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LU FACTORIZATIONS AND ILU PRECONDITIONING FOR
STABILIZED DISCRETIZATIONS OF INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS ⇤

IGOR N. KONSHIN† , MAXIM A. OLSHANSKII‡ , AND YURI V. VASSILEVSKI§

Abstract. The paper studies numerical properties of LU and incomplete LU factorizations
applied to the discrete linearized incompressible Navier-Stokes problem also known as the Oseen
problem. A commonly used stabilized Petrov-Galerkin finite element method for the Oseen problem
leads to the system of algebraic equations having a 2 ⇥ 2-block structure. While enforcing better
stability of the finite element solution, the Petrov-Galerkin method perturbs the saddle-point struc-
ture of the matrix and may lead to less favourable algebraic properties of the system. The paper
analyzes the stability of the LU factorization. This analysis quantifies the a↵ect of the stabilization
in terms of the perturbation made to a non-stabilized system. The further analysis shows how the
perturbation depends on the particular finite element method, the choice of stabilization parame-
ters, and flow problem parameters. The analysis of LU factorization and its stability further helps to
understand the properties of threshold ILU factorization preconditioners for the system. Numerical
experiments for a model problem of blood flow in a coronary artery illustrate the performance of the
threshold ILU factorization as a preconditioner. The dependence of the preconditioner properties on
the stabilization parameters of the finite element method is also studied numerically.

Key words. iterative methods, preconditioning, threshold ILU factorization, Navier–Stokes
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AMS subject classifications. 65F10, 65N22, 65F50.

1. Introduction. The paper addresses the question of developing fast algebraic
solves for finite element discretizations of the linearized Navier-Stokes equations. The
Navier-Stokes equations describe the motion of incompressible Newtonian fluids. For
a bounded domain ⌦ ⇢ Rd (d = 2, 3), with boundary @⌦, and time interval [0, T ], the
equations read

8
>>>>><

>>>>>:

@u

@t
� ⌫�u+ (u ·r)u+rp = f in ⌦⇥ (0, T ]

div u = 0 in ⌦⇥ [0, T ]

u = g on �
0

⇥ [0, T ], �⌫(ru) · n+ pn = 0 on �
N

⇥ [0, T ]

u(x, 0) = u
0

(x) in ⌦.

(1.1)

The unknowns are the velocity vector field u = u(x, t) and the pressure field p =
p(x, t). The volume forces f , boundary and initial values g and u

0

are given. Param-
eter ⌫ is the kinematic viscosity; @⌦ = �

0

[�
N

and �
0

6= ?. An important parameter
of the flow is the dimensionless Reynolds number Re = UL

⌫ , where U and L are
characteristic velocity and linear dimension. Solving (1.1) numerically is known to
get harder for higher values of Re, in particular some special modelling of flow scales
unresolved by the mesh may be needed. Implicit time discretization and linearization
of the Navier–Stokes system (1.1) by Picard fixed-point iteration result in a sequence
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of (generalized) Oseen problems of the form

8
><

>:

↵u� ⌫�u+ (w ·r)u+rp = f̂ in ⌦

div u = ĝ in ⌦

u = 0 on �
0

, �⌫(ru) · n+ pn = 0 on �
N

(1.2)

where w is a known velocity field from a previous iteration or time step and ↵ is
proportional to the reciprocal of the time step. Non-homogenous boundary conditions
in the nonlinear problem are accounted in the right-hand side.

Finite element (FE) methods for (1.1) and (1.2) may su↵er from di↵erent sources
of instabilities. One is a possible incompatibility of pressure and velocity FE pairs.
A remedy is a choice of FE spaces satisfying the inf-sup or LBB condition [13] or
the use of pressure stabilizing techniques. A major source of instabilities stems from
dominating inertia terms for large Reynolds numbers. There exist several variants
of stabilized FE methods, which combine stability and accuracy, e.g. the streamline
upwind Petrov-Galerkin (SUPG) method, the Galerkin/Least-squares, algebraic sub-
grid scale, and internal penalty techniques, see, e.g., [4, 7, 11, 27]. These methods
simultaneously suppress spurious oscillations caused by both, dominating advection
and non-LBB-stable FE spaces. The combination of LBB-stable velocity-pressure FE
pairs with advection stabilization is also often used in practice and studied in the
literature, see, e.g., [12,36]. For numerical experiments and finite element analysis in
this paper, we consider a variant of the SUPG method. Details of the method are
given later in this paper.

A finite element spatial discretization of (1.2) results in large, sparse systems of
the form

✓
A eBT

B �C

◆✓
u
p

◆
=

✓
f
g

◆
, (1.3)

where u and p represent the discrete velocity and pressure, respectively, A 2 Rn⇥n is
the discretization of the di↵usion, convection, and time-dependent terms. The matrix
A accounts also for certain stabilization terms. Matrices B and eBT 2 Rn⇥m are
(negative) discrete divergence and gradient. These matrices may also be perturbed
due to stabilization. It is typical for the stabilized methods that B 6= eB, while for a
plain Galerkin method these two matrices are the same. Matrix C 2 Rm⇥m results
from possible pressure stabilization terms, and f and g contain forcing and boundary
terms. For the LBB stable finite elements, no pressure stabilization is required and so
C = 0 holds. If the LBB condition is not satisfied, the stabilization matrix C 6= 0 is
typically symmetric and positive semidefinite. For B = eB of the full rank and positive
definite A = AT the solution to (1.3) is a saddle point. Otherwise, one often refers to
(1.3) as a generalized saddle point system, see, e.g., [3].

Considerable work has been done in developing e�cient preconditioners for Krylov
subspace methods applied to system (1.3) with eB = B; see the comprehensive stud-
ies in [3, 9, 24] of the preconditioning exploiting the block structure of the system. A
common approach is based on preconditioners for block A and pressure Schur comple-
ment matrix S = BA�1 eBT + C, see [10, 25, 38] for recent developments. Well known
block preconditioners are not completely robust with respect to variations of viscosity
parameter, properties of advective velocity field w, grid size and anisotropy ratio, and
the domain geometry. The search of a more robust black-box type approach to solve
algebraic system (1.3) stimulates an interest in developing preconditioners based on
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incomplete factorizations. Clearly, computing a suitable incomplete LU factorizations
of (1.3) is challenging and requires certain care for (at least) the following reasons.
The matrix can be highly non-symmetric for higher Reynolds numbers flows; even in
symmetric case the matrix is indefinite (both positive and negative eigenvalues occur
in the spectrum); extra stabilization terms may break the positive definiteness of A
and/or of the Schur complement. Nevertheless, a progress have been recently reported
in developing incomplete LU preconditioners for saddle-point matrices and general-
ized saddle-point matrices. Thus the authors of [30,31] studied the signed incomplete
Cholesky type preconditioners for symmetric saddle-point systems, corresponding to
the Stokes problem. For the finite element discretization of the incompressible Navier–
Stokes equations the authors of [8,37] developed ILU preconditioners, where the fill-in
is allowed based on the connectivity of nodes rather than actual non-zeros in the ma-
trix. The papers [32, 37] studied several reordering techniques for ILU factorization
of (1.3) and found that some of the resulting preconditioners are competitive with
the most advanced block preconditioners. Elementwise threshold incomplete LU fac-
torizations for non-symmetric saddle point matrices were developed in [20]. In that
paper, an extension of the Tismenetsky-Kaporin variant of ILU factorization for non-
symmetric matrices is used as a preconditioner for the finite element discretizations of
the Oseen equations. Numerical analysis and experiments with the (non-stabilized)
Galerkin methods for the incompressible Navier-Stokes equations demonstrated the
robustness and e�ciency of this approach. An important advantage of precondi-
tioners based on elementwise ILU decomposition is that they are straightforward to
implement in standard finite element codes.

