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DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ
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Abstract. Recently, the use of special local test functions other than polynomials in Discontin-
uous Galerkin (DG) approaches has attracted a lot of attention and became known as DG-Trefftz
methods. In particular, for the 2D Helmholtz equation plane waves have been used in [10] to derive
an Interior Penalty (IP) type Plane Wave DG (PWDG) method and to provide an a priori error
analysis of its p-version with respect to equidistributed plane wave directions. However, the depen-
dence on the distribution of the plane wave directions has not been studied. In this contribution,
we study this dependence by formulating the choice of the directions as an optimal control problem
with a tracking type objective functional and the variational formulation of the PWDG method as
a constraint. The necessary optimality conditions are derived and numerically solved by a projected
gradient method. Numerical results are given which illustrate the benefits of the approach.

Key words. Plane Wave Discontinuous Galerkin methods, optimization of plane wave direc-
tions, Helmholtz equation
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1. Introduction. The use of plane waves in the finite element approximation
of the Helmholtz equation goes back to the ultra weak variational formulation of the
problem by Cessenat and Després [3]. The approach can be interpreted as a Dis-
continuous Galerkin (DG) approximation and is therefore referred to as the Plane
Wave Discontinuous Galerkin (PWDG) method. Since it uses local trial spaces con-
sisting of plane waves, it is also a particular example of a Trefftz-type finite element
approximation and hence called a Trefftz-type DG method. Due to its superior per-
formance compared to standard finite element approximations which suffer from the
so-called pollution effect, it has been studied extensively in the literature (cf., e.g.,
[1, 2, 4, 6, 7, 9]). In particular, the h-version and the p-version of the PWDG method
have been analyzed in [8] and in [10], whereas the exponential convergence of the
hp-version has been established in [11].

The PWDG method features a triangulation Th(Ω) of the computational domain
Ω ⊂ R2 and the use of a certain number p = 2m + 1,m ∈ N, of plane waves in each
element K ∈ Th(Ω) which compose the local trial spaces. The plane waves are of the
form exp(ikd` · x),d` = (cos(θ`), sin(θ`))

T ,−m ≤ ` ≤ +m,x ∈ K, where k stands for
the wavenumber. It is known from the convergence analysis of the PWDG method
[10] that the p directions d`,−m ≤ ` ≤ +m, should be chosen in such a way that the
minimum angle between two different directions is greater or equal 2πη/p for some
η ∈ (0, 1]. An issue that has not been considered so far is how to choose the directions
(for fixed Th(Ω) and m ∈ N) in order to minimize the discretization error.
In this paper, we formulate this problem as a constrained optimal control problem with
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a tracking type objective functional and the variational formulation of the PWDG
method as a constraint, where the controls are the p angles θ`,−m ≤ ` ≤ +m.
We derive the first order necessary optimality conditions by means of the Lagrange
multiplier approach [13] and derive a projected gradient type method with Armijo line
search to compute an optimal solution. Numerical results illustrate the dependence
of the discretization error on the choice of the plane wave directions.

2. The PWDG Method. For a bounded convex polygonal domain Ω ⊂ R2

with boundary Γ = ∂Ω we consider the Helmholtz equation

−∆u− ω2u = 0 in Ω, (2.1a)

n · ∇u+ iωu =g on Γ = ∂Ω. (2.1b)

where ω > 0 is the wavenumber, g ∈ L2(Γ) is a given function, and n denotes the
exterior unit normal vector on Γ. We rewrite (2.1) as the first order system:

iωσ −∇u = 0 in Ω, (2.2a)

−∇ · σ + iωu = 0 in Ω, (2.2b)

iωn · σ + iωu = g on Γ. (2.2c)

The variational formulation of (2.2) reads: Find (σ, u) ∈ H(div,Ω)×H1(Ω) such that
for all (τ , v) ∈ H(div,Ω)×H1(Ω) it holds

(iω σ, τ )0,Ω + (u,∇ · τ )0,Ω = 〈u,n · τ 〉
H

1/2
(Γ),H

−1/2
(Γ)
, (2.3a)

(σ,∇v)0,Ω + (u, v)0,Γ + (iω u, v)0,Ω = (
1

iω
g, v)0,Γ. (2.3b)

