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A C°" INTERIOR PENALTY DISCONTINUOUS GALERKIN
METHOD FOR FOURTH ORDER TOTAL VARIATION FLOW.
II: EXISTENCE AND UNIQUENESS

C. BHANDARI!, R.H.W. HOPPE2, AND R. KUMARS3

ABSTRACT. We prove the existence and uniqueness of a solution of a CO In-
terior Penalty Discontinuous Galerkin (C® TPDG) method for the numerical
solution of a fourth order total variation flow problem that has been devel-
oped in part I of the paper. The proof relies on a nonlinear version of the
Lax-Milgram Lemma. It requires to establish that the nonlinear operator as-
sociated with the CO IPDG approximation is Lipschitz continuous and strongly
monotone on bounded sets of the underlying finite element space.

1. INTRODUCTION

We consider the following fourth order total variation flow (TVF) problem:

ow ~~ Yuw A ~ N
1.1a — + AV.———=0 in =0 x 07T,
(1.1a) 57 B Tl Q (0,7)

Vw ce /e Vuw A R
1.1b ng- f:nAVV Vi— =0 onX:=Ix O,T,
(L.1p) v O = YV (V ) (0,7)
(1.1c) w(-,0) = w’ in Q.

Here, ) ¢ R? is a bounded domain with boundary I = 8@, T > 0 is the final
time, 8 > 0 is some constant, ng stands for the exterior unit normal at f‘, and
w® € L2(€) is some given initial data.

The fourth order equation (1.1a) has to be understood as the flow problem

ow
——— € 0Ey-1(w
57 -1(w)

associated with the total variation-H ~! (TV-H ~!) minimization of the energy func-
tional

(1.2) Bw) = /3/|¢w\ de, B>0,
Q
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where 9y -1 E(w) is the H~1 subdifferential of E.
In fact, if we introduce an inner product on H~!(Q according to

(w,2)_1 g = (V(=Aw), V(=A12))g 4,
the subdifferential

dp1E(w)={ve HQ) | (v,z2—w)_1.0 < E(z) — B(w) for all z€ H1(Q)}

reads as follows (cf., e.g., [6]):

O B(w) = {AV - € | £(2) € 00(Vu(@))}.
Here, ®(|n|) and 0®(|n|) are given by

_ _ B/l . if n#0

s e =l onin={ g Y ETED

The fourth order total variation flow (TVF) problem (1.1a)-(1.1c) describes surface
relaxation below the roughening temperature. We note that similar fourth order
TVF problems occur in image recovery. For more details we refer to [2] and the
references therein.

In the sequel, we consider the regularized fourth order TVF problem

(1.4a) ‘?g + BAV - (6% + |[Vw|>)"Y2Vw) =0 in Q,

(1.4b) nq - B0+ [Vw?)"V/?Vw= 0 on3,
ng - B@(@ (0% + |@w|2)71/2§w) =0 on%,
(1.4c) w(-,0) = w’ in €,
where § > 0 is a regularization parameter. We further consider a scaling in both
the time variable and the spatial variables according to
(1.5) t =06t x; =08, 1<i<2.

Setting 7' := 67, Q := 6Q,T := 90, Q := Q x (0,7),% :=T x (0,T), and u°(x) =
w?(671z), as well as

(1.6) w(Vu) :== 1+ |Vul?
the scaled and regularized fourth order TVF problem reads as follows
(1.7a) 3—1: + B%AV - (w(Vu)"Y2Vu) =0 in Q,

(1.7b) nr - 862 (w(Vu)~/2Vu) :np-ﬁ(SQV(V-((w(Vu)_l/QVu)) =0 ony,
(1.7¢) u(-,0) = u° in Q.

The numerical solution of the regularized fourth order TVF problem with periodic
boundary conditions has been considered in [7] based on a mixed formulation of
the implicitly in time discretized problem. At each time-step, this amounts to the
solution of two second order elliptic PDEs by standard Lagrangian finite elements
with respect to a triangulation of the computational domain €. On the other
hand, a C° Interior Penalty Discontinuous Galerkin (C°TPDG) method has been
developed and implemented in [2]. The advantage of the C°IPDG approach is that
it directly applies to the fourth order problem and thus only requires the numerical
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solution of one equation by using the same Lagrangian finite elements as in the
mixed method.

The paper is organized as follows: After some basic notations from matrix analysis
and Lebesgue and Sobolev spaces presented in section 2, in section 3 we recall the
C°IPDG approximation of the implicity in time discretized, regularized, and scaled
fourth order TVF problem from [2]. Section 4 is devoted to a proof of the existence
and uniqueness of a solution of the C°IPDG approximation by an application of
the nonlinear version of the Lax-Milgram Lemma. In particular, this requires to
show that the nonlinear operator associated with the C°IPDG approximation is
Lipschitz continuous and strongly monotone on bounded subsets of the underlying
function space.

