌧ 2 [tn, tn+1] (2.4)

and setting e'n(x0) = e'n+1
I

(ex(tn+1)). Here e'n+1
I

denotes a suitable interpolation of
e'n+1 at ex(tn+1).

2.1. Numerical integration. In this paper, we shall use the trapezoidal rule
for the numerical integration in (2.2) and (2.4). Thus, the numerical counterpart of
(2.2) reads

x(tn +
�t

2
) = x0 �

�t

2
u(x0, t

n),

x(tn) = x0 ��teun+ 1
2 ,

(2.5)

with �t = tn � tn+1. If u(x, ⌧) is known for intermediate times, then we set eun+ 1
2 :=

u(x(tn + �t/2), tn + �t/2). If the velocity field is not given a priori, but recovered
numerically from separate equations, then it may happen that u is known only at
times tk, k = 0, . . . , n. In this case, the linear extrapolation is used:

eun+ 1
2 = (1 + ⌘)u(x(tn +�t/2), tn)� ⌘u(x(tn +�t/2), tn�1), ⌘ =

tn+1 � tn

tn � tn�1
.

The same technique is applied to integrate numerically (2.4).
The method is second order in time, i.e. k = 2 in (2.3).

2.2. Back-and-forth error compensation. Back-and-forth error compensa-
tion and correction method from [4,5] is a well-known numerical technique to improve
the accuracy of a semi-Lagrangian method without evoking higher order interpolation.
This predictor-corrector type method is based on the observation that if we solve (2.1)
forward in time for one time step using a numerical integrator and then backward in
time for one time step with the same method, the di↵erence between the two copies
of the solution gives us information about the numerical error which we can use to
improve the accuracy. The method was used in this way for the semi-Lagrangian
convection in [5, 30], where it was observed to improve the convergence rate by one
order in space and time. When applied to the numerical transport of the level set
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function, the back-and-forth error compensation and correction method is known to
significantly reduce the volume conservation error, see [24]. Introduction of a limiter
in this predictor-corrector method [14] helps to eliminate spurious oscillations without
loosing the property of improved convergence.

For a given (discrete) solution 'n at time tn, the semi-Lagrangian back-and-forth
error compensation and correction (BFECC) method finds 'n+1 in several steps:

Algorithm 1 Basic semi-Lagrangian BFECC method.

1: Solve (2.1) forward in time with the semi-Lagrangian method (2.2) to obtain
b'n+1 = 'n

I

(x(tn)). The interpolation at x(tn) can be combined with a limiter to
enforce monotonicity. Integrating, interpolating and limiting define a nonlinear
operator b'n+1 = F('n).

2: Solve (2.1) backward in time with the same semi-Lagrangian method to obtain
b'n = b'n+1

I

(ex(tn+1)). The interpolation and limiting procedures for the backward
step are the same as for step 1. By analogy with step 1, this defines a nonlinear
operator b'n = B(b'n+1).

3: Calculate the defect e = 1
2 ('

n � b'n).
4: Update e'n = 'n + e.
5: Solve (2.1) forward in time with the same semi-Lagrangian method to obtain

'n+1 = F(e'n).

The above predictor-corrector scheme is expected to improve the order of the

solver to O(h
p

0+2

�t

+ (�t)3), where O(hp

0+1) is the interpolation accuracy subject to
the limiting postprocessing and O((�t)2) is the accuracy of the trapezoidal rule for
the numerical integration along characteristics. While the algorithm can be proved to
retain the unconditional stability of the original (one-way) semi-Lagrangian method,
it is still prone to produce spurious oscillations due to step 4. To suppress these
oscillations, we follow [14] and introduce a limiting procedure for BFECC.

2.3. BFECC limiting. We assume for a moment that an interpolation without
limiting is applied in the semi-Lagrangian method. In this case, both operators F
and B are linear and are denoted by F

L

and B
L

. We can then rewrite the algorithm
1 as 'n+1 = F

L

( 32'
n � B

L

(F
L

('n))). For the defect e from step 3 it holds e =
1
2 ('

n � B
L

(F
L

('n))). One observes the following chain:

ê := 'n � B
L

('n+1)� e

= 'n � B
L

(F
L

('n + e))� e

= 'n � B
L

(F
L

('n))� e� B
L

(F
L

(e))

= 2e� e� B
L

(F
L

(e))

= e� B
L

(F
L

(e)).