We consider a shape regular family of geometrically conforming, quasi-uniform sim-
plicial triangulations Th(Ω) of the computational domain Ω. For D ⊂ Ω̄ we denote by
Eh(D) the set of edges of the triangulation in D. For T ∈ Th(Ω), we refer to hT as the
diameter of T and set h := max {hT | T ∈ Th(Ω)}. For E ∈ Eh(Ω̄), the length of E
will be denoted by hE . For functions v ∈∏T∈Th(Ω)H

1(T ) the trace of v on E ∈ Eh(Ω)

may exhibit a jump across E. For E ∈ Eh(Ω) with E = T+ ∩ T−, T± ∈ Th(Ω) and
E ∈ Eh(Γ) we define

{v}E :=

{
(v|T+∩E + v|T−∩E)/2 , E ∈ Eh(Ω)

v|E , E ∈ Eh(Γ)
, (2.4)

[v]E :=

{
v|T+∩E − v|T−∩E , E ∈ Eh(Ω)

v|E , E ∈ Eh(Γ)
.

For vector-valued functions we use an analogous notation.
We approximate (2.3a),(2.3b) by introducing the following local spaces spanned by
plane waves

Vp(T ) := {v(x) :=

p∑

`=1

α` exp(iωd` · x)}, p ∈ N, (2.5)

Vp(T ) := Vp(T )2,

where α` ∈ C and d`, 1 ≤ ` ≤ p, are p different unit directions

d` = (cos(θ`), sin(θ`))
T , 1 ≤ ` ≤ p = 2m+ 1, m ∈ N. (2.6)
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We set θ = (θ1, · · · , θp)T such that θ`, 1 ≤ ` ≤ p. Setting θp+1 = θ1 + 2π we require
that

θ ∈ K := {θ ∈ [0, 2π)p | θmin ≤ θ`+1 − θ` ≤ θmax, 1 ≤ i ≤ p}, (2.7)

θmin := (2πη1)/p, θmax := (2πη2)/p, 0 < η1 < 1 < η2 < 3/2.

The associated global spaces are given by

Vh := {vh ∈ L2(Ω) | vh|T ∈ Vp(T ), T ∈ Th(Ω)}, (2.8)

Vh := {τh ∈ L2(Ω)2 | τh|T ∈ Vp(T ), T ∈ Th(Ω)}.

Then, the PWDG approximation of (2.1a),(2.1b) amounts to the computation of
(uh,σh) ∈ Vh ×Vh such that for all (vh, τh) ∈ Vh ×Vh it holds

∑

T∈Th(Ω)

(
(iωσh, τh)0,T + (uh,∇ · τh)0,T

)
−

∑

T∈Th(Ω)

(ûh,n∂T · τh)0,∂T = 0, (2.9a)

∑

T∈Th(Ω)

(
(σh,∇vh)0,T + (iωuh, vh)0,T

)
−

∑

T∈Th(Ω)

(n∂T · σ̂h, vh)0,∂T = 0. (2.9b)

Here, the PWDG flux functions ûh and σ̂h are given by

ûh|E :=

{
{uh}E − β

iω [∇uh]E , E ∈ Eh(Ω)

uh − δ
(

1
iωnE · ∇uh + uh − 1

iω g
)
, E ∈ Eh(Γ)

, (2.10a)

σ̂h|E :=

{
1
iω{∇uh}E − α[uh]E , E ∈ Eh(Ω)

1
iω∇uh − (1− δ)

(
1
iω∇uh + nEuh − 1

iωnEg
)
, E ∈ Eh(Γ)

, (2.10b)

where nE is the exterior unit normal on E and α > 0, β > 0, δ ∈ (0, 1) are flux
parameters independent of h, p, and ω.
By choosing τh = ∇vh in (2.9a), we can eliminate σh from (2.9a),(2.9b) and obtain
the following primal variational formulation of the PWDG method: Find uh ∈ Vh
such that for all vh ∈ Vh it holds

∑

T∈Th(Ω)

(
(∇uh,∇vh)0,T − ω2(uh, vh)0,T

)
− (2.11)

∑

T∈Th(Ω)

(
(uh − ûh,n∂T · ∇vh)0,∂T + iω(n∂T · σ̂h, vh)0,∂T

)
= 0.