2. BASIC NOTATIONS

For vectors x = (z1,-,2,)T,y = (y1, ,¥n)T € R™ and for matrices A =
(aij)ij=1,B = (bij)} j—1 € R™™™ we denote by x -y and A : B the Euclidean inner
product x -y = >, x;3; and the Frobenius inner product A B= Z _1 @i;bi5.
In particular, |x| := (x-x)"/? and |A] := (A : A)'/? refer to the Euchdean norm
and the Frobenius norm, respectively. -

We will further use standard notation from Lebesgue and Sobolev space theory
(cf., e.g., [9]). In particular, for a bounded domain D C R% d € N, we refer
to LP(D),1 < p < oo, as the Banach space of p-th power Lebesgue integrable
functions on D with norm || - |lop,p and to L°(D) as the Banach space of es-
sentially bounded functions on D with norm || - ||o,c0,n. Moreover, we denote by
W#P(D),s € Ry,1 < p < oo, the Sobolev spaces with norms || - ||s,p. We note
that for p = 2 the spaces L2(D) and W*2(D) = H*(D) are Hilbert spaces with
inner products (-,-)o,2,p and (-, )s,2,p. In the sequel, we will suppress the subindex
2 and write (-,-)o.p, (*,*)s.p and || - Il - (+s)0.2,05 (*s*)s,2,p and
Il - llo2.0,1 - lls.2.p- The space WyP(D) is the closure of C§° with respect to the
|- |Is.p,p-norm. We refer to W—*P(D),s € Ry,1 < p < oo, as the dual of W;'Y(D),
where 1/p+1/¢ = 1. In particular, H=*(D) = (H(D)*.

3. CO% INTERIOR PENALTY DISCONTINUOUS GALERKIN APPROXIMATION

We perform a discretization in time of (1. 7) with respect to a partition of the
time interval [0,7] into subintervals [t,,—1,t,],1 < m < M, M € N, of length
At :=t,, — tyn—1 = T/M. Denoting by u™ some approximation of u at time ¢,,,
for 1 <m < M we have to solve the problems

(3.1a) u™ — w4+ ALBEPAVY - (w(Vu™) TV Vu™) = 0 in
(3.1b) nr - 6% (w(Vu™)"V2Vu™) = 0 o
(3.1c) np - B52V<V A(w(Vu™) TV 2Tu™) ) OonT.

We reformulate the second term on the left-hand side of (3.1a) according to
(3.2) AV - (@(Tu") V) = V-V (- (@(Va) 20 =
V V- V(w(Vu™)"Y27u™).
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As has been shown in [2], we have
(3.3) V(w(Vu™)"Y2vu™) = w(Vum)_g/Qﬂ(um)Dzum,

where D2u™ is the 2 x 2 matrix of second partial derivatives of 4™ and the matrix
M(u™) is given by

Qu™\2  _ ou™ ou™
1 + ( axg ) Bml 6%2

(3.4) M(u™) =
- du™ du™ ™
- 81;31 31;,‘2 1 + ( 81;,‘2 )2

We note that the matrix M(u™) is symmetric positive definite with the eigenvalues

(3.5) AminM(™) =1, Apas(M(u™)) =1+ |Vu™ .
Setting
(3.6) A (0) = w(Vo) " M(v),

the weak formulation of the implicitly in time discretized regularized fourth order
TVF problem (3.1a)-(3.1c) reads: Find

u™ eV :={ve H*(Q) | nr - $6%w(Vv)~"V2Vu =0 on I'}

such that for all v € V it holds

(3.7) (W™ —u" )0 + At,@dg/ (él (um)DZum> : D*v dx = 0.
)

For the discretization in space we assume 7T; to be a geometrically conforming,
simplicial triangulation of 2. We denote by &,(Q2) and &, (T") the set of edges of Ty,
in the interior of © and on the boundary I, respectively, and set &, := &, (Q)UEL(T).
For K € Tj, and E € &, we denote by hx and hg the diameter of K and the length
of E, and we set h := max(hx | K € T;). Due to the assumptions on 7, there exist
constants 0 < cr < Cg, 0 < cg < Cg, and 0 < cg < Cg such that for all K € T,
it holds

(3.8&) crhg < hg < Crhg, FE€ Sh(aK),
(38b) CQh S hK S CQh,
(3.8¢) csh? < meas(K) < Csh%.

Denoting by P (T), k € N, the linear space of polynomials of degree < k on T, for
k € N we define

(3.9) Vi i={vp, € C%(Q) | vp|r € Pu(T), T € T1},
and note that V, ¢ H1(Q), but V3, ¢ H?(£2). Further, we introduce
(3.10) M, :={q, € LX) |q [k € P(K)*?* K€Th}

as the space of element-wise polynomial moment tensors.
For interior edges E € &£,(Q) such that £ = Ky N K_, Ky € T, and boundary
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edges on I' we introduce the average and jump of Vv, according to

(3.11a) {Vop} g == %(vvh|EﬁK+ + VUh|EﬁK_> , Ee&n(Q)
v’Uh|E B IONS gh(r)

| Vunlenk, — Vorlenk_ , E € Ex(Q)

(3.11b) [Voplg = { Von|g , E € E(T)

The average {Av,} g and jump [Avy]g are defined analogously. We further denote
by ng the unit normal vector on F pointing in the direction from Ky to K_. In
the sequel, for E € &, we will frequently use

(3.12a) Honwn} el < 2{[vn |} e{|lwnl} e,
(3.12b) [fvnwn] | < 4{|vnl}e{lwn|}E-
In fact, for E € £,(Q) (3.12a) and (3.12b) follow from

1
Honwn el < 5(\U}L\E+|wh|E+ + |onle_wn|e_) < 2{|vn|}e{|wnl} E,
llvnwn] Bl < (Jvnles lwnl e + lvnle_lwale_) < 4{|vnl}e{lwal}e,

whereas it is obvious for E € &, (T"). We will also use

(3.13) Z [vhwr]E = Z {on}elwn)e + Z [va]e{wn} e

Eecé&y Eeé&p Ec&n(Q)

Following the general approach [1] for DG approximations of second order elliptic
boundary value problems, in [2] we have derived the following C°IPDG approxima-
tion of (3.7): Find u}* € V}, such that for all v, € V4 it holds