(2.6)

According to [14], the violation of |ê(x0)|  |e(x0)| for a node x0 indicates the
appearance of oscillations due to the correction and one has to limit e in such nodes. If
|ê(x0)| > |e(x0)|, we perform the limiting of e at all nodes involved in the interpolation
procedure for a node x0. The limiting is done by inspecting a row rF (x0) and a row
rB(x0) of the discrete operators F and B (possibly nonlinear) for each node x0 and
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performing the following correction of function e(x):

for all x0 initialize ẽ(x0) = e(x0)

for all x0 s.t. |ê(x0)| > |e(x0)|
for all x

i

contributing to rF (x0) or rB(x0)

ẽ(x
i

) = minmod(e(x0), ẽ(xi

))

(2.7)

Here x
i

is the position of a grid node that corresponds to nonzero entry in a row of
the discrete operators. The function minmod(a, b) is given by:

minmod(a, b) =

8
><

>:

min(a, b) a, b > 0,

max(a, b) a, b < 0,

0, otherwise.

We summarize the semi-Lagrangian method with BFECC and the limiting in

Algorithm 2 Semi-Lagrangian BFECC method with limiting.

1: Perform forward semi-Lagrangian step b'n+1 = F('n).
2: Perform backward semi-Lagrangian step b'n = B(b'n+1).
3: Calculate the defect e = 1

2 ('
n � b'n) and correct e'n = 'n + e.

4: Perform forward semi-Lagrangian step e'n+1 = F(e'n).
5: Perform backward semi-Lagrangian step '̃n = B(e'n+1) and calculate ê = 'n �

'̃n � e.
6: Compute ẽ by performing limiting of e at nodes where |ê| > |e| using (2.7).
7: Perform forward semi-Lagrangian step 'n+1 = F('n + ẽ).

Now we proceed with the definition of the discrete spatial operators that we use.

3. Spatial discretization. For the spatial discretization we use octree cubic
meshes, which allow fast dynamic mesh adaptation based on error indicators. We
introduce spatial derivatives operators for grid functions defined in mesh nodes. The
derivatives are further needed to define a tricubic nodal interpolation operation for a
graded octree mesh. The interpolation is of higher order and hence is not monotone.
Therefore, we also introduce an appropriate limiter. Finally, we also discuss the grid
adaptation strategy.

Fig. 3.1. An octree mesh (left) and its representation as a tree (right).

Consider a graded octree mesh with cubic cells, see Fig. 3.1. An octree mesh is
graded if the size of cells sharing (a part of) an edge or a face can di↵er in size only
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by the factor of two. This restriction simplifies support of mesh connectivity and
construction of discrete di↵erential operators.

3.1. Second-order partial derivatives. Assume that ' is a scalar quantity
given in all nodes of a graded octree mesh. In this section, we define a nodal ap-

proximation to @

2
'

@x

2 ,
@

2
'

@y

2 , and
@

2
'

@z

2 . Without loss of generality we consider only the

approximation of @

2
'

@x

2 at a node i.

Fig. 3.2. Nodes marked by yellow, red and blue boxes indicate three possible type of nodes for
the approximation of '

xx

.

One may encounter three possible types of nodes presented in Fig.3.2:
1. A node i has type A (marked yellow in Fig. 3.2), if there are two immediate

adjacent nodes i � 1 and i + 1 in the direction Ox. The distances x
i

� x
i�1

and x
i+1 � x

i

may appear di↵erent.

2. A node has type B (marked red in Fig. 3.2), if it is a hanging node and has
one immediate neighbor in the direction Ox, but may have two immediate
neighbors of type A in either direction Oy or direction Oz. In Fig.3.2 node j
has type B and j � 1 and j + 1 are of type A.

3. A node has type C (marked blue in Fig.3.2), if it is a hanging node and all
of its immediate neighbors in Oy and Oz directions are hanging nodes.

Fig. 3.3. The node marked by yellow box is the current node i of type A. Green boxes are the
nodes that are i� 1 and i+1 intimidate neighbors in the given direction Ox. Purple boxes mark the
i+ 2 non-immediate neighbor node.