Moreover, using Green’s formula for the first term on the left-hand side in (2.11) and
observing (−∆−ω2I)uh|T = 0, T ∈ Th(Ω), we are led to a formulation of the PWDG
method involving only integrals over edges E ∈ Eh(Ω): Find uh ∈ Vh such that

ah(uh, vh) = `h(vh), vh ∈ Vh, (2.12)
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where the sesquilinear form ah(·, ·) : Vh × Vh → C and the functional `h : Vh → C are
given by

ah(uh, vh) :=
∑

E∈Eh(Ω)

(
({uh}E ,nE · [∇vh]E)0,E + iβω−1(nE · [∇uh]E ,nE · [∇vh]E)0,E

− (nE · {∇uh}E , [vh]E)0,E + iαω([uh]E , [vh]E)0,E

)

∑

E∈Eh(Γ)

(
(1− δ)(uh,nE · ∇vh)0,E + iδω−1(nE · ∇uh,nE · ∇vh)0,E

− δ(nE · ∇uh, vh)0,E + i(1− δ)ω(uh, vh)0,E

)
, (2.13a)

`h(vh) :=
∑

E∈Eh(Γ)

(
iδω−1(g,nE · ∇vh)0,E + (1− δ)(g, vh)0,E

)
. (2.13b)

As has been shown in [10], the variational equation (2.12) admits a unique solution
uh ∈ Vh. Moreover, if the solution u of (2.1a),(2.1b) satisfies u ∈ Hk+1(Ω), k ∈ N,
and if the mesh width h of the triangulation Th(Ω) satisfies ωh ≤ κ for some κ > 0,
then there exists a constant C > 0, independent of p and u, but depending on κ, such
that the following a priori error estimate holds true (cf. Theorem 3.14 in [10])

‖u− uh‖0,Ω ≤ Cω−1 diam(Ω) hk−1
( log p

p

)k−1/2

‖u‖k+1,ω,Ω, (2.14)

where ‖ · ‖k+1,ω,Ω stands for the ω-weighted Sobolev norm

‖v‖k+1,ω,Ω :=
( k+1∑

j=0

ω2(k+1−j |v|2j,Ω
)1/2

, v ∈ Hk+1(Ω).

Setting N := card(Th(Ω)) and θ := (θ1, · · · , θp)T , the global PWDG space Vh is
spanned by Np basis functions

Vh = span(ϕ
(1)
h , · · · , ϕ(Np)

h ), (2.15)

ϕ
((k−1)p+`)
h := exp(iω(cos(θ`), sin(θ`))

T · x)|Tk
, 1 ≤ k ≤ N, 1 ≤ ` ≤ p.

Then, uh ∈ Vh can be written as

uh =

Np∑

j=1

uj ϕ
(j)
h , uj ∈ C, 1 ≤ j ≤ Np. (2.16)

Further, setting y := (y1, · · · , yNp)T ∈ CNp with yj := uj , 1 ≤ j ≤ Np, the PWDG
approximation (2.12) represents a complex linear algebraic system

A(θ)y = b(θ), (2.17)

where the matrix A(θ) = (ak`(θ))Npk,`=1 ∈ CNp×Np and the vector b(θ) = (b1(θ),

· · · , bNp(θ))T ∈ CNp are given by

ak`(θ) := ah(ϕ
(`)
h (θ), ϕ

(k)
h (θ)), 1 ≤ k, ` ≤ Np, (2.18)

b`(θ) := `h(ϕ
(`)
h ), 1 ≤ ` ≤ Np.
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3. Optimization of the plane wave directions. The a priori estimate (2.14)
for the L2-norm of the global discretization error tells us how the error depends on
the number p of plane wave directions, but is does not provide any information on the
appropriate choice of the directions d` = (cos(θ`), sin(θ`))

T , 1 ≤ ` ≤ p, except that
they are supposed to satisfy assumption (2.7). In fact, since

Vh = span(exp(iωd1 · x)|T1 , · · · , exp(iωdp · x)|TN
), (3.1)

whereN := card(Th(Ω)), the solution uh ∈ Vh of (2.12) depends on θ := (θ1, · · · , θp)T ∈
K according to

uh(θ) =

N∑

k=1

p∑

`=1

uk` exp(iωd` · x)|Tk
, uk` ∈ C. (3.2)

We attempt to choose θ ∈ K such that with respect to the L2-norm the solution
uh(θ) of (2.12) is as close as possible to a given desired state ud ∈ L2(Ω). This can
be formulated as the optimal control problem

min
uh∈Vh, θ∈K

J(uh,θ) :=
1

2
‖uh(θ)− ud‖20,Ω, (3.3a)

subject to the PWDG constraint

ah(uh(θ), vh(θ)) = `h(vh(θ)), vh(θ) ∈ Vh. (3.3b)