In the present paper we extend the method and analysis from [20] to the system
of algebraic equations resulting from the stabilized formulations of the Navier-Stokes
equations. Hence, we are interested in the numerically challenging case of higher
Reynolds number flows. The e↵ect of di↵erent stabilization techniques on the ac-
curacy of finite element solutions is substantial and is well studied in the literature.
However, not that much research has addressed the question of how the stabilization
a↵ects the algebraic properties of the discrete systems, see [9]. The present study
intends to fill this gap. We analyze the stability of the (exact) LU factorization and
numerical properties of a threshold ILU factorization for (1.3). One might expect that
stabilization adds to the ellipticity of matrices and hence improves algebraic proper-
ties. This is certainly the situation in particular cases of scalar advection-di↵usion
equations and linear elements. However, for saddle-point problems and higher order
elements the situation appears to be more delicate. In particular, algebraic stability
may impose more restrictive bounds on the stabilization parameters than those satis-
fied by optimal parameters with respect to FE solution accuracy. We study the explicit
dependence of algebraic properties of (1.3) on flow, stabilization and discretization
parameters and show that larger values of the stabilization parameter may a↵ect the
algebraic stability. Therefore, for those fluid flow problems, which require SUPG sta-
bilization, suitable parameters meet both restrictions: they are large enough to add
necessary stability for the finite element solution, but not too large to guarantee stable
factorizations of algebraic systems.

The remainder of the paper is organized as follows. In section 2 we give necessary
details on the finite element method for the Oseen equations. Section 3 studies sta-
bility of the exact LU factorizations for (1.3). We derive the su�cient conditions for
the existence and stability of the LU factorization without pivoting. These conditions
and an estimate on the entries of the resulting LU factors are given in terms of the
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properties of the (1,1)-block A, auxiliary Schur complement matrix BA�1BT +C, and
the perturbation matrix B � eB. In section 4, we apply this analysis to system (1.3)
arising from SUPG-stabilized FE discretization of the Oseen system. In section 5,
we briefly discuss the implication of our analysis of LU factorization on the stability
of a two-parameter Tismenetsky–Kaporin variant of the threshold ILU factorization
for non-symmetric non-definite problems. This factorization is used in our numerical
experiments. In section 6 we study the numerical performance of the method on the
sequence of linear systems appearing in simulation of a blood flow in a right coronary
artery. Section 7 collects conclusions and a few closing remarks.

2. FE method and SUPG stabilization. In this paper, we consider an inf-
sup stable conforming FE method stabilized by the SUPG method. To formulate it,
we first need the weak formulation of the Oseen problem. Let V := {v 2 H1(⌦)3 :
v|

�0 = 0}. Given f 2 V0, the problem is to find u 2 V and p 2 L2(⌦) such that

L(u, p;v, q) = (f ,v)⇤ + (g, q) 8 v 2 V, q 2 L2(⌦) ,

L(u, p;v, q) := ↵(u,v) + ⌫(ru,rv) + ((w ·r)u,v)� (p, divv) + (q, divu) ,

where (·, ·) denotes the L2(⌦) inner product and (·, ·)⇤ is the duality paring for V0⇥V.
We assume Th to be a collection of tetrahedra which is a consistent subdivision

of ⌦ satisfying the regularity condition

max
⌧2Th

diam(⌧)/⇢(⌧)  CT , (2.1)

where ⇢(⌧) is the diameter of the subscribed ball in the tetrahedron ⌧ . A constant
CT measures the maximum anisotropy ratio for Th. Further we denote h⌧ = diam(⌧),
h
min

= min⌧2Th h⌧ . Given conforming FE spaces Vh ⇢ V and Qh ⇢ L2(⌦), the
Galerkin FE discretization of (1.2) is based on the weak formulation: Find {uh, ph} 2
Vh ⇥Qh such that

L(uh, ph;vh, qh) = (f ,vh)⇤ + (g, qh) 8vh 2 Vh, qh 2 Qh . (2.2)

In our experiments we shall use P2-P1 Taylor–Hood FE pair, which satisfies the LBB
compatibility condition for Vh and Qh [13] and hence ensures well-posedness and full
approximation order for the FE linear problem.

A potential source of instabilities in (2.2) is the presence of dominating convec-
tion terms. This necessitates stabilization of the discrete system, if the mesh is not
su�ciently fine to resolve all scales in the solution. We consider below one commonly
used SUPG stabilization, while more details on the family of SUPG methods can be
found in, e.g., [6,26,36]. Using (2.2) as the starting point, a weighted residual for the
FE solution multiplied by an ‘advection’-depended test function is added:

L(uh, ph;vh, qh) +
X

⌧2Th

�⌧ (↵uh � ⌫�uh +w·ruh +rph � f ,w·rvh)⌧

= (f ,vh) 8vh 2 Vh, qh 2 Qh , (2.3)

with (f, g)⌧ :=
R
⌧ fg dx. The second term in (2.3) is evaluated element-wise for each

element ⌧ 2 Th. Parameters �⌧ are element- and problem-dependent. To define
the parameters, we introduce mesh Reynolds numbers Re⌧ := kwkL1(⌧)hw/⌫ for
all ⌧ 2 Th, where hw is the diameter of ⌧ in direction w. Several recipes for the
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particular choice of the stabilization parameters can be found in the literature. When
we experiment with the stabilization, we set

�⌧ =

8
><

>:

�̄
hw

2kwkL1(⌧)

✓
1� 1

Re⌧

◆
, if Re⌧ > 1,

0, if Re⌧  1,

with 0 < �̄ < 1. (2.4)

If one enumerates velocity unknowns first and pressure unknowns next, then the
resulting discrete system has the 2⇥2-block form (1.3) with C = 0. The stabilization
alters the (1,2)-block of the matrix making the latter not equal to the transpose of
the (2,1)-block B. In this paper, we analyse factorizations for the matrix from (1.3)
assuming that the perturbation of BT in the (1,2)-block caused by (2.3) is relatively
small due to the choice of �⌧ . The analysis and results of numerical experiments also
show that the perturbation of A caused by (2.3) a↵ects essentially the properties of
LU and ILU decompositions.

We note that there was an intensive development of stabilized and multiscale
finite element methods for fluid problems over last decade, see, for example, [7, 16]
and references in more recent review papers [1, 4]. While these methods can be more
accurate and less dissipative compared to (2.3), they add terms to the algebraic system
of the same structure and similar algebraic properties as the SUPG method. The
streamline di↵usion stabilization as in (2.3) is a standard (and often the only available)
option in many existing CFD software, so we decided to consider in the present studies
this more classical approach as the particular example leading to the system (1.3).

3. Stability of LU factorization. The 2⇥ 2-block matrix from (1.3) is in gen-
eral not sign definite and if C = 0, its diagonal has zero entries. An LU factorization
of such matrices often requires pivoting (rows and columns permutations) for stability
reasons. However, exploiting the block structure and the properties of blocks A and
C, one readily verifies that the LU factorization

A =

✓
A eBT

B �C

◆
=

✓
L
11

0
L
21

L
22

◆✓
U
11

U
12

0 �U
22

◆
(3.1)

with low (upper) triangle matrices L
11

, L
22

(U
11

, U
22

) exists without pivoting, once
det(A) 6= 0 and there exist LU factorizations for the (1,1)-block

A = L
11

U
11

and the Schur complement matrix eS := BA�1 eBT + C is factorized as

eS = L
22

U
22

.