Let us first consider a node i of type A. In this case r = x
i

�x
i�1 and h = x

i+1�x
i

are the distances to the adjacent nodes in direction Ox. If r = h, the simple second
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order formula for the regular grid is used, see Fig. 3.3 (left, bottom):

@2'

@x2

����
i

=
'
i�1 � 2'

i

+ '
i+1

h2
. (3.1)

Assume now r > h. On a graded octree mesh there may be no adjacent node i � 2
behind the node i�1, but there will be always an adjacent node i+2 beyond the node
i+1 due to the constraint of a graded octree meshes. Two possible configurations for
the node i + 2 are illustrated in Fig.3.3. For the case H = 2h = r the second-order
approximation of '

xx

in the node i becomes, see Fig. 3.3 (left, top):

@2'

@x2

����
i

=
'
i�1 � 2'

i

+ '
i+2

4h2
, (3.2)

while for the case H = 3h
2 the second-order approximation is, see Fig. 3.3 (right):

@2'

@x2

����
i

=
15'

i�1 � 21'
i

� 42'
i+1 + 48'

i+2

63h2
. (3.3)

To compute discretization of '
xx

in mesh nodes of other types, we first compute
it using (3.1)-(3.3) for type A nodes. Further, we calculate approximation of '

xx

in
type B nodes by averaging the discrete second derivatives at two neighboring type A
nodes:

@2'

@x2

����
j

=
1

2

 
@2'

@x2

����
j�1

+
@2'

@x2

����
j+1

!
. (3.4)

Finally, approximation of '
xx

in type C nodes is found by averaging the discrete
second derivatives at four neighboring type B nodes:

@2'

@x2

����
j,k

=
1

4

 
@2'

@x2

����
j�1,k

+
@2'

@x2

����
j+1,k

+
@2'

@x2

����
j,k�1

+
@2'

@x2

����
j,k+1

!
. (3.5)

Indices j and k denote the numbering in Oy and Oz directions, respectively.
Now we are ready to define the higher order interpolation operator that we use

for the semi-Lagrangian method as well as for the re-interpolation procedure within
an adaptive mesh refinement/coarsening step.

3.2. Interpolation. Trilinear interpolation is a popular and natural choice for
an octree mesh with cubic cells. Consider a point (x, y, z) in a cubic cell with the
edge size h; the cell center is (c

x

, c
y

, c
z

) and the values '1...8 are given in vertices, cf.
Fig.3.4. The corresponding trilinear interpolant '

L

(x, y, z) can be written as

'
L

(x, y, z) = '1 (1� k
x

)(1� k
y

)(1� k
z

) +'2 k
x

(1� k
y

)(1� k
z

)
'3 (1� k

x

)k
y

(1� k
z

) +'4 k
x

k
y

(1� k
z

)
'5 (1� k

x

)(1� k
y

)k
z

+'6 k
x

(1� k
y

)k
z

'7 (1� k
x

)k
y

k
z

+'8 k
x

k
y

k
z

,

(3.6)

with k
x

= x�c

x

h

+ 1
2 , ky = y�c

y

h

+ 1
2 , kz = z�c

z

h

+ 1
2 . One may consider the di↵erence

between the trilinear interpolation and the tricubic interpolation at point (x, y, z) in
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Fig. 3.4. Illustration for the cube with the side of the size h and the center (c
x

, c
y

, c
z

) (red box)
and variables defined at vertices of the cube '1...8 (yellow boxes).

the form of correction [19]:

�'
C

(x, y, z) =
1

2

 
@2'

@2x

����
(x,y,z)

k
x

(1� k
x

)

+
@2'

@2y

����
(x,y,z)

k
y

(1� k
y

) +
@2'

@2z

����
(x,y,z)

k
z

(1� k
z

)

!
h2.