Introducing the Hermitian matrix M(θ) = (mk`(θ))Npk,`=1 ∈ CNp×Np and the vector

c(θ) = (c1(θ), · · · , cNp(θ))T according to

mk`(θ) := (ϕ
(k)
h , ϕ

(`)
h )0,Ω, 1 ≤ k, ` ≤ Np, (3.4)

c`(θ) := (ud, ϕ
(`)
h )0,Ω, 1 ≤ ` ≤ Np,

the algebraic formulation of (3.3a),(3.3b) turns out to be

min
y∈CNp, θ∈K

J(y,θ) :=
1

2
〈M(θ)y,y〉 − Re(〈c(θ),y〉), (3.5a)

subject to the state equation

e(y,θ) := A(θ)y − b(θ) = 0. (3.5b)

We further denote by G : K → CNp the control-to-state map which assigns to the
control θ ∈ K the unique solution y ∈ CNp of the state equation (3.5b) and by
Jred : K→ R the reduced objective functional

Jred(θ) := J(G(θ),θ).

Then, the control-reduced formulation of the optimal control problem (3.5a),(3.5b)
reads as follows

min
θ∈K

Jred(θ). (3.6)
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Theorem 3.1. The optimal control problem (3.5a),(3.5b) admits an optimal
solution (y∗,θ∗) ∈ CNp ×K.

Proof. Let {θ(n)}N,θ(n) ∈ K, n ∈ N, be a minimizing sequence, i.e., it holds

Jred(θ
(n))→ min

θ∈K
Jred(θ) as n→∞. (3.7)

Obviously, the sequence {θ(n)}N is bounded and hence, there exist a subsequence
N′ ⊂ N and θ∗ ∈ Rp such that

θ(n) → θ∗, N′ 3 n→∞.

In view of the closedness of K, we have θ∗ ∈ K. Moreover, due to the continuity
of both the control-to-state map G and of the reduced objective functional Jred we
deduce

G(θ(n))→ G(θ∗), Jred(θ
(n))→ Jred(θ

∗) N′ 3 n→∞.

Consequently, from (3.7) we have

Jred(θ
∗) = min

θ∈K
Jred(θ),

and with y∗ := G(θ∗) it follows that the pair (y∗,θ∗) ∈ CNp × K is an optimal
solution of (3.5a),(3.5b).

Remark 3.2. Since the control-to-state map G is a non-convex function of the
control θ, we do not have uniqueness of an optimal solution.

4. First order necessary optimality conditions. We will derive the first
order necessary optimality conditions for the optimal control problem (3.5a),(3.5b)
by the method of Lagrange multipliers which is justified if the linear independence
constraint qualification holds true. To this end, we note that the bound constraints
on the control can be expressed as the inequalities g(θ) ≤ 0, where the mapping
g = (g1,g2) : Rp → Rp × Rp is defined by means of

g1(θ) := (θ2 − θ1 − θmax, · · · , θp+1 − θp − θmax), (4.1)

g2(θ) := (θmin − (θ2 − θ1), · · · , θmin − (θp+1 − θp)).

For a local minimum (y∗,θ∗) ∈ CNp ×K of (3.5a),(3.5b) the active set is given by
A(θ∗) = A1(θ∗) ∪A2(θ∗) where

A1(θ∗) := {q ∈ {1, · · · , p} | θ∗q+1 − θ∗q − θmax = 0}, (4.2a)

A2(θ∗) := {q ∈ {1, · · · , p} | θmin − (θ∗q+1 − θ∗q ) = 0}. (4.2b)

We refer to I(θ∗) := {1, · · · , p} \ A(θ∗) as the inactive set. The linear indepen-
dence constraint qualification requires the linearization of (e, (g1)A1(θ∗), (g2)A2(θ∗)) at
(y∗,θ∗) to be surjective.

Theorem 4.1. Let p∗i := card(Ai(θ
∗)), 1 ≤ i ≤ 2 and assume I(θ∗) 6= ∅. The

mapping

(∇e(y∗,θ∗),∇g1,A1(θ∗)(θ
∗),∇g2,A2(θ∗)(θ

∗)) : CNp × Rp → CNp × Rp
∗
1 × Rp

∗
2
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is surjective. In particular, for any (r, s1, s2) ∈ CNp×Rp∗1 ×Rp∗2 there exists a unique
solution (δy, δθ) ∈ CNp × Rp of the equation

(∇e(y∗,θ∗)(δy, δθ),∇g1,A1(θ∗)(θ
∗)δθ,∇g2,A2(θ∗)(θ

∗)δθ) = (r, s1, s2).