(3.14) (upt,vn)oq + AtﬁdQQ}ILP(uZL,vh;uZ”) = (u?fl,vh)(],gg, vy, € Vi,

Here, for zj, € V} the mesh-dependent semilinear C°IPDG form a{LP(~, zp) Vi x
Vi, — R is given by

(3.15) abf (up,vn; 2n) = Z (él(zh)DQUh,D%h)OK —

KeTy,
> (g {A,(zn)D*untpnp,ng - [w(Vzn) * Voulg)os —
Ecé&y,
Z (nE . {é2(Zh)D2Uh}E1’1E7 ng - [w(Vzh)*l/‘quh]E)o_,E +
Ee€&y
a Z hg' (g - [w(Vz) Y4V pong - w(Vey) Y4V o) 5)o 5,
Eecé&y,

where a > 0 is a penalty parameter and

(3.16) A (21) = w(Vz,) " M(z).

=2
4. EXISTENCE AND UNIQUENESS OF A SOLUTION OF THE C°IPDG
APPROXIMATION

The existence and uniqueness of a solution of the C°TPDG approximation (3.14)
can be shown using the following nonlinear analogue of the Lax-Milgram Lemma.
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Theorem 4.1. Let V be a Hilbert space with inner product (-,-)yv and associated
norm || - ||v and let V* be the dual space with norm || -||v-. We denote by (-, Yy« v
the dual pairing between V* and V. Let A : V. — V* be a nonlinear operator with
A(0) = 0 that is Lipschitz continuous on B(0,R) :={v e V | |v|lv < R},R > 0,
i.e., there exists a constant T'(R) > 0 such that for all v,w € V it holds

(4.1) [A(v) = A(w)llv;; <T(R) [lv—wly.

Moreover, assume that A :' V. — V* is strongly monotone on B(0, R), i.e., there
exists a constant y(R) > 0 such that for all v,w € B(0, R) it holds

(4.2) (A(v) = A(w),v = w)ve v 2 Y(R) o - vl
Then, for any £ € V* with

L(R)? V(R)?
(4.3) el < = (1 - F(R)Q)R,

the nonlinear equation

(4.4) Au =1

has a unique solution v € B(0, R).

Proof. We refer to 7: V* — V as the Riesz mapping, i.e.,
(4.5) lov)yy=y = (Tlv)y, LeV* veV.

Then, u € B(0,R) is a solution of (4.4) if and only if u is a fixed point of the
nonlinear map 7 : V' — V defined by means of

T(w):=v—p(TA(w) —7L), veV, p>0.
Due to (4.5) we have
(4.6) IT(v) = T(w)l} =
lv = wlf = 20(A(v) = A(w),v — wyv+ v + p*[[A(v) = A(w)][T..

Now, using (4.1) and (4.2) it follows that

IT(v) = T()|[} < gllv—wli, q:=1-2py(R)+ p°T(R)*.
For p € (0,2y(R)/T(R)?) we have ¢ < 1 and hence, T is a contraction on B(0, R).
We note that g attains its minimum gy, = 1—y(R)?/T(R)? for pmin = 7(R)/T(R)?.
Moreover, choosing w = 0 in (4.6) and observing A(0) = 0, we have

IT(w) = TO)} < gmanllvl?,

and hence, for v € B(0, R) it holds

IT@)llv < IIT(@) =TO)lv +[TO)lv < VgminR + pllt]v--
Consequently, we have
(4.7) IT()llv <R,

if £ € V* satisfies (4.3). We deduce from (4.7) that T'(B(0, R)) C B(0,R). The
Banach fixed point theorem asserts the existence and uniqueness of a fixed point
in B(0, R). a
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In order to apply the previous result to the C°TPDG method (3.14), we introduce

a mesh-dependent semi-norm |- |25, o and weighted norm || - ||2,5,0 on V3 according
to
(4.8&) |Uh|27h7Q = ( Z DQUh : D2Uh dr +

KeTy, K

1/2
e Z hit / ng - [Vun]e|? ds) ,

Ee&y ECE),

9 9 1/2
(4.80) lonllzna = (lonld + lonlng) -
We further note that (3.14) can be written as the nonlinear equation
(4.9) ARGy = by,
where the nonlinear operator AhD (SRR VAN Vy* and the linear functional ¢, € V)
are given by
(4.10) (AP%vn, wa)vir vi, == (Un, wi)o.o + ALBS* ay’ (vn, wh;vn), v, wh € Vi,
(4.11) éh(’uh) = (u;"_l,vh)owg, vp € V.

For the proof of Lipschitz continuity on bounded sets and strong monotonicity of
the nonlinear operator AP we need the inverse estimates (cf., e.g., [3, 5]):

For p € [1,00] and ¢, m € Ny it holds
Cinv

meas(K)maw(O,%fi h?_g |

(4.12) v llm,p,x < lonlle, s vn € Vi,

where Cj,, is a positive constant that only depends on k,¢,m,p and the shape
regularity of the triangulation. We further need the trace inequalities (cf., e.g.,
[8, 10]): For p € [1,00], m € Ny, and K € Tj, it holds

(4.13a) IV onllmpor < Crhg /P IVorllmp s vh € Vi,

(4.13b) ID%0nlmpox < Crh P ID*opllmp.ics Oh € Vi,

where Cr is a positive constant that only depends on k, m,p and the shape regu-
larity of the triangulation. Moreover, we will frequently use the following Poincaré-
Friedrichs inequality for piecewise H2-functions (cf., e.g., [4])

(4.14) [Vunllo.o < Cprlvnlang, v € Vi,

where Cpp > 0 is a constant that only depends on € and the shape regularity of
the triangulation.