(3.7)

The type of resulting interpolation will depend on the order of approximation of
the second partial derivatives in (3.7). Of course, the second partial derivatives of '

at point (x, y, z) are not known. We approximate them using nodal values @

2
'

@

2
x

���
1...8

,

@

2
'

@

2
y

���
1...8

, @

2
'

@

2
z

���
1...8

:

@

2
'

@

2
x

���
(x,y,z)

= 1
3 [

@

2
'

@

2
x

���
1

(2� k
x

)(1� k
y

)(1� k
z

) + @

2
'

@

2
x

���
2

(1 + k
x

)(1� k
y

)(1� k
z

)

@

2
'

@

2
x

���
3

(2� k
x

)k
y

(1� k
z

) + @

2
'

@

2
x

���
4

(1 + k
x

)k
y

(1� k
z

)

@

2
'

@

2
x

���
5

(2� k
x

)(1� k
y

)k
z

+ @

2
'

@

2
x

���
6

(1 + k
x

)(1� k
y

)k
z

@

2
'

@

2
x

���
7

(2� k
x

)k
y

k
z

+ @

2
'

@

2
x

���
8

(1 + k
x

)k
y

k
z

]

(3.8)

and approximate similarly @

2
'

@

2
y

���
(x,y,z)

and @

2
'

@

2
z

���
(x,y,z)

, note that constants added to

k
x

in (3.8) should be transfered to k
y

and k
z

respectively. Discretization of the second
derivatives at nodes was described in section 3.1.

We note that (3.8) is di↵erent from the trilinear interpolation (3.6). The co-
e�cients in (3.8) are computed in such a way that higher order terms are can-
celled in the corresponding Taylor series. The tricubic interpolation is defined as
'
C

(x, y, z) = '
L

(x, y, z)+ �'
C

(x, y, z). The interpolation is not monotone; therefore,
a limiter should be introduced to reduce oscillations.

3.3. Interpolation limiter. One possible limiting strategy is the following. In-
stead of (3.8) one computes

@2'

@2x

����
(x,y,z)

= minmod

✓
@2'

@2x

����
1...8

◆
(3.9)
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with

minmod(x1, ..., xn

) =

(
x
k

, s.t. |x
k

| = min{|x1|, ..., |xn

|}, if x
i

x
j

� 0 8i, j 2 {1, ..., n},
0, otherwise.

Substituting (3.9) and similar expressions for other second order derivatives into
(3.7), one obtains a triquadratic correction �'

Q

from [19]. We will denote the corre-
sponding interpolant by '

Q

= '
L

+�'
Q

. Below we build a di↵erent limiter delivering
better accuracy.

Fig. 3.5. Filled region denotes a correction to the original linear interpolation '
L

. Left picture
shows the original cubic interpolant '

C

. Middle picture shows the discontinuous limiting of the
cubic correction '

CD

. Right picture shows the continuous limiting of the cubic correction '
CC

.

While the correction �'
C

from (3.7) have the magnitude of the order O(h2), the
factor multiplying h2 may be quite large. In [34] the following limiter for a high order
interpolation is introduced:

'
CD

(x, y, z) =

(
'
L

(x, y, z), |�'
C

(x, y, z)| > �h,

'
L

(x, y, z) + �'
C

(x, y, z), otherwise.
(3.10)

The authors of [34] noted that for � = 1
20 the limiter in (3.10) essentially means

that one switches to the lower order interpolation whenever the local curvature for a
level-set function is higher then 3 grid cells of the size h. As illustrated in the middle
picture of Figure 3.5, this approach leads to a discontinuity in the interpolant. This
discontinuity becomes even more pronounced in the presence of hanging nodes. To
overcome this issue, we slightly modify (3.10) to obtain a more regular interpolation:

'
CC

(x, y, z) =

(
'
L

(x, y, z) + �h(x, y, z), |�'
C

(x, y, z)| > �h(x, y, z)

'
L

(x, y, z) + �'
C

(x, y, z), otherwise.
(3.11)

Here we define h(x, y, z) as the trilinear interpolant (3.6) for nodal values h1...8,
where h

i

for the node i is defined as the minimal size of a cell over all cells sharing i.
While this definition leads to continuous interpolation on a regular grid, we still may
encounter a discontinuity of O(h2) near a hanging node.

3.4. Discrete gradient. The discrete gradient of a nodal function ' can be
useful for adaptivity purposes and for the sake of completeness we present the method
of the first derivates discretization.