Proof. For k ∈ A1(θ∗) we obviously have

∇g1,k′(θ
∗) =




−1 , k′ = k
+1 , k′ = k + 1

0 , otherwise
, (4.3)

whereas for k ∈ A2(θ∗)

∇g2,k′(θ
∗) =





+1 , k′ = k
−1 , k′ = k + 1

0 , otherwise
. (4.4)

Since I(θ∗) 6= ∅, there exists q ∈ {1, · · · , p} such that q ∈ I(θ∗). We renumber the

controls according to θ̂∗k := θ∗q+k−1, θ̂
∗
k+p = θ̂∗k + 2π, 1 ≤ k ≤ p, and set (δθ)k = 0 for

k ∈ I(θ̂
∗
). If A(θ̂

∗
) = ∅, there is nothing to show. If A(θ̂

∗
) 6= ∅, there exists

kmin :=min{k ∈ {2, · · · , p} | k ∈ A(θ̂
∗
)}.

Moreover, in view of p+ 1 ∈ I(θ̂
∗
), there also exists

kmax :=min{k ∈ {kmin + 1, · · · , p+ 1} | k ∈ I(θ̂
∗
)}.

In view of (4.3),(4.4), (δθ)k, kmin ≤ k ≤ kmax − 1, is the unique solution of a linear
algebraic system with a regular upper triangular matrix. For the computation of

(δθ)k ∈ A(θ̂
∗
) \ {kmin, · · · , kmax − 1} we proceed in the same way.

On the other hand, the equation ∇e(y∗,θ∗)(δy, δθ) = r can be equivalently written
as

A(θ)δy = ∇θ
(
b(θ∗)−A(θ∗)y∗

)
δθ,

which has a unique solution δy ∈ CNp.

Due to Theorem 4.1, the necessary optimality conditions can be derived by the method
of Lagrange multipliers.

Theorem 4.2. Assume that (y∗,θ∗) ∈ CNp × K is an optimal solution of
(3.5a),(3.5b). Then there exist an adjoint state p∗ ∈ CNp and a multiplier µ∗ =
(µ∗1,µ

∗
2) ∈ R2p

+ ,µ
∗
i = (µ∗i,1, · · · , µ∗i,p)T , 1 ≤ i ≤ 2, such that the state equation, the

adjoint state equation and the gradient equation

A(θ∗)y∗ − b(θ∗) = 0,

AH(θ∗)p∗ + M(θ∗)y∗ − Re(c(θ∗)) = 0,

∇θJ(y∗,θ∗) + Re(〈∇θ(A(θ∗)y∗ − b(θ∗)),p∗〉) +∇θg1(θ∗)Tµ∗1 +∇θg2(θ∗)Tµ∗2 = 0

are satisfied as well as the complementarity conditions

gi,q(θ
∗) ≤ 0, µ∗i,q ≥ 0, gi,q(θ

∗)µ∗i,q = 0 , 1 ≤ q ≤ p, 1 ≤ i ≤ 2.
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Proof. We introduce the Lagrangian L : CNp × Rp × CNp × R2p
+ according to

L(y,θ,p,µ) := J(y,θ) + Re(〈e(y,θ),p〉) + g1(θ)Tµ1 + g2(θ)Tµ2.

Setting x := (y,θ,p) and x∗ := (y∗,θ∗,p∗), the first order necessary optimality
conditions are given by

∂L

∂y
(x∗,µ∗) = 0,

∂L

∂θ
(x∗,µ∗) = 0,

∂L

∂p
(x∗,µ∗) = 0, (4.5a)

∂L

∂µi
(x∗,µ∗)T (νi − µ∗i ) ≤ 0, νi ∈ Rp+, 1 ≤ i ≤ 2. (4.5b)

The state equation, the adjoint state equation, and the gradient equation result from
the third, first, and second equation in (4.5a), whereas the complementarity conditions
are a consequence of (4.5b).

5. Projected gradient method. The projected gradient method is based on
the formulation of the gradient equation as the variational inequality

−∇θJ(y∗,θ∗) + Re(〈∇θ(b(θ∗)−A(θ∗)y∗),p∗〉) ∈ ∂IK,

where ∂IK is the subdifferential of the indicator function of the constraint set K.