Decomposition (3.1) then holds with U
12

= L�1

11

eBT and L
21

= BU�1

11

.
Assume A is positive definite. Then the LU factorization of A exists without

pivoting. Its numerical stability (the relative size of entries in factors L
11

and U
11

)
may depend on how large is the skew-symmetric part of A comparing to the symmetric
part. To make this statement more precise, we denote A

S

= 1

2

(A+AT ), A
N

= A�A
S

and let

CA = kA� 1
2

S

A
N

A
� 1

2
S

k.
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Here and further, k · k and k · kF denote the matrix spectral norm and the Frobenius
norm, respectively, and |M | denotes the matrix of absolute values of M -entries. The
following bound on the size of elements of L

11

and U
11

holds (see eq.(3.2) in [20]):

k|L
11

||U
11

|kF
kAk  n

�
1 + C2

A

�
. (3.2)

If C � 0, eB = B, and matrix BT has the full column rank, then the positive definite-
ness of A implies that the Schur complement matrix is also positive definite. However,
this is not the case for a general block eB 6= B. In the application studied in this pa-
per, the (1,2)-block eBT is a perturbation of BT . The analysis below shows that the
positive definiteness of eS and the stability of its LU factorization is guaranteed if the
perturbation E = eB �B is not too large. The size of the perturbation will enter our
bounds as the parameter "E defined as

"E := kA� 1
2

S

ET k.

For the ease of analysis we introduce further notations:

S = BA�1BT + C, bAN = A
� 1

2
S

A
N

A
� 1

2
S

.

We shall repeatedly make use of the following identities:

(A�1)
S

=
1

2

�
A�1 +A�T

�
= A

� 1
2

S

(I � bA2

N )�1A
� 1

2
S

,

(A�1)
N

=
1

2

�
A�1 �A�T

�
= A

� 1
2

S

(I + bAN )�1 bAN (I � bAN )�1A
� 1

2
S

.
(3.3)

From the identities

hSq, qi = hBv, qi+ hCq, qi = hv,BT qi+ hCq, qi = hAv, vi+ hCq, qi,

which are true for q 2 Rm and v := A�1BT q 2 Rn, we see that S is positive definite,
if A is positive definite. For eS we then compute:

heSq, qi = hSq, qi+ hA�1ET q,BT qi

= hSq, qi+ hA
1
2
S

A�1ET q, A
� 1

2
S

BT qi

= hSq, qi+ hA
1
2
S

A�1ET q, (I � bAN )(I � bAN )�1A
� 1

2
S

BT qi

= hSq, qi+ h
⇣
(I + bAN )A

1
2
S

A�1A
1
2
S

⌘
A

� 1
2

S

ET q, (I � bAN )�1A
� 1

2
S

BT qi.

We employ identities (3.3) to get

(I + bAN )A
1
2
S

A�1A
1
2
S

= (I + bAN )A
1
2
S

((A�1)
S

+ (A�1)
N

)A
1
2
S

= (I + bAN )((I � bA2

N )�1 + (I + bAN )�1 bAN (I � bAN )�1)

= (I � bAN )�1 + bAN (I � bAN )�1

= (I + bAN )(I � bAN )�1.
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Noting k(I � bAN )�1k  1 for a skew-symmetric bAN , we estimate

heSq, qi � hSq, qi � k(I + bAN )(I � bAN )�1kkA� 1
2

S

ET qkk(I � bAN )�1A
� 1

2
S

BT qk

� hSq, qi � k(I + bAN )kkA� 1
2

S

ET kkqkk(I � bAN )�1A
� 1

2
S

BT qk

� hSq, qi � (1 + CA)"Ekqkk(I � bAN )�1A
� 1

2
S

BT qk

= hSq, qi � (1 + CA)"Ekqkh(I � bAN )�1A
� 1

2
S

BT q, (I � bAN )�1A
� 1

2
S

BT qi 1
2

= hSq, qi � (1 + CA)"EkqkhA
� 1

2
S

BT q, (I + bAN )�1(I � bAN )�1A
� 1

2
S

BT qi 1
2

= hSq, qi � (1 + CA)"EkqkhA
� 1

2
S

BT q, (I � bA2

N )�1A
� 1

2
S

BT qi 1
2

= hSq, qi � (1 + CA)"EkqkhBT q, A
� 1

2
S

(I � bA2

N )�1A
� 1

2
S

BT qi 1
2

= hSq, qi � (1 + CA)"EkqkhB(A�1)
S

BT q, qi 1
2

= hSq, qi � (1 + CA)"EkqkhBA�1BT q, qi 1
2

= hSq, qi � (1 + CA)"EkqkhSq, qi
1
2

�
⇣
1� (1 + CA)"E�

� 1
2

min

(S
S

)
⌘
hSq, qi.

(3.4)
Hence, we conclude that eS is positive definite if the perturbation matrix E is su�-
ciently small such that it holds

 := (1 + CA)"Ec
� 1

2
S < 1 (3.5)

where cS := �
min

(S
S

).
If eS is positive definite, the factorization eS = L

22

U
22

satisfies the stability bound
similar to (3.2):

k|L
22

||U
22

|kF
keSk

 m
⇣
1 + keS� 1

2
S

eS
N

eS� 1
2

S

k2
⌘
,

where eS
S

= 1

2

(eS + eST ), eS
N

= eS � eS
S

.

The quotients CA = kA� 1
2

S

A
N

A
� 1

2
S

k and keS� 1
2

S

eSN
eS� 1

2
S

k are largely responsible
for the stability of the LU factorization for (1.3). The following lemma shows the

estimate of keS� 1
2

S

eSN
eS� 1

2
S

k in terms of CA, "E and cS .
Lemma 3.1. Let A 2 Rn⇥n

be positive definite and (3.5) be satisfied, then it holds

keS� 1
2

S

eSN
eS� 1

2
S

k  (1 + "Ec
� 1

2
S )CA

1� 
. (3.6)

Proof. Due to the skew-symmetry of eS� 1
2

S

eSN
eS� 1

2
S

it holds |�| = |Im(�)| for � 2
sp(eS� 1

2
S

eSN
eS� 1

2
S

), where we use sp(·) to denote the spectrum. We apply Bendixson’s
theorem [33] to estimate

keS� 1
2

S

eSN
eS� 1

2
S

k = max{|�| : � 2 sp(eS� 1
2

S

eSN
eS� 1

2
S

)}

= max{|Im(�)| : � 2 sp(eS� 1
2

S

eSN
eS� 1

2
S

)}

 sup
q2Cm

���heSNq, qi
���

heS
S

q, qi
.
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Thanks to (3.4) we estimate

keS� 1
2

S

eSN
eS� 1

2
S

k  sup
q2Cm

���heSNq, qi
���

(1� )hS
S

q, qi . (3.7)

Employing identities from (3.3), we can write

S
S

= BA
� 1

2
S

(I � bAT
N )�1(I � bAN )�1A

� 1
2

S

BT + C,

eSN = BA
� 1

2
S

(I � bAT
N )�1 bAN (I � bAN )�1A

� 1
2

S

eBT .

With the help of the substitution vq = (I � bAN )�1A
� 1

2
S

BT q in the right-hand side of
(3.7) and recalling that C is positive semidefinite, we obtain

keS� 1
2

S

eSN
eS� 1

2
S

k  sup
q2Cm

���h bANvq, vqi
���+
���h bAN (1� bAN )�1A

� 1
2

S

ET q, vqi
���

(1� )(hvq, vqi+ hCq, qi)

 sup
q2Cm

k bANkkvqk2 + k bANk"Ekqkkvqk
(1� )(kvqk2 + hCq, qi)

 sup
q2Cm

k bANkkvqk2 + k bANk"E�
� 1

2
min

(S
S

)hS
S

q, qi 1
2 kvqk

(1� )(kvqk2 + hCq, qi)

= sup
q2Cm

k bANkkvqk2 + k bANk"E�
� 1

2
min

(S
S

)(kvqk2 + hCq, qi) 1
2 kvqk

(1� )(kvqk2 + hCq, qi)

 (1 + "Ec
� 1

2
S )k bANk

1� 
.