Assume that for a given node i, there exists a pair of immediate neighbors i� 1
and i+1 in the direction Ox, see Fig.3.6. The discrete variable ' has values '

i

, '
i�1

and '
i+1 at these nodes. For r = x

i

� x
i�1 and h = x

i+1 � x
i

, we define a @'

@x

���
i

component of the gradient at the node i with the second order of accuracy by:
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Fig. 3.6. Two immediate neighbors i � 1 and i + 1 for the node i with the grid spacing r =
x
i

� x
i�1 and h = x

i+1 � x
i

and values of the variable '
i�1, 'i

and '
i+1.

@'

@x

����
i

=
('

i+1 � '
i

) r2 + ('
i

� '
i�1)h2

hr(h+ r)
. (3.12)

Fig. 3.7. Two possible configuration of hanging nodes. Red box denotes node i, yellow boxes
denote interpolation stencil and purple box denote the node where the interpolation is being sought.

In the case of a hanging node one of the immediate neighbors may not exist,
see Fig.3.2. In this case, we define the missing neighbor value by the third-order
interpolation following [19]1. Let i be a hanging node and assume that there is no
immediate adjacent node i�1 in the direction Ox. Without loss of generality assume
that r > h. In this case there are two possible configurations shown in Fig.3.7. For
the left configuration in Fig.3.7 we define '

i�1 as:

'
i�1 =

1

2
('

i�1,j+1 � '
i,j+1 + '

i�1,j�1 � '
i,j�1) + '

i

, (3.13)

whereas for the right configuration in Fig.3.7 we define the missing value by

'
i�1 =

1

4
('

i�1,j+1,k+1 + '
i�1,j+1,k�1 + '

i�1,j�1,k+1 + '
i�1,j�1,k�1)

� 1

2
('

i,j+1,k + '
i,j�1,k + '

i,j,k+1 + '
i,j,k�1) + 2'

i

.
(3.14)

3.5. Grid adaptivity. One refines/coarsens the grid in the course of computa-
tions based on the information given by the nodal values of ' and discrete derivatives
of '. If one is interested in computing the transport of a concentration density func-
tion, then the adaptivity criterion can be based either on the values of ' or on the
values of r'. For the level set function transport, the rule can rely on the estimated
distance to the zero level of ' or on the estimated local curvature  = r · (r'/|r'|).

Numerical experiments in section 4 use for an adaptivity criterion only the values
of ' in grid nodes. More precisely, we adopt the following rules:

1The only reason not to use the interpolation defined in sections 3.2 and 3.3 here is the compu-
tational convenience.
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• Concentration field transport in section 4.1: the cell is split if |'1...8 � 0.7| 
0.4 at least for one nodal value. The criterion allows to cover both the region
of high gradients and the tip of the solution where the largest error is observed
if one uses a uniform Cartesian grid.

• Concentration field transport in section 4.2: the cell is split if the nodal values
of ' belong to specified intervals or if the nodal function ('1...8 � 0.5) has
di↵erent signs. For this test, it leads to the grid refinement in the region of
high gradients.

• Level set function transport in section 4.3: the cell is split if its nodal values
have both negative and positive signs. This results in a thin layer of highly
refined cells near the free surface.

4. Numerical experiments. This section collects the results of numerical ex-
periments for several test problems. We assess the performance of the semi-Lagrangian
method described in the previous sections. We also compare the new scheme with a
few more standard or simplified versions of the above semi-Lagrangian method. These
are the semi-Lagrangian scheme with linear interpolation as used in [6], the BFECC
scheme with trilinear interpolation and the semi-Lagrangian with higher order in-
terpolation (and limiting), but without back-and-forth correction. We experiment
with a smooth analytical solution to the transport problem in order to check and to
compare the accuracy and convergence orders of the schemes. Further we consider
concentration transport in a complex velocity field to study the mass conservation
and monotonicity properties of the schemes. Finally, we show numerical results for
the “Enright test” [6, 15]. This test demonstrates how well the schemes are suited
for the numerical integration of the level set equation, describing the evolution of a
free-surface passively advected by a velocity field.

In all experiments the time step is chosen according to formula

�t = min
cells

CFLh
cell

max{ū1, ū2, ū3}
,

where ū
i

denotes averaged over the cell i-th component of the advection vector. In
sections 4.1 and 4.2 we use CFL = 1, in section 4.3 we use CFL = 2, although
essentially larger CFL values are applicable as well.