In the sequel, we will frequently use some basic estimates for the weight function
w(Vuy). In particular, for 8 > 0 and v € V}, it holds

(4.15a) w(Vo) ™ =1+ V)P <1,
(4.15D) w(Vo)~ | Wo| < w(Vo)~ B (1 + | Wo|?)1/2
w(Vo)~ /2 <1,

IA

IA
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Moreover, for v,w € V3, and &(s) := w + s(v — w), s € [0, 1], it holds

(4.16a) w(Vv)™? —w(Vw)™? = —ZB/w(Vf(s))_ﬂ_lvg(s) -V(v—w) ds,
0

(4.16b)  w(Vv)’M(v) — w(Vw)fBM(w) = /w(Vf(s))fﬁg(f(s);v —w) ds —

0
1

28 / W(VE() PIVE(S) - V(v — w)M(E(s)) ds,

0

where the matrix F(v;w),v,w € Vj, is given by

Ow v Ow dv | Ow dv
[“).7,‘2 axg 6951 8.7,'2 6%2 8.7,'1
(4.17)  FE(y;w):= . v,w E V.
Ow Ov Ow Ov. Ow Ov
Oz Oxa Oz Oz Oz, Ox1

An easy computation yields

(4.18) F(v;w)|? <5 |Vo|]? [V

It follows from (4.15b) and (4.16a) that

(4.19a) lw(Vv) ™ — w(Vw) P < 26|V (v —w)|,

whereas in view of (3.5),(4.15b),(4.16b), and (4.18) we have

(419D)  (T0) M) - w(Vw) PM(w)| < (268 + VB V(o —w)],

We will first show that the nonlinear operator A{? G is Lipschitz continuous on the

ball

(4.20) Bh(O,R) = {’Uh eV | ||Uh”2’h,Q < R}

Theorem 4.2. The nonlinear operator AEG is Lipschitz continuous on the ball
Bi(0, R). In particular, there exists I'(h, R) > 0 such that

(4.21) ||A;?GU}L - A?GwhHV’: < F(h,, R) H’Uh - wh||27h’97 Up, Wh, € Bh(o, R).

Proof. For vy, wy, € By(0, R) we set &, := v, — wy. In view of the definition (4.10)
of the nonlinear operator APY we have

(4.22) || AY%on — AP wnllv: = sup  [(AY%n — AP wn, zn)ve v, | =
Izrll2,n,0<1

sup  |(&nszn)o0 + AtB6? (ahDG(vh, Zh; V) — afc(wh, Zh; wh)> |.

lznll2,n,0<1
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According to the definition (3.15) of the semilinear form aP%(-,;-) we find

N

(4.23) afG(Uh, Zn; ) — aEG(wm Zpswp) =

Z / (él (vn)Dvy, — él(wh)DQwh) : D%z, dx

KeTh K

— Z / (IIE . {A2(Uh)D2Uh}E ng ng - [w(Vvh)_1/4Vzh]E -

Ecg E

ng - {éQ(wh)D%uh}E ng ng - [w(th)*l/“Vzh]E) ds

— Z (nE . {éz(vh)D%h}E ngp ng - [w(Vvh)*l/‘leh]E -
E€S;LE

ng - {AQ(wh)DZZh}E ng ng - [w(th)fl/‘*th]E) ds

+ « Z h;;l / (IIE . [w(Vvh)_1/4Vv;L]E ng - [w(VU;L)_1/4VZh]E —

Ec&y E

ng - [w(th)_1/4th]E ng - [w(th)_1/4Vzh]E) ds.

We will estimate the four terms on the right-hand side of (4.23) separately.

(i) For the first term on the right-hand side of (4.23) we obtain

Z /(él(vh)D%h 7§1(wh)D2wh) : D%z, dv =

K€7—h,K
Z /él(vh)DQ&L : D%z, dx + Z /(é1(vh) —él(wh))DQwh : D2z, dx.
KE'T;LK KEThK

=1 =1

In view of (3.5),(3.6), and (4.15a) and using Hélder’s inequality as well as the
Cauchy-Schwarz inequality, we get the following upper bound for I;:

(4.24) Ll < Y [ ID*||D%2] do <
KeTh i
D (/|D2§h\2 dm)1/2(/|D2zh\2 a) "’ <
KeTy, K K
1/2 1/2
(X I3k dz) (3 ID%nlE i do)
KeTh KeTy

Likewise, using (3.8b),(3.8¢),(4.16b), the inverse inequality (4.12), the Poincaré-
Friedrichs inequality for piecewise H2-functions (4.14), and observing || D?wp|lo. x <
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lwnll2,n0 < R, K € Th, we can estimate I from above as follows:

Li< 3 / A (1) — A, (wn)||D?wn|D22p dir <
KEnK

B+V5) > [ |V&GIID*ws||D?2| da <

KEThK
1/2 1/2
34V Y 196 [ 107l do) ([ 1020 da) " <
KeTh K K
(3+VB)es *ConuR - W IVEloxc| D2 2lloxc <
KeT,
- - 1/2 1/2
(B34 VB)eg'es*Cna R0 (2 V&R &) (D2 1Dzl &)
KeTh KeTh
-1,-1/2 -1 2, 2 \/?
< (3+V5)eg'cs " "CinoCprRA |€h\2,h,sz( > D ZhHo,K) -
KeTy