To estimate the entries of U
12

and L
21

factors in (3.1) we repeat the arguments
from [20] and arrive at the following bound

kU
12

kF + kL
21

kF
kU

11

kk eBkF + kL
11

kkBkF
 m(1 + CA)

cA

with cA := �
min

(A
S

).

We summarize the results of this section in the following theorem.
Theorem 3.2. Assume matrix A is positive definite, C is positive semidefinite,

and the inequality (3.5) holds with "E = kA� 1
2

S

( eB �B)T k, CA = kA� 1
2

S

A
N

A
� 1

2
S

k, and
cS = �

min

(S
S

), then the LU factrorization (3.1) exists without pivoting. The entries

of the block factors satisfy the following bounds

k|L
11

||U
11

|kF
kAk  n

�
1 + C2

A

�
,

k|L
22

||U
22

|kF
keSk

 m

 
1 +

(1 + "Ec
� 1

2
S )CA

1� 

!
,

kU
12

kF + kL
21

kF
kU

11

kk eBkF + kL
11

kkBkF
 m(1 + CA)

cA
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with  from (3.5).
The above analysis indicates that the LU factorization for (1.3) exists if the (1,1)

block A is positive definite and the perturbation of the (1,2)-block is su�ciently
small. The stability bounds depend on the constant CA which measures the ratio of
skew-symmetry for A, the ellipticity constant cA, the perturbation measure "E and
the minimal eigenvalue of the symmetric part of the unperturbed Schur complement
matrix S. In section 4 below, we estimate all these values for the discrete linearized
Navier–Stokes system.

4. Properties of matrices A and eS. In this section we deduce the dependence
of the critical constants cA, CA, "E and cS from Theorem 3.2 on the problem and
discretization parameters. This analysis relies on the SUPG-FE formulation from
section 2. Recall that we assume an inf-sup finite element method, and so matrix
C is zero. Let {'i}1in and { j}1jm be bases of Vh and Qh, respectively. For
arbitrary v 2 Rn and corresponding vh =

Pn
i=1

vi'i, one gets the following identity
from the definition of matrix A:

hAv, vi = ↵kvhk2 + ⌫krvhk2 +
X

⌧2Th

�⌧kw·rvhk2⌧ +
1

2

Z

�N

(w · n)|vh|2 ds

+
1

2

X

⌧2Th

((divw)vh,vh)⌧ +
X

⌧2Th

�⌧ (↵vh � ⌫�vh,w·rvh)⌧ , (4.1)

where n is the outward normal on �
N

. We shall also need the velocity mass and
sti↵ness matrices M and K: Mij = ('i,'j), Kij = (r'i,r'j) and the pressure mass
matrix Mp: (Mp)ij = ( i, j).

The first three terms on the right-hand side of (4.1) are positive and contribute
to the ellipticity of the block A. However, the rest three terms are not necessarily sign
definite and should be properly bounded. Although a modification of boundary con-
ditions on �

N

can be done to insure the resulting boundary integral is non-negative,
see, e.g., [5], we shall use a FE trace inequality to estimate this term. We remark
that this term disappears in the case of artificial outflow boundary conditions leading
to Dirichlet conditions in (1.2) on the entire boundary [23,29]. Next, w is typically a
finite element velocity field, w 2 Vh, satisfying only weak divergence free constraint
(divw, qh) = 0 8 qh 2 Qh. This weak divergence free equation does not imply
divw = 0 pointwise for most of stable FE pairs including P2-P1 elements. Therefore,
the fifth term on the right-hand side of (4.1) should be controlled somehow. The last
term in (4.1) is due to the SUPG stabilization. The ⌫-dependent part of it vanishes for
P1 finite element velocities, but not for most of inf-sup stable disretization pressure-
velocity pairs. Both analysis and numerical experiments below show that this term
may significantly a↵ect the properties of the matrix A, leading to unstable behavior
of incomplete LU decomposition unless the stabilization parameters are chosen su�-
ciently small. We make the above statements more precise in Theorem 4.1. We need
some preparation before we formulate the theorem.

First, recall the Sobolev trace inequality

Z

�N

|v|2 ds  C
0

krvk2 8 v 2 H1(⌦), v = 0 on @⌦ \ �
N

. (4.2)

For any tetrahedron ⌧ 2 Th and arbitrary vh 2 Vh, the following FE trace and inverse
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inequalities hold
Z

@⌧
v2

h ds  C
tr

h�1

⌧ kvhk2⌧ , krvhk⌧  C
in

h�1

⌧ kvhk⌧ , k�vhk⌧  C̄
in

h�1

⌧ krvhk⌧ ,

(4.3)
where the constants C

tr

, C
in

, C̄
in

depend only on the polynomial degree k and the
shape regularity constant CT from (2.1). In addition, denote by C

f

the constant from
the Friedrichs inequality:

kvhk  C
f

krvhk 8 vh 2 Vh, (4.4)

and let Cw := k(w · n)�kL1
(�N)

.
To avoid the repeated use of generic but unspecified constants, in the remainder

of the paper the binary relation x . y means that there is a constant c such that
x  c y, and c does not depend on the parameters which x and y may depend on, e.g.,
⌫, ↵, mesh size, and properties of w. Obviously, x & y is defined as y . x.

Theorem 4.1. Assume that w 2 L1(⌦), problem and discretization parameters

satisfy

8
>>>>>><

>>>>>>:

CwC
tr

h�1

min

 ↵

4
or CwC

0

 ⌫

4
,

kdivwkL1
(⌦)

 1

4
max{↵, ⌫C�1

f },

�⌧  1

2

✓
h2

⌧

⌫C̄2

in

+
↵h4

⌧

⌫2C̄2

in

C2

in

◆
and �⌧  h⌧

4kwkL1
(⌧)Cin

8 ⌧ 2 Th,

(4.5)

with constants defined in (4.2)–(4.4). Then the matrix A is positive definite and the

constants cA, CA, cS and "E can be estimated as follows:

cA � 1

4
�
min

(↵M + ⌫K),

CA . 1 +
kwkL1

(⌦)p
⌫↵+ ⌫ + h

min

↵
,

cS & �
min

(Mp)

(⌫ + ↵+ kwkL1
(⌦)

+ kdivwkL1
(⌦)

)(1 + C2

A)
,

"E 
⇣ �̄
2⌫
�
max

(Mp)
⌘ 1

2

.

(4.6)

Proof. Using the Cauchy inequality and (4.3), we bound the ⌫-dependent part of
the last term in (4.1) as follows:
�����
X

⌧2Th

�⌧⌫(�vh,w·rvh)⌧

�����  ⌫

 
X

⌧2Th

�⌧ C̄
2

in

h�2

⌧ krvhk2⌧

! 1
2
 
X

⌧2Th

�⌧kw·rvhk2⌧

! 1
2

 ⌫2

2

X

⌧2Th

�⌧ C̄
2

in

h�2

⌧ krvhk2⌧ +
1

2

X

⌧2Th

�⌧kw·rvhk2⌧

 ⌫2

2
C̄2

in

X

⌧2Th

�⌧
⌫krvhk2⌧ + ↵kvhk2⌧
⌫h2

⌧ + C�2

in

↵h4

⌧

+
1

2

X

⌧2Th

�⌧kw·rvhk2⌧

 1

2

X

⌧2Th

⌫2�⌧ C̄2

in

C2

in

⌫h2

⌧C
2

in

+ ↵h4

⌧

�
⌫krvhk2⌧ + ↵kvhk2⌧

�
+

1

2

X

⌧2Th

�⌧kw·rvhk2⌧ .