4.1. Analytical solution test. We consider the case of the smooth solution to
(2.1) given by

C(x, y, z, t) = e�64 [(x�x

c

(t))2+(y�y

c

(t))2+(z�z

c

(t))2].

The gaussian hat function is transported and rotated by the velocity field v =
{4⇡(0.6 � y), 4⇡(x � 0.6), 1.0} so that the hat center coordinates are x

c

= 0.6 �
0.25 cos(4⇡ t), y

c

= 0.6�0.25 sin(4⇡ t), z
c

= 0.5+t. Starting with a given C(x, y, z, 0),
we compute the numerical solution for the velocity field and measure the numerical
error in the maximum (C-) and L2-norms at t = 0.1. Since the Gaussian impulse al-
most vanishes on the boundary of computational domain [0, 1]3, we neglect the impact
of the boundary conditions.

Fig.4.1 shows the solution computed with the new BFECC method on the uniform
grid, h = 1/64. We observe no overshoots and a minor undershoot of order 10�7.
Further, Fig.4.2 shows the error fields (numerical solution minus exact solution) for
BFECC with high-order interpolation and limiting, BFECC with linear interpolation,
semi-Lagrangian method (without BFECC) with high-order interpolation and limiting
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and semi-Lagrangian method with linear interpolation. All error plots are presented
for the same time t = 0.1. For the semi-Lagrangian methods without BFECC the
maximum of the error absolute values is achieved in the center of the Gaussian hat,
while for the BFECC methods the error is less and is more smeared.

Fig. 4.1. Solution for the new BFECC method with high-order interpolation. Cutplane z = 0.6
of the uniform grid, h = 1/64.

Table 4.1 provides norms of the errors for the above mentioned advection meth-
ods on uniform cubic grids. One can see that high-order interpolation provides only
slightly more accurate solution since the largest error is located near the center of
the impulse where the interpolation limiter may cut the high-order correction. On
the other hand, BFECC schemes show more accurate results compared to semi-
Lagrangian methods without error correction. The new BFECC scheme demonstrates
higher than the second order convergence in the L2-norm while the standard semi-
Lagrangian with linear interpolation has less than the first order.

Grid N
cells

BFECC BFECC Semi-Lagrangian Semi-Lagrangian

h�1/N
steps

high-order linear high-order linear

Err
C

Err
L2 Err

C

Err
L2 Err

C

Err
L2 Err

C

Err
L2

32/ 25 32 768 1.17e-1 5.24e-3 1.28e-1 5.73e-3 4.03e-1 1.65e-2 4.40e-1 2.01e-2

64/ 49 262 144 2.32e-2 7.56e-4 2.45e-2 8.82e-4 2.40e-1 8.67e-3 2.78e-1 1.20e-2

128/ 98 2 097 152 1.01e-2 1.77e-4 1.00e-2 2.07e-4 1.24e-1 3.74e-3 1.62e-1 6.70e-3

order 1.77 2.44 1.84 2.40 0.85 1.07 0.72 0.79

Table 4.1
Errors in C- and L2-norms for the uniform grids.

Now we repeat the experiment on dynamically adapted octree grids. Fig.4.3 shows
the computed solution and the corresponding error for the new BFECC method with
high-order interpolation on the dynamic grid with h

min

= 1/128, h
max

= 1/32. We
note that we still have no overshoots in solution and the undershoot is of order 10�10.

Table 4.2 presents the error norms for the examined semi-Lagrangian methods on
dynamically adapted grids. The new BFECC scheme demonstrates the second order
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Fig. 4.2. Error fields for BFECC with high-order interpolation (top-left), BFECC with linear
interpolation (top-right), semi-Lagrangian method with high-order interpolation (bottom-left) and
semi-Lagrangian method with linear interpolation (bottom-right). Cutplane z = 0.6 of the uniform
grid, h = 1/64.

convergence in L2-norm, while the other simplified variants of the method are clearly
inferior in terms of the accuracy. Comparing the results in Tables 4.2 and 4.1 we
see that grid adaptation for this problem can reduce the number of active degrees of
freedom and achieve the same error.