Hence, setting Cil) =3+ \/g)célcgl/szvCpFR, we thus have

1/2
(4.25) 1 < CO nlna (Y ID*2l3k)
KeTy

(ii) Setting &(Vvp, Vwy) := w(Voy) "4 — w(Vawy) /4, the second term on the
right-hand side of (4.23) can be written as

Z / (nE . {éQ(Uh)DQUh}E ng ng - [w(Vvh)_1/4Vzh]E —
EeghE

ng - {éQ(wh)DZMh}E ng ng - [w(th)*l/“Vzh]E) ds =

Z /nE . {éQ(Uh)Dth}E ng ng - [w(Vvh)fl/‘leh]E ds +
EGE};,E

=11

Z /IIE : {(éQ(Uh) — é2(wh))D2wh}E ng ng - [w(Vvh)_1/4Vzh]E ds +
EeghE

=11,

Z /IIE . {é2(wh)D2wh}E ng ng - [(:J(VU}“VU)}L)VZ}L]E dS .
Eeé&y E

= II3



CTPDG METHOD FOR A FOURTH ORDER TOTAL VARIATION FLOW PROBLEM 11

Setting Fy := Ey,FEy := E_, for E € ,(Q), and using (3.5),(3.8a),(3.16),(4.15a),
and the trace inequality (4.13b), for the first term I1; we find

i< Y [1p%aelng- (Valsl ds <

EGShE
Z /Z|D2€h|E Ing - [Venlel ds+ /|D2§h|||ﬂE (Van]p| ds <
Eegh(Q)E =1 EeEn(T)
B 1/2
Z Zh1/2 /|D2§h|E 2 ds E1/2(/|nE [Vanlg)? d.s) +
Ee&r(Q) i=1 E
1/2
3 1/2/|D2§ 2 as) g ( /|nE- Vanlsl ds) <
Ecé&, (D)
1/2
(X melpalon) (X b /|nE Valef ds)” <
KeTy E€é&y
1/2
c*or( S |\D2§h\|g,K) ( S hp /|nE Valpl ds)
KeTy, Eecé&y E

We thus have

@2) i <c? (X 10%lk) (X b / g [Valf? ds)

KeTy, E€&y,

where C? := C}/2Cy. In a similar way, using (3.5),(3.8a)-(3.8¢),(3.16),(4.16b), the
inverse inequality (4.12), the trace inequality (4.13a), the Poincaré-Friedrichs in-
equality for piecewise H2-functions (4.14), and observing || D?wy |0 < |[wh|2,n,0 <
R, K € Ty, the second term Il can be estimated from above according to

1/2
@an)  nl < G+ VACK (Y IVGE i / (D2 ds )

KeTh oK
1/2
Z hy /\nE [Vznle ) <
Ecé&y,
1/2 2 2 1/2
Cvaoyion( Y ||vsh||omk/|D wn? ds)
KeTn
1/2
(Z hEl/\nE VzhE|2 s>/ <
Ecé&y, E
) -1 -1 1/2 -1 1/2
(5 +V3)g 5 Con O *Cr R (Y V&l &)
KeTh
Z h /‘HE Vzh E|2 dS) <

Eeé&y,

1/2
< C,(qs)h_1|fh|2,h,ﬂ( Z hi' [ Ing - [Vau]sl? dS) )

Ecé&y E
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where C’f) = (% + \/g)célcglCmvCpFC;/QC’TR. In a similar way, for I3 we
obtain

|13 <
1/2 1/2
(3 Vet [ 1D2wnfas) (3 bt [ ne (VlePas) <
KeTn oK Ee€é&y E
1/2 9 9 19 1/2 1 ) 1/2
2 Cr( 3 IVl e [ 10Punfd) (3 0! [ Ine- (Venlifas) " <
KeTh K Ecé&y, E
1/2
célcglCmvCppC}fCTRh_l|zh\27h79( Z hgl |nE . [th]E‘2 ds)
Ecé&y, E
and hence,
(4)7 -1 -1 2 1/2
(4.28) |II3| < CA h |Zh|2_’h,Q( Z hE |I1E . [th]E| dS) R
Eec&y, E

where CXL) = CélcglcinvOPFO}:{ﬂcTR-
(iii) For the third term on the right-hand side of (4.23) we have

Z (nE . {éQ(vh)DQZh}E ng ng - [w(Vvh)_1/4Vvh]E —
Eeén

ng - {A, (wp)D?*21} g np np - [w(th)‘1/4th]E) ds =

> [ ng-{(A,(n) = A, (wn)) Dz} pnp ng - [w(Vor) /4 Vg ds +

EES}LE
=111

Z ng - {é2(wh)D2zh}EnE ng - [(Z)(Vl)h, th)V’Uh]E ds +
EcEy E

= IIly
Z ng - {é2(wh)D2,zh}EnE ng - [w(Vu,) Y4V e ds.
Eeé&y, E

= IIl3

The terms [11;, 1115, and 1113 can be estimated from above in much the same
way as the corresponding terms for I1. We obtain

1/2
(4.29) L < COn enlna( Y [ 1%l ds)
KEEK
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where 01(45) = (g + \/g)célcglcimeFC;%pCTR, and

2

(4.30a) 115] < 9 e 3 / D22 ds) ",
KeThK

2

(4.30D) 1155 < P enloa (3 / D22 ds)
KeT i

where O = O := 55 Ciny CprCy{*CrR.
(iv) Finally, for the fourth term on the right-hand side of (4.23) we get