(4.7)
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The first term in the second line of (4.7) is bounded due to min{a
c ;

b
d}  a+b

c+d for
a, b, c, d > 0. Using similar arguments we bound the ↵-dependent part of the last
term in (4.1):

�����
X

⌧2Th

�⌧↵(vh,w·rvh)⌧

����� 
X

⌧2Th

↵�⌧kwkL1
(⌧)kvhk⌧krvhk⌧


X

⌧2Th

↵�⌧kwkL1
(⌧)Cin

h�1

⌧ kvhk2⌧ .
(4.8)

Applying (4.2), (4.7), and (4.8) in (4.1), we deduce

hAv, vi �
X

⌧2Th

✓
1� ⌫2�⌧ C̄2

in

C2

in

2(⌫h2

⌧C
2

in

+ ↵h4

⌧ )
�
�⌧kwkL1

(⌧)Cin

h⌧

◆�
⌫krvhk2⌧ + ↵kvhk2⌧

�

+
1

2

X

⌧2Th

�⌧kw·rvhk2⌧ � Cw

2

Z

�N

|vh|2 ds�
1

2
kdivwkL1

(⌧)kvhk2

�
X

⌧2Th

✓
1� ⌫2�⌧ C̄2

in

C2

in

2(⌫h2

⌧C
2

in

+ ↵h4

⌧ )
�
�⌧kwkL1

(⌧)Cin

h⌧

◆�
⌫krvhk2⌧ + ↵kvhk2⌧

�

� Cw

2
min{C

0

krvhk2, Ctr

h�1

min

kvhk2}+
1

2

X

⌧2Th

�⌧kw·rvhk2⌧ � 1

2
kdivwkL1

(⌧)kvhk2.

(4.9)
To ensure the right-hand side is positive, we assume conditions (4.5) on problem
parameters and coe�cients. Employing conditions (4.5) in (4.9), we deduce

hAv, vi � 1

4

 
↵kvhk2 + ⌫krvhk2⌧ +

X

⌧2Th

�⌧kw·rvhk2⌧

!

� 1

4
(↵hMv, vi+ ⌫hKv, vi ) 8 v 2 Rn ,

(4.10)

therefore, cA � 1

4

�
min

(↵M + ⌫K). Further, we estimate

CA := kA� 1
2

S

A
N

A
� 1

2
S

k = max{|�| : � 2 sp(A
� 1

2
S

A
N

A
� 1

2
S

)}
= max{|�| : � 2 sp(A�1

S

A
N

)}
 kA�1

S

A
N

k⇤,

(4.11)

and for k · k⇤ we choose a matrix norm induced by the vector norm h(↵M + ⌫K)·, ·i 1
2 .

For a given v 2 Rn and u = A�1

S

A
N

v consider their finite element counterparts
vh,uh 2 Vh. Then A

S

u = A
N

v can be written in a finite element form as

⌫(ruh,r'h) + ↵(uh,'h) +
1

2

Z

�N

(w · n)uh ·'h ds+
X

⌧2Th

�⌧ (w·ruh,w·r'h)⌧

+
1

2

X

⌧2Th

((divw)uh,'h)⌧+
1

2

X

⌧2Th

�⌧ [(↵uh�⌫�uh,w·r'h)⌧+(↵'h�⌫�'h,w·ruh)⌧ ]

=
1

2

X

⌧2Th

(1 + ↵�⌧ )[(w·rvh,'h)⌧ � (w·r'h,vh)⌧ ]

� 1

2

X

⌧2Th

�⌧⌫[(�vh,w·r'h)⌧ � (�'h,w·rvh)⌧ ] 8'h 2 Vh. (4.12)
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We set 'h = uh. For the left-hand side of (4.12) the lower bound (4.10) holds. To
estimate the right-hand side, we apply the Cauchy–Schwarz inequality, the second
restriction on �⌧ from (4.5) and finite element inverse inequality:
X

⌧2Th

(1 + ↵�⌧ )[(w·rvh,uh)⌧ � (w·ruh,vh)⌧ ]


X

⌧2Th

(1 +
↵h⌧

kwkL1
(⌧)Cin

)[(w·rvh,uh)⌧ � (w·ruh,vh)⌧ ]

 kwkL1
(⌦)

(krvhkkuhk+ kruhkkvhk) +
X

⌧2Th

↵h⌧

C
in

(krvhk⌧kuhk⌧ + kruhk⌧kvhk⌧ )

 kwkL1
(⌦)

(krvhkkuhk+ kruhkkvhk) +
X

⌧2Th

2↵kvhk⌧kuhk⌧

 kwkL1
(⌦)

(krvhkkuhk+ kruhkkvhk) + 32↵kvhk2 +
↵

32
kuhk2.

(4.13)

Further we estimate terms on the right-hand side by employing Young’s, Friedrichs,
and finite element inverse inequalities. Thus, the product kuhkkrvhk one can esti-
mate in three di↵erent ways:

kwkL1
(⌦)

kuhkkrvhk  1

32
↵kuhk2 + 8kwkL1

(⌦)

1

↵⌫
(⌫krvhk2)

kwkL1
(⌦)

kuhkkrvhk  1

32
⌫kruhk2 + 8kwkL1

(⌦)

C2

f

⌫2
(⌫krvhk2)

kwkL1
(⌦)

kuhkkrvhk  1

32
↵kuhk2 + 8kwkL1

(⌦)

C2

in

↵2h2

min

(↵kvhk2).

Combining all three estimates gives

kwkL1
(⌦)

krvhkkuhk  1

32
(⌫kruhk2 + ↵kuhk2)

+ 8kwk2L1
(⌦)

min

⇢
1

↵⌫
,
C2

f

⌫2
,

C2

in

↵2h2

min

�
(⌫krvhk2 + ↵kvhk2).

(4.14)

Using same argument to treat the second term on the right-hand side of (4.13), we
arrive at

kwkL1
(⌦)

kruhkkvhk  1

32
(⌫kruhk2 + ↵kuhk2)

+ 8kwk2L1
(⌦)

min

⇢
1

↵⌫
,
C2

f

↵2

,
C2

f

⌫2

�
(⌫krvhk2 + ↵kvhk2).

(4.15)

Hence, we derive using min{a
1

, a
2

, a
3

}  3(a�1

1

+ a�1

2

+ a�1

3

)�1, the estimate for the
first term on the right hand side of (4.12)

1

2

X

⌧2Th

(1 + ↵�⌧ )[(w·rvh,uh)⌧ � (w·ruh,vh)⌧ ]

.
 
1 +

kwk2L1
(⌦)

⌫↵+ ⌫2 + h2

min

↵2

!
(⌫krvhk2 + ↵kvhk2) +

3

32
(⌫kruhk2 + ↵kuhk2).