4.2. Mass conservation and monotonicity. The second test studies the con-
servative and monotone properties of the method. The computational domain is
[0, 2]3, the initial concentration equals 1 node-wise inside the sphere of radius r = 0.3
centered at (1.2, 1.2, 1.2) and 0 in the rest of domain. The sphere is transported by
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Fig. 4.3. Solution and error for the new BFECC method with high-order interpolation on the
dynamic octree grid, h

min

= 1/128, h
max

= 1/32. Cutplane z = 0.6.

Grid N
cells

BFECC BFECC Semi-Lagrangian Semi-Lagrangian

at t = 0.1 high-order linear high-order linear

h�1
min

/h�1
max

/N
steps

Err
C

Err
L2 Err

C

Err
L2 Err

C

Err
L2 Err

C

Err
L2

64/16/ 49 7428 3.65e-2 3.64e-3 6.48e-2 7.75e-3 2.40e-1 9.54e-3 2.78e-1 1.63e-2

128/32/ 98 57 170 1.48e-2 8.79e-4 3.69e-2 3.04e-3 1.24e-1 3.88e-3 1.62e-1 1.02e-2

256/64/ 194 544 986 9.70e-3 2.00e-4 1.54e-2 1.01e-3 5.25e-2 1.15e-3 9.03e-2 5.59e-3

order 0.96 2.10 1.04 1.47 1.10 1.53 0.81 0.77

Table 4.2
Errors in C- and L2-norms for dynamically adapted octree grids.

the velocity defined analytically by

u1 = �a (eax sin(ay + dz) + eaz cos(ax+ dy)) e�⌫d

2
t,

u2 = �a (eay sin(az + dx) + eax cos(ay + dz)) e�⌫d

2
t,

u3 = �a (eaz sin(ax+ dy) + eay cos(az + dx)) e�⌫d

2
t.

This velocity field is the incompressible Navier-Stokes equations solution from [7] pro-
posed for the purpose of benchmarking. The velocity field has no principle direction
and has a non-trivial vortical structure. In our experiments we set a = ⇡/4, d = ⇡/2,
⌫ = 0.1.

The simulations are run up to t = 0.108 when we measure the total mass and
compare it to the initial mass for the same grid resolution. The initial mass can
deviate from the analytically computed mass due to meshing e↵ects. Two schemes
with the high-order interpolation are tested and compared: the new BFECC scheme
and the semi-Lagrangian scheme without BFECC correction. We also measure the
minimum and maximum concentration values which for the exact solution should be
between 0 and 1.

We first experiment with uniform grids. Fig.4.4 shows the initial concentration
field with irregular isolines due to mesh e↵ects (left) and the final field obtained with
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Fig. 4.4. Initial state (left) and the numerical solutions at t = 0.108 for the new BFECC
method (right) on the uniform grid, h = 1/64.

the BFECC scheme (right). Table 4.3 shows the mass conservation data for this test
on the sequence of the uniform grids. The BFECC scheme provides somewhat better
mass conservation, yet the performance of the methods is comparable.

Grid N
cells

Initial mass BFECC Semi-Lagrangian

h�1/N
steps

Mass Error Mass Error

32/ 6 32 768 0.113281 0.112670 6.1e-4 0.110609 2.7e-3

64/ 11 262 144 0.113129 0.113480 3.5e-4 0.111855 1.3e-3

128/ 22 2 097 152 0.113106 0.113403 2.9e-4 0.112566 5.4e-4

Table 4.3
Mass conservation for the BFECC and semi-Lagrangian schemes. Uniform grids.

Table 4.4 presents the minimum and maximum values for the numerical solutions.
Both schemes have undershoots and overshoots, and for both schemes these spikes
are decreasing with the first order rate.

Grid BFECC Semi-Lagrangian

h�1
Maximum Minimum Maximum Minimum

32 1.01 -0.018 1.008 -0.01

64 1.004 -0.005 1.004 -0.005

128 1.002 -0.003 1.002 -0.003

Table 4.4
Minimum and maximum concentration values for the BFECC and semi-Lagrangian schemes.

Uniform grids.