(4.31) Z hg / (HE w(Vor) YAV np - [w(Ve) V4V 2] -

Eecé&y, E

ng - [w(Vwr) V4 Vup)p ng - [w(th)_1/4Vzh]E) ds —

o Z hEl /IIE . [w(Vvh)_1/4V§h]E ng - [w(Vvh)‘l/“Vzh]E ds +

Eec&y, E
=1IV;
o Z h;Jl /nE . [w(th)fl/ALth]E ng - [@(Vuop, Vwp)Vzp|g ds +
Ecg B
=1V,
o Z hEl /nE “[@0(Vop, Vup)Vwy|g ng - [w(th)fl/‘leh]E ds.
Eec&y, E
=1V3

Using (3.8a),(4.15a), the trace inequality (4.13a), and the Poincaré-Friedrichs in-
equality for piecewise H2-functions (4.14), for IV; we obtain

Vil <a Y hg' [ Ing-[Vélelng - [Vaile| ds <
Ec&),

E
3 3 1/2
(0% Z h 1/2 /|IIE Vgh]E‘ dS) 1/2 /|IIE Vzh]E\2d5> S
Eecé&y
/2
C(S) Z h /|nE [VEn] s)? ds Z / “ng - [Va]pl ds) 7
Ec€é&y, Eeén 'y

where 05\8) = a. Setting Ky := K4 and Ky := K_ for E € £,(Q),E =K, NK_,
and Ky = Ky = K for E € §,(T'), E € (K NT), the term IV5 can be estimated
from above as follows:

2 1/2
Vo] <a ) Z||V§h\|o,oo,Ki(/h151|nE : [th]E|2d8)

E€E&), i=1 2

1/2
(/h;1|nE . [VZ}L]E|2dS) .

E
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Using (3.8b),(3.8¢c), the inverse inequality (4.12), and the Poincaré-Friedrichs in-

equality for piecewise H2-functions (4.14), for IVi, we have

2 2
S IV, < crles Conuh™ Y IVELl0k, <

i=1 i=1
2¢z' ¢ Cinoh | Vérllo.0 < 2¢i" c5' CinuCrrh ™ én|2,n.0-

1/2
Hence, observing ( > hgl [ |ng - [th]EPds) < Jlwpll2,n.0 < R, we obtain
Ecé&y, E

1/2
(4.32) Vel < O Yealana( [ hp' e (VaalePds)
E

where ng) = 20[01_21C§10¢n7,CPFR. In the same way we get

1/2
(4.33) 1V3] < Cglo)h‘1|§h|2,h79(/hgl|nE [Vanlpl?ds) .
E

where 01(410) = CS)).
Setting C4 := Zgl CX), it follows from (4.22)-(4.33) that
(AR on — AR wn, zn)v v, | < max(1, BALS*Cab™) [|&nll2.n.allznll2,n.0,

which implies (4.21) with T'(k, R) := max(1, BAt62Ch~1). O

Theorem 4.3. Under the assumption that there exist constants 0 < kK < 1 and
Ca > 0 such that

(4.34) BALS? < Cah*t",

for sufficiently small 0 < h < 1 there exists y(h,R) > 0 such that for vy, w) €
By, (0, R) it holds

(4.35) (ARSvn — APCwh,vn — wi)ve v, = Y(h R)|lon — w13 o-

Proof. For vy, wy, € By (0, R) we set &, := v, — wy,. Taking the definition (4.10) of
the nonlinear operator A,? & into account, we have

(4.36) <A2G’Uh - A}?Gwhafh>V;,Vh =

€115 o + BALS? (ahDG(vh, Enson) — az, % (wn, n; wh))-
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Recalling the definitions (3.6),(3.16) of A and A,, for the second term on the
right-hand side of (4.36) it follows that

(4.37) al’C (vn, En;on) — al % (wh, Epwy) =

Z / Uh D Vp — Al(wh))D2wh> ZD2§h dx

K€7-}K

— Z / ng - {A (Uh)D ’Uh}E ng ng - [ (Vl)h) 1/4V£h] -
EEEhE
ng - {éQ(wh)Dzwh}E ng ng - [w(th)_1/4V§h]E) ds
— Z (l’lE . {éQ(vh)ngh}E ng ng - [w(Vvh)fl/‘leh]E —
E€E, 7,
ng - {é2(wh)D2§h}E ng ng - [w(th)fl/‘leh}E) ds
+a Z hgl/ (nE Jw(VoR) VAV ng - [w(Vop) VAV E ] E —
Ecé&y, E
5 [W(Vw) VAV wy]p np - [w(th)_1/4V§h]E> ds.

As in the previous theorem, we will estimate the four terms on the right-hand side
of (4.37) separately.

(i) For the first term we obtain

Z / vh D vy, — Al(wh)D2wh) D% dx =

KE’ThK
Z /A vp) D2y, : D€, da + Z / (wh))D%;h : D¢, da.
KeTh 3 KETh i

=1 =1

As far as I is concerned, due to (3.5) and (3.6) we have

/él(vh)DQSh : D2y da > (14 (| Voll§ o)~ IDE0I3 -

Using (3.8b),(3.8¢), the inverse inequality (4.12), the Poincaré-Friedrichs inequality
for piecewise H?-functions (4.14), and observing [vs||2,n.0 < R, we get
HVU}LHO 00, K < CSQCfnU 2HV/UhHg K< CQ 05'2012711) 2‘|Vvh||g,9 <

0), —
co CS2Cz2m)CPFh 2||UhH2hQ < ’Y( 'p?