(4.16)
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Now we estimate the second term on the right hand side of (4.12) with the help of
the third condition from (4.5):
X

⌧2Th

�⌧⌫[(�vh,w·ruh)⌧ � (�uh,w·rvh)⌧ ]


X

⌧2Th

[�⌧⌫C̄in

h�1

⌧ krvhk⌧kw·ruhk⌧ + �⌧⌫C̄in

kwkL1
(⌧)h

�1

⌧ kruhkkrvhk⌧ ]

 1

32
(⌫kruhk2 +

X

⌧2Th

�⌧kw·ruhk2⌧ ) +
X

⌧2Th

8(�⌧⌫C̄
2

in

h�2

⌧ + �2

⌧ C̄
2

in

kwk2L1
(⌧)h

�2

⌧ )⌫krvhk2⌧

. 1

32
(⌫kruhk2 +

X

⌧2Th

�⌧kw·ruhk2⌧ ) + (⌫krvhk2 + ↵kvhk2).

(4.17)

Summarizing (4.12)– (4.17), we obtain

7

8

 
↵kuhk2 + ⌫kruhk2 +

X

⌧2Th

�⌧kw·ruhk2⌧

!
+

1

2

Z

�N

(w · n)|uh|2 ds

�
X

⌧2Th

�⌧ (↵uh � ⌫�uh,w·ruh)⌧ +
1

2

X

⌧2Th

((divw)uh,uh)⌧

.
 
1 +

kwk2L1
(⌦)

⌫↵+ ⌫2 + h2

min

↵2

!
(⌫krvhk2 + ↵kvhk2).

(4.18)

The left-hand side of (4.12) equals

hA
S

u, ui � 1

8

 
↵kuhk2 + ⌫kruhk2 +

X

⌧2Th

�⌧kw·rvhk2⌧

!

and due to (4.10) it is estimated from below by 1

2

hA
S

u, ui. Recalling 4hA
S

u, ui �
kuk2⇤ = ⌫kruhk2 + ↵kuhk2, we obtain with the help of (4.11)

CA  kA�1

S

A
N

k⇤ = sup
v2Rn

kuk⇤
kvk⇤

 2 sup
v2Rn

hA
S

u, ui 1
2

kvk⇤
.
✓
1 +

kwkL1
(⌦)p

⌫↵+ ⌫ + h
min

↵

◆
.

(4.19)
Denote c̃w := kwkL1

(⌦)

, ĉw = kdivwkL1
(⌦)

. To bound from below the ellipticity
constant c

S

for the auxiliary Schur complement matrix S, we first observe the following
upper bound

hA
S

v, vi = hAv, vi  2(↵kvhk2 + ⌫krvhk2 +
X

⌧2Th

�⌧kw·rvhk2⌧ ) + C
0

c̃wkrvhk2 +
1

2
ĉwkvhk2

 2(↵kvhk2 + ⌫krvhk2 +
X

⌧2Th

�⌧kwk2L1
(⌧)krvhk2⌧ ) + C

0

c̃wkrvhk2 +
1

2
ĉwkvhk2

 2(↵kvhk2 + ⌫krvhk2 +
X

⌧2Th

h⌧kwkL1
(⌧)

4C
in

krvhk2⌧ ) + C
0

c̃wkrvhk2 +
1

2
ĉwkvhk2

 2(↵kvhk2 + (⌫ + c̃w)krvhk2) + C
0

c̃wkrvhk2 +
1

2
ĉwkvhk2

. (⌫ + ↵+ c̃w + ĉw)krvhk2.
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The above bound and the inf-sup stability of the finite element spaces yield the fol-
lowing relations:

hBA�1

S

BT q, qi = sup
v2Rn

hBv, qi2

hA
S

v, vi & sup
vh2Vh

(divvh, qh)2

(⌫ + ↵+ c̃w + ĉw)krvhk2

& kqhk2

⌫ + ↵+ c̃w + ĉw
=

hMpq, qi
⌫ + ↵+ c̃w + ĉw

.

(4.20)

With the help of the first identity from (3.3) and (4.20) we obtain

hSq, qi = hA�1BT q,BT qi = h(I � (A
� 1

2
S

A
N

A
� 1

2
S

)2)�1A
� 1

2
S

BT q, A
� 1

2
S

BT qi

� hA� 1
2

S

BT q, A
� 1

2
S

BT qi

1 + k(A� 1
2

S

A
N

A
� 1

2
S

)2k
=

hBA�1

S

BT q, qi

1 + k(A� 1
2

S

A
N

A
� 1

2
S

)2k

& 1

(⌫ + ↵+ c̃w + ĉw)(1 + k(A� 1
2

S

A
N

A
� 1

2
S

)k2)
hMpq, qi.

(4.21)

The desired bound for cS follows from (4.21).
To estimate "E , we use similar technique. For arbitrary given q 2 Rm, let u =

A�1

S

ET q. We have

kA� 1
2

S

ET qk2 = hA�1

S

ET q, ET qi = hA
S

u, ui. (4.22)

For arbitrary v 2 Rn it holds hA
S

u, vi = hET q, vi. For corresponding finite element
functions this yields

⌫(ruh,rvh) + ↵(uh,vh) +
1

2

Z

�N

(w · n)uh · vh ds+
X

⌧2Th

�⌧ (w·ruh,w·rvh)⌧

+
1

2

X

⌧2Th

((divw)uh,vh)⌧+
1

2

X

⌧2Th

�⌧ [(↵uh�⌫�uh,w·rvh)⌧+(↵vh�⌫�vh,w·ruh)⌧ ]

=
X

⌧2Th

�⌧ (w·rvh,rqh)⌧ 
X

⌧2Th

�⌧

✓
1

8
kw·rvhk2⌧ + 2krqhk2⌧

◆


X

⌧2Th

�⌧

✓
1

8
kw·rvhk2⌧ + 2C2

in

h�2

⌧ kqhk2⌧
◆
.

We set vh = uh and invoke (4.10) to conclude in the vector notation

hA
S

u, ui . max
⌧

(�⌧h
�2

⌧ )�
max

(Mp)kqk2  �̄

2⌫
�
max

(Mp)kqk2. (4.23)

The last inequality follows from the definition of �⌧ in (2.4) for Re⌧ > 1:

�⌧ = �̄
hw

2kwkL1(⌧)

✓
1� 1

Re⌧

◆
 �̄

hw

2kwkL1(⌧)
Re⌧ = �̄

h2

w

2⌫
 �̄

h2

⌧

2⌫
. (4.24)

Recalling the definition of "E , the inequality (4.23) together with (4.22) proves the
last bound in (4.6).

The theorem shows that matrices A and eS are positive definite if conditions (4.5)
on the parameters of the finite element method are satisfied. In this case, the matrix
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in (1.3) admits LU factorization without pivoting. The first condition in (4.5) is
trivially satisfied with Cw = 0 if �

N

6= ? or the entire �
N

is outflow boundary. The
second condition may not be restrictive, since w approximates velocity field of an
incompressible fluid and hence kdivwkL1

(⌦)

decreases for a refined grid. However, the
w-divergence norm depends on fluid velocity field and may be large for ⌫ small enough.
Fortunately, one can choose such small �t that the second condition holds due to ↵ ⇠
(�t)�1. The third condition in (4.5) puts an upper bound on stabilization parameters.
Naturally, the same or a similar condition appears in the literature on the analysis of
SUPG stabilized methods for the linearized Navier–Stokes equations, see, e.g., [26].
The reason is that the positive definiteness of A is equivalent to the coercivity of
the velocity part of the bilinear form from (2.3), which is crucial for deriving finite
element method error estimates. Therefore, stabilization parameter design suggested

in the literature typically satisfies �⌧ . h2
⌧
⌫ and �⌧ . h⌧

kwkL1(⌧)
asymptotically, i.e.

up to a scaling factor independent of discretization parameters. As follows from
(4.24), the conditions (4.5) on the SUPG stabilization parameters (2.4) are valid
if �̄  min{C̄�2

in

, 1

2

C�1

in

}. In practice, however, larger values of �̄ are often found
optimal for FE solution accuracy. The possible reason of the inconsistency is that
smooth harmonics dominate in the solution, and hence the bounds on parameters are
less tight. The situation is di↵erent when one is concerned with iterative convergence
of algebraic solvers, since an algebraic solver has to reduce all possible harmonics in
the decomposition of the error vector.