We repeat the test for the BFECC scheme on the dynamically refined octree
grids. The grids are refined in the region where the concentration lies in [0.1, 0.9]
or [0.001, 0.999] intervals. Fig.4.5 shows the initial concentration for the dynamically
adapted octree grid with h

min

= 1/128, h
max

= 1/32 (left), as well as the final
concentration at t = 0.108 (right). Table 4.5 shows the mass conservation data and
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Fig. 4.5. Initial state (left) and the numerical solutions at t = 0.108 for the new BFECC
method (right) on the dynamically adapted octree grid with h

min

= 1/128, h
max

= 1/32.

the minimum and maximum values for the numerical solutions on the sequence of the
dynamically adapted octree grids. Wider refinement region provides more accurate
solution for the BFECC method.

Grid N
cells

Initial mass Mass Error Maximum Minimum

h�1
min

/h�1
max

/N
steps

at t = 0.108 Refinement for 0.1  '  0.9
64/16/ 12 12342 0.113129 0.114177 1.05e-3 1.011 -0.018

128/32/ 23 71518 0.113106 0.113742 6.36e-4 1.015 -0.016

256/64/ 46 448769 0.113066 0.11336 2.94e-4 1.010 -0.011

Refinement for 0.001  '  0.999
64/16/ 12 17774 0.113129 0.112693 4.36e-4 1.009 -0.013

128/32/ 23 91363 0.113106 0.113296 1.90e-4 1.006 -0.009

256/64/ 46 537228 0.113066 0.113113 4.70e-5 1.004 -0.007

Table 4.5
Mass conservation and monotonicity for the BFECC scheme on the dynamically adapted octree

grids.

4.3. Level set function transport. We study the performance of the new
BFECC scheme as the numerical solver for the level set equation for the Enright
test [6, 15].

Following [6, 15] we consider the transport of a level set function by the 3D in-
compressible velocity field

u1 = 2 cos(⇡ t/3) sin2(⇡ x) sin(2⇡ y) sin(2⇡ z),

u2 = � cos(⇡ t/3) sin(2⇡ x) sin2(⇡ y) sin(2⇡ z),

u3 = � cos(⇡ t/3) sin(2⇡ x) sin(2⇡ y) sin2(⇡ z).

At t = 0, the level set function ' is the signed distance function for the sphere of radius
r = 0.15 centered at (0.35, 0.35, 0.35). For t > 0, ' solves the transport equation (2.1)
and its zero level implicitly defines the position of the free surface at time t.
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The total simulation time is T = 3. The adaptive grids are dynamically refined
towards the surface, with h

max

= 1/16 and h
min

varying from 1/64 to 1/512. For
the exact solution, the final position of the surface coincides with the initial one. An
e�cient numerical solver for the level set equation is expected to recover accurately
the shape of the free surface, preserve its smoothness, connectivity and conserve the
volume of the free surface interior. It is also common to supplement a numerical
solver with a volume correction technique, see, e.g., [13]. We perform such a volume
correction by adding a suitable constant to ' every time step.

Fig. 4.6 shows the snapshots of the surface at five time moments: t = 0, 0.76,
1.5, 2.26, 3. One observes the convergence of shapes and better smoothness with the
increase of the number refinement levels. For the first three grids the surface is tearing
while for h

min

= 1/512 it remains simple connected.

For comparison we run the same experiment with the original semi-Lagrangian
method and the linear interpolation. Fig.4.7 shows the snapshots of the surface at
the same time instances. For the first four grids the surface looses simple connectivity
much earlier than for the BFECC scheme with the high order interpolation. For
the coarsest grid the volume disappears completely. Only for the finest grid with
h
min

= 1/512 the surface remains simple connected and the results are comparable
to the BFECC.

5. Conclusion. We have presented the new semi-Lagrangian method for the
numerical integration of the linear transport equation on graded octree meshes. The
method features a higher order interpolation procedure with a compact nodal stencil.
The higher order interpolation is supplemented with a limiting procedure to avoid
undershoots and overshoots in numerical solutions. To increase the overall accuracy,
we also use the back-and-forth error compensation correction technique. The method
allows octree grids to adapt dynamically on every time step according to a prescribed
criterion. In numerical experiments the method demonstrates at least second order
accuracy and admits minor overshoots and undershoots. Conservation properties were
found to be acceptable. Simplicity, numerical stability, higher order accuracy, good
conservation and monotonicity properties make this method appealing whenever the
use of the adaptive Cartesian cubic meshes is desired.
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