Projected Gradient Method:

Step 1: Choose an initial control θ(0) ∈ K and a tolerance TOL > 0 and set n = 0.

Step 2.1: Set n = n + 1 and compute y(n) ∈ CNp and p(n) ∈ CNp as the unique
solutions of the state equation

A(θ(n−1))y(n) = b(θ(n−1))

and of the adjoint state equation

AH(θ(n−1))p(n) = Re(c(θ(n−1)))−M(θ(n−1))y(n).

Step 2.2: Compute θ̃
(n) ∈ Rp according to

θ̃
(n)

= θ(n−1) − κ
(
∇θJ(y(n),θ(n−1)) + Re(〈∇θ(A(θ(n−1))y(n))− b(θ(n−1))

)
,p(n)〉),

where κ > 0 is the Armijo line search parameter.

Step 2.3: Compute θ(n) as the projection of θ̃
(n)

onto the constraint set K.

Step 2.4: If n > 1 and

|J(y(n),θ(n))− J(y(n−1),θ(n−1))| < TOL,

stop the algorithm. Otherwise, go to Step 2.1.

We will provide some details regarding the numerical realization of Step 2.2. For the
update formula we need to compute the following quantity:

∇θJ (y,θ) + Re (〈∇θA (θ)y − b (θ) ,p〉) .
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For the computation of ∇θJ (y,θ) we recall from (3.5a) that

J (y,θ) =
1

2
〈M (θ)y,y〉 − Re (〈c (θ) ,y〉) , (5.1)

where the Np×Np matrix M (θ) and the Np vector c (θ) are given by (3.4). More-
over, according to (3.5b) the vector y = (y1, · · · , yNp)T is the unique solution of

A (θ)y = b (θ) ,

where the Np × Np matrix A (θ) and the Np vector b (θ) are given by (2.18). We

note that for any two given basis functions φ
(k)
h and φ

(`)
h either,

µ
(

supp
(
φ

(k)
h

)
∩ supp

(
φ

(`)
h

))
= 0

or,

supp
(
φ

(k)
h

)
∩ supp

(
φ

(`)
h

)
= T ∈ Th(Ω),

where µ is the 2-D Lebesgue measure. Let Tk,`, 1 ≤ k, ` ≤ Np, be defined as

Tk,` :=





∅ , if µ
(

supp
(
φ

(k)
h

)
∩ supp

(
φ

(`)
h

))
= 0

supp
(
φ

(k)
h

)
∩ supp

(
φ

(`)
h

)
, otherwise

,

and let T`, 1 ≤ ` ≤ Np be given by

T` := supp
(
φ

(`)
h

)
∈ Th(Ω).

Hence, we can rewrite (3.4) as

mk` (θ) :=

∫

Tk,`

exp (iωdk · x) exp (iωd` · x)dx , 1 ≤ k, ` ≤ Np,

c` (θ) :=

∫

T`

udexp (iωd` · x)dx , 1 ≤ ` ≤ Np.
(5.2)

In view of (5.1) we obtain

∇θJ (y,θ) = ∇θ


1

2

Np∑

k,`=1

mk`(θ)yky`


−∇θ

(
Re

Np∑

k=1

ck(θ)yk

)
. (5.3)
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Differentiating (5.2) with respect to θj it follows that

∂

∂θj

(1

2

Np∑

k,`=1

mkl(θ)y`yk
)

=

1

2

( Np∑

`=1

yjy`

∫

Tj,`

(
iωd∗j · x

)
exp(iωdj · x) · exp(iωd` · x)dx +

Np∑

`=1

y`yj

∫

Tj,`

(
−iωd∗j · x

)
exp(iωd` · x) · exp(iωdj · x)dx

)
=

1

2

( Np∑

`=1

yjy`

∫

Tj,`

(
iωd∗j · x

)
exp(iωdj · x) · exp(iωd` · x)dx +

Np∑

`=1

yjy`

∫

Tj,`

(
iωd∗j · x

)
exp(iωdj · x) · exp(iωd` · x)dx

)
=

Re

Np∑

`=1

yjy`

∫

Tj,`

(
iωd∗j · x

)
exp(iωdj · x) · exp(iωd` · x)dx ,

(5.4)

where d∗j = (− sin(θj), cos(θj))
T . Moreover, we obtain

∂

∂θj

(
Re

Np∑

k=1

ck(θ)yk

)
= Re

(
yj

∫

Ω

(
−iωd∗j · x

)
udexp(iωdj · x)dx

)
. (5.5)