where fy( ) 202 C%R%. Observing h < 1, it follows that

(1+ ||wh|\o,oo )2 2 W )T 2 B (L)) T2 = )R
where *y( ) =(1+ ,Y(O)) 3/2_ Hence, we obtain the following lower bound for I:

(4.38) L] >3 S D262
KeTn
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In order to estimate I5 from above, we use (3.8b),(3.8¢),(4.19b), Holder’s inequality,
the inverse inequality (4.12), the Cauchy-Schwarz inequality, and observe \|D2wh||07 K
<|wpll2,n,0 < R, K € Tp:

Ll < (34+V5) Y [ IV&ID*wn|| D] dz <
KE’F}K

3+v5) 3 IV [ 1D ar) ([ 1070 ar) " <

KeTh K K

B3+ V5)cs' Cino > hig I€nllo. x| D*wnllo, x| D*€nllo.xc <

KeTh

B+ VB)eg ' CoR Y hi€nllox b [6nllo.e <
KETh

(3+\/7)CQ CSICanth 8 Z thHg,K

KeTn

Hence, it follows that
(4.39) | < C3n3 |l 2 o,

where C .= 3+ V) es'C2, R

mnuv

(ii) We now deal with the second term on the right-hand side of (4.37) which we
rewrite as follows:

Z/ ng - {A (Uh)D UptE ng ng - [w(Vuoy)~ 1/4V§h}

E€é&y E

ng - {A, (wp)D*wp}p np g - [w(th)*l/‘*Véh]E) ds =

> /nE A, (h)D*6} e np ng - [w(Vor) " /4VE] g ds +

EEghE
=11
> [ e (A, )~ A, () DPun) - o(Von) AV ds
EG&,,E
=115

+ Z /nE {A wh)D wh}E ng ng - [ (Vvh,th)Vﬁh]E ClS7

EEEh

=113

where &(Vup,, Vwy,) := w(Vo,) Y4 — w(Vw,) 4. In view of (3.5),(3.8b),(3.12),
(3.16),(4.15), Holder’s inequality, the Cauchy-Schwarz inequality, the inverse in-
equality (4.12), and the trace inequality (4.13b) we can estimate I1; from above as
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follows:

L1 <8 Y [{ID*Ge{|Vél}te ds <

EEghE
1/2 1/2
o3 ([uprarre as) " ([1vearte ) <
Eegn g Vo
1/2 1/2

4y (/\D2§h|2 ds) (/|V§h\2 ds) <
KeTn gk oK
4cg'nt 37 B2 D% 0 oxc i1V Enllo.ox <

KeTy,
3 B 1/2 1/2
1" (Y ID%lR k) (X IValik) T <

KeTy KeTy

1c5'C2, 0307 3 Janld ke <

KeTn
46(_9401‘2711)6(%}7'74”5}1 Hg,Q

Hence, we obtain

2 —
(4.40) 115] < CF R |6n]3 0,

where 6'1(32) = 405402 C’%. Likewise, for 115 we have

mv

1L 4G +VB) 3 [(1VaP)edDAunlye ds <

Ecg E

205+ 3 ( [19ale @) " ( [untupye a) <
E

Ecé&y, E

2(§+x/5) > (/|V£h|4 ds)l/Q(/|D2wh|2 d5)1/2 =
oK

KeTn oK

)

25 +VB)eg'h™ D W1 VG worchil*ID*walloox <
KeTh

5 1/2 1/2

2+ VB CH T (Y IValitax) (X ID%wlix) " <
KeTn KeTn

5 -1,-1/2 2 pp—2 4 V2

2(5"“/5)0@ cs " "CinyCrRh ( Z ||V§h“0,K) <
KeTy

5 _
20 + VB)eg ey PO, CRRA D7 Gl k-
KeTh

It follows that

(4.41) L] < C5h*&l13 0,

17
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where C’S) = 2(%—%\/5)053651/205’%6’%]{ Finally, I3 can be bounded from above

in much the same way as Il5. We get
(4.42) |113] < O R jén]?,

where 01(34) = 2053051/20?%

C2R.

(iii) For the third term on the right-hand side of (4.37) we have

Z (nE : {éz(vh)D2§h}E ng ng - [W(Vvh)71/4Vvh]E —
E€én

ng - {A,(wy)D*¢} g np g - [w(vw}L)_l/4vw}L]E) ds =

> [ ne-{(A,(n) — A, (wn) D>} eng np - [w(Vor) ™/ Vou]pds +

Ecgy E
= Il

Z ng - {é2(wh)D2§h}EnE ng - [0(Vuy, Vwy)Voplgds +
Ee&y, E

= IIIy
Z ng - {éQ(wh)ngh}EnE ng - [w(Vvh)_1/4Vvh]Eds.
EEShE

= IIIs

The three terms can be estimated from above in a similar way as the corresponding
terms in /1. We obtain

(4.43)
1IIL| < O Yenl2 0, I < CYR Y6l g, 1IIT] < CF h~ |62 g,

where C’g’) = 2(%+\/5)cé3’c§1/203 CZR, and C]g) =

BCRR, O = 20552 C)
o).

muv

(iv) For the fourth term on the right-hand side of (4.37) we obtain

(444) a Y hil/(nE w(Von) "Vl g ng - [w(Von) VAV E]E —
Ecéy E

ng - [w(th)_1/4th]E ng - [w(th)_1/4V§h]E) ds =
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« Z hi' [W(Vun) VIV E np - [w(Vop) AV ds +
Eegh E
=1V
a Z hy 1/ [w(Vw,) Y4V wyg ng - [@(V,, Vwp) Vg ds +
Eecg&y, E
=1V,
o Z hp' [ np - [@(Von, V) Vwslp np - [w(Vw,) V4V g ds.
Ecé&y, E
=1V,

In view of (3.13), the first term IV; can be further split according to

Wi=a 3 b [ e (@(Vo) M e(Vele e (o(To) )6l Ve ds+

E€&y E

= IV

a Y hil/ﬂE w(Vor) Y p{ Ve nE - [w(Von) Y e{Vé}e ds +
Ee€&n(Q) B

= IVi2

a Z hp' [ ng - [w(VoR) T p{VEé e np - {w(Von) "}V ds +
FEEL(Q) 1

= IVi3

a Y bt /nE Aw(Von) Y} 5[V ng - [w(Von) ™ p{VE} g ds.