5. A two-parameter threshold ILU factorization. Incomplete LU factor-
izations of (1.3) can be written in the form A = LU � E with an error matrix E.
How small is the matrix E can be ruled by the choice of a threshold parameter ⌧ > 0.
The error matrix E is responsible for the quality of preconditioning, see, for exam-
ple, [19] for estimates on GMRES method convergence written in terms of kEk and
subject to a proper pre-scaling of A and the diagonalizability assumption. In general,
the analysis of ILU factorization is based on the following arguments. For positive
definite matrices A one can choose such a small ⌧ that the product LU of its incom-
plete triangular factors L and U is also positive definite and so estimates from [14]
can be applied to assess the numerical stability of the incomplete factorization: for
cA = �

min

(A
S

), the su�cient condition is ⌧ < cAn�1. In practice, however, larger
⌧ are used, and in the case of non-symmetric matrices non-positive or close to zero
pivots may encounter, and breakdown of an algorithm may happen. Although most
of remedies were developed for the SPD case [2], some of them are applicable to non-
symmetric and non-definite matrices. We use the matrix two-side scaling [20] in our
applications.

Stability of ILU factorization for saddle point matrices with positive definite (1,1)-
block and eB 6= B deteriorates in comparison with positive definite matrices and saddle
point matrices with eB = B. Theorem 4.1 shows that for certain flow regimes the
ellipticity constants cA, cS for A and S approach zero. To ameliorate the performance
of the preconditioning in such extreme situations, we consider the two-parameter
Tismenetsky–Kaporin variant of the threshold ILU factorization. The factorization
was introduced and first studied in [18,34,35] for symmetric positive definite matrices
and recently for non-symmetric matrices in [20].

Given a matrix A 2 Rn⇥n, the two-parameter factorization can be written as

A = LU + LRu +R`U � E, (5.1)

where Ru and R` are strictly upper and lower triangular matrices, while U and L
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are upper and lower triangular matrices, respectively. Given two small parameters
0 < ⌧

1

 ⌧
2

the o↵-diagonal elements of U and L are either zero or have absolute
values greater than ⌧

1

, the absolute values of R` and Ru entries are either zero or
belong to (⌧

2

, ⌧
1

]; entries of the error matrix are of order O(⌧
2

). We refer to (5.1)
as the ILU(⌧

1

, ⌧
2

) factorization of A. Of course, a generic ILU(⌧) factorization can
be viewed as (5.1) with Ru = R` = 0 and ⌧

1

= ⌧
2

= ⌧ . The two-parameter ILU
factorization goes over a generic ILU(⌧) factorization: the fill-in of L and U is ruled
by the first threshold parameter ⌧

1

, while the quality of the resulting preconditioner is
mainly defined by ⌧

2

, once ⌧2
1

. ⌧
2

holds. In other words the choice ⌧
2

= ⌧2
1

:= ⌧2 may
provide the fill-in of ILU(⌧

1

, ⌧
2

) to be similar to that of ILU(⌧), while the convergence
of preconditioned Krylov subspace method is better and asymptotically (for ⌧ ! 0)
can be comparable to the one with ILU(⌧2) preconditioner. For symmetric positive
definite matrices this empirical advantages of ILU(⌧

1

, ⌧
2

) are rigorously explained
in [18], where estimates on the eigenvalues and K-condition number of L�1AU�1

were derived with LT = U and RT
` = Ru. The price one pays is that computing

L, U factors for ILU(⌧
1

, ⌧
2

) is computationally more costly than for ILU(⌧
1

), since
intermediate calculations involve the entries of Ru. However, this factorization phase
of ILU(⌧

1

, ⌧
2

) is still less expensive than that of ILU(⌧
2

). We note also that ILU(⌧
1

,⌧
2

)
with ⌧

1

= ⌧
2

is similar to the ILUT(p,⌧) dual parameter incomplete factorization [28]
with p = n (all elements passing the threshold criterion are kept in the factors). If
no small pivots modification is done, the only di↵erences between the algorithms (for
⌧
1

= ⌧
2

and p = n) are a di↵erent scaling of pivots and a row dependent scaling of
threshold values used in ILUT. A pseudo-code of a row-wise ILU(⌧

1

, ⌧
2

) can be found
in [20].

Analysis of the decomposition (5.1) of a general non-symmetric matrix is limited
to simple estimate (2.5) from [15] applied to the matrix (L + R`)(U + Ru) = A +
R`Ru + E. The low bound for the pivots of the (5.1) factorization is the following

|LiiUii| � min
v2Rn

h(A+R`Ru + E)v, vi
kvk2 � cA � kR`Ruk � kEk, (5.2)

with the ellipticity constant cA and the norms kR`Ruk, kEk proportional to ⌧2
1

and ⌧
2

,
respectively. Hence, we may conclude that the numerical stability of solving for L�1x
and U�1x is ruled by the second parameter and the square of the first parameter,
while the fill-in in both factors is defined by ⌧

1

rather than ⌧2
1

. The Oseen problem
setup may be such that the estimates from Theorem 4.1 predict that the coercitivity
constant cA and the ellipticity constant c

S

are small. This increases the probability of
the breakdown of ILU(⌧) factorization of the saddle-point matrix A, and demonstrates
the benefits of ILU(⌧

1

, ⌧
2

) factorization.

6. Numerical results. In this section, we demonstrate the performance of the
ILU(⌧) factorization for di↵erent values of discretization, stabilization and threshold
parameters. As a testbench, we simulate a blood flow in a right coronary artery within
a single cardiac cycle. For numerical test, we use the implementation of ILU(⌧

1

,⌧
2

)
available in the open source software [21, 22]. The optimal values of ILU thresholds
⌧
1

= 0.03, ⌧
2

= 7⌧2
1

are taken from [20] where detailed analysis of ILU(⌧
1

,⌧
2

) and
ILU(⌧):= ILU(⌧ ,⌧) preconditioners for the Oseen systems without stabilization is
given. In all experiments we use BiCGstab method with the right preconditioner
defined by the ILU(⌧

1

,⌧
2

) factorization.
The geometry of the flow domain was recovered from a real patient coronary

CT angiography. The diameter of the inlet cross-section is about 0.27 cm and is
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Table 6.1
The performance of ILU(⌧1 = 0.03, ⌧2 = 7⌧21 ) for right coronary artery. The number and the

time of iterations accumulated for 147 time steps

Mesh �̄ #it Tit

63k 0 20908 2267.
63k 1/12 20292 2182.
120k 0 26209 6188.
120k 1/12 26446 6132.

Fig. 6.1. The velocity waveform on the inflow as a function of time and the coarse grid in the
right coronary artery.

imbedded in the box 6.5 cm ⇥ 6.8 cm ⇥ 5 cm. The ANI3D package [22] was used to
generate two tetrahedral meshes, the coarse mesh is shown in Figure 6.1. The meshes
consist of 63k and 120k tetrahedra leading to the discrete (P2-P1 FEM) Navier–
Stokes system with about 300k and 600k unknowns, respectively. The Navier–Stokes
system (1.1) was integrated in time using a semi-implicit second order method with
�t = 0.005 and systems (1.3) were solved at every time step. Other model parameters
are ⌫ = 0.04 cm2/s, ⇢ = 1g/cm, one cardiac cycle period was 0.735s. The inlet
velocity waveform [17] shown in Figure 6.1 defines the Poiseuille flow rate through
the inflow cross-section. The vessel walls were treated as rigid and homogeneous
Dirichlet boundary conditions for the velocity are imposed on the vessel walls. On all
outflow boundaries we set the normal component of the stress tensor equal zero.