On the other hand, for Re (∇θ 〈A (θ)y − b (θ) ,p〉) we have

Re

(
∂

∂θj
〈A (θ)y − b (θ) ,p〉

)
= Re


 ∂

∂θj

Np∑

k,`=1

(ak`(θ)y` − bk(θ)) pk


 =

Re




Np∑

k,`=1

(
∂akl(θ)

∂θj
yl −

∂bk(θ)

∂θj

)
pk


 .

(5.6)

We obtain the derivatives ∂akl(θ)
∂θj

and ∂bk(θ)
∂θj

by directly differentiating the formulas

in (2.18).
Using (5.4)-(5.6) provides the update formula in Step 2.2 of the projected gradient
method.

6. Numerical results. As in [9, 10] we consider the Helmholtz problem (2.1a),
(2.1b) in Ω = (0, 1)× (−0.5,+0.5) with ω = 10 and g in (2.1b) being chosen such that
the exact solution u (in polar coordinates) is given by

u(r, ϕ) = Jξ(ωr) cos(ξϕ), ξ ≥ 0,

where Jξ stands for the Bessel function of the first kind and order ξ. We note that for
ξ ∈ N the solution is regular, whereas for ξ /∈ N the solution satisfies u ∈ H1+ξ−ε(Ω)
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Fig. 6.1. Example 1: The computational domain Ω and the simplicial triangulation Th(Ω) for
the PWDG method (top left). The exact solution for ξ = 1 (top right), ξ = 2/3 (bottom left), and
ξ = 3/2 (bottom right).

for any ε > 0 and its derivatives have a singularity at the origin. Figure 6.1 displays
the exact solution for ξ = 1 (top right), ξ = 2/3 (bottom left), and ξ = 3/2 (bottom
right).
For ξ = 1, ξ = 2/3, and ξ = 3/2 the PWDG method has been implemented with
respect to a geometrically conforming simplicial triangulation Th(Ω) consisting of
eight isosceles triangles (cf. Figure 6.1 (top left)). The parameters α, β, and δ in the
PWDG method (2.9a),(2.9b) are chosen either according to

α = β = δ = 0.5 (6.1)

as in the ultraweak variational formulation by Cessenat and Després [3] or by means
of

α = β−1 = δ−1 =
10p

ωh log(p)
(6.2)

as suggested in [10]. For the optimization of the plane wave directions, the desired
state ud in the objective functional J (cf. (3.3a)) has been chosen as the exact
solution, and for the projected gradient method the initial distribution θ0 has been
chosen as either uniform as in [10] or random as suggested by Cessenat and Després.
We note that the optimization problem has multiple local minima and hence, starting
at different initial distributions the algorithm may terminate at different local minima.
For ξ = 1 Figure 6.2 and for ξ = 2/3 Figure 6.3 display the global discretization error
u − uh in the L2-norm ‖ · ‖0,Ω as a function of the number p of plane wave basis
functions. For the choice of the parameters α, β, and δ according to (6.1), the results
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Fig. 6.2. Example 1: The L2-error ‖u − uh‖0,Ω as a function of the number p of plane wave
basis functions for ξ = 1: Parameter choice (6.1) and uniform initial distribution θ0 (top left),
parameter choice (6.1) and random initial distribution θ0 (top right), parameter choice (6.2) and
uniform initial distribution θ0 (bottom left), parameter choice (6.2) and random initial distribution
θ0 (bottom right).

for a uniform initial distribution θ0 of the plane wave directions are top left and for
a random initial distribution θ0 they are shown top right. On the other hand, if the
parameters α, β, and δ are chosen by means of (6.2), the results for a uniform initial
distribution θ0 are displayed bottom left, whereas for a random initial distribution θ0

they are shown bottom right. We see that both in case of a regular solution (ξ = 1)
and of a singular solution (ξ = 2/3) the uniform distribution of θ0 is optimal except
for p = 3, 5, 7, 9 where it is almost optimal (cf. Figure 6.4 for ξ = 2/3 and p = 5).
However, for a random initial distribution θ0 the computed optimal distribution yields
a reduction in the L2-error ‖u−uh‖0,Ω up to one order of magnitude. Figure 6.5 shows
the randomly chosen initial distribution and the computed optimal distribution for
ξ = 1 and p = 7.