Ec&n(Q)

= IV
For IViy, setting By := Ey and FEy := E_ for E € £,(2), we have

Vinza Y, (1+g Z'lvvhHOwE) Y2y /|nE [Vén]plPds +

EE&,(Q) i=1
o Y (4 Vol )20 /\nE (VenlsPds.
Eec&p ()

Taking advantage of (3.8b),(3.8¢), the inverse inequality (4.12), and the Poincaré-
Friedrichs inequality for piecewise H2-functions (4.14), it follows that for E €
Er(OK) it holds

IV 0nllo.0,2 < IV 0k llo,00,x < €577

Cinoh [ Vunllox <
cg'cs Cinoh™ | Vunllog < cg'es*CinsCrrh ™ onl2ng < cg'cs*CinuCrrh 'R,
and hence, observing h < 1, we get
(1+ HVUhII?) wop) P2 (L4 P O CRp RPN %) 712 =

(W +c5c CmvCI%FRZ)*l/Qh > (1+cx’cs'CL,,ChpR?) ™ /0.

muv



20 C. BHANDARI', R.H.W. HOPPE?, AND R. KUMAR?

Consequently, we obtain

(4.45) Vir > ani?h Y bt [ Ing - [Vén]plds,
Ec&y, E
where fy( )= a(l+cq cg'C2,,CEpR?) 712,
The remaining terms I VM, 2 <4 <4, can be estimated from above similarly as the
corresponding terms in Theorem 4.2:

(4.46)
[IVis| < €020, 1TVisl < CYR Y20, 1TVial < C5On 6412 0,

where C’](38) = 2acQ 7 C2,.,C2 and C(Q) Cgo) = 201(38>. The remaining
two terms IV, and IV3 can be estlmated from above in the same way. Using
(3.8a),(3.8b),(4.19a), the inverse inequality (4.12), the trace inequality (4.13a), the

Cauchy—Schwarz inequality, and observing

Z h /|nE th E|2 dS) 2,h,Q2 < R7
Ee€&y
we obtain
azy §4acé/ 1212 Z hg 1/2/|HE (Vwn]el{|VE}E ds <
Eegy
) 1/2
4acQ/ ~1/2)-1/2 Z hy, 1/2 /|nE [Vwn]g)? ds /{\Vg“}‘}i ds) <
Ee&y,
) 1 , 1/2
2acg 3/2,-1/2; 3/2 Z hy /|11E [Vwp] E|2 ds) ( Z hKHVthOzl[“)K)
E€Ey, KeTn

_ _ 3 1/2
< 2acQ3/QCR1/QCTRh 3/2( Z ||th‘|g,4,1() <

KeTn

_ 1/2
2acq ey P2, Crr (Y Jallli) <

KeTy
- 1 2
2acy ey *C,CrRET2 Y 6l k-
KeTn
Hence, it follows that
(4.47) 11Va| < CGVRTT2|4]3
where 01(311) = 205022 /2 1/2012,“,CTR. Moreover, we get

(4.48) 11V3] < CHPRT2)j6nf 0,

where C'p (12) . C(H)

Setting Cp := Zi:l Cg) and observing (4.34) as well as h < 1, it follows from
(4.36)-(4.48) that

(4.49) <A§GU}1 - AhDG’wh, Vp — wh>v* Vi Z

(1— CaCBI") [1€n]13 0 + min(1y, ey $)h® €413 0.0
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We choose hy,;, > 0 such that

(4.50) q:=CaCphl,;, <1 and min(’y](\?,a’y](\?)hfnm <1l-—gq.
Then, for h < hyin (4.35) follows from (4.49),(4.50) with
(4.51) y(h, R) := min(~}y, ey )h.

Corollary 4.1. Assume that u;?_l satisfies
_ I'(R)? ~v(R)?
m—1 < —2(1—4/1— R
i oo < ) ( F(R)Z)

for some R > 0 and that (4.34) holds true. Then, for sufficiently small grid size h,
the C°IPDG approzimation (3.14) has a unique solution u* € By (0, R).

Proof. Using the Lipschitz continuity (4.22) and the strong monotonicity (4.35) of
the nonlinear operator A? G the result follows from the nonlinear analogue of the
Lax-Milgram Lemma (Theorem 4.1). O

Remark 4.1. If we choose hyin > 0 such that (4.49) is satisfied as well as hpin <
BCAC 4, for b < hpin we have T'(h,R) = BCACah™' in Theorem 4.2 and the
application of Theorem 4.1 for V. =V, and A = AhDG implies that the fized point
operator T is a contraction as long as

@)
~v(h, R) min(yyg » Yy

4.52 2 =2

(452) P < T R)? 207

In other words, the contraction property degenerates for h — 0. This reflects the
very singular character of the fourth order total variation flow.

5

) h°.
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