Table 6.1 shows the total number of the preconditioned BiCGstab iterations and
the CPU time needed to perform all 147 time steps within a single cardial cycle. For
each system, the initial residual due to the solution from the previous time step is
reduced by 10 orders of magnitude. We generated sequences of the discrete Oseen
problems (1.2) with (�̄ = 1/12) and without (�̄ = 0) SUPG-stabilization. The choice
of parameters ⌧

1

, ⌧
2

leads to stable computations over the whole cardiac cycle. The
total number of iterations depends on the size of the system and the mesh and ap-
pears to be very similar for both examples with and without stabilization. The total
number of iterations is 20% larger for the fine grid, which should be expected for the
preconditioner based on an incomplete factorization. Over the cardiac cycle, the vari-
ations of the iteration counts and CPU times per linear solve are rather modest, see
the top and bottom plots in Figures 6.2 and Figures 6.3. The di↵erence in otherwise
similar performance of liners solvers for the cases �̄ = 1/12 and �̄ = 0 is the following:
For �̄ = 1/12, when the maximum flow rate on the inlet is achieved, the number
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Fig. 6.2. Right coronary artery, computations on grid 63k (left) and grid 120k (right) without
SUPG-stabilization and ⌧1 = 0.03: The top plots show the number of BiCGStab iterations, the
bottom plots show the time of BiCGstab iterations at each time step.

Fig. 6.3. Right coronary artery, computations on grid 63k (left) and grid 120k (right), SUPG-
stabilization with �̄ = 1/12 and ⌧1 = 0.03: The top plots show the number of BiCGStab iterations,
the bottom plots show the time of BiCGstab iterations at each time step.

of iterations and times needed to build preconditioner increase essentially (approxi-
mately twice as much as average). This happens over a few time steps. In these cases
when factorization is performed several small pivots occur and their modification is
performed during the incomplete factorization.

The next series of experiments shows that restrictions (4.5) on �⌧ are important in
practice. According to Theorems 3.2 and 4.1, exact LU factorization of A without piv-
oting is stable if �⌧ are small enough. In particular, according to estimate (4.24) su�-
cient conditions (4.5) are satisfied by parameters from (2.4) if �̄  min{C̄�2

in

, 1

2

C�1

in

}.
In this experiment, we increase �̄ two times setting �̄ = 1/6. It occurs that the ma-
trices associated with the coarse grid are more di�cult to solve now. For the first
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Table 6.2
The performance of ILU(⌧1, ⌧2 = 7⌧21 ) for right coronary artery with less viscous blood ⌫ =

0.025 cm2/s. Threshold values allowing to run the entire SUPG-stabilized simulation with di↵erent
stabilization parameters �̄. ‘?’ means solution blow-up, ‘–’ means untracktable systems for any
applicable ⌧1.

�̄ 0 1/96 1/48 1/24 1/12 1/6 1/3
⌧1 ? 0.03 0.03 0.03 0.03 0.003 –

Fig. 6.4. The fill-in of the LU factors for �̄ = 0 (left) and �̄ = 1/12 (right).

threshold parameter ⌧
1

as small as 10�4, we observe no pivot modifications and the
average number of BiCGstab iterations per linear solve is only 8. This suggests that
the exact LU factorization is still stable. Such small ⌧

1

is non-practical because of
enormous memory demands and factorization time. However, already for ⌧

1

equal
3 · 10�4 on two time steps the algorithm makes 12 and 4 modifications of nearly zero
pivots in order to avoid the breakdown. This caused the convergence slowdown, as
many as 135 iterations for one system. Certain Oseen systems with �̄ = 1/6 on the
fine grid can not be solved by the ILU-preconditioned BiCGstab iterations with any
values of threshold parameters that we tried. Note that for smaller �̄ = 1/12 the
algorithm performs without pivot modifications even for ⌧

1

= 0.03.
Further, we decrease the viscosity of the fluid to ⌫ = 0.025 cm2/s, and try to run

the same simulation on the coarse grid. For this value of the viscosity, the simulation
without SUPG stabilization fail (solution blow-up is observed on t = 0.23 s). Adding
SUPG stabilization allows to obtain physiologically meaningful solution, however, for
large enough parameter �̄ the linear systems are harder to solve: �̄ = 1/6 requires
smaller threshold parameter ⌧

1

, whereas �̄ = 1/3 generates unsolvable systems, see
Table 6.2. This experiment confirms that restrictions on �̄ come both from stability
of the FE method and algebraic stability of the LU factorization.

We finally note that in experiments with varying inlet velocity, which leads to
varying Reynolds number, the two-parameter ILU preconditioner demonstrated a
remarkable adaptive property. The fill-in of the L and U blocks decrease or increase
depending on the Reynolds number, see Figure 6.4 and compare to the inlet waveform
in Figure 6.1. We will study this property of the two-parameter ILU preconditioner
in more detail in a subsequent paper.

7. Closing remarks and conclusions. In this paper, we studied the stability
of the LU factorization for the stabilized finite element formulations of the incompress-
ible Navier-Stokes equations. Further, the two-parameter threshold ILU factorization
was applied to define a preconditioner in the Krylov subspace method. Advantages
and shortcomings of incomplete elementwise factorization preconditioners are well
known: On the one hand, they are rather insensitive to discretization, boundary con-
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ditions for governing PDEs, domain geometry, flow directions; on the other hand, even
for discrete elliptic problems, ILU preconditioners do not scale optimally with respect
to the number of unknowns. We observed such non-optimality in the numerical exper-
iments for generalized saddle-point problem as well. For 3D problems, when the mesh
size is not too small, such dependence can be an acceptable price for other robustness
properties of the preconditioner: in our experiments, the two times increase of the
number of mesh cells leaded only 20% increase of the iteration counts. Similar to the
previous studies in [20] we found that natural u-p ordering of unknowns is su�cient
for numerical stability of exact LU-factorization, when stabilization parameters satisfy
certain bounds. In the algebraic language this translates as the positive definiteness
of the A block and the su�ciently small size of perturbation in the (1,2)-block. In this
paper, the stability bounds for the factorization are rigorously formulated in terms of
algebraic properties of sub-blocks of the original saddle-point matrix.

In general, higher Reynolds numbers lead to e�ciency loss for most well-known
preconditioners for (1.3). In case of 3D blood flow in coronary arteries, the actual
viscosity and velocity are such that P2-P1 stable FE discretization still provides the
non-oscillatory solution on tetrahedral meshes with ⇠ 105 cells. However, the coro-
nary blood flow parameters are close to the limit of non-oscillatory discretization and
SUPG-stabilization may be in-demand. SUPG-stabilization alters the (1,1)-block and
(1,2)-block of the Oseen matrix (1.3), and hence changes open new questions about
the stability of factorizations. Theorem 4.1 show how the constants in the algebraic
stability estimates depend on the flow and discretization parameters. This gives a cer-
tain insight into the performance of incomplete factorizations as preconditioners for
flow problems. The present numerical analysis of incomplete factorizations for such
non-symmetric matrices is still limited to the lower estimate (5.2) of the diagonal
entries of the triangular factors.

The two-parameter ILU preconditioner was applied to hemodynamic flow in a
right coronary artery reconstructed from a real patient coronary CT angiography. The
performance of the preconditioner is good for a suitable choice of SUPG-stabilization
parameters.
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