The (almost) optimality of the uniform distribution of the plane wave directions is
probably due to the fact that the solution is symmetric (with respect to the x1-axis).
Moreover, we see that the difference between the two parameter choices (6.1) and
(6.2) is only marginal. The results for the case ξ = 3/2 are very similar and are thus
omitted.

We note that the condition number of the matrix A(θ) deteriorates with increasing
number p of plane wave basis functions so that roundoff errors may effect the con-
vergence. For ξ = 1 we observe such a behavior for p ≥ 23 (cf. Figure 6.2), whereas
in the singular case ξ = 2/3 a slowdown of the convergence can already be seen for
p ≥ 17 (cf. Figure 6.3).
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Fig. 6.3. Example 1: The L2-error ‖u − uh‖0,Ω as a function of the number p of plane wave
basis functions for ξ = 2/3: Parameter choice (6.1) and uniform initial distribution θ0 (top left),
parameter choice (6.1) and random initial distribution θ0 (top right), parameter choice (6.2) and
uniform initial distribution θ0 (bottom left), parameter choice (6.2) and random initial distribution
θ0 (bottom right).
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Fig. 6.4. Example 1: Uniform initial distribution θ0 of the plane wave directions (red dotted
line) and the computed optimal distribution (blue solid line) for ξ = 2/3 and p = 5: Parameter
choice (6.1) left and parameter choice (6.2) right.

Example 2: The second example deals with a screen problem which describes an
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Fig. 6.5. Example 1: Randomly chosen initial distribution θ0 of the plane wave directions (red
dotted line) and the computed optimal distribution (blue solid line) for ξ = 1 and p = 7: Parameter
choice (6.1) left and parameter choice (6.2) right.

acoustic wave scattered at a sound-soft scatterer:

−∆u− ω2u = f in Ω, (6.3a)

n · ∇u+ iωu = g on ΓR, (6.3b)

u = 0 on ΓD, (6.3c)

The computational domain is given by Ω := (−1,+1)2 \ (S1 ∪ S2) where

S1 := conv((0, 0), (−0.25,+0.50), (−0.50,+0.50)),

S2 := conv((0, 0), (+0.25,−0.50), (+0.50,−0.50)).

Moreover, ΓR = ∂(−1,+1)2 and ΓD := ∂S1 ∪ ∂S2. The right-hand sides f and g are
chosen according to f ≡ 0 and

g = cos(ωx2) + isin(ωx2).

The exact solution u is not known explicitly. As a substitute for the exact solution we
have used an approximate solution us computed by the adaptive Interior Penalty Dis-
continuous Galerkin method from [12] with a sufficiently large number of refinement
steps. For ω = 15, the approximate solution us is displayed in Figure 6.6 (right).

The PWDG method has been implemented with respect to a geometrically conforming
simplicial triangulation Th(Ω) shown in Figure 6.6 (left). The parameters α, β, and δ
of the PWDG method have been chosen according to (6.1). For the optimization, we
have chosen ud in the objective functional as the substitute solution us. Moreover, for
the projected gradient method the initial distribution θ0 of the plane wave directions
has been chosen as a uniform distribution.
In this example, the effect of roundoff errors due to ill-conditioned PWDG matrices
A(θ) already sets in for p ≥ 11 so that we restrict the numerical results to 3 ≤ p ≤ 9.
Figure 6.7 shows the uniformly chosen initial distribution θ0 and the computed opti-
mal distribution of the plane wave directions for p = 3, 5, 7, and p = 9 (from top left
to bottom right). In these cases the L2 error ‖u − uh‖0,Ω is reduced by up to 20 %.
Compared to Example 1, the non-optimality of the uniform distribution is due to the
fact that the solution of the screen problem is not symmetric.
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Fig. 6.6. Example 2: The computational domain Ω and the simplicial triangulation Th(Ω)
for the PWDG method (left; the sound-soft scatterer is shown in blue). The substitute solution us
computed by the adaptive Interior Penalty Discontinuous Galerkin method from [12] (right).
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Fig. 6.7. Example 2: Uniform initial distribution θ0 of the plane wave directions (red dotted
line) and the computed optimal distribution (blue solid line) for p = 3 (top left), p = 5 (top right),
p = 7 (bottom left), and p = 9 (bottom right).
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